Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation
Directory of Open Access Journals (Sweden)
S. Balaji
2014-01-01
Full Text Available A Legendre wavelet operational matrix method (LWM is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.
Stability of wavelet frames with matrix dilations
DEFF Research Database (Denmark)
Christensen, Ole; Sun, Wenchang
2006-01-01
(j,k) are perturbed. As a special case of our result, we obtain that if {Tau(A(j), A(j)Bn)psi} (j is an element of Z, n is an element of Zd) is a frame for an expansive matrix A and an invertible matrix B, then {Tau(A'(j), A(j)B lambda(n))psi}(j is an element of Z,) (n is an element of) (Zd) is a frame if vertical...... bar vertical bar A(-j)A'(j) - I vertical bar vertical bar(2) lambda(n) - n vertical bar vertical bar infinity 0....
Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems
Energy Technology Data Exchange (ETDEWEB)
Qi, Jinyi; Huesman, Ronald H.
2002-11-01
The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems.
Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems
International Nuclear Information System (INIS)
Qi, Jinyi; Huesman, Ronald H.
2002-01-01
The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems
Wavelet analysis of biological tissue's Mueller-matrix images
Tomka, Yu. Ya.
2008-05-01
The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.
Wavelet and receiver operating characteristic analysis of heart rate variability
McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.
2002-02-01
Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.
Energy Technology Data Exchange (ETDEWEB)
Jemcov, A.; Matovic, M.D. [Queen`s Univ., Kingston, Ontario (Canada)
1996-12-31
This paper examines the sparse representation and preconditioning of a discrete Steklov-Poincare operator which arises in domain decomposition methods. A non-overlapping domain decomposition method is applied to a second order self-adjoint elliptic operator (Poisson equation), with homogeneous boundary conditions, as a model problem. It is shown that the discrete Steklov-Poincare operator allows sparse representation with a bounded condition number in wavelet basis if the transformation is followed by thresholding and resealing. These two steps combined enable the effective use of Krylov subspace methods as an iterative solution procedure for the system of linear equations. Finding the solution of an interface problem in domain decomposition methods, known as a Schur complement problem, has been shown to be equivalent to the discrete form of Steklov-Poincare operator. A common way to obtain Schur complement matrix is by ordering the matrix of discrete differential operator in subdomain node groups then block eliminating interface nodes. The result is a dense matrix which corresponds to the interface problem. This is equivalent to reducing the original problem to several smaller differential problems and one boundary integral equation problem for the subdomain interface.
International Nuclear Information System (INIS)
Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A
2001-01-01
This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)
Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection
Zaffar, Mohammad; Pradhan, Asima
2018-02-01
A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.
EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations
International Nuclear Information System (INIS)
Garbow, Burton S.; Cline, A.K.; Meyering, J.
1993-01-01
: Driver subroutine for a nonsym. tridiag. matrix; SVD: Singular value decomposition of rectangular matrix; TINVIT: Find some vectors of sym. tridiag. matrix; TQLRAT: Find all values of sym. tridiag. matrix; TQL1: Find all values of sym. tridiag. matrix; TQL2: Find all values/vectors of sym. tridiag. matrix; TRBAK1: Back transform vectors of matrix formed by TRED1; TRBAK3: Back transform vectors of matrix formed by TRED3; TRED1: Reduce sym. matrix to sym. tridiag. matrix; TRED2: Reduce sym. matrix to sym. tridiag. matrix; TRED3: Reduce sym. packed matrix to sym. tridiag. matrix; TRIDIB: Find some values of sym. tridiag. matrix; TSTURM: Find some values/vectors of sym. tridiag. matrix. 2 - Method of solution: Almost all the algorithms used in EISPACK are based on similarity transformations. Similarity transformations based on orthogonal and unitary matrices are particularly attractive from a numerical point of view because they do not magnify any errors present in the input data or introduced during the computation. Most of the techniques employed are constructive realizations of variants of Schur's theorem, 'Any matrix can be triangularized by a unitary similarity transformation'. It is usually not possible to compute Schur's transformation with a finite number of rational arithmetic operations. Instead, the algorithms employ a potentially infinite sequence of similarity transformations in which the resultant matrix approaches an upper triangular matrix. The sequence is terminated when all of the sub-diagonal elements of the resulting matrix are less than the roundoff errors involved in the computation. The diagonal elements are then the desired approximations to the eigenvalues of the original matrix and the corresponding eigenvectors can be calculated. Special algorithms deal with symmetric matrices. QR, LR, QL, rational QR, bisection QZ, and inverse iteration methods are used
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Directory of Open Access Journals (Sweden)
Xiaoli Zhang
2015-04-01
Full Text Available With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.
Gyroaveraging operations using adaptive matrix operators
Dominski, Julien; Ku, Seung-Hoe; Chang, Choong-Seock
2018-05-01
A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidal equilibrium has been studied. A successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Effective implementation of wavelet Galerkin method
Finěk, Václav; Šimunková, Martina
2012-11-01
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions
Directory of Open Access Journals (Sweden)
Seyed Hossein Mahdavi
2015-01-01
Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.
Inequalities Involving Upper Bounds for Certain Matrix Operators
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 3. Inequalities Involving Upper Bounds for Certain Matrix Operators. R Lashkaripour D Foroutannia. Volume ... Keywords. Inequality; norm; summability matrix; Hausdorff matrix; Hilbert matrix; weighted sequence space; Lorentz sequence space.
Renormalon ambiguities in NRQCD operator matrix elements
International Nuclear Information System (INIS)
Bodwin, G.T.; Chen, Y.
1999-01-01
We analyze the renormalon ambiguities that appear in factorization formulas in QCD. Our analysis contains a simple argument that the ambiguities in the short-distance coefficients and operator matrix elements are artifacts of dimensional-regularization factorization schemes and are absent in cutoff schemes. We also present a method for computing the renormalon ambiguities in operator matrix elements and apply it to a computation of the ambiguities in the matrix elements that appear in the NRQCD factorization formulas for the annihilation decays of S-wave quarkonia. Our results, combined with those of Braaten and Chen for the short-distance coefficients, provide an explicit demonstration that the ambiguities cancel in the physical decay rates. In addition, we analyze the renormalon ambiguities in the Gremm-Kapustin relation and in various definitions of the heavy-quark mass. copyright 1999 The American Physical Society
Tensor operators in R-matrix approach
International Nuclear Information System (INIS)
Bytsko, A.G.; Rossijskaya Akademiya Nauk, St. Petersburg
1995-12-01
The definitions and some properties (e.g. the Wigner-Eckart theorem, the fusion procedure) of covariant and contravariant q-tensor operators for quasitriangular quantum Lie algebras are formulated in the R-matrix language. The case of U q (sl(n)) (in particular, for n=2) is discussed in more detail. (orig.)
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Kirkegaard, Poul Henning
2014-01-01
The presented study demonstrates an application of a previously proposed modal and wavelet analysis-based damage identification method to a wind turbine blade. A trailing edge debonding was introduced to a SSP 34m blade mounted on a test rig. Operational modal analysis (OMA) was conducted to obtain...... are captured in the CWT by significantly magnified transform coefficients, thus providing combined damage detection, localization, and size assessment. It was found that due to the nature of the proposed method, the value of the identification results highly depends on the number of employed measurement points....... Since only a limited number of measurement points were utilized in the experiments, valid damage identification can only be obtained when employing high-frequency modes....
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Skopina, Maria; Protasov, Vladimir
2016-01-01
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...
Dirac operator, chirality and random matrix theory
International Nuclear Information System (INIS)
Pullirsch, R.
2001-05-01
Quantum Chromodynamics (QCD) is considered to be the correct theory which describes quarks and gluons and, thus, all strong interaction phenomena from the fundamental forces of nature. However, important properties of QCD such as the physical mechanism of color confinement and the spontaneous breaking of chiral symmetry are still not completely understood and under extensive discussion. Analytical calculations are limited, because in the low-energy regime where quarks are confined, application of perturbation theory is restricted due to the large gluon coupling. A powerful tool to investigate numerically and analytically the non-perturbative region is provided by the lattice formulation of QCD. From Monte Carlo simulations of lattice QCD we know that chiral symmetry is restored above a critical temperature. As the chiral condensate is connected to the spectral density of the Dirac operator via the Banks-Casher relation, the QCD Dirac spectrum is an interesting object for detailed studies. In search for an analytical expression of the infrared limit of the Dirac spectrum it has been realized that chiral random-matrix theory (chRMT) is a suitable tool to compare with the distribution and the correlations of the small Dirac eigenvalues. Further, it has been shown that the correlations of eigenvalues on the scale of mean level spacings are universal for complex physical systems and are given by random-matrix theory (Rm). This has been formulated as the Baghouse-Giannoni-Schmit conjecture which states that spectral correlations of a classically chaotic system are given by RMT on the quantum level. The aim of this work is to analyze the relationship between chiral phase transitions and chaos to order transitions in quantum field theories. We study the eigenvalues of the Dirac operator for Quantum Electrodynamics (QED) with compact gauge group U(1) on the lattice. This theory shows chiral symmetry breaking and confinement in the strong coupling region. Although being
Green's matrix for a second-order self-adjoint matrix differential operator
International Nuclear Information System (INIS)
Sisman, Tahsin Cagri; Tekin, Bayram
2010-01-01
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.
Construction and decomposition of biorthogonal vector-valued wavelets with compact support
International Nuclear Information System (INIS)
Chen Qingjiang; Cao Huaixin; Shi Zhi
2009-01-01
In this article, we introduce vector-valued multiresolution analysis and the biorthogonal vector-valued wavelets with four-scale. The existence of a class of biorthogonal vector-valued wavelets with compact support associated with a pair of biorthogonal vector-valued scaling functions with compact support is discussed. A method for designing a class of biorthogonal compactly supported vector-valued wavelets with four-scale is proposed by virtue of multiresolution analysis and matrix theory. The biorthogonality properties concerning vector-valued wavelet packets are characterized with the aid of time-frequency analysis method and operator theory. Three biorthogonality formulas regarding them are presented.
Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.
Srinivasan, Jayaraman; Adithya, V
2015-01-01
Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process.
Aboufadel, Edward
1999-01-01
An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets
Airspace Operations Demo Functional Requirements Matrix
2005-01-01
The Flight IPT assessed the reasonableness of demonstrating each of the Access 5 Step 1 functional requirements. The functional requirements listed in this matrix are from the September 2005 release of the Access 5 Functional Requirements Document. The demonstration mission considered was a notional Western US mission (WUS). The conclusion of the assessment is that 90% of the Access 5 Step 1 functional requirements can be demonstrated using the notional Western US mission.
Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-03-01
A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.
Matrix Wings: Continuous Process Improvement an Operator Can Love
2016-09-01
key processes in our normal operations. In addition to the almost inevitable resistance to change, one of the points of pushback is that members of...Fall 2016 | 9 Matrix Wings Continuous Process Improvement an Operator Can Love Dr. A. J. Briding, Colonel, USAF, Retired Disclaimer: The views and...Operations for the 21st Century (AFSO21), the latest comprehensive effort at finding the right ap- proach for implementing a continuous process
Cheng, Lizhi; Luo, Yong; Chen, Bo
2014-01-01
This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...
R&D of MCFC matrix for long term operation
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Takashi; Fujita, Yoji; Urushibata, Hiroaki; Sasaki, Akira [Mitsubishi Electric Corp., Hyogo (Japan)
1996-12-31
Long term operation is an essential subject in the commercialization of the Molten Carbonate Fuel Cell (MCFC). Material stability is important for the development of the MCFC. particularly for long term operation. In this paper, the specification and the stabilization of MCFC matrix arc investigated, with the aim of producing 40000 hours of operation. It is common knowledge that matrix thickness has a large influence on shorting time, as shorting is caused by the dissolution of the nickel oxide cathodes. Therefore, the optimum thickness of a matrix designed for 40000 hours operation without the nickel shorting was sought. The influences of different electrolytes and matrix specifications on the shorting time were measured with accelerated cell tests. The internal resistance of the matrix was also estimated. Gamma( {gamma} )-lithium aluminate (LiAlO{sub 2}) powder with a sub-micron particle diameter is commonly used for a raw material of matrix to retain molten carbonate electrolytes. This is because most researchers found that {gamma}-LiA1O{sub 2} was the most stable material in the MCFC environment among the three allotropic forms alpha ( {alpha} ), beta ( {beta} ), and {gamma}. However. two problems with the stability of {gamma} -LiAlO{sub 2} are being vigorously discussed. especially in Japan: particle growth causes decreasing electrolyte retention, and the transformation of {gamma} to {alpha}. This transformation contradicts the accepted opinion that {gamma} is the most stable form. In this paper, the particle growth and the phase transformation of LiAlO{sub 2} are examined with post-test analyses. The influence of matrix degradation on cell performance is also considered.
Analysis of the essential spectrum of singular matrix differential operators
Czech Academy of Sciences Publication Activity Database
Ibrogimov, O. O.; Siegl, Petr; Tretter, C.
2016-01-01
Roč. 260, č. 4 (2016), s. 3881-3926 ISSN 0022-0396 Institutional support: RVO:61389005 Key words : essential spectrum * system of singular differential equations * operator matrix * Schur complement * magnetohydrodynamics * Stellar equilibrium model Subject RIV: BE - Theoretical Physics Impact factor: 1.988, year: 2016
Network Coding Parallelization Based on Matrix Operations for Multicore Architectures
DEFF Research Database (Denmark)
Wunderlich, Simon; Cabrera, Juan; Fitzek, Frank
2015-01-01
such as the Raspberry Pi2 with four cores in the order of up to one full magnitude. The speed increase gain is even higher than the number of cores of the Raspberry Pi2 since the newly introduced approach exploits the cache architecture way better than by-the-book matrix operations. Copyright © 2015 by the Institute...
Wavelet frames and their duals
DEFF Research Database (Denmark)
Lemvig, Jakob
2008-01-01
frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...
Chan, Y T
1995-01-01
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...
Stability of the matrix model in operator interpretation
Directory of Open Access Journals (Sweden)
Katsuta Sakai
2017-12-01
Full Text Available The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
A generalized wavelet extrema representation
Energy Technology Data Exchange (ETDEWEB)
Lu, Jian; Lades, M.
1995-10-01
The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.
Inverse Operation of Four-dimensional Vector Matrix
H J Bao; A J Sang; H X Chen
2011-01-01
This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.
[Conflict matrix : Risk management tool in the operating room].
Andel, D; Markstaller, K; Andel, H
2017-05-01
In business conflicts have long been known to have a negative effect on costs and team performance. In medicine this aspect has been widely neglected, especially when optimizing processes for operating room (OR) management. In the multidisciplinary setting of OR management, shortcomings in rules for decision making and lack of communication result in members perceiving themselves as competitors in the patient's environment rather than acting as art of a multiprofessional team. This inevitably leads to the emergence and escalation of conflicts. We developed a conflict matrix to provide an inexpensive and objective way for evaluating the level of escalation of conflicts in a multiprofessional working environment, such as an OR. The senior members of all involved disciplines were asked to estimate the level of conflict escalation between the individual professional groups on a scale of 0-9. By aggregating the response data, an overview of the conflict matrix within this OR section was created. No feedback was received from 1 of the 11 contacted occupational groups. By color coding the median, minimum and maximum values of the retrieved data, an intuitive overview of the escalation levels of conflict could be provided. The value range of all feedbacks was between 0 and 6. Estimation of the escalation levels differed widely within one category, showing a range of up to 6 (out of 6) levels. The presented assessment using a conflict matrix is a simple and cost-effective method to assess the conflict landscape, especially in multidisciplinary environments, such as OR management. The chance of conflict prevention or the early recognition of existing conflicts represents an enormous potential for cost and risk saving and might have positive long-term effects by building a culture of conflict prevention at the workplace and a positive influence on interdisciplinary cooperation in this working environment.
Global quantum discord and matrix product density operators
Huang, Hai-Lin; Cheng, Hong-Guang; Guo, Xiao; Zhang, Duo; Wu, Yuyin; Xu, Jian; Sun, Zhao-Yu
2018-06-01
In a previous study, we have proposed a procedure to study global quantum discord in 1D chains whose ground states are described by matrix product states [Z.-Y. Sun et al., Ann. Phys. 359, 115 (2015)]. In this paper, we show that with a very simple generalization, the procedure can be used to investigate quantum mixed states described by matrix product density operators, such as quantum chains at finite temperatures and 1D subchains in high-dimensional lattices. As an example, we study the global discord in the ground state of a 2D transverse-field Ising lattice, and pay our attention to the scaling behavior of global discord in 1D sub-chains of the lattice. We find that, for any strength of the magnetic field, global discord always shows a linear scaling behavior as the increase of the length of the sub-chains. In addition, global discord and the so-called "discord density" can be used to indicate the quantum phase transition in the model. Furthermore, based upon our numerical results, we make some reliable predictions about the scaling of global discord defined on the n × n sub-squares in the lattice.
Matrix product density operators: Renormalization fixed points and boundary theories
Energy Technology Data Exchange (ETDEWEB)
Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)
2017-03-15
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).
Thermal evolution of the Schwinger model with matrix product operators
International Nuclear Information System (INIS)
Banuls, M.C.; Cirac, J.I.; Cichy, K.; Jansen, K.; Saito, H.
2015-10-01
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Matrix elements of the relativistic electron-transition operators
International Nuclear Information System (INIS)
Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.
1976-01-01
The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given
Directory of Open Access Journals (Sweden)
Fuqiang Zhao
2017-01-01
Full Text Available In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented. We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations, and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly, illustrated examples are included to demonstrate the validity and applicability of the technique.
Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED
International Nuclear Information System (INIS)
Bluemlein, J.; Freitas, A. de; Universidad Simon Bolivar, Caracas; Neerven, W.L. van
2011-11-01
We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O(α 2 ) initial state corrections to e + e - annihilation into a virtual boson for large cms energies s >>m 2 e into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m 2 e ) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Certain problems concerning wavelets and wavelets packets
International Nuclear Information System (INIS)
Siddiqi, A.H.
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs
Certain problems concerning wavelets and wavelets packets
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A H
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.
Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2013-11-05
Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Singh, Jaskaran; Darpe, A. K.; Singh, S. P.
2018-02-01
Local damage in rolling element bearings usually generates periodic impulses in vibration signals. The severity, repetition frequency and the fault excited resonance zone by these impulses are the key indicators for diagnosing bearing faults. In this paper, a methodology based on over complete rational dilation wavelet transform (ORDWT) is proposed, as it enjoys a good shift invariance. ORDWT offers flexibility in partitioning the frequency spectrum to generate a number of subbands (filters) with diverse bandwidths. The selection of the optimal filter that perfectly overlaps with the bearing fault excited resonance zone is based on the maximization of a proposed impulse detection measure "Temporal energy operated auto correlated kurtosis". The proposed indicator is robust and consistent in evaluating the impulsiveness of fault signals in presence of interfering vibration such as heavy background noise or sporadic shocks unrelated to the fault or normal operation. The structure of the proposed indicator enables it to be sensitive to fault severity. For enhanced fault classification, an autocorrelation of the energy time series of the signal filtered through the optimal subband is proposed. The application of the proposed methodology is validated on simulated and experimental data. The study shows that the performance of the proposed technique is more robust and consistent in comparison to the original fast kurtogram and wavelet kurtogram.
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
Wavelet-like bases for thin-wire integral equations in electromagnetics
Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.
2005-03-01
In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.
Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation
Energy Technology Data Exchange (ETDEWEB)
Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H
1979-11-01
Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties
Fast reversible wavelet image compressor
Kim, HyungJun; Li, Ching-Chung
1996-10-01
We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.
R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators
International Nuclear Information System (INIS)
Kato, Shinichi
1994-01-01
We shall give a certain trigonometric R-matrix associated with each root system by using affine Hecke algebras. From this R-matrix, we derive a quantum Knizhnik-Zamolodchikov equation after Cherednik, and show that the solutions of this KZ equation yield eigenfunctions of Macdonald's difference operators. (orig.)
Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2014-02-11
Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.
Treatment of pauli exclusion operator in G-matrix calculations for hypernuclei
International Nuclear Information System (INIS)
Kuo, T.T.S.; Hao, Jifa
1995-01-01
We discuss a matrix-inversion method for treating the Pauli exclusion operator Q in the hyperon-nucleon G-matrix equation for hypernuclei such as Λ 16 O. A model space consisted of shell-model wave functions is employed. We discuss that it is preferable to employ a free-particle spectrum for the intermediate states of the G matrix. This leads to the difficulty that the G-matrix intermediate states are plane waves and on this representation the Pauli operator Q has a rather complicated structure. A matrix-inversion method for over-coming this difficulty is examined. To implement this method it is necessary to employ a so-called n 3Λ truncation approximation. Numerical calculations using the Juelich B tilde and A tilde potentials have been performed to study the accuracy of this approximation. (author)
Distributed Generation using Indirect Matrix Converter in Boost Operating Mode
DEFF Research Database (Denmark)
Liu, Xiong; Loh, Poh Chiang; Wang, Peng
2011-01-01
, reverse power flow operation of IMC can be implemented to meet voltage boost requirement, where the input ac source is connected to the converter's voltage source side and the output utility grid or load is connected to the current source side. This paper proposes control schemes of IMC under reverse...... power flow operation for both grid-connected and isolated modes with distributed generation suggested as a potential application. In grid-connected mode, the commanded power must be extracted from the input ac source to the grid, in addition to guarantee sinusoidal input/output waveforms, unity input...
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Hadron matrix elements of quark operators in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1979-07-01
General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.
Convolution operators and factorization of almost periodic matrix functions
National Research Council Canada - National Science Library
Böttcher, Albrecht; Karlovich, Yuri I; Spitkovskiĭ, Ilya M
2002-01-01
... . Spitkovsky. - Basel; Boston ; Berlin : Birkhäuser, 2002 (Operator theory ; V o l . 131) ISBN 978-3-0348-9457-9 ISBN 978-3-0348-8152-4 (eBook) DOI 10.1007/978-3-0348-8152-4 ISBN 978-3-0348-9457...
A study of biorthogonal multiple vector-valued wavelets
International Nuclear Information System (INIS)
Han Jincang; Cheng Zhengxing; Chen Qingjiang
2009-01-01
The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
A study of non-binary discontinuity wavelet
International Nuclear Information System (INIS)
Lin Hai; Liu Lianshou
2006-01-01
This paper gives a study of non-binary discontinuity wavelet, put forward the theory and method of constituting basic wavelet functions, and has constituted concretely a wavelet function using λ=3.4 as an example. It also conducts a theoretical inference on the decomposition algorithm and reconstruction algorithm of non-binary wavelet, and gives a concrete study of the change of matrix in connection with λ=3.4. In the end, it shows the future of application of the result to the study of high energy collision. (authors)
Quantum dynamics and electronic spectroscopy within the framework of wavelets
International Nuclear Information System (INIS)
Toutounji, Mohamad
2013-01-01
This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)
Protasevich, Alexander E.; Nikitin, Andrei V.
2018-01-01
In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.
Bessel equation as an operator identity's matrix element in quantum mechanics
International Nuclear Information System (INIS)
Fan Hongyi; Li Chao
2004-01-01
We study the well-known Bessel equation itself in the framework of quantum mechanics. We show that the Bessel equation is a spontaneous result of an operator identity's matrix element in some definite entangled state representations, which is a fresh look. Application of this operator formalism in the Hankel transform of Laplace equation is presented
Efficient implementations of block sparse matrix operations on shared memory vector machines
International Nuclear Information System (INIS)
Washio, T.; Maruyama, K.; Osoda, T.; Doi, S.; Shimizu, F.
2000-01-01
In this paper, we propose vectorization and shared memory-parallelization techniques for block-type random sparse matrix operations in finite element (FEM) applications. Here, a block corresponds to unknowns on one node in the FEM mesh and we assume that the block size is constant over the mesh. First, we discuss some basic vectorization ideas (the jagged diagonal (JAD) format and the segmented scan algorithm) for the sparse matrix-vector product. Then, we extend these ideas to the shared memory parallelization. After that, we show that the techniques can be applied not only to the sparse matrix-vector product but also to the sparse matrix-matrix product, the incomplete or complete sparse LU factorization and preconditioning. Finally, we report the performance evaluation results obtained on an NEC SX-4 shared memory vector machine for linear systems in some FEM applications. (author)
Matrix elements of a hyperbolic vector operator under SO(2,1)
International Nuclear Information System (INIS)
Zettili, N.; Boukahil, A.
2003-01-01
We deal here with the use of Wigner–Eckart type arguments to calculate the matrix elements of a hyperbolic vector operator V-vector by expressing them in terms of reduced matrix elements. In particular, we focus on calculating the matrix elements of this vector operator within the basis of the hyperbolic angular momentum T-vector whose components T-vector 1 , T-vector 2 , T-vector 3 satisfy an SO(2,1) Lie algebra. We show that the commutation rules between the components of V-vector and T-vector can be inferred from the algebra of ordinary angular momentum. We then show that, by analogy to the Wigner–Eckart theorem, we can calculate the matrix elements of V-vector within a representation where T-vector 2 and T-vector 3 are jointly diagonal. (author)
3-Loop massive O(T2F) contributions to the DIS operator matrix element Agg
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Bluemlein, J.; Freitas, A. de; Hasselhuhn, A.; Round, M.; Manteuffel, A. von
2014-09-01
Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A (3) gg,Q is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.
Institute of Scientific and Technical Information of China (English)
XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian
2007-01-01
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
International Nuclear Information System (INIS)
Mery, P.
1977-01-01
The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed
Directory of Open Access Journals (Sweden)
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
International Nuclear Information System (INIS)
November, L.J.
1993-01-01
Formulas are presented for the recovery of the matrix operators in arbitrary-order similarity and congruency transformations. Two independent input and output matrix pairs exactly determine the similarity-transformation matrix operator, while three independent Hermitian-matrix pairs are required for the congruency-transformation operator. The congruency transformation is the natural form for the quantum observables of a multiple-element wave function, e.g., for polarized-light transfer: the recovery of the Jones matrix for a nondepolarizing device is demonstrated, given any three linearly independent partially polarized input Stokes states. The recovery formula gives a good solution even with large added noise in the test matrices. Combined with numerical least-squares methods, the formula can give an optimized solution for measures of observation error. A more general operator, which includes the effect of isotropic depolarization, is defined, and its recovery is demonstrated also. The recovery formulas have a three-dimensional geometric interpretation in the second-order case, e.g., in the Poincare sphere. It is pointed out that the geometric property is a purely mathematical property of quantum observables that arises without referring to spatial characteristics for the underlying wave function. 36 refs., 9 figs
The two-mass contribution to the three-loop pure singlet operator matrix element
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2017-11-15
We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.
Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia
2015-01-01
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...
Wavelets, vibrations and scalings
Meyer, Yves
1997-01-01
Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...
Wavelets in scientific computing
DEFF Research Database (Denmark)
Nielsen, Ole Møller
1998-01-01
the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...
On functional determinants of matrix differential operators with multiple zero modes
Falco, G.M.; Fedorenko, Andrey A; Gruzberg, Ilya A
2017-01-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of $r\\times r$ matrix second order differential
Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, I.; Bluemlein, J.; Klein, S.
2007-06-15
The O({alpha}{sup 2}{sub s}) massive operator matrix elements for unpolarized and polarized heavy flavor production at asymptotic values Q{sup 2} >> m{sup 2} are calculated in Mellin space without applying the integration-by-parts method. (orig.)
International Nuclear Information System (INIS)
Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.
1993-01-01
The matrix elements of the potential energy operator (which includes central, spin-orbit and tensor components) are calculated between the generating invariants of the cluster basis describing α + d and t+h configurations of the six-nucleon system. (author). 12 refs
Application of wavelets to singular integral scattering equations
International Nuclear Information System (INIS)
Kessler, B.M.; Payne, G.L.; Polyzou, W.N.
2004-01-01
The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
Factorizable S-matrix and symmetry operator with toroidal rapidity values
International Nuclear Information System (INIS)
Hu Zhanning; Hou Boyu
1992-01-01
The factorizable S-matrix was constructed and the symmetry operator which commutes with the S-metric and has a new form of 'co-product', the elements of which depend on the parameters defining the toroidal rapidity surface. By defining a new operator which commutes with the symmetry operator the Yang-Baxter equation can be obtained. Finally, the relation between the broken Z N -symmetric model and the chiral Potts model was expressed explicitly in the self-dual genus zero limit
Non-trapping condition for semiclassical Schr dinger operators with matrix-valued potentials.
Jecko, T
2004-01-01
We consider semiclassical Schr dinger operators with matrix-valued, long-range, smooth potential, for which different eigenvalues may cross on a codimension one submanifold. We denote by h the semiclassical parameter and we consider energies above the bottom of the essential spectrum. Under some invariance condition on the matricial structure of the potential near the eigenvalues crossing and some structure condition at infinity, we prove that the boundary values of the resolvent at energy lambda, as bounded operators on suitable weighted spaces, are O(1/h) if and only if lambda is a non-trapping energy for all the Hamilton flows generated by the eigenvalues of the operator's symbol.
Rui, Wei; Tao, Chao; Liu, Xiaojun
2017-09-18
Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.
Directory of Open Access Journals (Sweden)
V. M. Demko
2018-01-01
Full Text Available The mathematical substantiation of the algorithm for synthesis of the proper transformation and finding the eigenvalue formulae of a persymmetric matrix of dimension N = 2 k ( k =1, 4 based on orthogonal rotation operators is given. The proposed algorithm made it possible to improve the author's approach to calculating eigenvalues based on numerical examples for the maximal dimension of matrices 64×64, resulting the possibility to obtain analytical relations for calculating the eigenvalues of the persymmetric matrix. It is shown that the proper transformation has a factorized structure in the form of a product of rotation operators, each of which is a direct sum of elementary Givens and Jacobian rotation matrices.
Heavy flavor operator matrix elements at O({alpha}{sub s}{sup 3})
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, Isabella; Buemlein, Johannes; Klein, Sebastian
2008-12-15
The heavy quark effects in deep.inelastic scattering in the asymptotic regime Q{sup 2}>>m{sup 2} can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to NLO. We present first results for fixed moments at NNLO. This involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions, which we thereby confirm. (orig.)
Three-loop contributions to the gluonic massive operator matrix elements at general values of N
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Hasselhuhn, Alexander [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); De Freitas, Abilio; Round, Mark; Schneider, Carsten; Wissbrock, Fabian [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Klein, Sebastian [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik E
2012-12-15
Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(n{sub f}T{sup 2}{sub F}C{sub F,A}) and O(T{sup 2}{sub F}C{sub F,A}) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Wavelet analysis in neurodynamics
International Nuclear Information System (INIS)
Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A
2012-01-01
Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)
Fang, Li-Zhi
1998-01-01
Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.
Castro, Liliana Raquel; Castro, Silvia Mabel
1995-01-01
Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)
2017-05-15
Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
Directory of Open Access Journals (Sweden)
J. Ablinger
2017-08-01
Full Text Available Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=mc2/mb2∼1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
Using wavelet multi-resolution nature to accelerate the identification of fractional order system
International Nuclear Information System (INIS)
Li Yuan-Lu; Meng Xiao; Ding Ya-Qing
2017-01-01
Because of the fractional order derivatives, the identification of the fractional order system (FOS) is more complex than that of an integral order system (IOS). In order to avoid high time consumption in the system identification, the least-squares method is used to find other parameters by fixing the fractional derivative order. Hereafter, the optimal parameters of a system will be found by varying the derivative order in an interval. In addition, the operational matrix of the fractional order integration combined with the multi-resolution nature of a wavelet is used to accelerate the FOS identification, which is achieved by discarding wavelet coefficients of high-frequency components of input and output signals. In the end, the identifications of some known fractional order systems and an elastic torsion system are used to verify the proposed method. (paper)
The Dirac operator on a finite domain and the R-matrix method
International Nuclear Information System (INIS)
Grant, I P
2008-01-01
Relativistic effects in electron-atom collisions and photo-excitation and -ionization processes increase in importance as the atomic number of the target atom grows and spin-dependent effects increase. A relativistic treatment in which electron motion is described using the Dirac Hamiltonian is then desirable. A version of the popular nonrelativistic R-matrix package incorporating terms from the Breit-Pauli Hamiltonian has been used for modelling such processes for some years. The fully relativistic Dirac R-matrix method has been less popular, but is becoming increasingly relevant for applications to heavy ion targets, where the need to use relativistic wavefunctions is more obvious. The Dirac R-matrix method has been controversial ever since it was first proposed by Goertzel (1948 Phys. Rev. 73 1463-6), and it is therefore important to confirm that recent elaborate and costly applications of the method, such as, Badnell et al (2004 J. Phys. B: At. Mol. Phys. 37 4589) and Ballance and Griffin (2007 J. Phys. B: At. Mol. Opt. Phys. 40 247-58), rest on secure foundations. The first part of this paper analyses the structure of the two-point boundary-value problem for the Dirac operator on a finite domain, from which we construct a unified derivation of the Schroedinger (nonrelativistic) and Dirac (relativistic) R-matrix methods. Suggestions that the usual relativistic theory is not well founded are shown to be without foundation
Efficient O(N) recursive computation of the operational space inertial matrix
International Nuclear Information System (INIS)
Lilly, K.W.; Orin, D.E.
1993-01-01
The operational space inertia matrix Λ reflects the dynamic properties of a robot manipulator to its tip. In the control domain, it may be used to decouple force and/or motion control about the manipulator workspace axes. The matrix Λ also plays an important role in the development of efficient algorithms for the dynamic simulation of closed-chain robotic mechanisms, including simple closed-chain mechanisms such as multiple manipulator systems and walking machines. The traditional approach used to compute Λ has a computational complexity of O(N 3 ) for an N degree-of-freedom manipulator. This paper presents the development of a recursive algorithm for computing the operational space inertia matrix (OSIM) that reduces the computational complexity to O(N). This algorithm, the inertia propagation method, is based on a single recursion that begins at the base of the manipulator and progresses out to the last link. Also applicable to redundant systems and mechanisms with multiple-degree-of-freedom joints, the inertia propagation method is the most efficient method known for computing Λ for N ≥ 6. The numerical accuracy of the algorithm is discussed for a PUMA 560 robot with a fixed base
Detecting microcalcifications in digital mammogram using wavelets
International Nuclear Information System (INIS)
Yang Jucheng; Park Dongsun
2004-01-01
Breast cancer is still one of main mortality causes in women, but the early detection can increase the chance of cure. Microcalcifications are small size structures, which can indicate the presence of cancer since they are often associated to the most different types of breast tumors. However, they very small size and the X-ray systems limitations lead to constraints to the adequate visualization of such structures, which means that the microcalcifications can be missed many times in mammogram visual examination. In addition, the human eyes are not able to distinguish minimal tonality differences, which can be another constraint when mammogram image presents poor contrast between microcalcifications and the tissues around them. Computer-aided diagnosis (CAD) schemes are being developed in order to increase the probabilities of early detection. To enhance and detect the microcalcifications in the mammograms we use the wavelets transform. From a signal processing point of view, microcalcifications are high frequency components in mammograms. Due to the multi-resolution decomposition capacity of the wavelet transform, we can decompose the image into different resolution levels which sensitive to different frequency bands. By choosing an appropriate wavelet and a right resolution level, we can effectively enhance and detect the microcalcifications in digital mammogram. In this work, we describe a new four-step method for the detection of microcalcifications: segmentation, wavelets transform processing, labeling and post-processing. The segmentation step is to split the breast area into 256x256 segments. For each segmented sub-image, wavelet transform is operated on it. For comparing study wavelet transform method, 4 typical family wavelets and 4 decomposing levels is discussed. We choose four family wavelets for detecting microcalcifications, that is, Daubechies, Biothgonai, Coieflets and Symlets wavelets, for simply, bd4, bior3.7, coif3, sym2 are chosen as the
Wu, Ning
2018-01-01
For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.
Blatter, Christian
1998-01-01
The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Tao, Z-Q; Shi, A-M
2016-05-01
The aim of this study is to explore the application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital departments. We selected 73 clinical and medical technology departments of our hospital from 2011 to 2013, and evaluated our hospital by Boston matrix combined with SWOT analysis according to the volume of services, medical quality, work efficiency, patients' evaluations, development capacity, operational capability, economic benefits, comprehensive evaluation of hospital achievement, innovation ability of hospital, influence of hospital, human resources of hospital, health insurance costs, etc. It was found that among clinical departments, there were 11 in Stars (22.4%), 17 in cash cow (34.7%), 15 in question marks (31.2%), 6 Dogs (12.2%), 16 in the youth stage of life cycle assessment (27.6%), 14 in the prime stage (24.1%), 12 in the stationary stage (20.7%), 9 in the aristocracy stage (15.5%) and 7 in the recession stage (12.1%). Among medical technology departments, there were 5 in Stars (20.8%), 1 in Cash cow (4.2%), 10 in question marks (41.6%), 8 Dogs (29.1%), 9 in the youth stage of life cycle assessment (37.5%), 4 in the prime stage (16.7%), 4 in the stable stage (16.7%), 1 in the aristocracy stage (4.2%) and 6 in the recession stage (25%). In conclusion, Boston matrix combined with SWOT analysis is suitable for operational development and comprehensive evaluations of hospital development, and it plays an important role in providing hospitals with development strategies.
K →π matrix elements of the chromomagnetic operator on the lattice
Constantinou, M.; Costa, M.; Frezzotti, R.; Lubicz, V.; Martinelli, G.; Meloni, D.; Panagopoulos, H.; Simula, S.; ETM Collaboration
2018-04-01
We present the results of the first lattice QCD calculation of the K →π matrix elements of the chromomagnetic operator OCM=g s ¯ σμ νGμ νd , which appears in the effective Hamiltonian describing Δ S =1 transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOK π=0.273 (69 ) , while in the SU(3) chiral limit we obtain BCMO=0.076 (23 ) . Our findings are significantly smaller than the model-dependent estimate BCMO˜1 - 4 , currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges
VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling
Grasso, Christopher A.; Riedel, Joseph E.
2012-01-01
VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.
Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut
2018-04-01
Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
Real time evolution at finite temperatures with operator space matrix product states
International Nuclear Information System (INIS)
Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine
2014-01-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)
Real time evolution at finite temperatures with operator space matrix product states
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Two-loop massive operator matrix elements for unpolarized heavy flavor production to O({epsilon})
Energy Technology Data Exchange (ETDEWEB)
Bierenbaum, I.; Bluemlein, J.; Klein, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2008-02-15
We calculate the O({alpha}{sup 2}{sub s}) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}, up to the O({epsilon}) contributions. These terms contribute through the renormalization of the O({alpha}{sup 3}{sub s}) heavy flavor Wilson coefficients of the structure function F{sub 2}(x,Q{sup 2}). The calculation has been performed using light-cone expansion techniques without using the integration-by-parts method. We represent the individual Feynman diagrams by generalized hypergeometric structures, the {epsilon}-expansion of which leads to infinite sums depending on the Mellin variable N. These sums are finally expressed in terms of nested harmonic sums using the general summation techniques implemented in the Sigma package. (orig.)
Lecture notes on wavelet transforms
Debnath, Lokenath
2017-01-01
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...
Directory of Open Access Journals (Sweden)
Muhammad Ilhamdi Rusydi
2014-07-01
Full Text Available Performing some special tasks using electrooculography (EOG in daily activities is being developed in various areas. In this paper, simple rotation matrixes were introduced to help the operator move a 2-DoF planar robot manipulator. The EOG sensor, NF 5201, has two output channels (Ch1 and Ch2, as well as one ground channel and one reference channel. The robot movement was the indicator that this system could follow gaze motion based on EOG. Operators gazed into five training target points each in the horizontal and vertical line as the preliminary experiments, which were based on directions, distances and the areas of gaze motions. This was done to get the relationships between EOG and gaze motion distance for four directions, which were up, down, right and left. The maximum angle for the horizontal was 46°, while it was 38° for the vertical. Rotation matrixes for the horizontal and vertical signals were combined, so as to diagonally track objects. To verify, the errors between actual and desired target positions were calculated using the Euclidian distance. This test section had 20 random target points. The result indicated that this system could track an object with average angle errors of 3.31° in the x-axis and 3.58° in the y-axis.
Diagrammatic technique for calculating matrix elements of collective operators in superradiance
International Nuclear Information System (INIS)
Lee, C.T.
1975-01-01
Adopting the so-called ''genealogical construction,'' one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) -atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-Schwendimann approach to the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field
Early detection of rogue waves by the wavelet transforms
International Nuclear Information System (INIS)
Bayındır, Cihan
2016-01-01
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Early detection of rogue waves by the wavelet transforms
Energy Technology Data Exchange (ETDEWEB)
Bayındır, Cihan, E-mail: cihan.bayindir@isikun.edu.tr
2016-01-08
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Islanding detection technique using wavelet energy in grid-connected PV system
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
Target recognition by wavelet transform
International Nuclear Information System (INIS)
Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen
2002-01-01
Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided
International Nuclear Information System (INIS)
Kuroki, Tsunehide; Sugino, Fumihiko
2017-01-01
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Energy Technology Data Exchange (ETDEWEB)
Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)
2017-06-15
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
International Nuclear Information System (INIS)
Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Raab, Clemens; Wissbrock, Fabian
2014-02-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a N , a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)
2014-02-15
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, Fabian [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2014-08-15
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a{sup N},a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
International Nuclear Information System (INIS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-01-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a N ,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions
Electromagnetic spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, R.; Garcia-Sucerquia, J.
2005-10-01
The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)
A new program for calculating matrix elements of one-particle operators in jj-coupling
International Nuclear Information System (INIS)
Pyper, N.C.; Grant, I.P.; Beatham, N.
1978-01-01
The aim of this paper is to calculate the matrix elements of one-particle tensor operators occurring in atomic and nuclear theory between configuration state functions representing states containing any number of open shells in jj-coupling. The program calculates the angular part of these matrix elements. The program is essentially a new version of RDMEJJ, written by J.J. Chang. The aims of this version are to eliminate inconsistencies from RDMEJJ, to modify its input requirements for consistency with MCP75, and to modify its output so that it can be stored in a discfile for access by other compatible programs. The program assumes that the configurational states are built from a common orthonormal set of basis orbitals. The number of electrons in a shell having j>=9/2 is restricted to be not greater than 2 by the available CFP routines . The present version allows up to 40 orbitals and 50 configurational states with <=10 open shells; these numbers can be changed by recompiling with modified COMMON/DIMENSION statements. The user should ensure that the CPC library subprograms AAGD, ACRI incorporate all current updates and have been converted to use double precision floating point arithmetic. (Auth.)
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes; Hasselhuhn, Alexander; Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik
2012-06-15
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} element of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} >> m{sup 2}.
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
International Nuclear Information System (INIS)
Ablinger, Jakob; Blümlein, Johannes; Hasselhuhn, Alexander; Klein, Sebastian; Schneider, Carsten; Wißbrock, Fabian
2012-01-01
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with ξ∈{1,1/2,2} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q 2 ≫m 2 .
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Research Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2012-11-01
3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} Element-Of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} Much-Greater-Than m{sup 2}.
WAVELET ANALYSIS OF ABNORMAL ECGS
Directory of Open Access Journals (Sweden)
Vasudha Nannaparaju
2014-02-01
Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.
Søgaard, Andreas
For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
A Systematic Approach for Obtaining Performance on Matrix-Like Operations
Veras, Richard Michael
Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.
A wavelet-based technique to predict treatment outcome for Major Depressive Disorder
Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad
2017-01-01
Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063
A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.
Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed
2017-01-01
Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.
Directory of Open Access Journals (Sweden)
Jianping Liu
2016-01-01
Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.
Controlled wavelet domain sparsity for x-ray tomography
Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli
2018-01-01
Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \
Wavelets as basis functions in electronic structure calculations
International Nuclear Information System (INIS)
Chauvin, C.
2005-11-01
This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)
Energy Technology Data Exchange (ETDEWEB)
Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)
2009-09-15
Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)
Liu, Yang; Yucel, Abdulkadir C.; Bagci, Hakan; Gilbert, Anna C.; Michielssen, Eric
2018-01-01
requirement and computational cost of the PWTD algorithm by representing the PWTD ray data using local cosine wavelet bases (LCBs) and performing PWTD operations in the wavelet domain. The memory requirement and computational cost of the LCB-enhanced PWTD
International Nuclear Information System (INIS)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-01-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Energy Technology Data Exchange (ETDEWEB)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Manteuffel, A. von
2015-09-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A Qg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
International Nuclear Information System (INIS)
Hollstein, André; Fischer, Jürgen
2012-01-01
Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.
Directional dual-tree rational-dilation complex wavelet transform.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2014-01-01
Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.
International Nuclear Information System (INIS)
Fan Hongyi; Lu Hailiang; Xu Xuefen
2006-01-01
We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.
Boix García, Macarena; Cantó Colomina, Begoña
2013-01-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet...
Unaldi, Numan; Temel, Samil; Asari, Vijayan K.
2012-01-01
One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains. PMID:22666078
Matrix elements of four-quark operators relevant to life time difference ΔΓBs from QCD sum rules
International Nuclear Information System (INIS)
Huang, C.S.; Zhang Ailin; Zhu, S.L.
2001-01-01
We extract the matrix elements of four-quark operators O L,S relevant to the B s and anti B s life time difference from QCD sum rules. We find that the vacuum saturation approximation works reasonably well, i.e., within 10%. We discuss the implications of our results and compare them with a recent lattice QCD determination. (orig.)
Applications of wavelet transforms for nuclear power plant signal analysis
International Nuclear Information System (INIS)
Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.
1998-01-01
The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi
2002-01-01
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
Energy Technology Data Exchange (ETDEWEB)
Kuhlemann, Verena [Emory Univ., Atlanta, GA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-10-28
Matrix-vector multiplication is the key operation in any Krylov-subspace iteration method. We are interested in Krylov methods applied to problems associated with the graph Laplacian arising from large scale-free graphs. Furthermore, computations with graphs of this type on parallel distributed-memory computers are challenging. This is due to the fact that scale-free graphs have a degree distribution that follows a power law, and currently available graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads to excessive interprocessor communication requirements during every matrix-vector product. Here, we present an approach to alleviate this problem based on embedding the original irregular graph into a more regular one by disaggregating (splitting up) vertices in the original graph. The matrix-vector operations for the original graph are performed via a factored triple matrix-vector product involving the embedding graph. And even though the latter graph is larger, we are able to decrease the communication requirements considerably and improve the performance of the matrix-vector product.
International Nuclear Information System (INIS)
Filippov, G.F.; Ovcharenko, V.I.; Teryoshin, Yu.V.
1980-01-01
For near-magnetic nuclei, the matrix elements of the central exchange nucleon-nucleon interaction potential energy operator between the generating functions of the total basis of the Sn are obtained. The basis states are highest weigt vectorsp(2,R) irreducible representatio of the SO(3) irredicible representation and in addition, have a definite O(A-1) symmetry. The Sp(2,R) basis generating matrix elements simplify essentially the problem of calculating the spectrum of collective excitations of the atomic nucleus over an intrinsic function of definite O(A-1) symmetry
Directory of Open Access Journals (Sweden)
Tsunehide Kuroki
2017-06-01
Full Text Available In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Noise reduction by wavelet thresholding
National Research Council Canada - National Science Library
Jansen, Maarten
2001-01-01
.... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...
Boix, Macarena; Cantó, Begoña
2013-04-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
Wavelet neural network load frequency controller
International Nuclear Information System (INIS)
Hemeida, Ashraf Mohamed
2005-01-01
This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one
Wavelet Enhanced Appearance Modelling
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.
2004-01-01
Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage......-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme...
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Multifractal Cross Wavelet Analysis
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Goodman, Roe W
2016-01-01
This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
Constructing pairs of dual bandlimited frame wavelets in L^2(R^n)
DEFF Research Database (Denmark)
Lemvig, Jakob
2012-01-01
combination of dilations of ψ with explicitly given coefficients. The result allows a simple construction procedure for pairs of dual wavelet frames whose generators have compact support in the Fourier domain and desired time localization. The construction relies on a technical condition on ψ, and we exhibit......Given a real, expansive dilation matrix we prove that any bandlimited function ψ∈L2(Rn), for which the dilations of its Fourier transform form a partition of unity, generates a wavelet frame for certain translation lattices. Moreover, there exists a dual wavelet frame generated by a finite linear...
On the evaluation of the U(3) content of the matrix elements of one-and two-body operators
International Nuclear Information System (INIS)
Vanagas, V.; Alcaras, J.A.C.
1991-09-01
An expression for the U(3) content of the matrix elements of one- and two-body operators in Elliott's basis is obtained. Three alternative ways of evaluating this content with increasing performance in computing time are presented. All of them allow an exact representation of that content in terms of integers, avoiding rounding errors in the computer codes. The role of dual bases in dealing with non-orthogonal bases is also clarified. (author)
Wavelet spectra of JACEE events
International Nuclear Information System (INIS)
Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.
1995-01-01
Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-07
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.
2017-12-01
Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.
Auto-tuning Dense Vector and Matrix-vector Operations for Fermi GPUs
DEFF Research Database (Denmark)
Sørensen, Hans Henrik Brandenborg
2012-01-01
applications. As examples, we develop single-precision CUDA kernels for the Euclidian norm (SNRM2) and the matrix-vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture). We show that auto-tuning can be successfully applied to achieve high performance...
DEFF Research Database (Denmark)
Rivera, M.; Nasir, U.; Tarisciotti, L.
2017-01-01
The classic model predictive control presents a variable switching frequency which could produce high ripple in the controlled waveforms or resonances in the input filter of the matrix converter, affecting the performance of the system. This paper presents two model predictive control strategies...
Iris Recognition Using Wavelet
Directory of Open Access Journals (Sweden)
Khaliq Masood
2013-08-01
Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.
Directory of Open Access Journals (Sweden)
Hannu Olkkonen
2013-01-01
Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.
1997-01-01
In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics
Wavelet theory and its applications
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
Wavelets and multiscale signal processing
Cohen, Albert
1995-01-01
Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Wavelet analysis for nonstationary signals
International Nuclear Information System (INIS)
Penha, Rosani Maria Libardi da
1999-01-01
Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect
Matrix-operator method for calculation of dynamics of intense beams of charged particles
International Nuclear Information System (INIS)
Kapchinskij, M.I.; Korenev, I.L.; Rinskij, L.A.
1989-01-01
Calculation algorithm for particle dynamics in high-current cyclic and linear accelerators is suggested. Particle movement in six-dimensional phase space is divided into coherent and incoherent components. Incoherent movement is described by envelope method; particle cluster is considered to be even-charged by tri-axial ellipsoid. Coherent movement is described in para-axial approximation; each structure element of the accelerator transport channel is characterized by six-dimensional matrix of phase coordinate transformation of cluster centre and by shift vector resulting from deviation of focusing element parameters from calculated values. Effect of space charge reflected forces is taken into account in the element matrix. Algorithm software is realized using well-known TRANSPORT program
A wavelet phase filter for emission tomography
International Nuclear Information System (INIS)
Olsen, E.T.; Lin, B.
1995-01-01
The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods
GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S
2014-03-11
Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.
The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications
Directory of Open Access Journals (Sweden)
Alexandros Kordonis
2015-04-01
Full Text Available A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.
Signal Analysis by New Mother Wavelets
International Nuclear Information System (INIS)
Niu Jinbo; Qi Kaiguo; Fan Hongyi
2009-01-01
Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)
The O(αs3TF2) contributions to the gluonic operator matrix element
International Nuclear Information System (INIS)
Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Manteuffel, A. von; Round, M.; Schneider, C.
2014-01-01
The O(α s 3 T F 2 C F (C A )) contributions to the transition matrix element A gg,Q relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines
Applications of wavelets in morphometric analysis of medical images
Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang
2003-11-01
Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.
Directory of Open Access Journals (Sweden)
Puyan Zhao
Full Text Available Matrix metalloproteinases (MMPs are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.
Object-Oriented Wavelet-Layered Digital Watermarking Technique
Institute of Scientific and Technical Information of China (English)
LIU Xiao-yun; YU Jue-bang; LI Ming-yu
2005-01-01
In this paper, an object-oriented digital watermarking technique is proposed in the wavelet domain for still images. According to the difference of recognition degree of the human eye to the different region of the image, the image is divided into the interested region and uninterested region of human eye vision in this scheme. Using the relativity of position and the difference to ocular sensitivity of the multiresolution wavelet among each subband, the image is processed with layered watermarking append technique. Experimental results show that the proposed technique successfully survives image processing operations, additive noise and JPEG compression.
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, W. van [Leiden Univ. (Netherlands). Lorentz Institute
2008-12-15
We describe the calculation of the two-loop massive operator matrix elements for massive external fermions. These matrix elements are needed for the calculation of the O({alpha}{sup 2}) initial state radiative corrections to e{sup +}e{sup -} annihilation into a neutral virtual gauge boson, based on the renormalization group technique. (orig.)
Directory of Open Access Journals (Sweden)
Waleed M. Abd-Elhameed
2016-09-01
Full Text Available Herein, two numerical algorithms for solving some linear and nonlinear fractional-order differential equations are presented and analyzed. For this purpose, a novel operational matrix of fractional-order derivatives of Fibonacci polynomials was constructed and employed along with the application of the tau and collocation spectral methods. The convergence and error analysis of the suggested Fibonacci expansion were carefully investigated. Some numerical examples with comparisons are presented to ensure the efficiency, applicability and high accuracy of the proposed algorithms. Two accurate semi-analytic polynomial solutions for linear and nonlinear fractional differential equations are the result.
Efficient hemodynamic event detection utilizing relational databases and wavelet analysis
Saeed, M.; Mark, R. G.
2001-01-01
Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.
Anisotropy in wavelet-based phase field models
Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara
2016-01-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Properties of wavelet discretization of Black-Scholes equation
Finěk, Václav
2017-07-01
Using wavelet methods, the continuous problem is transformed into a well-conditioned discrete problem. And once a non-symmetric problem is given, squaring yields a symmetric positive definite formulation. However squaring usually makes the condition number of discrete problems substantially worse. This note is concerned with a wavelet based numerical solution of the Black-Scholes equation for pricing European options. We show here that in wavelet coordinates a symmetric part of the discretized equation dominates over an unsymmetric part in the standard economic environment with low interest rates. It provides some justification for using a fractional step method with implicit treatment of the symmetric part of the weak form of the Black-Scholes operator and with explicit treatment of its unsymmetric part. Then a well-conditioned discrete problem is obtained.
Anisotropy in wavelet-based phase field models
Korzec, Maciek
2016-04-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Wavelets: Applications to Image Compression-II
Indian Academy of Sciences (India)
Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.
Wavelet Transforms using VTK-m
Energy Technology Data Exchange (ETDEWEB)
Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-27
These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.
From Calculus to Wavelets: ANew Mathematical Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
Texture analysis using Gabor wavelets
Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.
1996-04-01
Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.
International Nuclear Information System (INIS)
Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie
2014-01-01
In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes
Analysis of transient signals by Wavelet transform
International Nuclear Information System (INIS)
Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de
2000-01-01
The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)
Energy Technology Data Exchange (ETDEWEB)
Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)
1997-10-22
A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.
A Compact Numerical Implementation for Solving Stokes Equations Using Matrix-vector Operations
Zhang, Tao; Salama, Amgad; Sun, Shuyu; Zhong, Hua
2015-01-01
In this work, a numerical scheme is implemented to solve Stokes equations based on cell-centered finite difference over staggered grid. In this scheme, all the difference operations have been vectorized thereby eliminating loops. This is particularly important when using programming languages that require interpretations, e.g., MATLAB and Python. Using this scheme, the execution time becomes significantly smaller compared with non-vectorized operations and also become comparable with those languages that require no repeated interpretations like FORTRAN, C, etc. This technique has also been applied to Navier-Stokes equations under laminar flow conditions.
A Compact Numerical Implementation for Solving Stokes Equations Using Matrix-vector Operations
Zhang, Tao
2015-06-01
In this work, a numerical scheme is implemented to solve Stokes equations based on cell-centered finite difference over staggered grid. In this scheme, all the difference operations have been vectorized thereby eliminating loops. This is particularly important when using programming languages that require interpretations, e.g., MATLAB and Python. Using this scheme, the execution time becomes significantly smaller compared with non-vectorized operations and also become comparable with those languages that require no repeated interpretations like FORTRAN, C, etc. This technique has also been applied to Navier-Stokes equations under laminar flow conditions.
WAVELET TRANSFORM AND LIP MODEL
Directory of Open Access Journals (Sweden)
Guy Courbebaisse
2011-05-01
Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.
Wavelet Denoising of Mobile Radiation Data
International Nuclear Information System (INIS)
Campbell, D.B.
2008-01-01
The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems
Fundamental papers in wavelet theory
Walnut, David F
2006-01-01
This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from differ
A CMOS Morlet Wavelet Generator
Directory of Open Access Journals (Sweden)
A. I. Bautista-Castillo
2017-04-01
Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.
Wavelet series approximation using wavelet function with compactly ...
African Journals Online (AJOL)
The Wavelets generated by Scaling Function with Compactly Support are useful in various applications especially for reconstruction of functions. Generally, the computational process will be faster if Scaling Function support descends, so computational errors are summarized from one level to another level. In this article, the ...
Wavelets a tutorial in theory and applications
1992-01-01
Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the
Prioritizing operation strategies of companies using fuzzy AHP and importance-performance matrix
Directory of Open Access Journals (Sweden)
Mohamad Amin Kaviani
2014-06-01
Full Text Available One of the most important steps to build an appropriate business unit is to setup a suitable long-term strategy. A good strategy helps organization take better advantage of the existing resources and improve the performance of the firm. This paper presents a hybrid method consists of importance-performance analysis combined with fuzzy analytical hierarchy process to determine different operating strategies to increase the performance of a cement industry in Iran. The results indicate that being competitive is number one priority followed by fast delivery, quality product, dependability, cost of production and flexibility.
Wavelet entropy characterization of elevated intracranial pressure.
Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao
2008-01-01
Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Goedicke, A. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)
2017-12-15
We report on our latest results in the calculation of the two-mass contributions to 3-loop operator matrix elements (OMEs). These OMEs are needed to compute the corresponding contributions to the deep-inelastic scattering structure functions and to generalize the variable flavor number scheme by including both charm and bottom quarks. We present the results for the non-singlet and A{sub gq,Q} OMEs, and compare the size of their contribution relative to the single mass case. Results for the gluonic OME A{sub gg,Q} are given in the physical case, going beyond those presented in a previous publication where scalar diagrams were computed. We also discuss our recently published two-mass contribution to the pure singlet OME, and present an alternative method of calculating the corresponding diagrams.
International Nuclear Information System (INIS)
Karaziya, R.I.; Rudzikajte, L.S.
1988-01-01
The general method to obtain the explicit expressions for sums of the matrix elements of Hamiltonian and transition operators has been extended. It can be used for determining the main characteristics of atomic spectra, such as the mean energy, the variance, the asymmetry coefficient, etc., as well as for the average quantities which describe the configuration mixing. By mean of this method the formula for the variance of the emission spectrum has been derived. It has been shown that this quantity of the emission spectrum can be expressed by the variances of the energy spectra of the initial and final configurations and by additional terms, caused by the distribution of the intensity in spectrum
3-Loop massive O(T{sub 2}{sup F}) contributions to the DIS operator matrix element A{sub gg}
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence
2014-09-15
Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A{sup (3)}{sub gg,Q} is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.
Wavelet denoising method; application to the flow rate estimation for water level control
International Nuclear Information System (INIS)
Park, Gee Young; Park, Jin Ho; Lee, Jung Han; Kim, Bong Soo; Seong, Poong Hyun
2003-01-01
The wavelet transform decomposes a signal into time- and frequency-domain signals and it is well known that a noise-corrupted signal could be reconstructed or estimated when a proper denoising method is involved in the wavelet transform. Among the wavelet denoising methods proposed up to now, the wavelets by Mallat and Zhong can reconstruct best the pure transient signal from a highly corrupted signal. But there has been no systematic way of discriminating the original signal from the noise in a dyadic wavelet transform. In this paper, a systematic method is proposed for noise discrimination, which could be implemented easily into a digital system. For demonstrating the potential role of the wavelet denoising method in the nuclear field, this method is applied to the steam or feedwater flow rate estimation of the secondary loop. And the configuration of the S/G water level control system is proposed for incorporating the wavelet denoising method in estimating the flow rate value at low operating powers
Energy-Based Wavelet De-Noising of Hydrologic Time Series
Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu
2014-01-01
De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533
Visualization of a Turbulent Jet Using Wavelets
Institute of Scientific and Technical Information of China (English)
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Cross wavelet analysis: significance testing and pitfalls
Directory of Open Access Journals (Sweden)
D. Maraun
2004-01-01
Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
Multidimensional signaling via wavelet packets
Lindsey, Alan R.
1995-04-01
This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.
Wavelet analysis of epileptic spikes
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet analysis of epileptic spikes
Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-01-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet network controller for nuclear steam generators
International Nuclear Information System (INIS)
Habibiyan, H; Sayadian, A; Ghafoori-Fard, H
2005-01-01
Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers
Hexagonal wavelet processing of digital mammography
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Wavelet Analysis for Molecular Dynamics
2015-06-01
Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Wavelet Radiosity on Arbitrary Planar Surfaces
Holzschuch , Nicolas; Cuny , François; Alonso , Laurent
2000-01-01
Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...
Inflation and wavelets for the icosahedral Danzer tiling
International Nuclear Information System (INIS)
Kramer, Peter; Andrle, Miroslav
2004-01-01
The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry
Wavelet analysis and its applications an introduction
Yajnik, Archit
2013-01-01
"Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...
Wavelet-based prediction of oil prices
International Nuclear Information System (INIS)
Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik
2005-01-01
This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced
Spline and spline wavelet methods with applications to signal and image processing
Averbuch, Amir Z; Zheludev, Valery A
This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images upsampling. In addition to the design of a diverse library of splines, SW, SWP a...
A New Perceptual Mapping Model Using Lifting Wavelet Transform
Taha TahaBasheer; Ehkan Phaklen; Ngadiran Ruzelita
2017-01-01
Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT) applications. Accumulative Lifting Difference (ALD) is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND) in digital images. In addition to low complexity operations, experiments results sho...
M. Rasoulpoor; M. Banejad; A. Ahmadyfard
2011-01-01
This paper presents a novel technique for transformer differential protection to prevent incorrect operation due to inrush current. The proposed method in this paper is based on time-frequency transform known as the Wavelet transform. The discrete Wavelet transform is used for analysis the differential current signals in time and frequency domains. The investigation on the energy distribution of the signal on the discrete Wavelet transform components shows the difference distribution between ...
Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising
International Nuclear Information System (INIS)
Fan, W J; Lu, Y
2006-01-01
Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting
Complex Wavelet transform for MRI
International Nuclear Information System (INIS)
Junor, P.; Janney, P.
2004-01-01
Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual
Directory of Open Access Journals (Sweden)
Juin-Ling Tseng
2016-01-01
Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.
International Nuclear Information System (INIS)
Bonatsos, D.; Lo Liduce, N.; Raychev, P.; Roussev, R.; Terziev, P.
1996-01-01
Quantum algebras (also called quantum groups) are nonlinear generalization of the usual Lie algebras, to which the reduce in the limiting case when the deformed parameters are set equal to unity. From mathematical point of view they have the structure of Holf algebras. The interest for applications of quantum algebras in physics was triggered in 1989 by the introduction of the q-deformed harmonic oscillator. In this connection the quantum algebra su q (2) has been used for description of superdeformed bands of even-even nuclei and rotational nuclear and molecular spectra. The construction of chains of subalgebras of a given q-algebra is a non trivial problem, since the existence of a chain of subalgebras of the corresponding Lie algebra does not guarantee the existence of the q-analogue of this chain. In particular, the so q (3) subalgebra of u q (3) has attracted much attention, since its classical analogue is a basic ingredient of several nuclear models, as the Elliot model and the su(3) limit of the Interacting Boson Model (IBM), the Fermion Dynamical Symmetry Model (FDSM), the Interacting Vector Boson Model (IVBM), the nuclear vibron model for clustering, as well as of the su(3) limit of the vibron model for molecules. In the present report we compute the reduced matrix elements of a special second-rank tensor operator (quadrupole operator) in the so q (3) subgroup of u q (3) basis (for the most symmetric u q (3)-representations) and investigate some of their properties. Also we construct a simplified boson realization of the so q (3) subalgebra of u q (3) and the corresponding so q (3) basis states. It should be noted that the obtained results are valid only for real values of the deformation parameter q. On the other hand the comparison of the experimental data with the predictions of a number of physical models, based on the q deformed su q (2) algebra, shows that one can achieve a good agreement between theory and experiment only if q is a pure phase (q
Teif, Vladimir B
2007-01-01
The transfer matrix methodology is proposed as a systematic tool for the statistical-mechanical description of DNA-protein-drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the O(R) operator of phage lambda. The transfer matrix formalism allowed the description of the lambda-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI-Cro-RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the O(R) and O(L) operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters P(R) and P(RM) becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed.
Wavelet approach to accelerator problems. 3: Melnikov functions and symplectic topology
International Nuclear Information System (INIS)
Fedorova, A.; Zeitlin, M.; Parsa, Z.
1997-05-01
This is the third part of a series of talks in which the authors present applications of methods of wavelet analysis to polynomial approximations for a number of accelerator physics problems. They consider the generalization of the variational wavelet approach to nonlinear polynomial problems to the case of Hamiltonian systems for which they need to preserve underlying symplectic or Poissonian or quasicomplex structures in any type of calculations. They use the approach for the problem of explicit calculations of Arnold-Weinstein curves via Floer variational approach from symplectic topology. The loop solutions are parameterized by the solutions of reduced algebraical problem--matrix Quadratic Mirror Filters equations. Also they consider wavelet approach to the calculations of Melnikov functions in the theory of homoclinic chaos in perturbed Hamiltonian systems
Application of wavelets in speech processing
Farouk, Mohamed Hesham
2014-01-01
This book provides a survey on wide-spread of employing wavelets analysis in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Construction of wavelets with composite dilations
International Nuclear Information System (INIS)
Wu Guochang; Li Zhiqiang; Cheng Zhengxing
2009-01-01
In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.
Some applications of wavelets to physics
International Nuclear Information System (INIS)
Thompson, C.R.
1992-01-01
A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied
Weighted least squares phase unwrapping based on the wavelet transform
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Efficient regularization with wavelet sparsity constraints in photoacoustic tomography
Frikel, Jürgen; Haltmeier, Markus
2018-02-01
In this paper, we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding, which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of PAT-vaguelette soft-thresholding with a total variation (TV) prior. We also provide an efficient implementation of the PAT-vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.
Complex Wavelet Based Modulation Analysis
DEFF Research Database (Denmark)
Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt
2008-01-01
Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...
Wavelets and the Lifting Scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2012-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2009-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
International Nuclear Information System (INIS)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant
Mammography image compression using Wavelet
International Nuclear Information System (INIS)
Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa
2004-01-01
Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)
Random Correlation Matrix and De-Noising
Ken-ichi Mitsui; Yoshio Tabata
2006-01-01
In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...
Wavelet characterization of Hörmander symbol class Sm ρ, δ Sm ρ ...
Indian Academy of Sciences (India)
... non-regular symbol operators, we establish sharp 2-continuity which is better than Calderón and Vaillancourt's result, and establish L p ( 1 ≤ p ≤ ∞ ) continuity which is new and sharp. Our new idea is to analyse the symbol operators in phase space with relative wavelets, and to establish the kernel distribution property ...
Applications of a fast, continuous wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Mazumdar, Atmadeep; Sen, Krishna Nirmalya; Lahiri, Balendra Nath
2007-01-01
The Haddon matrix is a potential tool for recognizing hazards in any operating engineering system. This paper presents a case study of operational hazards at a large construction site. The fish bone structure helps to visualize and relate the chain of events, which led to the failure of the system. The two-tier Haddon matrix approach helps to analyze the problem and subsequently prescribes preventive steps. The cybernetic approach has been undertaken to establish the relationship among event variables and to identify the ones with most potential. Those event variables in this case study, based on the cybernetic concepts like control responsiveness and controllability salience, are (a) uncontrolled swing of sheet contributing to energy, (b) slippage of sheet from anchor, (c) restricted longitudinal and transverse swing or rotation about the suspension, (d) guilt or uncertainty of the crane driver, (e) safe working practices and environment.
Energy Technology Data Exchange (ETDEWEB)
Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)
2014-09-15
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.
2013-01-01
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
Krishnaswami, G.S.
2008-01-01
We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G( ), are quadratic equations
Digital transceiver implementation for wavelet packet modulation
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Numerical shaping of the ultrasonic wavelet
International Nuclear Information System (INIS)
Bonis, M.
1991-01-01
Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test
Building nonredundant adaptive wavelets by update lifting
H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)
2002-01-01
textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Using wavelet features for analyzing gamma lines
International Nuclear Information System (INIS)
Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.
2004-01-01
Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method
Framelets and wavelets algorithms, analysis, and applications
Han, Bin
2017-01-01
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...
Image Registration Using Redundant Wavelet Transforms
National Research Council Canada - National Science Library
Brown, Richard
2001-01-01
.... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...
Thin film description by wavelet coefficients statistics
Czech Academy of Sciences Publication Activity Database
Boldyš, Jiří; Hrach, R.
2005-01-01
Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf
Wavelet and Blend maps for texture synthesis
Du Jin-Lian; Wang Song; Meng Xianhai
2011-01-01
blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...
Energy Technology Data Exchange (ETDEWEB)
Chauvin, C
2005-11-15
This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)
Akemann, G; Bittner, E; Lombardo, M; Markum, H; Pullirsch, R
2004-01-01
We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.
International Nuclear Information System (INIS)
Akemann, Gernot; Bittner, Elmar; Lombardo, Maria-Paola; Markum, Harald; Pullirsch, Rainer
2005-01-01
We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis
Wavelet evolutionary network for complex-constrained portfolio rebalancing
Suganya, N. C.; Vijayalakshmi Pai, G. A.
2012-07-01
Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.
Application of Improved Wavelet Thresholding Function in Image Denoising Processing
Directory of Open Access Journals (Sweden)
Hong Qi Zhang
2014-07-01
Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.
International Nuclear Information System (INIS)
Ablinger, J.; Bluemlein, J.; Klein, S.; Schneider, C.; Wissbrock, F.
2011-01-01
The contributions ∝n f to the O(α s 3 ) massive operator matrix elements describing the heavy flavor Wilson coefficients in the limit Q 2 >>m 2 are computed for the structure function F 2 (x,Q 2 ) and transversity for general values of the Mellin variable N. Here, for two matrix elements, A qq,Q PS (N) and A qg,Q (N), the complete result is obtained. A first independent computation of the contributions to the 3-loop anomalous dimensions γ qg (N), γ qq PS (N), and γ qq NS,(TR) (N) is given. In the computation advanced summation technologies for nested sums over products of hypergeometric terms with harmonic sums have been used. For intermediary results generalized harmonic sums occur, while the final results can be expressed by nested harmonic sums only.
A New Perceptual Mapping Model Using Lifting Wavelet Transform
Directory of Open Access Journals (Sweden)
Taha TahaBasheer
2017-01-01
Full Text Available Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT applications. Accumulative Lifting Difference (ALD is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND in digital images. In addition to low complexity operations, experiments results show that the proposed modelcan tolerate much more JND noise than models proposed before
Directory of Open Access Journals (Sweden)
Andrzej Katunin
2015-01-01
Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.
Directory of Open Access Journals (Sweden)
Erick Schmitt
2010-08-01
Full Text Available This paper presents a new wavelet-based algorithm for three-phase induction machine fault detection. This new method uses the standard deviation of wavelet coefficients, obtained from n-level decomposition of each phase voltage and current, to identify single-phasing faults or unbalanced stator resistance faults in induction machines. The proposed algorithm can operate independent of the operational frequency, fault type and loading conditions. Results show that this algorithm has better detection response than the Fourier transform-based techniques.Este trabajo presenta un nuevo algoritmo basado en wavelets para la detección de fallas en máquinas de inducción de tres fases. Este nuevo método utiliza la desviación estándar de los coeficientes wavelet, que se obtiene de la descomposición de n-niveles de cada fase, para identificar fallas en el voltaje en una fase o fallas en la resistencia del estator en máquinas de inducción. El algoritmo propuesto puede funcionar independiente de la frecuencia de operación, tipo de falla y condiciones de carga. Los resultados muestran que este algoritmo tiene una mejor respuesta de detección que las técnicas basadas en la transformada de Fourier.
Wavelet decomposition and neuro-fuzzy hybrid system applied to short-term wind power
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Jimenez, L.A.; Mendoza-Villena, M. [La Rioja Univ., Logrono (Spain). Dept. of Electrical Engineering; Ramirez-Rosado, I.J.; Abebe, B. [Zaragoza Univ., Zaragoza (Spain). Dept. of Electrical Engineering
2010-03-09
Wind energy has become increasingly popular as a renewable energy source. However, the integration of wind farms in the electrical power systems presents several problems, including the chaotic fluctuation of wind flow which results in highly varied power generation from a wind farm. An accurate forecast of wind power generation has important consequences in the economic operation of the integrated power system. This paper presented a new statistical short-term wind power forecasting model based on wavelet decomposition and neuro-fuzzy systems optimized with a genetic algorithm. The paper discussed wavelet decomposition; the proposed wind power forecasting model; and computer results. The original time series, the mean electric power generated in a wind farm, was decomposing into wavelet coefficients that were utilized as inputs for the forecasting model. The forecasting results obtained with the final models were compared to those obtained with traditional forecasting models showing a better performance for all the forecasting horizons. 13 refs., 1 tab., 4 figs.
Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network
Directory of Open Access Journals (Sweden)
Kun Zhang
2015-01-01
Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.
Global spectral graph wavelet signature for surface analysis of carpal bones
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
A New Formula for the Inverse Wavelet Transform
Sun, Wenchang
2010-01-01
Finding a computationally efficient algorithm for the inverse continuous wavelet transform is a fundamental topic in applications. In this paper, we show the convergence of the inverse wavelet transform.
Wavelet transforms as solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Wavelet Transforms: Application to Data Analysis - I -10 ...
Indian Academy of Sciences (India)
from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.
International Nuclear Information System (INIS)
Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.
1995-01-01
Matrix elements of one and two body operators, which appear in a general hamiltonian and in electromagnetic transitions are derived in a subspace spanned by multiphonon states. The method is illustrated for a single j-shell, where phonons built with one type of particles are introduced. The eigenvalues obtained within the space spanned by the phonons of lowest angular momentum are compared to those of the full space. In such a method, the Pauli principle is fully and properly taken into account. ((orig.))
Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew
2018-03-01
We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.
Wavelet processing techniques for digital mammography
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Construction of a class of Daubechies type wavelet bases
International Nuclear Information System (INIS)
Li Dengfeng; Wu Guochang
2009-01-01
Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.
International Nuclear Information System (INIS)
Kanyauskas, Yu.M.; Rudzikas, Z.B.
1976-01-01
Operators and their submatrix elements are studied in the framework of the electric multipole transitions of complex atoms with account of relativistic corrections of the order of the square of the fine structure constant. The analysis is performed by means of irreducible tensor operators and genealogical coefficients. It has been assumed that angular momenta of individual shells are coupled with each other according to ls, lk, jk and jj coupling. Formulas are given for the operator which causes the relativistic corrections for the single-electron multipole transition and for its submatrix element in the case of configurations with two unfilled shells. A possibility is discussed of using the formulas suggested for calculation. As follows from analysis, the relativistic correction operators even with the pure ls coupling allow intercombination transitions with ΔS equals +-1. The expressions obtained may turn out to be useful for performing calculations in the case of the intermediate type of coupling
Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua
2018-02-01
In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.
On extensions of wavelet systems to dual pairs of frames
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2015-01-01
It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...
Fast generation of computer-generated holograms using wavelet shrinkage.
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2017-01-09
Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.
Image encryption using the fractional wavelet transform
International Nuclear Information System (INIS)
Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L
2011-01-01
In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.
Partially coherent imaging and spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, Roman
2003-03-01
A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)
Motion compensation via redundant-wavelet multihypothesis.
Fowler, James E; Cui, Suxia; Wang, Yonghui
2006-10-01
Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.
ECG denoising with adaptive bionic wavelet transform.
Sayadi, Omid; Shamsollahi, Mohammad Bagher
2006-01-01
In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.
Improvement of electrocardiogram by empirical wavelet transform
Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya
2017-09-01
Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.
Orthonormal Wavelet Bases for Quantum Molecular Dynamics
International Nuclear Information System (INIS)
Tymczak, C.; Wang, X.
1997-01-01
We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society
Wavelet methods in mathematical analysis and engineering
Damlamian, Alain
2010-01-01
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.
Multiresolution signal decomposition transforms, subbands, and wavelets
Akansu, Ali N; Haddad, Paul R
2001-01-01
The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course
Bhatia, Rajendra
1997-01-01
A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Hanugrani, Nikita; Setyanto, Nasir Widha; Efranto, Remba Yanuar
2013-01-01
PT. Indonesian Tobacco merupakan salah satu Perusahaan rokok yang telah menerapkan konsep Supply Chain Management untuk mengatur proses aliran material. Selama berjalannya Supply Chain Management tersebut, Perusahaan belum pernah melakukan pengukuran terhadap performansi supply chain yang melibatkan semua pihak yang terkait. Metode yang digunakan untuk mengukur performansi supply chain adalah Supply Chain Operation Reference (SCOR). SCOR merupakan suatu model acuan proses untuk operasi supply...
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
International Nuclear Information System (INIS)
Zhang Yu-Feng; Muhammad, Iqbal; Yue Chao
2017-01-01
We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov–Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. (paper)
Directory of Open Access Journals (Sweden)
D. Jabari Sabeg
2016-10-01
Full Text Available In this paper, we present a new computational method for solving nonlinear singular boundary value problems of fractional order arising in biology. To this end, we apply the operational matrices of derivatives of shifted Legendre polynomials to reduce such problems to a system of nonlinear algebraic equations. To demonstrate the validity and applicability of the presented method, we present some numerical examples.
Optimization of wavelet decomposition for image compression and feature preservation.
Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T
2003-09-01
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.
International Nuclear Information System (INIS)
Zheng Youqi; Wu Hongchun; Cao Liangzhi
2013-01-01
This paper describes the stability analysis for the coarse mesh finite difference (CMFD) acceleration used in the wavelet expansion method. The nonlinear CMFD acceleration scheme is transformed by linearization and the Fourier ansatz is introduced into the linearized formulae. The spectral radius is defined as the stability criterion, which is the least upper bound (LUB) of the largest eigenvalue of Fourier analysis matrix. The stability analysis considers the effect of mesh size (spectral length), coarse mesh division and scattering ratio. The results show that for the wavelet expansion method, the CMFD acceleration is conditionally stable. The small size of fine mesh brings stability and fast convergent. With the increase of the mesh size, the stability becomes worse. The scattering ratio does not impact the stability obviously. It makes the CMFD acceleration highly efficient in the strong scattering case. The results of Fourier analysis are verified by the numerical tests based on a homogeneous slab problem.
Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo
Energy Technology Data Exchange (ETDEWEB)
Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.
Information retrieval system utilizing wavelet transform
Brewster, Mary E.; Miller, Nancy E.
2000-01-01
A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.
monthly energy consumption forecasting using wavelet analysis
African Journals Online (AJOL)
User
ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...
Characterization and Simulation of Gunfire with Wavelets
Directory of Open Access Journals (Sweden)
David O. Smallwood
1999-01-01
Full Text Available Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of these records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.
Multiscale wavelet representations for mammographic feature analysis
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Wavelet based multicarrier code division multiple access ...
African Journals Online (AJOL)
This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...
2012-01-01
Background Through the wealth of information contained within them, genome-wide association studies (GWAS) have the potential to provide researchers with a systematic means of associating genetic variants with a wide variety of disease phenotypes. Due to the limitations of approaches that have analyzed single variants one at a time, it has been proposed that the genetic basis of these disorders could be determined through detailed analysis of the genetic variants themselves and in conjunction with one another. The construction of models that account for these subsets of variants requires methodologies that generate predictions based on the total risk of a particular group of polymorphisms. However, due to the excessive number of variants, constructing these types of models has so far been computationally infeasible. Results We have implemented an algorithm, known as greedy RLS, that we use to perform the first known wrapper-based feature selection on the genome-wide level. The running time of greedy RLS grows linearly in the number of training examples, the number of features in the original data set, and the number of selected features. This speed is achieved through computational short-cuts based on matrix calculus. Since the memory consumption in present-day computers can form an even tighter bottleneck than running time, we also developed a space efficient variation of greedy RLS which trades running time for memory. These approaches are then compared to traditional wrapper-based feature selection implementations based on support vector machines (SVM) to reveal the relative speed-up and to assess the feasibility of the new algorithm. As a proof of concept, we apply greedy RLS to the Hypertension – UK National Blood Service WTCCC dataset and select the most predictive variants using 3-fold external cross-validation in less than 26 minutes on a high-end desktop. On this dataset, we also show that greedy RLS has a better classification performance on independent
Hyperspectral image compressing using wavelet-based method
Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng
2017-10-01
Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.
Belitsky, A. V.
2017-10-01
The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2017-10-01
Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Bhagavatula, Chandrasekhar; Venugopalan, Shreyas; Blue, Rebecca; Friedman, Robert; Griofa, Marc O; Savvides, Marios; Kumar, B V K Vijaya
2012-01-01
In this paper we explore how a Radio Frequency Impedance Interrogation (RFII) signal may be used as a biometric feature. This could allow the identification of subjects in operational and potentially hostile environments. Features extracted from the continuous and discrete wavelet decompositions of the signal are investigated for biometric identification. In the former case, the most discriminative features in the wavelet space were extracted using a Fisher ratio metric. Comparisons in the wavelet space were done using the Euclidean distance measure. In the latter case, the signal was decomposed at various levels using different wavelet bases, in order to extract both low frequency and high frequency components. Comparisons at each decomposition level were performed using the same distance measure as before. The data set used consists of four subjects, each with a 15 minute RFII recording. The various data samples for our experiments, corresponding to a single heart beat duration, were extracted from these recordings. We achieve identification rates of up to 99% using the CWT approach and rates of up to 100% using the DWT approach. While the small size of the dataset limits the interpretation of these results, further work with larger datasets is expected to develop better algorithms for subject identification.
Harmonic analysis of traction power supply system based on wavelet decomposition
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.
Franklin, Joel N
2003-01-01
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
From cardinal spline wavelet bases to highly coherent dictionaries
International Nuclear Information System (INIS)
Andrle, Miroslav; Rebollo-Neira, Laura
2008-01-01
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)
Joint multifractal analysis based on wavelet leaders
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Wavelet analysis of the impedance cardiogram waveforms
International Nuclear Information System (INIS)
Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K
2012-01-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Gestures recognition based on wavelet and LLE
International Nuclear Information System (INIS)
Ai, Qingsong; Liu, Quan; Lu, Ying; Yuan, Tingting
2013-01-01
Wavelet analysis is a time–frequency, non-stationary method while the largest Lyapunov exponent (LLE) is used to judge the non-linear characteristic of systems. Because surface electromyography signal (SEMGS) is a complex signal that is characterized by non-stationary and non-linear properties. This paper combines wavelet coefficient and LLE together as the new feature of SEMGS. The proposed method not only reflects the non-stationary and non-linear characteristics of SEMGS, but also is suitable for its classification. Then, the BP (back propagation) neural network is employed to implement the identification of six gestures (fist clench, fist extension, wrist extension, wrist flexion, radial deviation, ulnar deviation). The experimental results indicate that based on the proposed method, the identification of these six gestures can reach an average rate of 97.71 %.
Wavelets and their applications past and future
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
The parallel algorithm for the 2D discrete wavelet transform
Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel
2018-04-01
The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.
Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation
Directory of Open Access Journals (Sweden)
Xionggang Tu
2014-11-01
Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.
Use of muscle synergies and wavelet transforms to identify fatigue during squatting.
Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L
2016-06-01
The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transformer Protection Using the Wavelet Transform
ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı
2014-01-01
This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...
Wavelet representation of the nuclear dynamics
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.
Wavelet Decomposition of the Financial Market
Czech Academy of Sciences Publication Activity Database
Vošvrda, Miloslav; Vácha, Lukáš
2007-01-01
Roč. 16, č. 1 (2007), s. 38-54 ISSN 1210-0455 R&D Projects: GA ČR GA402/04/1026; GA ČR(CZ) GA402/06/1417 Grant - others:GA UK(CZ) 454/2004/A-EK FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : agents' trading strategies * heterogeneous agents model with stochastic memory * worst out algorithm * wavelet Subject RIV: AH - Economics
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus
Denoising solar radiation data using coiflet wavelets
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Pedestrian detection based on redundant wavelet transform
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
Fringe pattern information retrieval using wavelets
Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano
2005-08-01
Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.
JPEG and wavelet compression of ophthalmic images
Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.
1999-05-01
This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.
Generalized exact holographic mapping with wavelets
Lee, Ching Hua
2017-12-01
The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Forced Ignition Study Based On Wavelet Method
Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.
2011-05-01
The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.
Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation
Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.
2017-08-01
A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.
Study on SOC wavelet analysis for LiFePO4 battery
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.
Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting
Institute of Scientific and Technical Information of China (English)
WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng
2003-01-01
To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.
Coresident sensor fusion and compression using the wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Yocky, D.A.
1996-03-11
Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.
EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform
National Research Council Canada - National Science Library
Bhatti, Muhammad
2001-01-01
EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...
Wavelets for the stimulation of turbulent incompressible flows
International Nuclear Information System (INIS)
Deriaz, E.
2006-02-01
This PhD thesis presents original wavelet methods aimed at simulating incompressible fluids. In order to construct 2D and 3D wavelets designed for incompressible flows, we resume P-G Lemarie-Rieussets and K. Urbans works on divergence free wavelets. We show the existence of associated fast algorithms. In the following, we use divergence-free wavelet construction to define the Helmholtz decomposition of 2D and 3D vector fields. All these algorithms provide a new method for the numerical resolution of the incompressible Navier-Stokes equations. (author)
Wavelet-based moment invariants for pattern recognition
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication
National Research Council Canada - National Science Library
Chui, Charles K
2007-01-01
...; secondly, based on minimum-energy criteria, new data processing tools, particularly variational algorithms and optimal wavelet thresholding methods, with applications to image restoration, were introduced...
Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms
National Research Council Canada - National Science Library
Ardolino, Richard S
2007-01-01
This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
Wavelet-based verification of the quantitative precipitation forecast
Yano, Jun-Ichi; Jakubiak, Bogumil
2016-06-01
This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
Transient signal analysis in power reactors by means of the wavelet technique
International Nuclear Information System (INIS)
Wentzeis, Luis
1999-01-01
The application of the wavelet technique, had enabled to study the time evolution of the properties (amplitude and frequency content) of a signals set, measured in the Embalse nuclear power plant (CANDU 600 M we), in the low frequency range and for different operating conditions. Particularly, by means of this technique, we studied the time evolution of the signals in the non-stationary state of the reactor (during a raise in power), where the Fourier analysis results inadequate. (author)
Pulp and paper from oil palm fronds: Wavelet neural networks modeling of soda-ethanol pulping
Zarita Zainuddin; Wan Rosli Wan Daud; Pauline Ong; Amran Shafie
2012-01-01
Wavelet neural networks (WNNs) were used to investigate the influence of operational variables in the soda-ethanol pulping of oil palm fronds (viz. NaOH concentration (10-30%), ethanol concentration (15-75%), cooking temperature (150-190 ºC), and time (60-180 min)) on the resulting pulp and paper properties (viz. screened yield, kappa number, tensile index, and tear index). Performance assessments demonstrated the predictive capability of WNNs, in that the experimental results of the dependen...
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
Nazarzadeh, Kimia; Arjunan, Sridhar P; Kumar, Dinesh K; Das, Debi Prasad
2016-08-01
In this study, we have analyzed the accelerometer data recorded during gait analysis of Parkinson disease patients for detecting freezing of gait (FOG) episodes. The proposed method filters the recordings for noise reduction of the leg movement changes and computes the wavelet coefficients to detect FOG events. Publicly available FOG database was used and the technique was evaluated using receiver operating characteristic (ROC) analysis. Results show a higher performance of the wavelet feature in discrimination of the FOG events from the background activity when compared with the existing technique.
International Nuclear Information System (INIS)
Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El
2011-01-01
This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
Wavelet based free-form deformations for nonrigid registration
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Wavelet compression algorithm applied to abdominal ultrasound images
International Nuclear Information System (INIS)
Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che
2006-01-01
We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis
Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters
Directory of Open Access Journals (Sweden)
P. Prakasam
2008-01-01
Full Text Available A generalized modulation identification scheme is developed and presented. With the help of this scheme, the automatic modulation classification and recognition of wireless communication signals with a priori unknown parameters are possible effectively. The special features of the procedure are the possibility to adapt it dynamically to nearly all modulation types, and the capability to identify. The developed scheme based on wavelet transform and statistical parameters has been used to identify M-ary PSK, M-ary QAM, GMSK, and M-ary FSK modulations. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB. The identification percentage has been analyzed based on the confusion matrix. When SNR is above 5 dB, the probability of detection of the proposed system is more than 0.968. The performance of the proposed scheme has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.
International Nuclear Information System (INIS)
Childs, W.J.
1997-01-01
Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs
Wavelet Based Diagnosis and Protection of Electric Motors
Khan, M. Abdesh Shafiel Kafiey; Rahman, M. Azizur
2010-01-01
In this chapter, a short review of conventional Fourier transforms and new wavelet based faults diagnostic and protection techniques for electric motors is presented. The new hybrid wavelet packet transform (WPT) and neural network (NN) based faults diagnostic algorithm is developed and implemented for electric motors. The proposed WPT and NN
Optimization design of biorthogonal wavelets for embedded image coding
Lin, Z.; Zheng, N.; Liu, Y.; Wetering, van de H.M.M.
2007-01-01
We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two
Multiresolution signal decomposition schemes. Part 2: Morphological wavelets
H.J.A.M. Heijmans (Henk); J. Goutsias (John)
1999-01-01
htmlabstractIn its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The
Multidimensional filter banks and wavelets research developments and applications
Levy, Bernard
1997-01-01
Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Evaluation of the wavelet image two-line coder
DEFF Research Database (Denmark)
Rein, Stephan Alexander; Fitzek, Frank Hanns Paul; Gühmann, Clemens
2015-01-01
This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low complexity compression of images. The algorithm recursively encodes an image backwards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes from flash memory. It thus only requires very ...
Polarized spectral features of human breast tissues through wavelet ...
Indian Academy of Sciences (India)
Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.
Wavelet-Coded OFDM for Next Generation Mobile Communications
DEFF Research Database (Denmark)
Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
2016-01-01
In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....
International Conference and Workshop on Fractals and Wavelets
Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod
2014-01-01
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
Denoising in Wavelet Packet Domain via Approximation Coefficients
Directory of Open Access Journals (Sweden)
Zahra Vahabi
2012-01-01
Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.
Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising
Directory of Open Access Journals (Sweden)
Yan-Fang Sang
2010-06-01
Full Text Available In this paper, the energy distributions of various noises following normal, log-normal and Pearson-III distributions are first described quantitatively using the wavelet energy entropy (WEE, and the results are compared and discussed. Then, on the basis of these analytic results, a method for use in choosing the decomposition level (DL in wavelet threshold de-noising (WTD is put forward. Finally, the performance of the proposed method is verified by analysis of both synthetic and observed series. Analytic results indicate that the proposed method is easy to operate and suitable for various signals. Moreover, contrary to traditional white noise testing which depends on “autocorrelations”, the proposed method uses energy distributions to distinguish real signals and noise in noisy series, therefore the chosen DL is reliable, and the WTD results of time series can be improved.
International Nuclear Information System (INIS)
Meng, Lingjie; Xiang, Jiawei; Zhong, Yongteng; Song, Wenlei
2015-01-01
Defective rolling bearing response is often characterized by the presence of periodic impulses. However, the in-situ sampled vibration signal is ordinarily mixed with ambient noises and easy to be interfered even submerged. The hybrid approach combining the second generation wavelet denoising with morphological filter is presented. The raw signal is purified using the second generation wavelet. The difference between the closing and opening operator is employed as the morphology filter to extract the periodicity impulsive features from the purified signal and the defect information is easily to be extracted from the corresponding frequency spectrum. The proposed approach is evaluated by simulations and vibration signals from defective bearings with inner race fault, outer race fault, rolling element fault and compound faults, espectively. Results show that the ambient noises can be fully restrained and the defect information of the above defective bearings is well extracted, which demonstrates that the approach is feasible and effective for the fault detection of rolling bearing.
Wavelet zero crossings and paraconsistent fuzzy logic in the diagnostic of rolling bearings
Energy Technology Data Exchange (ETDEWEB)
Masotti, Paulo Henrique Ferraz; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)
2002-07-01
A new defect characteristic extraction method for rolling bearings vibration signals based on wavelet transform is presented. A more robust automated diagnostic system for defects in bearings based on paraconsistent fuzzy logic is also presented which deals with inconsistent and ambiguous information. There is a need for the optimization of diagnosis systems in order to increase precision and to reduce human errors. Automatic diagnosis systems should be robust to a point where it must operate with a diversified source of information allowing for analysis of different equipment and existing defects. The paraconsistent fuzzy logic is applied in the present work. This technique is a flexible tool which allows the modeling of uncertain and ambiguous data frequently found in real situations. Experimental data were used to test the methodology. The results obtained by using wavelet zero crossings for characteristic extraction and Paraconsistent fuzzy logic for defect classification were conclusive showing that the system is capable to identify and to classify defects in bearings. (author)
Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations
Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V
2005-01-01
We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.
Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations
International Nuclear Information System (INIS)
Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.
2005-01-01
We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors
3D Inversion of Magnetic Data through Wavelet based Regularization Method
Directory of Open Access Journals (Sweden)
Maysam Abedi
2015-06-01
Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.
DSP accelerator for the wavelet compression/decompression of high- resolution images
Energy Technology Data Exchange (ETDEWEB)
Hunt, M.A.; Gleason, S.S.; Jatko, W.B.
1993-07-23
A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.
Abstract harmonic analysis of continuous wavelet transforms
Führ, Hartmut
2005-01-01
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula.
Seismic image watermarking using optimized wavelets
International Nuclear Information System (INIS)
Mufti, M.
2010-01-01
Geotechnical processes and technologies are becoming more and more sophisticated by the use of computer and information technology. This has made the availability, authenticity and security of geo technical data even more important. One of the most common methods of storing and sharing seismic data images is through standardized SEG- Y file format.. Geo technical industry is now primarily data centric. The analytic and detection capability of seismic processing tool is heavily dependent on the correctness of the contents of the SEG-Y data file. This paper describes a method through an optimized wavelet transform technique which prevents unauthorized alteration and/or use of seismic data. (author)
Coherent states versus De Broglie-Wavelets
International Nuclear Information System (INIS)
Barut, A.O.
1993-08-01
There are two types of nonspreading localized wave forms representing a stable, individual, indivisible, single quantum particle with interference properties endowed with classical (hidden) parameters, i.e. initial positions and velocity: coherent states and wavelets. The first is exactly known for oscillator, the second for free particles. Their relation and their construction is discussed from a new unified point of view. We then extend this contraction to the Coulomb problem, where with the introduction of a new time variable T, nonspreading states are obtained. (author). 10 refs
Image Mosaic Techniques OptimizationUsing Wavelet
Institute of Scientific and Technical Information of China (English)
ZHOUAn-qi; CUILi
2014-01-01
This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.
Wavelet analysis of the nuclear phase space
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author). 34 refs.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author)
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Matrix theory selected topics and useful results
Mehta, Madan Lal
1989-01-01
Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
Directory of Open Access Journals (Sweden)
Gang Li
2013-12-01
Full Text Available Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC analysis and a support vector machine (SVM classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Institute for Theoretical Physics E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria)
2013-01-11
The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N using a new summation technique. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2012-05-15
The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.
Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin
2008-01-01
Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Lozano-Garcia, J. M; Hernandez-Figueroa, M. A; Estrada Garcia, H. J; Martinez-Patino, J [Universidad de Guanajuato, Campus Irapuato-Salamanca, Salamanca, Guanajuato (Mexico)]. E-mails: jm.lozano@ugto.mx; mahf@ugto.mx; hestrada@ugto.mx; jesusmp23@ugto.mx
2013-03-15
Renewable energy technologies, as wind turbines, have had a remarkable penetration in power systems worldwide, causing that actual power grids became dependent and vulnerable to the variability of the energy generated by this type of resource. In that sense, power converters provide a crucial function in the performance of the overall electrical system when they are used as links between this type of generators and the power system. In this paper, a matrix converter is proposed as link device, to cope with distorted and variable voltages as the ones found in wind turbines operation where generated voltages are directly dependent on wind's speed. An analysis of its main functional characteristics when it operates subject to distorted input-voltage condition, in order to synthesize a set of output voltages with constant magnitude and frequency and without harmonic distortion, is presented. Numerical simulations and experimental results from a laboratory-scale prototype are presented to validate the converter performance. [Spanish] La gran penetracion que ha tenido la generacion de energia mediante recursos renovables, como los generadores eolicos, en el mercado energetico, han ocasionado que las redes electricas sean mas dependientes y vulnerables a la variabilidad de la energia que se genera con este tipo de recursos. En ese sentido, los convertidores de potencia utilizados como enlace entre este tipo de generadores y el sistema electrico son determinantes en el comportamiento final que se tendra en el sistema electrico. En el presente trabajo se propone la utilizacion del convertidor matricial como dispositivo de enlace y se analizan sus caracteristicas operativas en casos donde se requiere la generacion de senales de voltaje sinusoidales y con valores constantes tanto en magnitud como en frecuencia a partir de senales variables, situacion que se presenta comunmente en los aerogeneradores donde el voltaje generado depende directamente de la velocidad del
Cryptocurrency price drivers: Wavelet coherence analysis revisited.
Phillips, Ross C; Gorse, Denise
2018-01-01
Cryptocurrencies have experienced recent surges in interest and price. It has been discovered that there are time intervals where cryptocurrency prices and certain online and social media factors appear related. In addition it has been noted that cryptocurrencies are prone to experience intervals of bubble-like price growth. The hypothesis investigated here is that relationships between online factors and price are dependent on market regime. In this paper, wavelet coherence is used to study co-movement between a cryptocurrency price and its related factors, for a number of examples. This is used alongside a well-known test for financial asset bubbles to explore whether relationships change dependent on regime. The primary finding of this work is that medium-term positive correlations between online factors and price strengthen significantly during bubble-like regimes of the price series; this explains why these relationships have previously been seen to appear and disappear over time. A secondary finding is that short-term relationships between the chosen factors and price appear to be caused by particular market events (such as hacks / security breaches), and are not consistent from one time interval to another in the effect of the factor upon the price. In addition, for the first time, wavelet coherence is used to explore the relationships between different cryptocurrencies.
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The study of the transport phenomena in nuclear matter is addressed in a new approach based on wavelet theory and the projection methods of statistical physics. The advantage of this framework is to optimize the representation spaces and the numerical treatment which gives the opportunity to enlarge the spectra of physical processes taken into account to preserve some important quantum information. At the same time this approach is more efficient than the usual solving schemes and mathematical formulations of the equations based on usual concepts. The application of this methodology to the the study of the physical phenomena related to the heavy ion collisions at intermediate energies has resulted in a model named DYWAN (DYnamical WAvelets in Nuclei). The results obtained with DYWAN for the central collisions in the system Ca + Ca at three different beam energies are reported. These are in agreement with the experimental results since a fusion process at 30 MeV is observed as well as a binary reaction at 50 MeV and kind of an explosion of the system at 90 MeV
Wavelet tree structure based speckle noise removal for optical coherence tomography
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform
Institute of Scientific and Technical Information of China (English)
LiaoYa-li; Yangyan; CaoYang
2003-01-01
Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.
International Nuclear Information System (INIS)
Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)
1976-01-01
Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods
Joint Time-Frequency And Wavelet Analysis - An Introduction
Directory of Open Access Journals (Sweden)
Majkowski Andrzej
2014-12-01
Full Text Available A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency. The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
Signal-dependent independent component analysis by tunable mother wavelets
International Nuclear Information System (INIS)
Seo, Kyung Ho
2006-02-01
The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown
A note on the standard dual frame of a wavelet frame with three-scale
International Nuclear Information System (INIS)
Chen Qingjiang; Wei Zongtian; Feng Jinshun
2009-01-01
In this paper, it is shown that there exist wavelet frames generated by two functions which have good dual wavelet frames, but for which the standard dual wavelet frame does not consist of wavelets. That is to say, the standard dual wavelet frame cannot be generated by the translations and dilations of a single function. Relation to some physical theories such as entropy and E-infinity theory is also discussed.
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
International Nuclear Information System (INIS)
Chitsaz, Hamed; Amjady, Nima; Zareipour, Hamidreza
2015-01-01
Highlights: • Presenting a Morlet wavelet neural network for wind power forecasting. • Proposing improved Clonal selection algorithm for training the model. • Applying Maximum Correntropy Criterion to evaluate the training performance. • Extensive testing of the proposed wind power forecast method on real-world data. - Abstract: With the integration of wind farms into electric power grids, an accurate wind power prediction is becoming increasingly important for the operation of these power plants. In this paper, a new forecasting engine for wind power prediction is proposed. The proposed engine has the structure of Wavelet Neural Network (WNN) with the activation functions of the hidden neurons constructed based on multi-dimensional Morlet wavelets. This forecast engine is trained by a new improved Clonal selection algorithm, which optimizes the free parameters of the WNN for wind power prediction. Furthermore, Maximum Correntropy Criterion (MCC) has been utilized instead of Mean Squared Error as the error measure in training phase of the forecasting model. The proposed wind power forecaster is tested with real-world hourly data of system level wind power generation in Alberta, Canada. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. The obtained results confirm the validity of the developed approach
Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review
Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia
2016-03-01
As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.
Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A
2018-04-03
The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.
End-point detection in potentiometric titration by continuous wavelet transform.
Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W
2009-10-15
The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2018-02-01
Full Text Available Electricity load forecasting plays a paramount role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate planning and prediction of electricity load are therefore vital. In this study, a novel approach for forecasting monthly electricity demands by wavelet transform and a neuro-fuzzy system is proposed. Firstly, the most appropriate inputs are selected and a dataset is constructed. Then, Haar wavelet transform is utilized to decompose the load data and eliminate noise. In the model, a hierarchical adaptive neuro-fuzzy inference system (HANFIS is suggested to solve the curse-of-dimensionality problem. Several heuristic algorithms including Gravitational Search Algorithm (GSA, Cuckoo Optimization Algorithm (COA, and Cuckoo Search (CS are utilized to optimize the clustering parameters which help form the rule base, and adaptive neuro-fuzzy inference system (ANFIS optimize the parameters in the antecedent and consequent parts of each sub-model. The proposed approach was applied to forecast the electricity load of Hanoi, Vietnam. The constructed models have shown high forecasting performances based on the performance indices calculated. The results demonstrate the validity of the approach. The obtained results were also compared with those of several other well-known methods including autoregressive integrated moving average (ARIMA and multiple linear regression (MLR. In our study, the wavelet CS-HANFIS model outperformed the others and provided more accurate forecasting.
Identification Method of Mud Shale Fractures Base on Wavelet Transform
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
Option pricing from wavelet-filtered financial series
de Almeida, V. T. X.; Moriconi, L.
2012-10-01
We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.
EEG Artifact Removal Using a Wavelet Neural Network
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
A hybrid video compression based on zerotree wavelet structure
International Nuclear Information System (INIS)
Kilic, Ilker; Yilmaz, Reyat
2009-01-01
A video compression algorithm comparable to the standard techniques at low bit rates is presented in this paper. The overlapping block motion compensation (OBMC) is combined with discrete wavelet transform which followed by Lloyd-Max quantization and zerotree wavelet (ZTW) structure. The novel feature of this coding scheme is the combination of hierarchical finite state vector quantization (HFSVQ) with the ZTW to encode the quantized wavelet coefficients. It is seen that the proposed video encoder (ZTW-HFSVQ) performs better than the MPEG-4 and Zerotree Entropy Coding (ZTE). (author)
Digital Correlation based on Wavelet Transform for Image Detection
International Nuclear Information System (INIS)
Barba, L; Vargas, L; Torres, C; Mattos, L
2011-01-01
In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.
Standard filter approximations for low power Continuous Wavelet Transforms.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Analogue domain implementations of the Continuous Wavelet Transform (CWT) have proved popular in recent years as they can be implemented at very low power consumption levels. This is essential for use in wearable, long term physiological monitoring systems. Present analogue CWT implementations rely on taking mathematical a approximation of the wanted mother wavelet function to give a filter transfer function that is suitable for circuit implementation. This paper investigates the use of standard filter approximations (Butterworth, Chebyshev, Bessel) as an alternative wavelet approximation technique. This extends the number of approximation techniques available for generating analogue CWT filters. An example ECG analysis shows that signal information can be successfully extracted using these CWT approximations.
Pseudo-stochastic signal characterization in wavelet-domain
International Nuclear Information System (INIS)
Zaytsev, Kirill I; Zhirnov, Andrei A; Alekhnovich, Valentin I; Yurchenko, Stanislav O
2015-01-01
In this paper we present the method for fast and accurate characterization of pseudo-stochastic signals, which contain a large number of similar but randomly-located fragments. This method allows estimating the statistical characteristics of pseudo-stochastic signal, and it is based on digital signal processing in wavelet-domain. Continuous wavelet transform and the criterion for wavelet scale power density are utilized. We are experimentally implementing this method for the purpose of sand granulometry, and we are estimating the statistical parameters of test sand fractions
Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform
International Nuclear Information System (INIS)
Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo
2005-01-01
This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple
Evolutive Optimization of Wavelets and Shapelets for Bioelectrical Signal Analysis
Pinzón Morales, Rubén Dario
2011-01-01
análisis Wavelet es una poderosa herramienta para el procesamiento de señal digital. Ha sido ampliamente utilizado en señales bioeléctricas incluyendo evocar potenciales relacionados (ERP), señales de electromiografía (EMG), grabaciones de microelectrodos (MER), electrocardiograma (ECG), electroencefalogramas (EEG), entre otros. Algunas de las principales ventajas de la wavelet transform son el soporte compacto, y la concentración de la energía. Básicamente, la transformada wavelet es una con...
Wavelets an elementary treatment of theory and applications
Koornwinder, T H
1993-01-01
Nowadays, some knowledge of wavelets is almost mandatory for mathematicians, physicists and electrical engineers. The emphasis in this volume, based on an intensive course on Wavelets given at CWI, Amsterdam, is on the affine case. The first part presents a concise introduction of the underlying theory to the uninitiated reader. The second part gives applications in various areas. Some of the contributions here are a fresh exposition of earlier work by others, while other papers contain new results by the authors. The areas are so diverse as seismic processing, quadrature formulae, and wavelet
Comparative study of wavelets of the first and second generation
International Nuclear Information System (INIS)
Ososkov, G.A.; Shitov, A.B.; Stadnik, A.V.
2001-01-01
In order to compare efficiency a comprehensive set of benchmarking tests is developed, which is used to compare abilities of continuous wavelet transform of the vanishing momenta type as well as the second generation wavelets constructed on the basis of the lifting scheme. It is based on processing of various types of pure and contaminated harmonic signals, delta-function, study of the signal phase dependence and the gain-frequency characteristics. The results of a comparative multiscale analysis allow one to reveal advantages and flaws of the considered types of wavelets
Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay
2017-11-01
Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.
International Nuclear Information System (INIS)
Alperovich, L; Eppelbaum, L; Zheludev, V; Dumoulin, J; Soldovieri, F; Proto, M; Bavusi, M; Loperte, A
2013-01-01
Ground penetrating radar (GPR) and electric resistivity tomography (ERT) are well assessed and accurate geophysical methods for the investigation of subsurface geological sections. In this paper, we present the joint exploitation of these methods at the Montagnole (French Alps) experimental site with the final aim to study and monitor effects of possible catastrophic rockslides in transport infrastructures. The overall goal of the joint GPR–ERT deployment considered here is the careful monitoring of the subsurface structure before and after a series of high energetic mechanical impacts at ground level. It is known that factors such as the ambiguity of geophysical field examination, the complexity of geological scenarios and the low signal-to-noise ratio affect the possibility of building reliable physical–geological models of subsurface structure. Here, we applied to the GPR and ERT methods at the Montagnole site, recent advances in wavelet theory and data mining. The wavelet approach was specifically used to obtain enhanced images (e.g. coherence portraits) resulting from the integration of the different geophysical fields. This methodology, based on the matching pursuit combined with wavelet packet dictionaries, permitted us to extract desired signals under different physical–geological conditions, even in the presence of strongly noised data. Tools such as complex wavelets employed for the coherence portraits, and combined GPR–ERT coherency orientation angle, to name a few, enable non-conventional operations of integration and correlation in subsurface geophysics to be performed. The estimation of the above-mentioned parameters proved useful not only for location of buried inhomogeneities but also for a rough estimation of their electromagnetic and related properties. Therefore, the combination of the above approaches has allowed us to set up a novel methodology, which may enhance the reliability and confidence of each separate geophysical method and
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Harmonic analysis from Fourier to wavelets
Pereyra, Maria Cristina
2012-01-01
In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...
Network Anomaly Detection Based on Wavelet Analysis
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Real-time wavelet-transform spectrum analyzer for the investigation of 1/fα noise
Brogioli, Doriano; Vailati, Alberto
2003-04-01
A wavelet-transform spectrum analyzer operating in real time within the frequency range 3×10-5-1.3×105Hz has been implemented on a low-cost digital signal processing (DSP) board operating at 150 MHz. The wavelet decomposition of the signal allows one to efficiently process nonstationary signals dominated by large amplitude events fairly well localized in time, thus providing the natural tool to analyze processes characterized by 1/fα power spectrum. The parallel architecture of the DSP allows the real-time processing of the wavelet transform of the signal sampled at 0.3 MHz. The bandwidth is about 220 dB, almost 10 decades. The power spectrum of the signal is processed in real time from the mean square value of the wavelet coefficients within each frequency band. The performances of the spectrum analyzer have been investigated by performing dynamic light scattering experiments on colloidal suspensions and by comparing the measured spectra with the correlation functions data obtained with a traditional multitau correlator. In order to assess the potentialities of the spectrum analyzer in the investigation of processes involving a wide range of time scales, we have performed measurements on a model system where fluctuations in the scattered intensities are generated by the number fluctuations in a dilute colloidal suspension illuminated by a wide beam. This system is characterized by a power-law spectrum with exponent -3/2 in the scattered intensity fluctuations. The spectrum analyzer allows one to recover the power spectrum with a dynamic range spanning about 8 decades. The advantages of wavelet analysis versus correlation analysis in the investigation of processes characterized by a wide distribution of time scales and nonstationary processes are briefly discussed.
Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W
2016-09-01
Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.
Study and analysis of wavelet based image compression techniques
African Journals Online (AJOL)
user
Discrete Wavelet Transform (DWT) is a recently developed compression ... serve emerging areas of mobile multimedia and internet communication, ..... In global thresholding the best trade-off between PSNR and compression is provided by.
Selection of the wavelet function for the frequencies estimation
International Nuclear Information System (INIS)
Garcia R, A.
2007-01-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS
International Nuclear Information System (INIS)
FEDOROVA, A.; ZEITLIN, M.; PARSA, Z.
2000-01-01
In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems
Wavelet packet transform-based robust video watermarking technique
Indian Academy of Sciences (India)
If any conflict happens to the copyright identification and authentication, ... the present work is concentrated on the robust digital video watermarking. .... the wavelet decomposition, resulting in a new family of orthonormal bases for function ...
Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation
Directory of Open Access Journals (Sweden)
Schell Thomas
2003-01-01
Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.
Journal Afrika Statistika ISSN 0852-0305 Nonlinear wavelet ...
African Journals Online (AJOL)
mator; Nonparametric regression; Strong mixing condition. ... In this paper we consider the right censorship model and we introduce a new nonlinear ... provide excellent selective review article on nonlinear wavelet methods in nonparametric.
On-Line QRS Complex Detection Using Wavelet Filtering
National Research Council Canada - National Science Library
Szilagyi, L
2001-01-01
...: first a wavelet transform filtering is applied to the signal, then QRS complex localization is performed using a maximum detection and peak classification algorithm The algorithm has been tested...
Processing of pulse oximeter data using discrete wavelet analysis.
Lee, Seungjoon; Ibey, Bennett L; Xu, Weijian; Wilson, Mark A; Ericson, M Nance; Coté, Gerard L
2005-07-01
A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast Fourier transform (FFT) methods. However, for the quasi-periodic in vivo data segments, wavelet analysis provided more consistent results than the FFT analysis for data segments of 50, 10, and 5 s in length. Wavelet analysis has thus been shown to require less data points for quasi-periodic data than FFT analysis making it a good choice for an indwelling perfusion monitor where power consumption and reaction time are paramount.
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Schrödinger like equation for wavelets
Directory of Open Access Journals (Sweden)
A. Zúñiga-Segundo
2016-01-01
Full Text Available An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between s − ordered Wigner function, (or Wigner function when s = 0, and the Torres-Vega-Frederick’s wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.
Secured Data Transmission Using Wavelet Based Steganography and cryptography
K.Ravindra Reddy; Ms Shaik Taj Mahaboob
2014-01-01
Steganography and cryptographic methods are used together with wavelets to increase the security of the data while transmitting through networks. Another technology, the digital watermarking is the process of embedding information into a digital (image) signal. Before embedding the plain text into the image, the plain text is encrypted by using Data Encryption Standard (DES) algorithm. The encrypted text is embedded into the LL sub band of the wavelet decomposed image using Le...
Frame scaling function sets and frame wavelet sets in Rd
International Nuclear Information System (INIS)
Liu Zhanwei; Hu Guoen; Wu Guochang
2009-01-01
In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.
Big data extraction with adaptive wavelet analysis (Presentation Video)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
A short introduction to frames, Gabor systems, and wavelet systems
DEFF Research Database (Denmark)
Christensen, Ole
2014-01-01
In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa.......In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa....
Fast, large-scale hologram calculation in wavelet domain
Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi
2018-04-01
We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.
Wavelet based methods for improved wind profiler signal processing
Directory of Open Access Journals (Sweden)
V. Lehmann
2001-08-01
Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing
Analysis and removing noise from speech using wavelet transform
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
Application of wavelet transform in seismic signal processing
International Nuclear Information System (INIS)
Ghasemi, M. R.; Mohammadzadeh, A.; Salajeghe, E.
2005-01-01
Wavelet transform is a new tool for signal analysis which can perform a simultaneous signal time and frequency representations. Under Multi Resolution Analysis, one can quickly determine details for signals and their properties using Fast Wavelet Transform algorithms. In this paper, for a better physical understanding of a signal and its basic algorithms, Multi Resolution Analysis together with wavelet transforms in a form of Digital Signal Processing will be discussed. For a Seismic Signal Processing, sets of Orthonormal Daubechies Wavelets are suggested. when dealing with the application of wavelets in SSP, one may discuss about denoising from the signal and data compression existed in the signal, which is important in seismic signal data processing. Using this techniques, EL-Centro and Nagan signals were remodeled with a 25% of total points, resulted in a satisfactory results with an acceptable error drift. Thus a total of 1559 and 2500 points for EL-centro and Nagan seismic curves each, were reduced to 389 and 625 points respectively, with a very reasonable error drift, details of which are recorded in the paper. Finally, the future progress in signal processing, based on wavelet theory will be appointed
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
Energy Technology Data Exchange (ETDEWEB)
Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx
2007-07-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
International Nuclear Information System (INIS)
Brown, T.W.
2010-11-01
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brown, T.W.
2010-11-15
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.
Enhancing overcurrent relay performance using wavelet packet transform
International Nuclear Information System (INIS)
Adly, A.R.
2012-01-01
The function of a power system relaying is to cause the prompt removal of any element of power system from service when it is subjected to short circuit or it starts to operate in any abnormal manner that might cause damage or otherwise interfere with the effective operation of the rest of the system. Overcurrent protection is one of the most widely used relays in power system which is used for both primary and back-up protective relays, and applied in every protective zone in the system. The application of time overcurrent relays in power system presents serious limitations in terms of sensitivity and selectivity. Digital forms of such relays are being mostly used which have the advantages of data recording and adaptive features. This thesis introduces a technique based on Wavelet Packet Transform (WPT) to detect short circuit faults within wide variation in generating conditions, with very small voltage variation, and High-Impedance Faults (HIFs). Besides, it examines the load current continuously and changes the relay pick up value adaptively. WPT is used to estimate proper value for the RMS fundamental and hence calculate trip time accurately even that when the signals have been contaminated with other harmonics, inter harmonics or subharmonic. Simulation work was conducted using Alternative Transient Program (ATP) package. A radial distribution system and series compensated line are modeled as case studies. The performance of the proposed overcurrent scheme for both lines is extensively tested during different operating conditions including; normal, internal short circuit faults, HIFs and similar situations to HIFs: such as capacitor switching (in), capacitor switching (out), load switching, and no load line switching. This thesis also uses a technique that estimates the location of short circuit faults on a radial distribution system. The technique was tested to evaluate its suitability. The results indicate that the proposed technique works well. It also
Directory of Open Access Journals (Sweden)
Abazar Solgi
2017-06-01
given from Fourier transform that was introduced in the nineteenth-century. Overall, concept of wavelet transform for current theory was presented by Morlet and a team under the supervision of Alex Grossman at the Research Center for Theoretical Physics Marcel in France. After the parameters decomposition using wavelet analysis and using principal component analysis (PCA, the main components were determined. These components are then used as input to the support vector machine model to obtain a hybrid model of Wavelet-SVM (WSVM. For this study, a series of monthly of BOD in Karun River in Molasani station and auxiliary variables dissolved oxygen (DO, temperature and monthly river flow in a 13 years period (2002-2014 were used. Results and Discussion: To run the SVM model, seven different combinations were evaluated. Combination 6 which was contained of 4 parameters including BOD, dissolved oxygen (DO, temperature and monthly river flow with a time lag have best performance. The best structure had RMSE equal to 0.0338 and the coefficient of determination equal to 0.84. For achieving the results of the WSVM, the wavelet transform and input parameters were decomposed to sub-signal, then this sub-signals were studied with Principal component analysis (PCA method and important components were entered as inputs to SVM model to obtain the hybrid model WSVM. After numerous run this program in certain modes and compare them with each other, the results was obtained. One of the key points about the choice of the mother wavelet is the time series. So, the patterns of the mother wavelet functions that can better adapt to diagram curved of time series can do the mappings operation and therefore will have better results. In this study, according to different wavelet tests and according to the above note, four types of mother wavelet functions Haar, Db2, Db7 and Sym3 were selected. Conclusions: Compare the results of the monthly modeling indicate that the use of wavelet transforms can
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
International Nuclear Information System (INIS)
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-01-01
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments
Niegowski, Maciej; Zivanovic, Miroslav
2016-03-01
We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
Energy Technology Data Exchange (ETDEWEB)
Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2014-01-01
The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP......-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible....
Wang, Jianhua; Yang, Yanxi
2018-05-01
We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.
Electromagnetic matrix elements in baryons
International Nuclear Information System (INIS)
Lipkin, H.J.; Moinester, M.A.
1992-01-01
Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)
Matrix transformations and sequence spaces
International Nuclear Information System (INIS)
Nanda, S.
1983-06-01
In most cases the most general linear operator from one sequence space into another is actually given by an infinite matrix and therefore the theory of matrix transformations has always been of great interest in the study of sequence spaces. The study of general theory of matrix transformations was motivated by the special results in summability theory. This paper is a review article which gives almost all known results on matrix transformations. This also suggests a number of open problems for further study and will be very useful for research workers. (author)
Pérez López, César
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...
Zhan, Xingzhi
2002-01-01
The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.
Development of a Java Package for Matrix Programming
Lim, Ngee-Peng; Ling, Maurice HT; Lim, Shawn YC; Choi, Ji-Hee; Teo, Henry BK
2003-01-01
We had assembled a Java package, known as MatrixPak, of four classes for the purpose of numerical matrix computation. The classes are matrix, matrix_operations, StrToMatrix, and MatrixToStr; all of which are inherited from java.lang.Object class. Class matrix defines a matrix as a two-dimensional array of float types, and contains the following mathematical methods: transpose, adjoint, determinant, inverse, minor and cofactor. Class matrix_operations contains the following mathematical method...
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1983-01-01
The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell
DEFF Research Database (Denmark)
Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...
Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance
Directory of Open Access Journals (Sweden)
ZHANG, Y.
2017-08-01
Full Text Available Due to the sustainable and pollution-free characteristics, wind energy has been one of the fastest growing renewable energy sources. However, the intermittent and random fluctuation of wind speed presents many challenges for reliable wind power integration and normal operation of wind farm. Accurate wind speed prediction is the key to ensure the safe operation of power system and to develop wind energy resources. Therefore, this paper has presented a wavelet time series wind speed prediction model based on Lorenz disturbance. Therefore, in this paper, combined with the atmospheric dynamical system, a wavelet-time series improved wind speed prediction model based on Lorenz disturbance is proposed and the wind turbines of different climate types in Spain and China are used to simulate the disturbances of Lorenz equations with different initial values. The prediction results show that the improved model can effectively correct the preliminary prediction of wind speed, improving the prediction. In a word, the research work in this paper will be helpful to arrange the electric power dispatching plan and ensure the normal operation of the wind farm.
Smoke detection using GLCM, wavelet, and motion
Srisuwan, Teerasak; Ruchanurucks, Miti
2014-01-01
This paper presents a supervised smoke detection method that uses local and global features. This framework integrates and extends notions of many previous works to generate a new comprehensive method. First chrominance detection is used to screen areas that are suspected to be smoke. For these areas, local features are then extracted. The features are among homogeneity of GLCM and energy of wavelet. Then, global feature of motion of the smoke-color areas are extracted using a space-time analysis scheme. Finally these features are used to train an artificial intelligent. Here we use neural network, experiment compares importance of each feature. Hence, we can really know which features among those used by many previous works are really useful. The proposed method outperforms many of the current methods in the sense of correctness, and it does so in a reasonable computation time. It even has less limitation than conventional smoke sensors when used in open space. Best method for the experimental results is to use all the mentioned features as expected, to insure which is the best experiment result can be achieved. The achieved with high accuracy of result expected output is high value of true positive and low value of false positive. And show that our algorithm has good robustness for smoke detection.
Wavelet Coherence Analysis of Change Blindness
Directory of Open Access Journals (Sweden)
Irfan Ali Memon
2013-01-01
Full Text Available Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence function of ERPs (Event Related Potentials. The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory, the change in functional connectivity might be correlated to these cognitive processes during change blindness.
Wavelet coherence analysis of change blindness
International Nuclear Information System (INIS)
Memon, I.; Kalhoro, M.S.
2013-01-01
Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic) based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence) function of ERPs (Event Related Potentials). The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory), the change in functional connectivity might be correlated to these cognitive processes during change blindness. (author)
Application of 3D wavelet transforms for crack detection in rotor ...
Indian Academy of Sciences (India)
Vijayawada 520 007. bAll India Council for Technical Education (AICTE), New Delhi 110 001 ... rotor system the transient analysis has been applied. ... In the present work a new wavelet plot called cross wavelet transform (XWT) has been.
Characterizations of p-Wavelets on Positive Half Line Using the Walsh-Fourier Transform
Directory of Open Access Journals (Sweden)
Abdullah Abdullah
2016-03-01
Full Text Available In this paper, we study the characterization of wavelets on positive half line by means of two basic equations in the Fourier domain. We also give another characterization of wavelets.
Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.
Directory of Open Access Journals (Sweden)
Andrew M Huettner
Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.
Time-localized wavelet multiple regression and correlation
Fernández-Macho, Javier
2018-02-01
This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.
Wavelet-based compression of pathological images for telemedicine applications
Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun
2000-05-01
In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.
Wavelet neural networks with applications in financial engineering, chaos, and classification
Alexandridis, Antonios K
2014-01-01
Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for