Cheng, Lizhi; Luo, Yong; Chen, Bo
2014-01-01
This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...
Wavelet analysis in neurodynamics
International Nuclear Information System (INIS)
Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A
2012-01-01
Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Wavelet analysis for nonstationary signals
International Nuclear Information System (INIS)
Penha, Rosani Maria Libardi da
1999-01-01
Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect
Multifractal Cross Wavelet Analysis
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
Cross wavelet analysis: significance testing and pitfalls
Directory of Open Access Journals (Sweden)
D. Maraun
2004-01-01
Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
WAVELET ANALYSIS OF ABNORMAL ECGS
Directory of Open Access Journals (Sweden)
Vasudha Nannaparaju
2014-02-01
Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
Texture analysis using Gabor wavelets
Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.
1996-04-01
Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.
Analysis of transient signals by Wavelet transform
International Nuclear Information System (INIS)
Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de
2000-01-01
The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)
Boix, Macarena; Cantó, Begoña
2013-04-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.
Wavelet analysis of epileptic spikes
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet analysis of epileptic spikes
Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-01-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Complex Wavelet Based Modulation Analysis
DEFF Research Database (Denmark)
Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt
2008-01-01
Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...
Wavelet analysis and its applications an introduction
Yajnik, Archit
2013-01-01
"Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.
Joint multifractal analysis based on wavelet leaders
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Signal-dependent independent component analysis by tunable mother wavelets
International Nuclear Information System (INIS)
Seo, Kyung Ho
2006-02-01
The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown
Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.
Directory of Open Access Journals (Sweden)
Andrew M Huettner
Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties
Applications of wavelet transforms for nuclear power plant signal analysis
International Nuclear Information System (INIS)
Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.
1998-01-01
The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)
Big data extraction with adaptive wavelet analysis (Presentation Video)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
Framelets and wavelets algorithms, analysis, and applications
Han, Bin
2017-01-01
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Network Anomaly Detection Based on Wavelet Analysis
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
International Nuclear Information System (INIS)
Joubert, P.Y.; Madaoui, N.
1999-01-01
In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)
Wavelet analysis of MR functional data from the cerebellum
International Nuclear Information System (INIS)
Karen, Romero Sánchez; Vásquez Reyes Marcos, A.; González Gómez Dulce, I.; Hernández López, Javier M.; Silvia, Hidalgo Tobón; Pilar, Dies Suarez; Eduardo, Barragán Pérez; Benito, De Celis Alonso
2014-01-01
The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD
Wavelet analysis of MR functional data from the cerebellum
Energy Technology Data Exchange (ETDEWEB)
Karen, Romero Sánchez, E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Vásquez Reyes Marcos, A., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; González Gómez Dulce, I., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Hernández López, Javier M., E-mail: javierh@fcfm.buap.mx [Faculty of Physics and Mathematics, BUAP, Puebla, Pue (Mexico); Silvia, Hidalgo Tobón, E-mail: shidbon@gmail.com [Infant Hospital of Mexico, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Infant Hospital of Mexico, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Foundation for Development Carlos Sigüenza. Puebla, Pue. (Mexico)
2014-11-07
The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.
Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis
Directory of Open Access Journals (Sweden)
Rodríguez-Ascariz José M
2011-05-01
Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.
Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks
DEFF Research Database (Denmark)
Fan, Shuangrui; JI, TINGYUN; Bergqvist, Rickard
2013-01-01
modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics...... of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set...
Wavelet Analysis for Molecular Dynamics
2015-06-01
Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the
Wavelet methods in mathematical analysis and engineering
Damlamian, Alain
2010-01-01
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.
Multiscale wavelet representations for mammographic feature analysis
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Mathematical principles of signal processing Fourier and wavelet analysis
Brémaud, Pierre
2002-01-01
Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Wavelet analysis of the impedance cardiogram waveforms
International Nuclear Information System (INIS)
Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K
2012-01-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Wavelet compression algorithm applied to abdominal ultrasound images
International Nuclear Information System (INIS)
Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che
2006-01-01
We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis
Signal Analysis by New Mother Wavelets
International Nuclear Information System (INIS)
Niu Jinbo; Qi Kaiguo; Fan Hongyi
2009-01-01
Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Boix García, Macarena; Cantó Colomina, Begoña
2013-01-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet...
Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation
International Nuclear Information System (INIS)
Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won
2000-01-01
Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch
Harmonic analysis from Fourier to wavelets
Pereyra, Maria Cristina
2012-01-01
In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...
A Wavelet Analysis Approach for Categorizing Air Traffic Behavior
Drew, Michael; Sheth, Kapil
2015-01-01
In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
Directory of Open Access Journals (Sweden)
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram
Energy Technology Data Exchange (ETDEWEB)
Anant, K.S.
1997-06-01
In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the P as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the
A Quantitative Analysis of an EEG Epileptic Record Based on MultiresolutionWavelet Coefficients
Directory of Open Access Journals (Sweden)
Mariel Rosenblatt
2014-11-01
Full Text Available The characterization of the dynamics associated with electroencephalogram (EEG signal combining an orthogonal discrete wavelet transform analysis with quantifiers originated from information theory is reviewed. In addition, an extension of this methodology based on multiresolution quantities, called wavelet leaders, is presented. In particular, the temporal evolution of Shannon entropy and the statistical complexity evaluated with different sets of multiresolution wavelet coefficients are considered. Both methodologies are applied to the quantitative EEG time series analysis of a tonic-clonic epileptic seizure, and comparative results are presented. In particular, even when both methods describe the dynamical changes of the EEG time series, the one based on wavelet leaders presents a better time resolution.
Joint Time-Frequency And Wavelet Analysis - An Introduction
Directory of Open Access Journals (Sweden)
Majkowski Andrzej
2014-12-01
Full Text Available A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency. The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
Adaptive Wavelet Coding Applied in a Wireless Control System.
Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O
2017-12-13
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Adaptive Wavelet Coding Applied in a Wireless Control System
Directory of Open Access Journals (Sweden)
Felipe O. S. Gama
2017-12-01
Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform
International Nuclear Information System (INIS)
Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo
2005-01-01
This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple
Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities
Directory of Open Access Journals (Sweden)
Rakowski Waldemar
2015-12-01
Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.
Processing of pulse oximeter data using discrete wavelet analysis.
Lee, Seungjoon; Ibey, Bennett L; Xu, Weijian; Wilson, Mark A; Ericson, M Nance; Coté, Gerard L
2005-07-01
A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast Fourier transform (FFT) methods. However, for the quasi-periodic in vivo data segments, wavelet analysis provided more consistent results than the FFT analysis for data segments of 50, 10, and 5 s in length. Wavelet analysis has thus been shown to require less data points for quasi-periodic data than FFT analysis making it a good choice for an indwelling perfusion monitor where power consumption and reaction time are paramount.
(Multi)fractality of Earthquakes by use of Wavelet Analysis
Enescu, B.; Ito, K.; Struzik, Z. R.
2002-12-01
The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability
Energy Technology Data Exchange (ETDEWEB)
Matsushima, J; Rokugawa, S; Kato, Y [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T; Miyazaki, T [Geological Survey of Japan, Tsukuba (Japan); Ichie, Y [The University of Tokyo, Tokyo (Japan)
1996-10-01
Data processing techniques have been investigated for clarifying structures and physical properties of geothermal reservoirs in the deep underground by seismic exploration using multiple wells. They include the initial motion time-distance tomography, amplitude tomography, diffracted wave tomography, and structure imaging using reflected wave or scattered wave. When applying these data processing methods to observed records, weak and minor signals essentially required are canceled due to averaging the analytical fields. In this study, influence of inhomogeneous media on the wavefield was evaluated. Data were analyzed considering frequency by using wavelet transform by which time-frequency can be easily analyzed. From the time-frequency analysis using wavelet transform, it was illustrated that high frequency scattered waves, generated by scatterer like cracks or by irregularity on the reflection surface, arrive behind direct P-wave and direct S-wave. 5 refs., 8 figs.
A review on applications of the wavelet transform techniques in spectral analysis
International Nuclear Information System (INIS)
Medhat, M.E.; Albdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Awaad, Z.
2004-01-01
Starting from 1989, a new technique known as wavelet transforms (WT) has been applied successfully for analysis of different types of spectra. WT offers certain advantages over Fourier transforms for analysis of signals. A review of using this technique through different fields of elemental analysis is presented
Perceptual security of encrypted images based on wavelet scaling analysis
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2016-08-01
The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.
Analysis and removing noise from speech using wavelet transform
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
monthly energy consumption forecasting using wavelet analysis
African Journals Online (AJOL)
User
ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...
Heart sound segmentation of pediatric auscultations using wavelet analysis.
Castro, Ana; Vinhoza, Tiago T V; Mattos, Sandra S; Coimbra, Miguel T
2013-01-01
Auscultation is widely applied in clinical activity, nonetheless sound interpretation is dependent on clinician training and experience. Heart sound features such as spatial loudness, relative amplitude, murmurs, and localization of each component may be indicative of pathology. In this study we propose a segmentation algorithm to extract heart sound components (S1 and S2) based on it's time and frequency characteristics. This algorithm takes advantage of the knowledge of the heart cycle times (systolic and diastolic periods) and of the spectral characteristics of each component, through wavelet analysis. Data collected in a clinical environment, and annotated by a clinician was used to assess algorithm's performance. Heart sound components were correctly identified in 99.5% of the annotated events. S1 and S2 detection rates were 90.9% and 93.3% respectively. The median difference between annotated and detected events was of 33.9 ms.
Wavelet time-frequency analysis of accelerating and decelerating flows in a tube bank
International Nuclear Information System (INIS)
Indrusiak, M.L.S.; Goulart, J.V.; Olinto, C.R.; Moeller, S.V.
2005-01-01
In the present work, the steady approximation for accelerating and decelerating flows through tube banks is discussed. With this purpose, the experimental study of velocity and pressure fluctuations of transient turbulent cross-flow in a tube bank with square arrangement and a pitch-to-diameter ratio of 1.26 is performed. The Reynolds number at steady-state flow, computed with the tube diameter and the flow velocity in the narrow gap between the tubes, is 8 x 10 4 . Air is the working fluid. The accelerating and decelerating transients are obtained by means of start and stop of the centrifugal blower. Wavelet and wavelet packet multiresolution analysis were applied to decompose the signal in frequency intervals, using Daubechies 20 wavelet and scale functions, thus allowing the analysis of phenomena in a time-frequency domain. The continuous wavelet transform was also applied, using the Morlet function. The signals in the steady state, which presented a bistable behavior, were separated in two modes and analyzed with usual statistic tools. The results were compared with the steady-state assumption, demonstrating the ability of wavelets for analyzing time varying signals
Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia
2015-01-01
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...
Wavelets in scientific computing
DEFF Research Database (Denmark)
Nielsen, Ole Møller
1998-01-01
the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...
Wavelets in music analysis and synthesis: timbre analysis and perspectives
Alves Faria, Regis R.; Ruschioni, Ruggero A.; Zuffo, Joao A.
1996-10-01
Music is a vital element in the process of comprehending the world where we live and interact with. Frequency it exerts a subtle but expressive influence over a society's evolution line. Analysis and synthesis of music and musical instruments has always been associated with forefront technologies available at each period of human history, and there is no surprise in witnessing now the use of digital technologies and sophisticated mathematical tools supporting its development. Fourier techniques have been employed for years as a tool to analyze timbres' spectral characteristics, and re-synthesize them from these extracted parameters. Recently many modern implementations, based on spectral modeling techniques, have been leading to the development of new generations of music synthesizers, capable of reproducing natural sounds with high fidelity, and producing novel timbres as well. Wavelets are a promising tool on the development of new generations of music synthesizers, counting on its advantages over the Fourier techniques in representing non-periodic and transient signals, with complex fine textures, as found in music. In this paper we propose and introduce the use of wavelets addressing its perspectives towards musical applications. The central idea is to investigate the capacities of wavelets in analyzing, extracting features and altering fine timbre components in a multiresolution time- scale, so as to produce high quality synthesized musical sounds.
Applications of wavelets in morphometric analysis of medical images
Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang
2003-11-01
Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.
Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.
Hirakawa; Kuhara
1997-01-01
Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.
Wavelet theory applied to remove noise and movement artifacts from images
International Nuclear Information System (INIS)
Blanco, S.; Cabrejas, M.L.; Carpintiero, S.; Costa, A.; Stenborg, J.
2002-01-01
The quality of the images is in direct relationship with the accuracy of the diagnosis. There are several physical and technical problems (signal to noise ratio, image distortions, geometrical defects, pattern recognition and movement corrections) associated with acquisition and processing devices, each of which require specific solutions. New generation equipment or appropriate quality control techniques, often solve the problem. The option, is trying to correct for image distortions existing on the reconstructed images using post processing mathematical filtering. In this paper a new developed software is described to correct the images and solve the above mentioned problems. Mathematical tools: To improve the signal to noise ratio, a noise reduction method, based on Multi Resolution Analysis with Wavelets, was used. The use of cubic spline wavelets as mother wavelets, is more convenient because they conform an orthogonal basis. For each multi resolution level, a 'hard thresholding' was applied. This means that the coefficients, which are strongly dependent on the images, are put to zero when they are smaller than a reference value. It is also possible to separate the movement of the structures under study from instrumental constraints or noise. To accomplish this, cross-correlations of particular sub-regions, in consecutive images, were performed. Since a quantitative estimation of the error introduced by both effects is rather difficult, a new technique was developed, a so-called trial and error technique (TET), via the identification of a particular subregion on consecutive images, provided there are sharp fixed features present in the considered subregion. This position, being the one in which the standard deviation is the smallest, is then chosen on the second image. Taking into account the time between images and the dynamic characteristic time, the Gaussian distribution confirms the absence of substantial variability form one image to the other. Results
Cutting force response in milling of Inconel: analysis by wavelet and Hilbert-Huang Transforms
Directory of Open Access Journals (Sweden)
Grzegorz Litak
Full Text Available We study the milling process of Inconel. By continuously increasing the cutting depth we follow the system response and appearance of oscillations of larger amplitude. The cutting force amplitude and frequency analysis has been done by means of wavelets and Hilbert-Huang transform. We report that in our system the force oscillations are closely related to the rotational motion of the tool and advocate for a regenerative mechanism of chatter vibrations. To identify vibrations amplitudes occurrence in time scale we apply wavelet and Hilbert-Huang transforms.
Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.
1998-02-01
We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.
Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.
1997-01-01
We applied multiresolution wavelet analysis to the sequence of times between human heartbeats (R-R intervals) and have found a scale window, between 16 and 32 heartbeats, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as either belonging to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of...
Identification of speech transients using variable frame rate analysis and wavelet packets.
Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung
2006-01-01
Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.
International Nuclear Information System (INIS)
Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A
2001-01-01
This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)
Directory of Open Access Journals (Sweden)
M. Ragosta
2004-06-01
Full Text Available Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti-transforming the retained coefficients. Such methodological approach might be applied to characterise unwanted environmental noise. It also can be considered as a practical technique to remove noise that can hamper the correct assessment and use of electrical techniques for the monitoring of geophysical phenomena.
Long memory analysis by using maximal overlapping discrete wavelet transform
Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi
2015-05-01
Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.
Abstract harmonic analysis of continuous wavelet transforms
Führ, Hartmut
2005-01-01
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula.
Wavelet analysis of the nuclear phase space
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author). 34 refs.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author)
Blind Component Separation in Wavelet Space: Application to CMB Analysis
Directory of Open Access Journals (Sweden)
J. Delabrouille
2005-09-01
Full Text Available It is a recurrent issue in astronomical data analysis that observations are incomplete maps with missing patches or intentionally masked parts. In addition, many astrophysical emissions are nonstationary processes over the sky. All these effects impair data processing techniques which work in the Fourier domain. Spectral matching ICA (SMICA is a source separation method based on spectral matching in Fourier space designed for the separation of diffuse astrophysical emissions in cosmic microwave background observations. This paper proposes an extension of SMICA to the wavelet domain and demonstrates the effectiveness of wavelet-based statistics for dealing with gaps in the data.
Cryptocurrency price drivers: Wavelet coherence analysis revisited.
Phillips, Ross C; Gorse, Denise
2018-01-01
Cryptocurrencies have experienced recent surges in interest and price. It has been discovered that there are time intervals where cryptocurrency prices and certain online and social media factors appear related. In addition it has been noted that cryptocurrencies are prone to experience intervals of bubble-like price growth. The hypothesis investigated here is that relationships between online factors and price are dependent on market regime. In this paper, wavelet coherence is used to study co-movement between a cryptocurrency price and its related factors, for a number of examples. This is used alongside a well-known test for financial asset bubbles to explore whether relationships change dependent on regime. The primary finding of this work is that medium-term positive correlations between online factors and price strengthen significantly during bubble-like regimes of the price series; this explains why these relationships have previously been seen to appear and disappear over time. A secondary finding is that short-term relationships between the chosen factors and price appear to be caused by particular market events (such as hacks / security breaches), and are not consistent from one time interval to another in the effect of the factor upon the price. In addition, for the first time, wavelet coherence is used to explore the relationships between different cryptocurrencies.
Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals
International Nuclear Information System (INIS)
Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.
2007-01-01
This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level
Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas
Directory of Open Access Journals (Sweden)
Hae-Gil Hwang
2005-01-01
Full Text Available Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar- and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal hyperplasia, ductal carcinoma in situ (DCIS, and invasive ductal carcinoma (CA. To assess the correlation between computerized image analysis and visual analysis by a pathologist, we created a two-step classification system based on feature extraction and classification. In the feature extraction step, we extracted texture features from wavelet-transformed images at 10× magnification. In the classification step, we applied two types of classifiers to the extracted features, namely a statistics-based multivariate (discriminant analysis and a neural network. Using features from second-level Haar transform wavelet images in combination with discriminant analysis, we obtained classification accuracies of 96.67 and 87.78% for the training and testing set (90 images each, respectively. We conclude that the best classifier of carcinomas in histological sections of breast tissue are the texture features from the second-level Haar transform wavelet images used in a discriminant function.
Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.
Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan
2012-01-01
Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.
A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data
Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.
2002-01-01
Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the
Curie temperature determination via thermogravimetric and continuous wavelet transformation analysis
Energy Technology Data Exchange (ETDEWEB)
Hasier, John; Nash, Philip [Thermal Processing Technology Center, IIT, Chicago, IL (United States); Riolo, Maria Annichia [University of Michigan, Center for the Study of Complex Systems, Ann Arbor, MI (United States)
2017-12-15
A cost effective method for conversion of a vertical tube thermogravimetric analysis system into a magnetic balance capable of measuring Curie Temperatures is presented. Reference and preliminary experimental data generated using this system is analyzed via a general-purpose wavelet based Curie point edge detection technique allowing for enhanced speed, ease and repeatability of magnetic balance data analysis. The Curie temperatures for a number of Heusler compounds are reported. (orig.)
Wavelet Coherence Analysis of Change Blindness
Directory of Open Access Journals (Sweden)
Irfan Ali Memon
2013-01-01
Full Text Available Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence function of ERPs (Event Related Potentials. The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory, the change in functional connectivity might be correlated to these cognitive processes during change blindness.
Wavelet coherence analysis of change blindness
International Nuclear Information System (INIS)
Memon, I.; Kalhoro, M.S.
2013-01-01
Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic) based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence) function of ERPs (Event Related Potentials). The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory), the change in functional connectivity might be correlated to these cognitive processes during change blindness. (author)
Energy Technology Data Exchange (ETDEWEB)
Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)
1997-10-22
A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.
Wavelet analysis of polarization maps of polycrystalline biological fluids networks
Ushenko, Y. A.
2011-12-01
The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.
Cross dynamics of oil-stock interactions: A redundant wavelet analysis
International Nuclear Information System (INIS)
Jammazi, Rania
2012-01-01
The main aim of the present paper is to explore how the interactions between crude oil (CO) price changes and stock returns of five developed countries namely U.S.A, Canada, Germany, Japan and U.K., evolve simultaneously over time and frequency, in light of the conflicting evidence provided by much of recent studies on the sign and the direction of this relationship. To this end, we apply a more efficient wavelet tool, namely Haar à trous wavelet transform that helps circumvent the problems of the standard regression techniques and proves its effectiveness in encircling the real data features. In order to provide more credible conclusions, the wavelet variance, correlation and cross-correlation are implemented. In general, we extend the existing empirical works by providing more generalized and convincing results inherent to the stock-oil markets interactions which are usually reputed to be complicated. First, we find evidence that the wavelet variances of all the variables decrease with increasing scales. Second, from the analysis of the wavelet correlation, changes in CO and almost all the stock prices do not move together up to the intermediate scale, but since they abruptly shift their direction in unison. Third, results for the wavelet CCF at scales 2, 3 and/or 4 generally illustrate no transmission mechanism between CO and the stock market returns although we provide support for massive CO variations at these scales. In contrast, the CO-equity market relationships at higher scales become interconnected in a negative unidirectional pattern running from CO to stock market returns for only two oil importing countries but also Canada. For oil exporting countries, we have seen that while highly transient (scale 1) positive/negative causalities flowing from TSX stock market to CO changes are detected, highly persistent (scale 6) positive causality running from FTSE to the CO changes are rather found. Finally, the implications of the study's results vary depending
International Nuclear Information System (INIS)
Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei
2016-01-01
Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively. (paper)
Wavelet analysis of the seismograms for tsunami warning
Directory of Open Access Journals (Sweden)
A. Chamoli
2010-10-01
Full Text Available The complexity in the tsunami phenomenon makes the available warning systems not much effective in the practical situations. The problem arises due to the time lapsed in the data transfer, processing and modeling. The modeling and simulation needs the input fault geometry and mechanism of the earthquake. The estimation of these parameters and other aprior information increases the utilized time for making any warning. Here, the wavelet analysis is used to identify the tsunamigenesis of an earthquake. The frequency content of the seismogram in time scale domain is examined using wavelet transform. The energy content in high frequencies is calculated and gives a threshold for tsunami warnings. Only first few minutes of the seismograms of the earthquake events are used for quick estimation. The results for the earthquake events of Andaman Sumatra region and other historic events are promising.
ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES
International Nuclear Information System (INIS)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2016-01-01
Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.
Recognizing emotions from EEG subbands using wavelet analysis.
Candra, Henry; Yuwono, Mitchell; Handojoseno, Ardi; Chai, Rifai; Su, Steven; Nguyen, Hung T
2015-01-01
Objectively recognizing emotions is a particularly important task to ensure that patients with emotional symptoms are given the appropriate treatments. The aim of this study was to develop an emotion recognition system using Electroencephalogram (EEG) signals to identify four emotions including happy, sad, angry, and relaxed. We approached this objective by firstly investigating the relevant EEG frequency band followed by deciding the appropriate feature extraction method. Two features were considered namely: 1. Wavelet Energy, and 2. Wavelet Entropy. EEG Channels reduction was then implemented to reduce the complexity of the features. The ground truth emotional states of each subject were inferred using Russel's circumplex model of emotion, that is, by mapping the subjectively reported degrees of valence (pleasure) and arousal to the appropriate emotions - for example, an emotion with high valence and high arousal is equivalent to a `happy' emotional state, while low valence and low arousal is equivalent to a `sad' emotional state. The Support Vector Machine (SVM) classifier was then used for mapping each feature vector into corresponding discrete emotions. The results presented in this study indicated thatWavelet features extracted from alpha, beta and gamma bands seem to provide the necessary information for describing the aforementioned emotions. Using the DEAP (Dataset for Emotion Analysis using electroencephalogram, Physiological and Video Signals), our proposed method achieved an average sensitivity and specificity of 77.4% ± 14.1% and 69.1% ± 12.8%, respectively.
RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM
Directory of Open Access Journals (Sweden)
Celso A. G. Santos
2016-01-01
Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.
ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES
Energy Technology Data Exchange (ETDEWEB)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J., E-mail: frederic.auchere@ias.u-psud.fr [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay (France)
2016-07-10
Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.
A Study of Coherent Structures using Wavelet Analysis
Energy Technology Data Exchange (ETDEWEB)
Kaspersen, J H
1996-05-01
Turbulence is important in many fields of engineering, for example in estimating drag or minimizing drag on surfaces. It is known that turbulent flows contain coherent structures, which implies that a turbulent shear flow can be decomposed into coherent structures and random motion. It is generally accepted that coherent structures are responsible for significant transport of mass, heat and momentum. This doctoral thesis presents and discusses a new algorithm to detect coherent structures based on Wavelet transformations, a transform similar to the Fourier transform but providing information on both frequency and scale. The new detection scheme does not require any predefined threshold or integration time, and its general performance is found to be very good. Wind tunnel experiments were performed to obtain data for analysis. Scalograms resulting from the Wavelet transform show clearly that coherent structures exist in turbulent flows. These structures are shown to contribute considerably to the shear stresses. The contribution from the organized motion to the normal stresses close to the wall appears to be considerably smaller. Direct Navier Stokes (DNS) channel flow seems to be more organized than Zero Pressure Gradient (ZPG) flows. The topology of ZPG flows was studied using a multiple hot wire arrangement and conditionally averaged streamlines based on detections from the Wavelet method are presented. It is shown that the coherent structures produce large amounts of both vorticity and strain at the detection point. 56 refs., 92 figs., 3 tabs.
Wavelet analysis deformation monitoring data of high-speed railway bridge
Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa
2015-12-01
Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring
Variational Bayesian Learning for Wavelet Independent Component Analysis
Roussos, E.; Roberts, S.; Daubechies, I.
2005-11-01
In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
Study on characteristic points of boiling curve by using wavelet analysis and genetic algorithm
International Nuclear Information System (INIS)
Wei Huiming; Su Guanghui; Qiu Suizheng; Yang Xingbo
2009-01-01
Based on the wavelet analysis theory of signal singularity detection,the critical heat flux (CHF) and minimum film boiling starting point (q min ) of boiling curves can be detected and analyzed by using the wavelet multi-resolution analysis. To predict the CHF in engineering, empirical relations were obtained based on genetic algorithm. The results of wavelet detection and genetic algorithm prediction are consistent with experimental data very well. (authors)
Wavelet and receiver operating characteristic analysis of heart rate variability
McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.
2002-02-01
Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.
Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A
2018-04-03
The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.
Research on fault diagnosis for RCP rotor based on wavelet analysis
International Nuclear Information System (INIS)
Chen Zhihui; Xia Hong; Wang Taotao
2008-01-01
Wavelet analysis is with the characteristics of noise reduction and multiscale resolution, and can be used to effectively extract the fault features of the typical failures of the main pumps. Simulink is used to simulate the typical faults: Misalignment Fault, Crackle Fault of rotor, and Initial Bending Fault, then the Wavelet method is used to analyze the vibration signal. The result shows that the extracted fault feature from wavelet analysis can effectively identify the fault signals. The Wavelet analysis is a practical method for the diagnosis of main coolant pump failure, and is with certain value for application and significance. (authors)
Wavelet Transforms: Application to Data Analysis - I -10 ...
Indian Academy of Sciences (India)
from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.
Defective pixel map creation based on wavelet analysis in digital radiography detectors
International Nuclear Information System (INIS)
Park, Chun Joo; Lee, Hyoung Koo; Song, William Y.; Achterkirchen, Thorsten Graeve; Kim, Ho Kyung
2011-01-01
The application of digital radiography detectors has attracted increasing attention in both medicine and industry. Since the imaging detectors are fabricated by semiconductor manufacturing process over large areas, defective pixels in the detectors are unavoidable. Moreover, the radiation damage due to the routine use of the detectors progressively increases the density of defective pixels. In this study, we present a method of identifying defective pixels in digital radiography detectors based on wavelet analysis. Artifacts generated due to wavelet transformations have been prevented by an additional local threshold method. The proposed method was applied to a sample digital radiography and the result was promising. The proposed method uses a single pair of dark and white images and does not require them to be corrected in gain-and-offset properties. This method will be helpful for the reliable use of digital radiography detectors through the working lifetime.
Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data
Henderson, R.D.; Day-Lewis, Frederick D.; Harvey, Charles F.
2009-01-01
Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologic information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater.
Application of wavelet analysis in optical coherence tomography for obscured pattern recognition
Buranachai, C.; Thavarungkul, P.; Kanatharanaa, P.; Meglinski, I. V.
2009-12-01
Nowadays the optical coherent tomography (OCT) is one of the most perspective optical diagnostic modalities widely used for non-invasive imaging of the internal structure of various complex turbid media from a range of composite materials to biological tissues. OCT has been attracting a great amount of attention due to its effective capability rejecting multiple scattering. However, for highly scattered composite structures the multiple scattering still remains a factor limiting OCT to the quasi-ballistic regime. In order to enhance the OCT imaging capabilities and reduce the statistical noise associated with the multiple scattering the wavelet analysis has been applied. The wavelet analysis has been used to decompose the OCT images of printed stripes covered by a highly scattered and not transparent layer of white correction tape. The obtained results demonstrate a significant reduction of speckle noise background and enhancement of OCT images of the obscured patterns. This likely to be enabled extending the applicability of the combined OCT-wavelet decomposition analysis to investigate sensitive documents, historical artworks and valuable security papers.
Application of wavelet analysis in optical coherence tomography for obscured pattern recognition
International Nuclear Information System (INIS)
Buranachai, C; Thavarungkul, P; Kanatharanaa, P; Meglinski, I V
2009-01-01
Nowadays the optical coherent tomography (OCT) is one of the most perspective optical diagnostic modalities widely used for non-invasive imaging of the internal structure of various complex turbid media from a range of composite materials to biological tissues. OCT has been attracting a great amount of attention due to its effective capability rejecting multiple scattering. However, for highly scattered composite structures the multiple scattering still remains a factor limiting OCT to the quasi-ballistic regime. In order to enhance the OCT imaging capabilities and reduce the statistical noise associated with the multiple scattering the wavelet analysis has been applied. The wavelet analysis has been used to decompose the OCT images of printed stripes covered by a highly scattered and not transparent layer of white correction tape. The obtained results demonstrate a significant reduction of speckle noise background and enhancement of OCT images of the obscured patterns. This likely to be enabled extending the applicability of the combined OCT-wavelet decomposition analysis to investigate sensitive documents, historical artworks and valuable security papers
Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct
International Nuclear Information System (INIS)
Kondo, Masaya; Kukita, Yutaka
1996-07-01
Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)
Noncoding sequence classification based on wavelet transform analysis: part I
Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.
2017-09-01
DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.
Chianese, D.; Colangelo, G.; D'Emilio, M.; Lanfredi, M.; Lapenna, V.; Ragosta, M.; Macchiato, M. F.
2004-01-01
Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti...
Resonance detection of EEG signals using two-layer wavelet analysis
International Nuclear Information System (INIS)
Abdallah, H. M; Odeh, F.S.
2000-01-01
This paper presents the hybrid quadrature mirror filter (HQMF) algorithm applied to the electroencephalogram (EEG) signal during mental activity. The information contents of this signal, i.e., its medical diagnosis, lie in its power spectral density (PSD). The HQMF algorithm is a modified technique that is based on the shape and the details of the signal. If applied efficiently, the HQMF algorithm will produce much better results than conventional wavelet methods in detecting (diagnosing) the information of the EEG signal from its PSD. This technique is applicable not only to EEG signals, but is highly recommended to compression analysis and de noising techniques. (authors). 16 refs., 9 figs
Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng
2012-04-20
This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.
Wavelet Statistical Analysis of Low-Latitude Geomagnetic Measurements
Papa, A. R.; Akel, A. F.
2009-05-01
Following previous works by our group (Papa et al., JASTP, 2006), where we analyzed a series of records acquired at the Vassouras National Geomagnetic Observatory in Brazil for the month of October 2000, we introduced a wavelet analysis for the same type of data and for other periods. It is well known that wavelets allow a more detailed study in several senses: the time window for analysis can be drastically reduced if compared to other traditional methods (Fourier, for example) and at the same time allow an almost continuous accompaniment of both amplitude and frequency of signals as time goes by. This advantage brings some possibilities for potentially useful forecasting methods of the type also advanced by our group in previous works (see for example, Papa and Sosman, JASTP, 2008). However, the simultaneous statistical analysis of both time series (in our case amplitude and frequency) is a challenging matter and is in this sense that we have found what we consider our main goal. Some possible trends for future works are advanced.
Characterization of the Failure Site Distribution in MIM Devices Using Zoomed Wavelet Analysis
Muñoz-Gorriz, J.; Monaghan, S.; Cherkaoui, K.; Suñé, J.; Hurley, P. K.; Miranda, E.
2018-05-01
The angular wavelet analysis is applied to the study of the spatial distribution of breakdown (BD) spots in Pt/HfO2/Pt capacitors with square and circular areas. The method is originally developed for rectangular areas, so a zoomed approach needs to be considered when the observation window does not coincide with the device area. The BD spots appear as a consequence of the application of electrical stress to the device. The stress generates defects within the dielectric film, a process that ends with the formation of a percolation path between the electrodes and the melting of the top metal layer because of the high release of energy. The BD spots have lateral sizes ranging from 1 μm to 3 μm and they appear as a point pattern that can be studied using spatial statistics methods. In this paper, we report the application of the angular wavelet method as a complementary tool for the analysis of the distribution of failure sites in large-area metal-insulator-metal (MIM) devices. The differences between considering a continuous or a discrete wavelet and the role played by the number of BD spots are also investigated.
Analysis of Satellite Drag Coefficient Based on Wavelet Transform
Liu, Wei; Wang, Ronglan; Liu, Siqing
Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment
Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.
2017-12-01
Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.
International Nuclear Information System (INIS)
Tankanag, Arina; Chemeris, Nikolay
2008-01-01
An original method for the analysis of oscillations of cutaneous blood flow has been developed, which makes use of laser Doppler flowmetry (LDF) data and is based on the continuous wavelet transform and adaptive wavelet theory. The potential of the method has been demonstrated in experiments with the response of microcirculatory bed to the local linearly-increasing heating of a skin spot. The use of adaptive wavelet transform for analysis of peripheral blood flow oscillations enables one to process short (5 min) LDF signals in a wide frequency range (0.009-2 Hz). The major advantage of the method proposed, as compared to traditional wavelet analysis, has been shown to be a significant reduction of 'border effects'. This makes possible a correct low-frequency component analysis of much shorter LDF signals compared to those used in traditional wavelet processing.
Using Wavelets in Economics. An Application on the Analysis of Wage-Price Relation
Directory of Open Access Journals (Sweden)
Vasile-Aurel Caus
2017-03-01
Full Text Available In the last decades, more and more approaches of economic issues have used mathematical tools, and among the most recent ones, spectral and wavelet methods are to be distinguished. If in the case of spectral analysis the approaches and results are sufficiently clear, while the use of wavelet decomposition, especially in the analysis of time series, is not fully valorized. The purpose of this paper is to emphasize how these methods are useful for time series analysis. After theoretical considerations on Fourier transforms versus wavelet transforms, we have presented the methodology we have used and the results obtained by using wavelets in the analysis of wage-price relation, based on some empirical data. The data we have used is concerning the Romanian economy - the inflation and the average nominal wage denominated in US dollars, between January 1991 and May 2016, highlighting that the relation between nominal salary and prices can be revealed more accurately by use of wavelets.
Directory of Open Access Journals (Sweden)
Cristhian Moreno-Chaparro
2011-12-01
Full Text Available This paper proposes a monthly electricity forecast method for the National Interconnected System (SIN of Colombia. The method preprocesses the time series using a Multiresolution Analysis (MRA with Discrete Wavelet Transform (DWT; a study for the selection of the mother wavelet and her order, as well as the level decomposition was carried out. Given that original series follows a non-linear behaviour, a neural nonlinear autoregressive (NAR model was used. The prediction was obtained by adding the forecast trend with the estimated obtained by the residual series combined with further components extracted from preprocessing. A bibliographic review of studies conducted internationally and in Colombia is included, in addition to references to investigations made with wavelet transform applied to electric energy prediction and studies reporting the use of NAR in prediction.
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform
National Research Council Canada - National Science Library
Bhatti, Muhammad
2001-01-01
EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...
Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication
National Research Council Canada - National Science Library
Chui, Charles K
2007-01-01
...; secondly, based on minimum-energy criteria, new data processing tools, particularly variational algorithms and optimal wavelet thresholding methods, with applications to image restoration, were introduced...
Psychoacoustic Music Analysis Based on the Discrete Wavelet Packet Transform
Directory of Open Access Journals (Sweden)
Xing He
2008-01-01
Full Text Available Psychoacoustical computational models are necessary for the perceptual processing of acoustic signals and have contributed significantly in the development of highly efficient audio analysis and coding. In this paper, we present an approach for the psychoacoustic analysis of musical signals based on the discrete wavelet packet transform. The proposed method mimics the multiresolution properties of the human ear closer than other techniques and it includes simultaneous and temporal auditory masking. Experimental results show that this method provides better masking capabilities and it reduces the signal-to-masking ratio substantially more than other approaches, without introducing audible distortion. This model can lead to greater audio compression by permitting further bit rate reduction and more secure watermarking by providing greater signal space for information hiding.
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
Chan, Y T
1995-01-01
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...
Analysis of wheezes using wavelet higher order spectral features.
Taplidou, Styliani A; Hadjileontiadis, Leontios J
2010-07-01
Wheezes are musical breath sounds, which usually imply an existing pulmonary obstruction, such as asthma and chronic obstructive pulmonary disease (COPD). Although many studies have addressed the problem of wheeze detection, a limited number of scientific works has focused in the analysis of wheeze characteristics, and in particular, their time-varying nonlinear characteristics. In this study, an effort is made to reveal and statistically analyze the nonlinear characteristics of wheezes and their evolution over time, as they are reflected in the quadratic phase coupling of their harmonics. To this end, the continuous wavelet transform (CWT) is used in combination with third-order spectra to define the analysis domain, where the nonlinear interactions of the harmonics of wheezes and their time variations are revealed by incorporating instantaneous wavelet bispectrum and bicoherence, which provide with the instantaneous biamplitude and biphase curves. Based on this nonlinear information pool, a set of 23 features is proposed for the nonlinear analysis of wheezes. Two complementary perspectives, i.e., general and detailed, related to average performance and to localities, respectively, were used in the construction of the feature set, in order to embed trends and local behaviors, respectively, seen in the nonlinear interaction of the harmonic elements of wheezes over time. The proposed feature set was evaluated on a dataset of wheezes, acquired from adult patients with diagnosed asthma and COPD from a lung sound database. The statistical evaluation of the feature set revealed discrimination ability between the two pathologies for all data subgroupings. In particular, when the total breathing cycle was examined, all 23 features, but one, showed statistically significant difference between the COPD and asthma pathologies, whereas for the subgroupings of inspiratory and expiratory phases, 18 out of 23 and 22 out of 23 features exhibited discrimination power, respectively
Pei, Qing; Zhang, David D; Li, Guodong; Lee, Harry F
2015-01-01
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60-80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15-35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory.
Energy Technology Data Exchange (ETDEWEB)
Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)
2016-09-15
Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two
Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.
Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I
2017-08-16
The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
D. Pancheva
Full Text Available On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1 a wide range of dominant frequencies which are localized in different time intervals; (2 amplitude and frequency modulated spectral components, and (3 singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5-20 days, as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.
Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides - Radio science (nonlinear phenomena
Application of 3D wavelet transforms for crack detection in rotor ...
Indian Academy of Sciences (India)
Vijayawada 520 007. bAll India Council for Technical Education (AICTE), New Delhi 110 001 ... rotor system the transient analysis has been applied. ... In the present work a new wavelet plot called cross wavelet transform (XWT) has been.
International Nuclear Information System (INIS)
Solov'ev, A.G.
2001-01-01
WASP package is a C++ program aimed to analyze angular distributions of secondary particles generated in nuclear interactions. (WASP is designed for data analysis of the STAR and ALICE experiments). It uses a wavelet analysis for this purpose and the vanishing momentum or gaussian wavelets are chosen for transformations. WASP provides an user-friendly Graphical User Interface (GUI) which makes it quite simple to use. WASP design, a brief description of the used wavelet transformation algorithm and GUI are presented in this user's guide
Papageorgiou, Nikolaos S
2009-01-01
Offers an examination of important theoretical methods and procedures in applied analysis. This book details the important theoretical trends in nonlinear analysis and applications to different fields. It is suitable for those working on nonlinear analysis.
Evolutive Optimization of Wavelets and Shapelets for Bioelectrical Signal Analysis
Pinzón Morales, Rubén Dario
2011-01-01
análisis Wavelet es una poderosa herramienta para el procesamiento de señal digital. Ha sido ampliamente utilizado en señales bioeléctricas incluyendo evocar potenciales relacionados (ERP), señales de electromiografía (EMG), grabaciones de microelectrodos (MER), electrocardiograma (ECG), electroencefalogramas (EEG), entre otros. Algunas de las principales ventajas de la wavelet transform son el soporte compacto, y la concentración de la energía. Básicamente, la transformada wavelet es una con...
Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S
2015-01-25
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.
Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied
2014-12-01
Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.
Study and analysis of wavelet based image compression techniques
African Journals Online (AJOL)
user
Discrete Wavelet Transform (DWT) is a recently developed compression ... serve emerging areas of mobile multimedia and internet communication, ..... In global thresholding the best trade-off between PSNR and compression is provided by.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Wavelet multiscale analysis for Hedge Funds: Scaling and strategies
Conlon, T.; Crane, M.; Ruskin, H. J.
2008-09-01
The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons.
Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer
Sreewirote, Bancha; Ngaopitakkul, Atthapol
2018-03-01
The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
Functional Data Analysis Applied in Chemometrics
DEFF Research Database (Denmark)
Muller, Martha
nutritional status and metabolic phenotype. We want to understand how metabolomic spectra can be analysed using functional data analysis to detect the in uence of dierent factors on specic metabolites. These factors can include, for example, gender, diet culture or dietary intervention. In Paper I we apply...... representation of each spectrum. Subset selection of wavelet coecients generates the input to mixed models. Mixed-model methodology enables us to take the study design into account while modelling covariates. Bootstrap-based inference preserves the correlation structure between curves and enables the estimation...
Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data
Energy Technology Data Exchange (ETDEWEB)
Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.
1996-03-01
Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.
Wavelet decomposition and neuro-fuzzy hybrid system applied to short-term wind power
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Jimenez, L.A.; Mendoza-Villena, M. [La Rioja Univ., Logrono (Spain). Dept. of Electrical Engineering; Ramirez-Rosado, I.J.; Abebe, B. [Zaragoza Univ., Zaragoza (Spain). Dept. of Electrical Engineering
2010-03-09
Wind energy has become increasingly popular as a renewable energy source. However, the integration of wind farms in the electrical power systems presents several problems, including the chaotic fluctuation of wind flow which results in highly varied power generation from a wind farm. An accurate forecast of wind power generation has important consequences in the economic operation of the integrated power system. This paper presented a new statistical short-term wind power forecasting model based on wavelet decomposition and neuro-fuzzy systems optimized with a genetic algorithm. The paper discussed wavelet decomposition; the proposed wind power forecasting model; and computer results. The original time series, the mean electric power generated in a wind farm, was decomposing into wavelet coefficients that were utilized as inputs for the forecasting model. The forecasting results obtained with the final models were compared to those obtained with traditional forecasting models showing a better performance for all the forecasting horizons. 13 refs., 1 tab., 4 figs.
QIM blind video watermarking scheme based on Wavelet transform and principal component analysis
Directory of Open Access Journals (Sweden)
Nisreen I. Yassin
2014-12-01
Full Text Available In this paper, a blind scheme for digital video watermarking is proposed. The security of the scheme is established by using one secret key in the retrieval of the watermark. Discrete Wavelet Transform (DWT is applied on each video frame decomposing it into a number of sub-bands. Maximum entropy blocks are selected and transformed using Principal Component Analysis (PCA. Quantization Index Modulation (QIM is used to quantize the maximum coefficient of the PCA blocks of each sub-band. Then, the watermark is embedded into the selected suitable quantizer values. The proposed scheme is tested using a number of video sequences. Experimental results show high imperceptibility. The computed average PSNR exceeds 45 dB. Finally, the scheme is applied on two medical videos. The proposed scheme shows high robustness against several attacks such as JPEG coding, Gaussian noise addition, histogram equalization, gamma correction, and contrast adjustment in both cases of regular videos and medical videos.
WAVELET COMOVEMENT ANALYSIS BETWEEN TENDENCYSURVEYS AND ECONOMIC ACTIVITY IN TURKEY
Directory of Open Access Journals (Sweden)
Sadullah Çelik
2011-01-01
Full Text Available It is now common practice to measure economy-wide expectations so thatadditional information on the future path of economic variables like growth,unemployment and inflation could be extracted. Thewell-known methodology isto use tendency surveys, which cover producers and/or consumers. FollowingYıldırım (2002, this paper is an attempt to assesswhether there is anyconsiderable pattern of comovement between selectedmacroeconomic variables(growth, unemployment and inflation and tendency surveys (the ConsumerTendency Survey-CTS and Business Tendency Survey-BTS in Turkey. Ouroriginality is that we employ the wavelet comovement analysis, developed by Rua(2010, which is a strong methodological improvement combining the measuresof comovement in time and frequency domain. We usemonthly data to examinethe period of January 2007 – March 2011 so that ouranalysis involves pre- andpost- global financial and economic crisis. Our findings show that businesstendency surveys exhibit significant comovement with industrial production andinflation in high and low frequency. On the other hand, consumer tendencysurveys follow similar patterns with the change ininflation in high frequencyespecially during the global crisis period of 2009.
WAVELET TRANSFORM ANALYSIS OF ELECTROMYOGRAPHY KUNG FU STRIKES DATA
Directory of Open Access Journals (Sweden)
Ana Carolina de Miranda Marzullo
2009-11-01
Full Text Available In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP values instead of root mean square (rms values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF. EMG data of the deltoid anterior (DA, triceps brachii (TB and brachioradialis (BR muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023 for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007 for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners
Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis
Czech Academy of Sciences Publication Activity Database
Vácha, Lukáš; Baruník, Jozef
2012-01-01
Roč. 34, č. 1 (2012), s. 241-247 ISSN 0140-9883 R&D Projects: GA ČR GA402/09/0965; GA ČR GD402/09/H045; GA ČR GAP402/10/1610 Institutional research plan: CEZ:AV0Z10750506 Keywords : Correlation * Co-movement * Wavelet analysis * Wavelet coherence Subject RIV: AH - Economics Impact factor: 2.538, year: 2012
Wavelet theory and its applications
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
Wavelet based analysis of multi-electrode EEG-signals in epilepsy
Hein, Daniel A.; Tetzlaff, Ronald
2005-06-01
For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.
Efficient hemodynamic event detection utilizing relational databases and wavelet analysis
Saeed, M.; Mark, R. G.
2001-01-01
Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.
Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars
Franco, A.; Echer, E.; Bolzam, M. J. A.; Fraenz, M.
2017-09-01
Wavelet analysis was employed to identify the major frequencies present in the Martian magnetosheath. The Morlet wavelet transform was selected and applied to the density and temperature data, obtained from the Analyzer of Space Plasmas and Energetic Atoms experiment (ASPERA-3), onboard the Mars Express (MEX). From a preliminary study of 836 magnetosheath crossings, observed in the years of 2005 and 2006, we have found 2357 periods with enhanced power between 5 and 60 mHz for the electron density data. The principal frequencies observed were in the range 5-20 mHz, where we found about 60 % of the frequencies identified. For electron temperature data, we have found about 57.5% of the periods with enhanced power were in the same range as for the density. This is an ongoing work which is part of a PhD Thesis which aims to study all the electron density and temperature data in the Mars magnetosheath during the MEX interval (2004-2015).
Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies
Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.
2008-02-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.
Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics
International Nuclear Information System (INIS)
Sunde, Carl
2004-12-01
Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant
Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C
2013-10-01
Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.
2013-01-01
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems
Martini, Romeo; Bagno, Andrea
2018-04-14
The wavelet analysis has been applied to the Laser Doppler Fluxmetry for assessing the frequency spectrum of the flowmotion to study the microvascular function waves.Although the application of wavelet analysis has allowed a detailed evaluation of the microvascular function, its use does not seem to be yet widespread over the last two decades.Aiming to improve the diffusion of this methodology, we herein present a systematic review of the literature about the application of the wavelet analysis to the laser Doppler fluxmetry signal. A computer research has been performed on PubMed and Scopus databases from January 1990 to December 2017. The used terms for the investigation have been "wavelet analysis", "wavelet transform analysis", "Morlet wavelet transform" along with the terms "laser Doppler", "laserdoppler" and/or "flowmetry" or "fluxmetry". One hundred and eighteen studies have been found. After the scrutiny, 97 studies reporting data on humans have been selected. Fifty-three studies, 54.0% (95% CI 44.2-63.6) pooled rate, have been performed on 892 healthy subjects and 44, 45,9 % (95% CI 36.3-55.7%) pooled rate have been performed on 1679 patients. No significant difference has been found between the two groups (p 0,81). On average, the number of studies published each year was 4.8 (95% CI 3.4-6.2). The trend of studies production has increased significantly from 1998 to 2017, (p 0.0006). But only the studies on patients have shown a significant increase trend along the years (p 0.0003), than the studies on healthy subjects (p 0.09).In conclusion, this review highlights that despite being a promising and interesting methodology for the study of the microcirculatory function, the wavelet analysis has remained still neglected.
Fitzmaurice, Garrett M; Ware, James H
2012-01-01
Praise for the First Edition "". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis.""-Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of lo
Energy Technology Data Exchange (ETDEWEB)
Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)
2013-10-16
Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
Wavelet transform analysis of electromyography kung fu strikes data.
Neto, Osmar Pinto; Marzullo, Ana Carolina de Miranda
2009-11-01
In martial arts and contact sports strikes are performed at near maximum speeds. For that reason, electromyography (EMG) analysis of such movements is non-trivial. This paper has three main goals: firstly, to investigate the differences in the EMG activity of muscles during strikes performed with and without impacts; secondly, to assess the advantages of using Sum of Significant Power (SSP) values instead of root mean square (rms) values when analyzing EMG data; and lastly to introduce a new method of calculating median frequency values using wavelet transforms (WMDF). EMG data of the deltoid anterior (DA), triceps brachii (TB) and brachioradialis (BR) muscles were collected from eight Kung Fu practitioners during strikes performed with and without impacts. SSP results indicated significant higher muscle activity (p = 0.023) for the strikes with impact. WMDF results, on the other hand, indicated significant lower values (p = 0. 007) for the strikes with impact. SSP results presented higher sensitivity than rms to quantify important signal differences and, at the same time, presented lower inter-subject coefficient of variations. The result of increase in SSP values and decrease in WMDF may suggest better synchronization of motor units for the strikes with impact performed by the experienced Kung Fu practitioners. Key PointsThe results show higher muscle activity and lower electromyography median frequencies for strikes with impact compared to strikes without.SSP results presented higher sensitivity and lower inter-subject coefficient of variations than rms results.Kung Fu palm strikes with impact may present better motor units' synchronization than strikes without.
Energy Technology Data Exchange (ETDEWEB)
Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)
2016-01-18
Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Detection of Early Faults in Rotating Machinery Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Meng Hee Lim
2013-01-01
Full Text Available This paper explores the application of wavelet analysis for the detection of early changes in rotor dynamics caused by common machinery faults, namely, rotor unbalance and minor blade rubbing conditions. In this paper, the time synchronised wavelet analysis method was formulated and its effectiveness to detect machinery faults at the early stage was evaluated based on signal simulation and experimental study. The proposed method provides a more standardised approach to visualise the current state of rotor dynamics of a rotating machinery by taking into account the effects of time shift, wavelet edge distortion, and system noise suppression. The experimental results showed that this method is able to reveal subtle changes of the vibration signal characteristics in both the frequency content distribution and the amplitude distortion caused by minor rotor unbalance and blade rubbing conditions. Besides, this method also appeared to be an effective tool to diagnose and to discriminate the different types of machinery faults based on the unique pattern of the wavelet contours. This study shows that the proposed wavelet analysis method is promising to reveal machinery faults at early stage as compared to vibration spectrum analysis.
Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM
2003-01-01
The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising
Global spectral graph wavelet signature for surface analysis of carpal bones
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Fourier and wavelet analysis of skin laser doppler flowmetry signals
Qi, Wei
2011-01-01
ObjectiveThis thesis examines the measurement of skin microvascular blood flows from Laser Doppler Flowmetry (LDF) signals. Both healthy subjects and those with features of the metabolic syndrome are studied using signal processing techniques such as the Fourier and Wavelet transforms. An aim of this study is to investigate whether change in blood flow at rest can be detected from the spectral content of the processed signals in the diferent subject groups. Additionally the effect of insulin ...
Szapacs, Cindy
2006-01-01
Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…
Directory of Open Access Journals (Sweden)
Xuan Wu
2013-01-01
Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.
Directory of Open Access Journals (Sweden)
Jin-Li Sun
2014-06-01
Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.
A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram
Directory of Open Access Journals (Sweden)
Abul Hasan Siddiqi
2012-12-01
Full Text Available Electroencephalography (EEG is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales, achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.
A wavelet analysis of co-movements in Asian gold markets
Das, Debojyoti; Kannadhasan, M.; Al-Yahyaee, Khamis Hamed; Yoon, Seong-Min
2018-02-01
This study assesses the cross-country co-movements of gold spot returns among the major gold consuming countries in Asia using wavelet-based analysis for a dataset spanning over 26 years. Wavelet-based analysis is used since it allows measuring co-movements in a time-frequency space. The results suggest intense and positive co-movements in Asia after the Asian financial crisis of 1997 at all frequencies. In addition, the Asian gold spot markets depict a state of impending perfect market integration. Finally, Thailand emerges as the potential market leader in all wavelet scales except one, which is led by India. The study has important implications for international diversification of a single-asset (gold) portfolio.
Komorowski, Dariusz; Pietraszek, Stanislaw
2016-01-01
This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.
Some applications of wavelets to physics
International Nuclear Information System (INIS)
Thompson, C.R.
1992-01-01
A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied
Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey
Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition
Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie
2017-04-01
Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years
International Nuclear Information System (INIS)
Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R
2006-01-01
This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks
Application of the wavelet image analysis technique to monitor cell concentration in bioprocesses
Directory of Open Access Journals (Sweden)
G. J. R. Garófano
2005-12-01
Full Text Available The growth of cells of great practical interest, such as, the filamentous cells of bacterium Streptomyces clavuligerus, the yeast Saccharomyces cerevisiae and the insect Spodoptera frugiperda (Sf9 cell, cultivated in shaking flasks with complex media at appropriate temperatures and pHs, was quantified by the new wavelet transform technique. This image analysis tool was implemented using Matlab 5.2 software to process digital images acquired of samples taken of these three types of cells throughoot their cultivation. The values of the average wavelet coefficients (AWCs of simplified images were compared with experimental measurements of cell concentration and with computer-based densitometric measurements. AWCs were shown to be directly proportional to measurements of cell concentration and to densitometric measurements, making evident the great potential of the wavelet transform technique to quantitatively estimate the growth of several types of cells.
Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam
Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa
2017-08-01
In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.
Value at risk estimation with entropy-based wavelet analysis in exchange markets
He, Kaijian; Wang, Lijun; Zou, Yingchao; Lai, Kin Keung
2014-08-01
In recent years, exchange markets are increasingly integrated together. Fluctuations and risks across different exchange markets exhibit co-moving and complex dynamics. In this paper we propose the entropy-based multivariate wavelet based approaches to analyze the multiscale characteristic in the multidimensional domain and improve further the Value at Risk estimation reliability. Wavelet analysis has been introduced to construct the entropy-based Multiscale Portfolio Value at Risk estimation algorithm to account for the multiscale dynamic correlation. The entropy measure has been proposed as the more effective measure with the error minimization principle to select the best basis when determining the wavelet families and the decomposition level to use. The empirical studies conducted in this paper have provided positive evidence as to the superior performance of the proposed approach, using the closely related Chinese Renminbi and European Euro exchange market.
Climatic drivers of vegetation based on wavelet analysis
Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego
2017-04-01
Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content
Bedform evolution in a tidal inlet referred from wavelet analysis
DEFF Research Database (Denmark)
Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge
2011-01-01
Bedforms are common morphological features in subaqueous and aeolian environments and their characterization is commonly the first step to better understand forcing factors acting in the system. The aim of this study was to investigate the spectral characteristics of compound bedforms in a tidal...... inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...
Source location in plates based on the multiple sensors array method and wavelet analysis
International Nuclear Information System (INIS)
Yang, Hong Jun; Shin, Tae Jin; Lee, Sang Kwon
2014-01-01
A new method for impact source localization in a plate is proposed based on the multiple signal classification (MUSIC) and wavelet analysis. For source localization, the direction of arrival of the wave caused by an impact on a plate and the distance between impact position and sensor should be estimated. The direction of arrival can be estimated accurately using MUSIC method. The distance can be obtained by using the time delay of arrival and the group velocity of the Lamb wave in a plate. Time delay is experimentally estimated using the continuous wavelet transform for the wave. The elasto dynamic theory is used for the group velocity estimation.
Source location in plates based on the multiple sensors array method and wavelet analysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Hong Jun; Shin, Tae Jin; Lee, Sang Kwon [Inha University, Incheon (Korea, Republic of)
2014-01-15
A new method for impact source localization in a plate is proposed based on the multiple signal classification (MUSIC) and wavelet analysis. For source localization, the direction of arrival of the wave caused by an impact on a plate and the distance between impact position and sensor should be estimated. The direction of arrival can be estimated accurately using MUSIC method. The distance can be obtained by using the time delay of arrival and the group velocity of the Lamb wave in a plate. Time delay is experimentally estimated using the continuous wavelet transform for the wave. The elasto dynamic theory is used for the group velocity estimation.
Application of wavelet analysis to signal processing methods for eddy-current test
International Nuclear Information System (INIS)
Chen, G.; Yoneyama, H.; Yamaguchi, A.; Uesugi, N.
1998-01-01
This study deals with the application of wavelet analysis to detection and characterization of defects from eddy-current and ultrasonic testing signals of a low signal-to-noise ratio. Presented in this paper are the methods for processing eddy-current testing signals of heat exchanger tubes of a steam generator in a nuclear power plant. The results of processing eddy-current testing signals of tube testpieces with artificial flaws show that the flaw signals corrupted by noise and/or non-defect signals can be effectively detected and characterized by using the wavelet methods. (author)
Applied multivariate statistical analysis
Härdle, Wolfgang Karl
2015-01-01
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added. All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior. All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...
Harmonic analysis of traction power supply system based on wavelet decomposition
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.
Multi-Modality Medical Image Fusion Based on Wavelet Analysis and Quality Evaluation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Multi-modality medical image fusion has more and more important applications in medical image analysisand understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fusemedical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusionresults when applying different selection rules and obtain optimum combination of fusion parameters.
Directory of Open Access Journals (Sweden)
Andrzej Katunin
2015-01-01
Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.
Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis
International Nuclear Information System (INIS)
Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa
2005-01-01
Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process
Jansen, M.H.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.
2006-01-01
We present a continuous wavelet analysis of count data with timevarying intensities. The objective is to extract intervals with significant intensities from background intervals. This includes the precise starting point of the significant interval, its exact duration and the (average) level of
Wavelet transform for the evaluation of peak intensities in flow-injection analysis
Bos, M.; Hoogendam, E.
1992-01-01
The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio
Directory of Open Access Journals (Sweden)
Stefania Salvatore
2016-07-01
Full Text Available Abstract Background Wastewater-based epidemiology (WBE is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA and to wavelet principal component analysis (WPCA which is more flexible temporally. Methods We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. Results The first three principal components (PCs, functional principal components (FPCs and wavelet principal components (WPCs explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. Conclusion FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.
Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J
2018-01-01
To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals
Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn
2017-09-01
Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.
Application and Analysis of Wavelet Transform in Image Edge Detection
Institute of Scientific and Technical Information of China (English)
Jianfang gao[1
2016-01-01
For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.
A quality quantitative method of silicon direct bonding based on wavelet image analysis
Tan, Xiao; Tao, Zhi; Li, Haiwang; Xu, Tiantong; Yu, Mingxing
2018-04-01
The rapid development of MEMS (micro-electro-mechanical systems) has received significant attention from researchers in various fields and subjects. In particular, the MEMS fabrication process is elaborate and, as such, has been the focus of extensive research inquiries. However, in MEMS fabrication, component bonding is difficult to achieve and requires a complex approach. Thus, improvements in bonding quality are relatively important objectives. A higher quality bond can only be achieved with improved measurement and testing capabilities. In particular, the traditional testing methods mainly include infrared testing, tensile testing, and strength testing, despite the fact that using these methods to measure bond quality often results in low efficiency or destructive analysis. Therefore, this paper focuses on the development of a precise, nondestructive visual testing method based on wavelet image analysis that is shown to be highly effective in practice. The process of wavelet image analysis includes wavelet image denoising, wavelet image enhancement, and contrast enhancement, and as an end result, can display an image with low background noise. In addition, because the wavelet analysis software was developed with MATLAB, it can reveal the bonding boundaries and bonding rates to precisely indicate the bond quality at all locations on the wafer. This work also presents a set of orthogonal experiments that consist of three prebonding factors, the prebonding temperature, the positive pressure value and the prebonding time, which are used to analyze the prebonding quality. This method was used to quantify the quality of silicon-to-silicon wafer bonding, yielding standard treatment quantities that could be practical for large-scale use.
Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas
Directory of Open Access Journals (Sweden)
Manuel Pereira
2009-06-01
Full Text Available Most Ground Penetrating Radars (GPR cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna.
International Nuclear Information System (INIS)
Jahedi, G.; Ardehali, M.M.
2012-01-01
Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and
International Nuclear Information System (INIS)
Jan, Yih-Kuen; Liao, Fuyuan; Lee, Bernard; Foreman, Robert D
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague–Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = −10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. (paper)
International Nuclear Information System (INIS)
Espada, L.; Sanjurjo, M.; Urrejola, S.; Bouzada, F.; Rey, G.; Sanchez, A.
2003-01-01
Given its simplicity and low cost compared to other types of methodologies, the measurement and interpretation of Electrochemical Noise, is consolidating itself as one of the analysis methods most frequently used for the interpretation of corrosion. As the technique is still evolving, standard treatment methodologies for data retrieved in experiments do not exist yet. To date, statistical analysis and the Fourier analysis are commonly used in order to establish the parameters that may characterize the recording of potential and current electrochemical noise. This study introduces a new methodology based on wavelet analysis and presents its advantages with regards to the Fourier analysis in distinguishes periodical and non-periodical variations in the signal power in time and frequency, as opposed to the Fourier analysis that only considers the frequency. (Author) 15 refs
Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis
Zarrouk, N.; Bennaceur, R.
2009-07-01
Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.
Protein structure analysis using the resonant recognition model and wavelet transforms
International Nuclear Information System (INIS)
Fang, Q.; Cosic, I.
1998-01-01
An approach based on the resonant recognition model and the discrete wavelet transform is introduced here for characterising proteins' biological function. The protein sequence is converted into a numerical series by assigning the electron-ion interaction potential to each amino acid from N-terminal to C-terminal. A set of peaks is found after performing a wavelet transform onto a numerical series representing a group of homologous proteins. These peaks are related to protein structural and functional properties and named characteristic vector of that protein group. Further more, the amino acids contributing mostly to a protein's biological functions, the so-called 'hot spots' amino acids, are predicted by the continuous wavelet transform. It is found that the hot spots are clustered around the protein's cleft structure. The wavelets approach provides a novel methods for amino acid sequence analysis as well as an expansion for the newly established macromolecular interaction model: the resonant recognition model. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine
Wavelets, vibrations and scalings
Meyer, Yves
1997-01-01
Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...
International Nuclear Information System (INIS)
Zheng Youqi; Wu Hongchun; Cao Liangzhi
2013-01-01
This paper describes the stability analysis for the coarse mesh finite difference (CMFD) acceleration used in the wavelet expansion method. The nonlinear CMFD acceleration scheme is transformed by linearization and the Fourier ansatz is introduced into the linearized formulae. The spectral radius is defined as the stability criterion, which is the least upper bound (LUB) of the largest eigenvalue of Fourier analysis matrix. The stability analysis considers the effect of mesh size (spectral length), coarse mesh division and scattering ratio. The results show that for the wavelet expansion method, the CMFD acceleration is conditionally stable. The small size of fine mesh brings stability and fast convergent. With the increase of the mesh size, the stability becomes worse. The scattering ratio does not impact the stability obviously. It makes the CMFD acceleration highly efficient in the strong scattering case. The results of Fourier analysis are verified by the numerical tests based on a homogeneous slab problem.
A hybrid wind power forecasting model based on data mining and wavelets analysis
International Nuclear Information System (INIS)
Azimi, R.; Ghofrani, M.; Ghayekhloo, M.
2016-01-01
Highlights: • An improved version of K-means algorithm is proposed for clustering wind data. • A persistence based method is applied to select the best cluster for NN training. • A combination of DWT and HANTS methods is used to provide a deep learning for NN. • A hybrid of T.S.B K-means, DWT and HANTS and NN is developed for wind forecasting. - Abstract: Accurate forecasting of wind power plays a key role in energy balancing and wind power integration into the grid. This paper proposes a novel time-series based K-means clustering method, named T.S.B K-means, and a cluster selection algorithm to better extract features of wind time-series data. A hybrid of T.S.B K-means, discrete wavelet transform (DWT) and harmonic analysis time series (HANTS) methods, and a multilayer perceptron neural network (MLPNN) is developed for wind power forecasting. The proposed T.S.B K-means classifies data into separate groups and leads to more appropriate learning for neural networks by identifying anomalies and irregular patterns. This improves the accuracy of the forecast results. A cluster selection method is developed to determine the cluster that provides the best training for the MLPNN. This significantly accelerates the forecast process as the most appropriate portion of the data rather than the whole data is used for the NN training. The wind power data is decomposed by the Daubechies D4 wavelet transform, filtered by the HANTS, and pre-processed to provide the most appropriate inputs for the MLPNN. Time-series analysis is used to pre-process the historical wind-power generation data and structure it into input-output series. Wind power datasets with diverse characteristics, from different wind farms located in the United States, are used to evaluate the accuracy of the hybrid forecasting method through various performance measures and different experiments. A comparative analysis with well-established forecasting models shows the superior performance of the proposed
Energy Technology Data Exchange (ETDEWEB)
Attisha, Michael J. [Brown U.
2006-01-01
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10^{-43} cm^{2} on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural
Wavelet Analysis of Central European Stock Market Behaviour During the Crisis
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Vácha, Lukáš
2009-01-01
Roč. 2009, č. 23 (2009), s. 1-14 R&D Projects: GA ČR GP402/08/P207; GA ČR GD402/09/H045 Grant - others:GAUK(CZ) 46108 Institutional research plan: CEZ:AV0Z10750506 Keywords : wavelet analysis * multiresolution analysis * Central European stock markets * financial crisis Subject RIV: AH - Economics
Aboufadel, Edward
1999-01-01
An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets
Analysis of breast thermograms using Gabor wavelet anisotropy index.
Suganthi, S S; Ramakrishnan, S
2014-09-01
In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.
Applications of a fast, continuous wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Melodic pattern discovery by structural analysis via wavelets and clustering techniques
DEFF Research Database (Denmark)
Velarde, Gissel; Meredith, David
We present an automatic method to support melodic pattern discovery by structural analysis of symbolic representations by means of wavelet analysis and clustering techniques. In previous work, we used the method to recognize the parent works of melodic segments, or to classify tunes into tune......-means to cluster melodic segments into groups of measured similarity and obtain a raking of the most prototypical melodic segments or patterns and their occurrences. We test the method on the JKU Patterns Development Database and evaluate it based on the ground truth defined by the MIREX 2013 Discovery of Repeated...... Themes & Sections task. We compare the results of our method to the output of geometric approaches. Finally, we discuss about the relevance of our wavelet-based analysis in relation to structure, pattern discovery, similarity and variation, and comment about the considerations of the method when used...
A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis
Directory of Open Access Journals (Sweden)
Fei Chen
2003-01-01
Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.
POWER SYSTEM PLANNING USING ANN WITH FUZZY LOGIC AND WAVELET ANALYSIS
Directory of Open Access Journals (Sweden)
V. Dharma Dharshin
2016-10-01
Full Text Available The electricity load required for the forthcoming years are predetermined by means of power system planning. Accuracy is the crucial factor that must be taken care of in the power system planning. Electricity is generally volatile, that is it changes and hence appropriate estimation must be done without leading to overestimation or underestimation. The aim of the project is to do appropriate power estimation with the help of the economic factors. The 9 input factors used are GDP, industry, imports, CO2 emission, exports, services, manufacturing, population, per capita consumption. The proposed methodology is done by means of Neural Network concept and Wavelet Analysis. Regression Analysis is also performed and the comparisons are done using Fuzzy Logic. The nonlinear model, Artificial Neural Network and the Wavelet Analysis are found to be more accurate and effective.
Donskykh, G. I.; Ryabov, M. I.; Sukharev, A. I.; Aller, M.
2014-01-01
We investigated the monitoring data of extragalactic source BL Lac. This monitoring was held withUniversityofMichigan26-meter radio telescope. To study flux density of extragalactic source BL Lac at frequencies of 14.5, 8 and 4.8 GHz, the wavelet analysis and singular spectrum analysis were used. Calculating the integral wavelet spectra allowed revealing long-term components (~7-8 years) and short-term components (~ 1-4 years) in BL Lac. Studying of VLBI radio maps (by the program Mojave) ...
Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation
International Nuclear Information System (INIS)
Alcaraz, Raúl; Rieta, José Joaquín
2008-01-01
The ability to predict if an atrial fibrillation (AF) episode terminates spontaneously or not through non-invasive techniques is a challenging problem of great clinical interest. This fact could avoid useless therapeutic interventions and minimize the risks for the patient. The present work introduces a robust AF prediction methodology carried out by estimating, through sample entropy (SampEn), the atrial activity (AA) organization increase prior to AF termination from the surface electrocardiogram (ECG). This regularity variation appears as a consequence of the decrease in the number of reentries wandering throughout the atrial tissue. AA was obtained from surface ECG recordings by applying a QRST cancellation technique. Next, a robust and reliable classification process for terminating and non-terminating AF episodes was developed, making use of two different wavelet decomposition strategies. Finally, the AA organization both in time and wavelet domains (bidomain) was estimated via SampEn. The methodology was validated using a training set consisting of 20 AF recordings with known termination properties and a test set of 30 recordings. All the training signals and 93.33% of the test set were correctly classified into terminating and sustained AF, obtaining 93.75% sensitivity and 92.86% specificity. It can be concluded that spontaneous AF termination can be reliably and noninvasively predicted by applying wavelet bidomain sample entropy
Semi-automated analysis of EEG spikes in the preterm fetal sheep using wavelet analysis
International Nuclear Information System (INIS)
Walbran, A.C.; Unsworth, C.P.; Gunn, A.J.; Benett, L.
2010-01-01
Full text: Presentation Preference Oral Presentation Perinatal hypoxia plays a key role in the cause of brain injury in premature infants. Cerebral hypothermia commenced in the latent phase of evolving injury (first 6-8 h post hypoxic-ischemic insult) is the lead candidate for treatment however currently there is no means to identify which infants can benefit from treatment. Recent studies suggest that epileptiform transients in latent phase are predictive of neural outcome. To quantify this, an automated means of EEG analysis is required as EEG monitoring produces vast amounts of data which is timely to analyse manually. We have developed a semi-automated EEG spike detection method which employs a discretized version of the continuous wavelet transform (CWT). EEG data was obtained from a fetal sheep at approximately 0.7 of gestation. Fetal asphyxia was maintained for 25 min and the EEG recorded for 8 h before and after asphyxia. The CWT was calculated followed by the power of the wavelet transform coefficients. Areas of high power corresponded to spike waves so thresholding was employed to identify the spikes. The performance of the method was found have a good sensitivity and selectivity, thus demonstrating that this method is a simple, robust and potentially effective spike detection algorithm.
Frequency domain and wavelet analysis of the laser-induced plasma shock waves
Energy Technology Data Exchange (ETDEWEB)
Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran
2015-08-01
In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.
2011-09-01
This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.
Study on SOC wavelet analysis for LiFePO4 battery
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.
International Nuclear Information System (INIS)
Na, Man Gyun; Oh, Seungrohk
2002-01-01
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors
Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay
2017-11-01
Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.
What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2015-01-01
Roč. 10, č. 4 (2015), č. článku e0123923. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Bitcoin * wavelet analysis Subject RIV: AH - Economics Impact factor: 3.057, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452318.pdf
Transient signal analysis in power reactors by means of the wavelet technique
International Nuclear Information System (INIS)
Wentzeis, Luis
1999-01-01
The application of the wavelet technique, had enabled to study the time evolution of the properties (amplitude and frequency content) of a signals set, measured in the Embalse nuclear power plant (CANDU 600 M we), in the low frequency range and for different operating conditions. Particularly, by means of this technique, we studied the time evolution of the signals in the non-stationary state of the reactor (during a raise in power), where the Fourier analysis results inadequate. (author)
Can P wave wavelet analysis predict atrial fibrillation after coronary artery bypass grafting?
Vassilikos, Vassilios; Dakos, George; Chouvarda, Ioanna; Karagounis, Labros; Karvounis, Haralambos; Maglaveras, Nikolaos; Mochlas, Sotirios; Spanos, Panagiotis; Louridas, George
2003-01-01
The purpose of this study was the evaluation of Morlet wavelet analysis of the P wave as a means of predicting the development of atrial fibrillation (AF) in patients who undergo coronary artery bypass grafting (CABG). The P wave was analyzed using the Morlet wavelet in 50 patients who underwent successful CABG. Group A consisted of 17 patients, 12 men and 5 women, of mean age 66.9 +/- 5.9 years, who developed AF postoperatively. Group B consisted of 33 patients, 29 men and 4 women, mean age 62.4 +/- 7.8 years, who remained arrhythmid-free. Using custom-designed software, P wave duration and wavelet parameters expressing the mean and maximum energy of the P wave were calculated from 3-channel digital recordings derived from orthogonal ECG leads (X, Y, and Z), and the vector magnitude (VM) was determined in each of 3 frequency bands (200-160 Hz, 150-100 Hz and 90-50 Hz). Univariate logistic-regression analysis identified a history of hypertension, the mean and maximum energies in all frequency bands along the Z axis, the mean and maximum energies (expressed by the VM) in the 200-160 Hz frequency band, and the mean energy in the 150-100 Hz frequency band along the Y axis as predictors for post-CABG AF. Multivariate analysis identified hypertension, ejection fraction, and the maximum energies in the 90-50 Hz frequency band along the Z and composite-vector axes as independent predictors. This multivariate model had a sensitivity of 91% and a specificity of 65%. We conclude that the Morlet wavelet analysis of the P wave is a very sensitive method of identifying patients who are likely to develop AF after CABG. The occurrence of post-CABG AF can be explained by a different activation pattern along the Z axis.
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings
Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.
2012-03-01
Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.
An overview on preseismic anomalies in LF radio signals revealed in Italy by wavelet analysis
Directory of Open Access Journals (Sweden)
A. Ermini
2008-06-01
Full Text Available Since 1996, the electric field strength of the two broadcasting stations MCO (f=216 kHz, southeast France and CZE (f=270 kHz, Czech Republic has been sampled every ten minutes by a receiver (AS located in central Italy. Here, we review the results obtained by a detailed analysis applied to the data recorded from February 1996 up to December 2004. At first, the daytime and nighttime data were extracted and then, in the daytime data, the data collected in winter were separated from those collected in summer. On the second step the wavelet transform was applied. The results of this analysis are radio anomalies detected as earthquake precursors both for MCO and CZE data. In particular, regarding the MCO data, the main result was the appearance of a very clear anomaly during May-August 1998, at daytime and at nighttime. Such an anomaly can be considered as a precursor of a seismic sequence started on August 15, 1998 with 17 earthquakes (M=2.2-4.6 on the Reatini mountains, a seismogenic zone located 30 km far from the AS receiver along the path MCO-AS. As concerns with the CZE data, the first result was obtained from the summer daytime data and it was the appearance of a very clear anomaly during August-September 1997, that can be considered a precursor of the two earthquakes with magnitude M=5.6 and M=5.9 that occurred on September 26 in the Umbria-Marche region (Central Italy. The second result was the appearance of an anomaly during February-March 1998, at daytime and at nighttime, that can be related to the preparatory phase of the strong (M=5.1-6.0 Slovenia seismic sequence that occurred in a zone lying in the middle of the CZE-AS path.
Webb, S. J.; Ashwal, L. D.; Cooper, G. R.
2007-12-01
Susceptibility (n=~110,000) and density (n=~~2500) measurements on core samples have been collected in a stratigraphic context from the Bellevue (BV-1) 2950 m deep borehole in the Northern Lobe of the Bushveld Complex. This drill core starts in the granitoid roof rocks, extends through the entire Upper Zone, and ends approximately in the middle of the Main Zone. These physical property measurements now provide an extensive database useful for geophysical modeling and stratigraphic studies. In an effort to quantify the periodicity of the layering we have applied various statistical and wavelet methods to analyze the susceptibility and density data. The density data have revealed a strong periodic layering with a scale of ~~80 m that extends through the Main and Upper Zones. In the Main Zone the layering is unusual in that the density values increase upwards by as much as 10%. This is due to systematic variation in the modal abundance of mafic silicates and appears to be related to separate pulses during emplacement. The magnetic susceptibility data in the Upper Zone also show a strong cyclicity of similar scale. The discrete wavelet transform, using the real Haar wavelet, has been applied to help discretise the susceptibility data and clarifies the geological boundaries without blurring them, which is a common problem with multipoint moving averages. As expected, the histogram of the entire data set is non-Gaussian, with a long tail for high values. We can roughly fit a power law to the log histogram plot indicating a probable fractal distribution of susceptibilities. However if we window the data in the range 750-1000 m the histogram is very different. This region shows a strong peak and no power law relationship. This dramatic change in statistical properties prompted us to investigate these properties more thoroughly. To complement the wavelet analysis we have calculated various statistical measures (mean, standard deviation, skew, and
Directory of Open Access Journals (Sweden)
Nicolae Tudoroiu
2017-09-01
Full Text Available The objective of this paper is to investigate the use of the 1-D wavelet analysis to extract several patterns from signals data sets collected from healthy and faulty input-output signals of control systems as a preliminary step in real-time implementation of fault detection diagnosis and isolation strategies. The 1-D wavelet analysis proved that is an useful tool for signals processing, design and analysis based on wavelet transforms found in a wide range of control systems industrial applications. Based on the fact that in the real life there is a great similitude between the phenomena, we are motivated to extend the applicability of these techniques to solve similar applications from control systems field, such is done in our research work. Their efficiency will be demonstrated on a case study mainly chosen to evaluate the impact of the uncertainties and the nonlinearities of the sensors and actuators on the overall performance of the control systems. The proposed techniques are able to extract in frequency domain some pattern features (signatures of interest directly from the signals data set collected by data acquisition equipment from the control system.
International Nuclear Information System (INIS)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-01-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Energy Technology Data Exchange (ETDEWEB)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Lecture notes on wavelet transforms
Debnath, Lokenath
2017-01-01
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...
Lin, Yuan-Chien; Yu, Hwa-Lung
2013-04-01
The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between
International Nuclear Information System (INIS)
González Gómez Dulce, I.; Moreno Barbosa, E.; Hernández, Mario Iván Martínez; Méndez, José Ramos; Silvia, Hidalgo Tobón; Pilar, Dies Suarez; Eduardo, Barragán Pérez; Benito, De Celis Alonso
2014-01-01
The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done
Energy Technology Data Exchange (ETDEWEB)
González Gómez Dulce, I., E-mail: isabeldgg@hotmail.com, E-mail: emoreno@fcfm.buap.mx, E-mail: mim@fcfm.buap.mx, E-mail: joserm84@gmail.com; Moreno Barbosa, E., E-mail: isabeldgg@hotmail.com, E-mail: emoreno@fcfm.buap.mx, E-mail: mim@fcfm.buap.mx, E-mail: joserm84@gmail.com; Hernández, Mario Iván Martínez, E-mail: isabeldgg@hotmail.com, E-mail: emoreno@fcfm.buap.mx, E-mail: mim@fcfm.buap.mx, E-mail: joserm84@gmail.com; Méndez, José Ramos, E-mail: isabeldgg@hotmail.com, E-mail: emoreno@fcfm.buap.mx, E-mail: mim@fcfm.buap.mx, E-mail: joserm84@gmail.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. (Mexico); Silvia, Hidalgo Tobón [Hospital Infantil de México, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Hospital Infantil de México, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Fundación para el Desarrollo Carlos Sigüenza. Puebla, Pue (Mexico)
2014-11-07
The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.
International Nuclear Information System (INIS)
Cabella, Paolo; Silk, Joseph; Natoli, Paolo
2007-01-01
We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Δα=-2.5±3.0 (Δα=-2.5±6.0) at the one (two) σ level, consistent with a null detection
González Gómez, Dulce I.; Moreno Barbosa, E.; Martínez Hernández, Mario Iván; Ramos Méndez, José; Hidalgo Tobón, Silvia; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito
2014-11-01
The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (pADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.
Directory of Open Access Journals (Sweden)
Romi Wiryadinata
2016-03-01
Full Text Available Presensi is a logging attendance, part of activity reporting an institution, or a component institution itself which contains the presence data compiled and arranged so that it is easy to search for and used when required at any time by the parties concerned. Computer application developed in the presensi system is a computer application that can recognize a person's face using only a webcam. Face recognition in this study using a webcam to capture an image of the room at any given time who later identified the existing faces. Some of the methods used in the research here is a method of the Dynamic Times Wrapping (DTW, Principal Component Analysis (PCA and Gabor Wavelet. This system, used in testing with normal facial image expression. The success rate of the introduction with the normal expression of face image using DTW amounting to 80%, 100% and PCA Gabor wavelet 97%
Flow meter fault isolation in building central chilling systems using wavelet analysis
International Nuclear Information System (INIS)
Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei
2006-01-01
This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters
Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria
2008-01-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has...
ANN-based wavelet analysis for predicting electrical signal from photovoltaic power supply system
Energy Technology Data Exchange (ETDEWEB)
Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics
2007-07-01
This study was conducted to predict different electrical signals from a photovoltaic power supply system (PVPS) using an artificial neural networks (ANN) with wavelet analysis. It involved the creation of a database of electrical signals (PV-generator current, voltage, battery current voltage, regulator current and voltage) obtained from an experimental PVPS system installed in the south of Algeria. The potential applications were for sizing and analyzing the performance of PVPS systems; control of maximum power point tracker (MPPT) in order to deliver the maximum energy from the PV-array; prediction of the optimal configuration (PV-array and battery sizing) of PVPS systems; expert configuration of PV-systems; faults diagnosis; supervision; and, control and monitoring. First, based on the wavelet analysis each electrical signal was mapped in several time frequency domains. The PV-system was then divided into 3-subsystems corresponding to ANN-PV generator model, ANN-battery model, and ANN-regulator model. An example of day-by-day prediction for each electrical signal was presented. The results of the proposed approach were in good agreement with experimental results. In addition, the accuracy of the proposed approach was more satisfactory when only ANN was used. It was concluded that this methodology offers the possibility of developing a new expert configuration of PVPS by implementing the soft computing ANN-wavelet program with a digital signal processing (DSP) circuit. 26 refs., 1 tab., 5 figs.
Directory of Open Access Journals (Sweden)
Fenghua Tian
2016-01-01
Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.
Oden, J Tinsley
2010-01-01
The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010
Griffel, DH
2002-01-01
A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very
Aristizabal, F; Glavinovic, M I
2003-10-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic
Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria
2008-06-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.
Directory of Open Access Journals (Sweden)
Maria Lepore
2008-06-01
Full Text Available A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.
Campo, D.; Quintero, O. L.; Bastidas, M.
2016-04-01
We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.
Data analysis in Raman measurements of biological tissues using wavelet techniques
Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.
2005-03-01
Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.
Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data
DEFF Research Database (Denmark)
Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik
2014-01-01
of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation......Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of the extent of synchronization in renal cortex dynamics....
Wavelet decomposition based principal component analysis for face recognition using MATLAB
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication
National Research Council Canada - National Science Library
Chui, Charles K
2007-01-01
...: firstly, mathematical theories and methods, as well as construction of basis functions, for multi-level approximation and analysis, with emphasis on scattered data interpolation and representation, were developed...
Volume conduction effects on wavelet cross-bicoherence analysis
International Nuclear Information System (INIS)
Memon, I.A.; Channa, C.
2013-01-01
Cross-bicoherence analysis is one of the important nonlinear signal processing tools which is used to measure quadratic phase coupling between frequencies of two different time series. It is frequently used in the diagnosis of various cognitive and neurological disorders in EEG (Electroencephalography) analysis. Volume conduction effects of various uncorrelated sources present in the brain can produce biased estimates into the estimated values of cross-bicoherence function. Previous studies have discussed volume conduction effects on coherence function which is used to measure linear relationship between EEG signals in terms of their phase and amplitude. However, volume conduction effect on cross-bicoherence analysis which is quite a different technique has not been investigated up to now to the best of our knowledge. This study is divided into two major parts, the first part deals with the investigation of VCUS (Volume Conduction effects due to Uncorrelated Sources) characteristics on EEG-cross-bicoherence analysis. The simulated EEG data due to uncorrelated sources present in the brain was used in this part of study. The next part of study is based upon investigating the effects of VCUS on the statistical analysis of results of EEG-based cross-bicoherence analysis. The study provides an important clinical application because most of studies based on EEG cross-bicoherence analysis have avoided the issue of VCUS. The cross-bicoherence analysis was performed by detecting the change in MSCB (Magnitude Square Cross-Bicoherence Function) between EEG activities of change detection and no-change detection trials. The real EEG signals were used. (author)
Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis
Energy Technology Data Exchange (ETDEWEB)
Jing, Chenlei; Tang, Wu, E-mail: tang@uestc.edu.cn
2016-02-28
Graphical abstract: - Highlights: • Multi-resolution signal decomposition of wavelet transform is applied to Ga-doped ZnO thin films with various thicknesses. • Fractal properties of GZO thin films are investigated by box counting method. • Fractal dimension is not in conformity with original RMS roughness. • Fractal dimension mainly depends on the underside diameter (grain size) and distance between adjacent grains. - Abstract: The change in roughness of various thicknesses Ga-doped ZnO (GZO) thin films deposited by magnetron reactive sputtering on glass substrates at room temperature was measured by atomic force microscopy (AFM). Multi-resolution signal decomposition based on wavelet transform and fractal geometry was applied to process surface profiles, to evaluate the roughness trend of relevant frequency resolution. The results give a six-level decomposition and the results change with deposited time and surface morphology. Also, it is found that fractal dimension is closely connected to the underside diameter (grain size) and the distance between adjacent grains that affect the change rate of surface and the increase of the defects such as abrupt changes lead to a larger value of fractal dimension.
Li, Xiaoli; Li, Duan; Voss, Logan J; Sleigh, Jamie W
2009-11-15
Brain functions are related to neuronal networks of different sizes and distribution, and neuronal networks of different sizes oscillate at different frequencies. Thus the synchronization of neuronal networks is often reflected by cross-frequency interaction. The description of this cross-frequency interaction is therefore a crucial issue in understanding the modulation mechanisms between neuronal populations. A number of different kinds of interaction between frequencies have been reported. In this paper, we develop a general harmonic wavelet transform based bicoherence using a phase randomization method. This allows us to measure the comodulation of oscillations between different frequency bands in neuronal populations. The performance of the method is evaluated by a simulation study. The results show that the improved wavelet bicoherence method can detect a reliable phase coupling value, and also identify zero bicoherence for waves that are not phase-coupled. Spurious bicoherences can be effectively eliminated through the phase randomization method. Finally, this method is applied to electrocorticogram data recorded from rats during transitions between slow-wave sleep, rapid-eye movement sleep and waking. The phase coupling in rapid-eye movement sleep is statistically lower than that during slow-wave sleep, and slightly less than those in the wakeful state. The degree of phase coupling in rapid-eye movement sleep after slow-wave sleep is greater than in rapid-eye movement sleep prior to waking. This method could be applied to investigate the cross-frequency interactions in other physiological signals.
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images
Lingley-Papadopoulos, Colleen A.; Loew, Murray H.; Zara, Jason M.
2009-07-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
Lingley-Papadopoulos, Colleen A; Loew, Murray H; Zara, Jason M
2009-01-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
International Nuclear Information System (INIS)
Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo
2004-01-01
This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain
Directory of Open Access Journals (Sweden)
Prashant SINGH
2011-03-01
Full Text Available This paper presents theoretical analysis of a new approach for development of surface acoustic wave (SAW sensor array based odor recognition system. The construction of sensor array employs a single polymer interface for selective sorption of odorant chemicals in vapor phase. The individual sensors are however coated with different thicknesses. The idea of sensor coating thickness variation is for terminating solvation and diffusion kinetics of vapors into polymer up to different stages of equilibration on different sensors. This is expected to generate diversity in information content of the sensors transient. The analysis is based on wavelet decomposition of transient signals. The single sensor transients have been used earlier for generating odor identity signatures based on wavelet approximation coefficients. In the present work, however, we exploit variability in diffusion kinetics due to polymer thicknesses for making odor signatures. This is done by fusion of the wavelet coefficients from different sensors in the array, and then applying the principal component analysis. We find that the present approach substantially enhances the vapor class separability in feature space. The validation is done by generating synthetic sensor array data based on well-established SAW sensor theory.
Short-term variability of Johor River discharge based on wavelet analysis
Ahmad, N.; Kamaruddin, S. A.; Heryansyah, A.
2015-02-01
River discharge provides a direct measure of water quantity and availability of water for specific uses. It also provides the basis for understanding river basin processes and is essential for interpreting and understanding river flow characteristics. This study investigates the temporal variability of river discharge records of Johor River. Wavelet analysis of discharge records for 30 years was carried out to characterize the river flow variability. Our results indicate that Johor River discharge data shows a significant short-term variability of between 0.6 to 2.5 years.
Application of wavelet analysis in determining the periodicity of global warming
Feng, Xiao
2018-04-01
In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.
Energy Technology Data Exchange (ETDEWEB)
Kaneda, M.; Kawata, A.; Hayashi, S. [Kansai University, Osaka (Japan). Faculty of Engineering; Tokui, K. [Mitsubishi Electric Building Techno-Service Co. Ltd., Tokyo (Japan)
1998-10-31
Detecting strand breakage and local wear of elevator wire rope uses currently a method using a rope tester. This method magnetizes a rope with electric magnet and detects defected part as leakage flux. Pulsed signals are issued from the defected part, variation in magnetic flux leakage due to rope swinging produces noise, and both get mixed together. Therefore, the detection is performed finally by visual check and palpation. This paper discusses a method that analyzes measurement data derived by the rope tester by using wavelet conversion, and detects the defected part automatically without being confused by noise. The pulsed signals generated from the defected part can be detected from noise by decomposing multiplex resolution using the Haar basis. As a result of the experiment, cases that may be overlooked in visual check because of S/N ratio being too small or the pulsed signals being too weak were all detected. 11 refs., 14 figs.
Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai; Hermann, Cristoph S.
2006-01-01
by the inter-trial phase coherence (ITPC) encompassing ANOVA analysis of differences between conditions and 5-way analysis of channel x frequency x time x subject x condition. A flow chart is presented on how to perform data exploration using the PARAFAC decomposition on multi-way arrays. This includes (A......) channel x frequency x time 3-way arrays of F test values from a repeated measures analysis of variance (ANOVA) between two stimulus conditions; (B) subject-specific 3-way analyses; and (C) an overall 5-way analysis of channel x frequency x time x subject x condition. The PARAFAC decompositions were able...... of the 3-way array of ANOVA F test values clearly showed the difference of regions of interest across modalities, while the 5-way analysis enabled visualization of both quantitative and qualitative differences. Consequently, PARAFAC is a promising data exploratory tool in the analysis of the wavelets...
Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal
2018-06-01
Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.
Local wavelet correlation: applicationto timing analysis of multi-satellite CLUSTER data
Directory of Open Access Journals (Sweden)
J. Soucek
2004-12-01
Full Text Available Multi-spacecraft space observations, such as those of CLUSTER, can be used to infer information about local plasma structures by exploiting the timing differences between subsequent encounters of these structures by individual satellites. We introduce a novel wavelet-based technique, the Local Wavelet Correlation (LWC, which allows one to match the corresponding signatures of large-scale structures in the data from multiple spacecraft and determine the relative time shifts between the crossings. The LWC is especially suitable for analysis of strongly non-stationary time series, where it enables one to estimate the time lags in a more robust and systematic way than ordinary cross-correlation techniques. The technique, together with its properties and some examples of its application to timing analysis of bow shock and magnetopause crossing observed by CLUSTER, are presented. We also compare the performance and reliability of the technique with classical discontinuity analysis methods. Key words. Radio science (signal processing – Space plasma physics (discontinuities; instruments and techniques
International Nuclear Information System (INIS)
Keissar, K; Gilad, O; Maestri, R; Pinna, G D; La Rovere, M T
2010-01-01
A novel approach for the estimation of baroreflex sensitivity (BRS) is introduced based on time–frequency analysis of the transfer function (TF). The TF method (TF-BRS) is a well-established non-invasive technique which assumes stationarity. This condition is difficult to meet, especially in cardiac patients. In this study, the classical TF was replaced with a wavelet transfer function (WTF) and the classical coherence was replaced with wavelet transform coherence (WTC), adding the time domain as an additional degree of freedom with dynamic error estimation. Error analysis and comparison between WTF-BRS and TF-BRS were performed using simulated signals with known transfer function and added noise. Similar comparisons were performed for ECG and blood pressure signals, in the supine position, of 19 normal subjects, 44 patients with a history of previous myocardial infarction (MI) and 45 patients with chronic heart failure. This yielded an excellent linear association (R > 0.94, p < 0.001) for time-averaged WTF-BRS, validating the new method as consistent with a known method. The additional advantage of dynamic analysis of coherence and TF estimates was illustrated in two physiological examples of supine rest and change of posture showing the evolution of BRS synchronized with its error estimations and sympathovagal balance
The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra
Gill, S.; Maxted, P. F. L.; Smalley, B.
2018-05-01
Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims: Our aim is to create a reliable automated spectral analysis routine to determine Teff, [Fe/H], V sini from the CORALIE spectra of FGK stars. Methods: We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results: By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. We find that we can determine Teff to a precision of 85 K, [Fe/H] to a precision of 0.06 dex and V sini to a precision of 1.35 km s-1 for stars with V sini ≥ 5 km s-1. We find an offset in metallicity ≈- 0.18 dex relative to the EW fitting method. We can determine log g to a precision of 0.13 dex but find systematic trends with Teff. Measurements of log g are only reliable enough to confirm dwarf-like surface gravity (log g ≈ 4.5). Conclusions: The wavelet method can be used to determine Teff, [Fe/H], and V sini for FGK stars from CORALIE échelle spectra. Measurements of log g are unreliable but can confirm dwarf-like surface gravity. We find that our method is self consistent, and
Liu, Yang
2018-02-26
A wavelet-enhanced plane-wave time-domain (PWTD) algorithm for efficiently and accurately solving time-domain surface integral equations (TD-SIEs) on electrically large conducting objects is presented. The proposed scheme reduces the memory requirement and computational cost of the PWTD algorithm by representing the PWTD ray data using local cosine wavelet bases (LCBs) and performing PWTD operations in the wavelet domain. The memory requirement and computational cost of the LCB-enhanced PWTD-accelerated TD-SIE solver, when applied to the analysis of transient scattering from smooth quasi-planar objects with near-normal incident pulses, scale nearly as O(Ns log Ns) and O(Ns 1.5 ), respectively. Here, Ns denotes the number of spatial unknowns. The efficiency and accuracy of the proposed scheme are demonstrated through its applications to the analysis of transient scattering from a 185 wave-length-long NASA almond and a 123-wavelength long Air-bus-A320 model.
Abid, Fathi; Kaffel, Bilel
2018-01-01
Understanding the interrelationships of the global macro assets is crucial for global macro investing. This paper investigates the local variance and the interconnection between the stock, gold, oil, Forex and the implied volatility markets in the time/frequency domains using the wavelet methodology, including the wavelet power spectrum, the wavelet squared coherence and phase difference, the wavelet multiple correlation and cross-correlation. The univariate analysis reveals that, in some crisis periods, underlying asset markets present the same pattern in terms of the wavelet power spectrum indicating high volatility for the medium scale, and that for the other market stress periods, volatility behaves differently. Moreover, unlike the underlying asset markets, the implied volatility markets are characterized by high power regions across the entire period, even in the absence of economic events. Bivariate results show a bidirectional relationship between the underlying assets and their corresponding implied volatility indexes, and a steady co-movement between the stock index and its corresponding fear index. Multiple correlation analysis indicates a strong correlation between markets at high scales with evidence of a nearly perfect integration for a period longer than a year. In addition, the hedging strategies based on the volatility index lead to an increase in portfolio correlation. On the other hand, the results from multiple cross-correlations reveal that the lead-lag effect starts from the medium scale and that the VIX (stock market volatility index) index is the potential leader or follower of the other markets.
Wavelet processing techniques for digital mammography
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Fang, Li-Zhi
1998-01-01
Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.
Directory of Open Access Journals (Sweden)
Aasif Shah
2015-06-01
Full Text Available Multi-scale representations are effective in characterising the time-frequency characteristics of financial return series. They have the capability to reveal the properties not evident with typical time domain analysis. Given the aforesaid, this study derives crucial insights from multi scale analysis to investigate the co- movements between Indian and emerging Asian equity markets using wavelet correlation and wavelet coherence measures. It is reported that the Indian equity market is strongly integrated with Asian equity markets at lower frequency scales and relatively less blended at higher frequencies. On the other hand the results from cross correlations suggest that the lead-lag relationship becomes substantial as we turn to lower frequency scales and finally, wavelet coherence demonstrates that this correlation eventually grows strong in the interim of the crises period at lower frequency scales. Overall the findings are relevant and have strong policy and practical implications.
Abbate, Agostino; Nayak, A.; Koay, J.; Roy, R. J.; Das, Pankaj K.
1996-03-01
The wavelet transform (WT) has been used to study the nonstationary information in the electroencephalograph (EEG) as an aid in determining the anesthetic depth. A complex analytic mother wavelet is utilized to obtain the time evolution of the various spectral components of the EEG signal. The technique is utilized for the detection and spectral analysis of transient and background processes in the awake and asleep states. It can be observed that the response of both states before the application of the stimulus is similar in amplitude but not in spectral contents, which suggests a background activity of the brain. The brain reacts to the external stimulus in two different modes depending on the state of consciousness of the subject. In the case of awake state, there is an evident increase in response, while for the sleep state a reduction in this activity is observed. This analysis seems to suggest that the brain has an ongoing background process that monitors external stimulus in both the sleep and awake states.
Shift-invariant discrete wavelet transform analysis for retinal image classification.
Khademi, April; Krishnan, Sridhar
2007-12-01
This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.
Performance of wavelet analysis and neural networks for pathological voices identification
Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane
2011-09-01
Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.
Directory of Open Access Journals (Sweden)
Guangjun Wang
2012-01-01
Full Text Available Our previous studies suggested that the MBF in contralateral Hegu acupoint (IL4 increased after ipsilateral Hegu acupoint was stimulated with manual acupuncture. In this study, twenty-eight (28 healthy volunteers were recruited and were randomly divided into Hegu acupoint stimulation group and Non-Hegu stimulation group. All subjects received the same model stimulation of the laser needle for 30 min in right Hegu acupoint and Non-Hegu acupoint, respectively. MBF of left LI4 was measured by the laser Doppler perfusion imaging system. The original data dealt with morlet wavelet analysis and the average amplitude and power spectral density of different frequency intervals was acquired. The results indicated that right Hegu stimulation with the laser needle might result in the increase of left Hegu acupoint MBF. 40 min later after ceased stimulation, the MBF is still increasing significantly, whereas the MBF has no significantly change in Non-Hegu stimulation group. The wavelet analysis result suggested that compared to Non-Hegu stimulation, stimulated to right Hegu acupoint might result in the increase of average amplitude in frequency intervals of 0.0095–0.02 Hz, 0.02–0.06 Hz, and 0.06–0.15 Hz, which might be influenced by the endothelial, neurogenic, and the intrinsic myogenic activity of the vessel wall, respectively.
Instrument-independent analysis of music by means of the continuous wavelet transform
Olmo, Gabriella; Dovis, Fabio; Benotto, Paolo; Calosso, Claudio; Passaro, Pierluigi
1999-10-01
This paper deals with the problem of automatic recognition of music. Segments of digitized music are processed by means of a Continuous Wavelet Transform, properly chosen so as to match the spectral characteristics of the signal. In order to achieve a good time-scale representation of the signal components a novel wavelet has been designed suited to the musical signal features. particular care has been devoted towards an efficient implementation, which operates in the frequency domain, and includes proper segmentation and aliasing reduction techniques to make the analysis of long signals feasible. The method achieves very good performance in terms of both time and frequency selectivity, and can yield the estimate and the localization in time of both the fundamental frequency and the main harmonics of each tone. The analysis is used as a preprocessing step for a recognition algorithm, which we show to be almost independent on the instrument reproducing the sounds. Simulations are provided to demonstrate the effectiveness of the proposed method.
The cross wavelet analysis of dengue fever variability influenced by meteorological conditions
Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han
2015-04-01
The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor
Directional dual-tree rational-dilation complex wavelet transform.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2014-01-01
Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.
Energy Technology Data Exchange (ETDEWEB)
Jouault, B. [Nantes Univ., 44 (France)
1996-11-22
The objective of this thesis is to present a methodology, based on the projection methods used in statistical physics and on the wavelet approach, which allows to obtain various classes of information. A coherent modelling was elaborated as the tools used for generating and solving the evolution equations, expressed in terms of pertinent variables, are based on common concepts. The property of scale separation of the wavelet analysis allows an approximation hierarchy based on the geometrical structure of phase space to be defined. This information structuration offers the opportunity of solving the evolution equations with various degrees of precision by controlling the information loss and avoiding the sampling methods of Monte Carlo type. The application of this methodology to the case of heavy ion collisions needs an entirely numerical treatment of the density matrix evolution equation. This implies a very precise level of description in order to take into account the important dissipation effects occurring in intermediate energy nuclear dynamics. A proper solution less expensive was adopted by using the wavelets analytically expressed, this entailing also the testing of model validity by comparing its results with the analytical solutions. This model takes into account the structure of the system wave functions, thus conserving the microscopical information. The present methodology can be applied also at other energy domains providing the nuclear systems are subject to transient non steady-state regimes. The wavelet analysis was used extensively in the field of signal processing particularly to extract from background a physical signal and also in the field of turbulence phenomena 152 refs.
Directory of Open Access Journals (Sweden)
Gang Li
2013-12-01
Full Text Available Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC analysis and a support vector machine (SVM classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.
International Nuclear Information System (INIS)
Fedorisin, J.; Vokal, S.
2008-01-01
The continuous wavelet transform is applied to the pseudorapidity spectra of relativistic secondary particles created in Pb + Em nuclear collisions at 158A GeV/c. The wavelet pseudorapidity spectra are subsequently surveyed at different scales to look for signs of ring-like correlations whose presence could be explained either via the production of Cherenkov gluons or the propagation of Mach shock waves in excited nuclear medium. The presented approach is established on the basic prerequisite that the both effects would lead to excess of particles at certain typical pseudorapidities. Furthermore, the particles contributing to the ring-like structures are expected to have uniform azimuthal distributions. The multiscale analysis of the wavelet pseudorapidity spectra reveals the irregularities which are interpreted as the favoured pseudorapidities of groups of produced particles. A uniformity of the azimuthal structure of the disclosed pseudorapidity irregularities is examined, eventually leading to the conclusion that the irregularities are not related to correlations of a ring-like nature
Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.
2016-08-01
In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Research on information spillover effects between financial markets remains active in the economic community. A Granger-type model has recently been used to investigate the spillover between London Metal Exchange (LME) and Shanghai Futures Exchange (SHFE), however, possible correlation between the future price and return on different time scales have been ignored. In this paper, wavelet multiresolution decomposition is used to investigate the spillover effects of copper future returns between the two markets. The daily return time series are decomposed on 2n (n=1, ..., 6) frequency bands through wavelet multiresolution analysis. The correlation between the two markets is studied with decomposed data. It is shown that high frequency detail components represent much more energy than low-frequency smooth components. The relation between copper future daily returns in LME and that in SHFE are different on different time scales. The fluctuations of the copper future daily returns in LME have large effect on that in SHFE in 32-day scale, but small effect in high frequency scales. It also has evidence that strong effects exist between LME and SHFE for monthly responses of the copper futures but not for daily responses.
Wavelet based methods for improved wind profiler signal processing
Directory of Open Access Journals (Sweden)
V. Lehmann
2001-08-01
Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing
Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2015-12-05
A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Leak detection method for long pipeline based on dynamic pressure and wavelet analysis
Energy Technology Data Exchange (ETDEWEB)
Xu, Bin; Wang, Likun; Wang, Hongchao; Xiong, Min; Yu, Dongliang; Tan, Dongjie [RnD center of PetroChina Pipeline Company, Langfang, Hebei, (China)
2010-07-01
Leaks appear frequently in pipelines, raising the possibility of safety issues. The detection of pipeline leakage is very important for the pipeline industry. This paper investigated a leak detection method on a long pipeline using a dynamic pressure sensor. A new leakage system is proposed based on the measurements obtained from this dynamic pressure sensor. The data were analyzed using the wavelet transformation method. First, the signal provided by the pressure sensor its denoised and then leaks are detected from the presence of singularities in the signal. Field tests were carried out on a product oil pipeline of 94 km length. The in-field test results showed that the minimum ratio of detectable leakage is 0.6 % of throughput and the location error is below 300 m. The response time is less than 120 seconds. This new system has been applied in 5000 km pipelines in China and is proving its efficiency in detecting leak points.
Conversation Analysis in Applied Linguistics
DEFF Research Database (Denmark)
Kasper, Gabriele; Wagner, Johannes
2014-01-01
on applied CA, the application of basic CA's principles, methods, and findings to the study of social domains and practices that are interactionally constituted. We consider three strands—foundational, social problem oriented, and institutional applied CA—before turning to recent developments in CA research...... on learning and development. In conclusion, we address some emerging themes in the relationship of CA and applied linguistics, including the role of multilingualism, standard social science methods as research objects, CA's potential for direct social intervention, and increasing efforts to complement CA......For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...
Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis
Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.
2003-01-01
Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second parts (HD2) of $90^{\\circ}$ head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period $T=2^j$ ($% j=1$,2,$... $,6) to obtain wavelet coefficients. ...
Wavelet-based multiscale window transform and energy and vorticity analysis
Liang, Xiang San
A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System
Alleviating Border Effects in Wavelet Transforms for Nonlinear Time-varying Signal Analysis
Directory of Open Access Journals (Sweden)
SU, H.
2011-08-01
Full Text Available Border effects are very common in many finite signals analysis and processing approaches using convolution operation. Alleviating the border effects that can occur in the processing of finite-length signals using wavelet transform is considered in this paper. Traditional methods for alleviating the border effects are suitable to compression or coding applications. We propose an algorithm based on Fourier series which is proved to be appropriate to the application of time-frequency analysis of nonlinear signals. Fourier series extension method preserves the time-varying characteristics of the signals. A modified signal duration expression for measuring the extent of border effects region is presented. The proposed algorithm is confirmed to be efficient to alleviate the border effects in comparison to the current methods through the numerical examples.
The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis
Uddin, Gazi Salah; Bekiros, Stelios; Ahmed, Ali
2018-04-01
The global financial crisis and the subsequent geopolitical turbulence in energy markets have brought increased attention to the proper statistical modeling especially of the crude oil markets. In particular, we utilize a time-frequency decomposition approach based on wavelet analysis to explore the inherent dynamics and the casual interrelationships between various types of geopolitical, economic and financial uncertainty indices and oil markets. Via the introduction of a mixed discrete-continuous multiresolution analysis, we employ the entropic criterion for the selection of the optimal decomposition level of a MODWT as well as the continuous-time coherency and phase measures for the detection of business cycle (a)synchronization. Overall, a strong heterogeneity in the revealed interrelationships is detected over time and across scales.
Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP
Brooks, Geoffrey W.
1996-03-01
Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Kirkegaard, Poul Henning
2014-01-01
The presented study demonstrates an application of a previously proposed modal and wavelet analysis-based damage identification method to a wind turbine blade. A trailing edge debonding was introduced to a SSP 34m blade mounted on a test rig. Operational modal analysis (OMA) was conducted to obtain...... are captured in the CWT by significantly magnified transform coefficients, thus providing combined damage detection, localization, and size assessment. It was found that due to the nature of the proposed method, the value of the identification results highly depends on the number of employed measurement points....... Since only a limited number of measurement points were utilized in the experiments, valid damage identification can only be obtained when employing high-frequency modes....
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
Applied analysis and differential equations
Cârj, Ovidiu
2007-01-01
This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.
Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M.
2012-01-01
The objective of this study was to estimate leaf water content based on continuous wavelet analysis from the far infrared (2.5 - 14.0 μm) spectra. The entire dataset comprised of 394 far infrared spectra which were divided into calibration (262 spectra) and validation (132 spectra) subsets. The far
Applied survival analysis using R
Moore, Dirk F
2016-01-01
Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics...
THE APPLICATION OF WAVELET-MULTIFRACTAL ANALYSIS IN PROBLEMS OF METAL STRUCTURE
Directory of Open Access Journals (Sweden)
VOLCHUK V. N.
2015-09-01
Full Text Available Raising of problem. In order to obtain acceptable results of the evaluation of the metal structure developed methodology should include the use of both classical and modern methods of its evaluation and the properties of the produced goods. Thus, to establish the relationship between mechanical properties and structural elements of metal to use multifractal theory. The proposed method is the most appropriate to quantify the majority of real structures, which are integral approximation figures Euclid introduces some uncertainty, and therefore not always acceptable in practical problems of modern materials science. According to the proposed method, each of heterogeneous objects, which are the structures most metals can be characterized by variety of statistical Renyi dimensions. The range of dimensions multifractals interpreted as some of the physical laws, which have a separate statistical properties that make it possible to their financial performance. Application of statistical dimensions of the structural elements for the assessment of qualitative characteristics of metal contributes to their formalization as a function of the fractal dimension. This in turn makes it possible to identify and anticipate the physical and mechanical properties of the metal without producing special mechanical tests. Purpose obtain information about the possible application of wavelet-multifractal analysis to assess the microstructure of the metal. Conclusion. Using the methods of wavelet multifractal analysis, a statistical evaluation of the structural elements of steel St3ps. An analysis of the characteristics of uniformity, consistency and regularity of the structural elements has shown that most of the change observed in the samples subjected to accelerated cooling water in the temperature range of the intermediate (bainitic conversion 550 – 4500С, less - in samples cooled in the temperature range 650 pearlite transformation 6000С and the smallest
SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression
Energy Technology Data Exchange (ETDEWEB)
Bradley, J.N.; Brislawn, C.M.
1993-12-01
The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.
A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic
Directory of Open Access Journals (Sweden)
Meng Fan-Bo
2016-01-01
Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.
Application of time–frequency wavelet analysis in the reflectometry of thin films
Energy Technology Data Exchange (ETDEWEB)
Astaf’ev, S. B., E-mail: bard@crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Shchedrin, B. M. [Moscow State University, Faculty of Computational Mathematics and Cybernetics (Russian Federation); Yanusova, L. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)
2017-03-15
The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) the layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.
Xu, Chang
2017-04-01
The intrinsic random variability of an astronomical source hampers the detection of possible periodicities that we are interested in. We find that a simple first-order autoregressive [AR(1)] process gives a poor fit to the power decay in the observed spectrum for astrophysical sources and geodetic observations. Thus, appropriate background noise models have to be chosen for significance tests to distinguish real features from the intrinsic variability of the source. Here we recall the wavelet analysis with significance and confidence testing but extend it with the generalized Gauss Markov stochastic model as the null hypothesis, which includes AR(1) and a power law as special cases. We exemplify this discussion with real data, such as sunspot number data, geomagnetic indices, X-ray observations, as well as a Global Positioning System (GPS) position time series.
Silva, M Z; Gouyon, R; Lepoutre, F
2003-06-01
Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.
Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.
Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A
2015-01-01
This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.
From Calculus to Wavelets: ANew Mathematical Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
International Nuclear Information System (INIS)
Yoshida, Hiroyuki; Casalino, David D; Keserci, Bilgin; Coskun, Abdulhakim; Ozturk, Omer; Savranlar, Ahmet
2003-01-01
The purpose of this study was to apply a novel method of multiscale echo texture analysis for distinguishing benign (hemangiomas) from malignant (hepatocellular carcinomas (HCCs) and metastases) focal liver lesions in B-mode ultrasound images. In this method, regions of interest (ROIs) extracted from within the lesions were decomposed into subimages by wavelet packets. Multiscale texture features that quantify homogeneity of the echogenicity were calculated from these subimages and were combined by an artificial neural network (ANN). A subset of the multiscale features was selected that yielded the highest performance in the classification of lesions measured by the area under the receiver operating characteristic curve (A z ). In an analysis of 193 ROIs consisting of 50 hemangiomas, 87 hepatocellular carcinomas and 56 metastases, the multiscale features yielded a high A z value of 0.92 in distinguishing benign from malignant lesions, 0.93 in distinguishing hemangiomas from HCCs and 0.94 in distinguishing hemangiomas from metastases. Our new multiscale texture analysis method can effectively differentiate malignant from benign lesions, and thus has the potential to increase the accuracy of diagnosis of focal liver lesions in ultrasound images
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images
Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.
2018-02-01
Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.
Directory of Open Access Journals (Sweden)
H. L. Wei
2004-01-01
Full Text Available The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the Dst index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the Dst index, with a Hurst exponent H≈0.5 (power-law exponent β≈2 at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the Dst index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the Dst index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.
Selection of the wavelet function for the frequencies estimation
International Nuclear Information System (INIS)
Garcia R, A.
2007-01-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
Omenzetter, Piotr; Brownjohn, James M. W.; Moyo, Pilate
2003-08-01
Continuously operating instrumented structural health monitoring (SHM) systems are becoming a practical alternative to replace visual inspection for assessment of condition and soundness of civil infrastructure. However, converting large amount of data from an SHM system into usable information is a great challenge to which special signal processing techniques must be applied. This study is devoted to identification of abrupt, anomalous and potentially onerous events in the time histories of static, hourly sampled strains recorded by a multi-sensor SHM system installed in a major bridge structure in Singapore and operating continuously for a long time. Such events may result, among other causes, from sudden settlement of foundation, ground movement, excessive traffic load or failure of post-tensioning cables. A method of outlier detection in multivariate data has been applied to the problem of finding and localizing sudden events in the strain data. For sharp discrimination of abrupt strain changes from slowly varying ones wavelet transform has been used. The proposed method has been successfully tested using known events recorded during construction of the bridge, and later effectively used for detection of anomalous post-construction events.
Energy Technology Data Exchange (ETDEWEB)
Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx
2007-07-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
Wavelet-Based Bayesian Methods for Image Analysis and Automatic Target Recognition
National Research Council Canada - National Science Library
Nowak, Robert
2001-01-01
.... We have developed two new techniques. First, we have develop a wavelet-based approach to image restoration and deconvolution problems using Bayesian image models and an alternating-maximation method...
Modern problems in applied analysis
Rogosin, Sergei
2018-01-01
This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference “Boundary Value Problems, Functional Equations and Applications” (BAF-3), held in Rzeszow, Poland on 20-23 April 2016. The contributions presented here develop a technique related to the scope of the workshop and touching on the fields of differential and functional equations, complex and real analysis, with a special emphasis on topics related to boundary value problems. Further, the papers discuss various applications of the technique, mainly in solid mechanics (crack propagation, conductivity of composite materials), biomechanics (viscoelastic behavior of the periodontal ligament, modeling of swarms) and fluid dynamics (Stokes and Brinkman type flows, Hele-Shaw type flows). The book is addressed to all readers who are interested in the development and application of innovative research results that can help solve theoretical and real-world problems.
Polanco-Martínez, J. M.; Fernández-Macho, J.; Neumann, M. B.; Faria, S. H.
2018-01-01
This paper presents an analysis of EU peripheral (so-called PIIGS) stock market indices and the S&P Europe 350 index (SPEURO), as a European benchmark market, over the pre-crisis (2004-2007) and crisis (2008-2011) periods. We computed a rolling-window wavelet correlation for the market returns and applied a non-linear Granger causality test to the wavelet decomposition coefficients of these stock market returns. Our results show that the correlation is stronger for the crisis than for the pre-crisis period. The stock market indices from Portugal, Italy and Spain were more interconnected among themselves during the crisis than with the SPEURO. The stock market from Portugal is the most sensitive and vulnerable PIIGS member, whereas the stock market from Greece tends to move away from the European benchmark market since the 2008 financial crisis till 2011. The non-linear causality test indicates that in the first three wavelet scales (intraweek, weekly and fortnightly) the number of uni-directional and bi-directional causalities is greater during the crisis than in the pre-crisis period, because of financial contagion. Furthermore, the causality analysis shows that the direction of the Granger cause-effect for the pre-crisis and crisis periods is not invariant in the considered time-scales, and that the causality directions among the studied stock markets do not seem to have a preferential direction. These results are relevant to better understand the behaviour of vulnerable stock markets, especially for investors and policymakers.
Petroleum Pumps’ Current and Vibration Signatures Analysis Using Wavelet Coherence Technique
Directory of Open Access Journals (Sweden)
Rmdan Shnibha
2013-01-01
Full Text Available Vibration analysis is widely used for rotating machinery diagnostics; however measuring vibration of operational oil well pumps is not possible. The pump’s driver’s current signatures may provide condition-related information without the need for an access to the pump itself. This paper investigates the degree of relationship between the pump’s driver’s current signatures and its induced vibration. This relationship between the driver’s current signatures (DCS and its vibration signatures (DVS is studied by calculating magnitude-squared coherence and phase coherence parameters at a certain frequency band using continuous wavelet transform (CWT. The CWT coherence-based technique allows better analysis of temporal evolution of the frequency content of dynamic signals and areas in the time-frequency plane where the two signals exhibit common power or consistent phase behaviour indicating a relationship between the signals. This novel approach is validated by experimental data acquired from 3 kW petroleum pump’s driver. Both vibration and current signatures were acquired under different speed and load conditions. The outcomes of this research suggest the use of DCS analysis as reliable and inexpensive condition monitoring tool, which could be implemented for oil pumps, real-time monitoring associated with condition-based maintenance (CBM program.
Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets
Directory of Open Access Journals (Sweden)
Marco Gallegati
2013-04-01
Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.
Palm Oil Price, Exchange Rate, and Stock Market: A Wavelet Analysis on the Malaysian Market
Directory of Open Access Journals (Sweden)
Buerhan Saiti
2014-05-01
Full Text Available The study investigates causality between palm oil price, exchange rate and the Kuala Lumpur Composite Index (KLCI based on the theory of wavelets on the basis of monthly data from the period January 1990 - December 2012. This methodology enables us to identify that the causality between these economic variables at different time intervals. This wavelet decomposition also provides additional evidence to the “reverse causality” theory. We found that the wavelet cross-correlations between stock price and exchange rate skewed to the right at all levels with negative significant correlations which implies that the exchange rate leads the stock price. In the case of stock and commodity prices, there is no significant wavelet-crosscorrelation at first four levels. However, the wavelet cross-correlations skewed to the left at level 5 which implies that the stock price leads commodity price in the long-run. Finally, there is no significant wavelet cross-correlations at all levels as long as we concern between commodity price and exchange rate. It implies that there is no lead-lag relationship between commodity price and exchange rate.
Directory of Open Access Journals (Sweden)
Jaison Bennet
2014-01-01
Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.
Discrimination between landmine and mine-like targets using wavelets and spectral analysis
Directory of Open Access Journals (Sweden)
Mahmoud A. Mohana
2013-06-01
Ground penetrating radar (GPR is a powerful and non-destructive geophysical approach with a wide range of advantages in the field of landmine inspection. In the present paper, we apply different simulation models with Vivaldi antenna and mine-like targets by using the CST Microwave studio program. The field work is carried out by using a GPR device of model SIR 2000 from GSSI (Geophysical Survey Systems Incorporation connected to 900 MHz antenna where the targets were buried in sand soil. Depending on the fact that the receiving powers (reflected, refracted and scattered from the different materials are different, we study the spectral power densities for the received power from the different targets. The techniques used in this study are: direct fast Fourier transform, short time Fourier transform (spectrogram, wavelets transform and denoising techniques. Our results ought to be considered as finger prints for different scanned targets during this work. So we can discriminate between landmines and mine-like targets.
Wavelets and their applications past and future
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
Panet, I.; Chambodut, A.; Diament, M.; Holschneider, M.; Jamet, O.
2006-09-01
In this paper, we discuss the origin of superswell volcanism on the basis of representation and analysis of recent gravity and magnetic satellite data with wavelets in spherical geometry. We computed a refined gravity field in the south central Pacific based on the GRACE satellite GGM02S global gravity field and the KMS02 altimetric grid, and a magnetic anomaly field based on CHAMP data. The magnetic anomalies are marked by the magnetic lineation of the seafloor spreading and by a strong anomaly in the Tuamotu region, which we interpret as evidence for crustal thickening. We interpret our gravity field through a continuous wavelet analysis that allows to get a first idea of the internal density distribution. We also compute the continuous wavelet analysis of the bathymetric contribution to discriminate between deep and superficial sources. According to the gravity signature of the different chains as revealed by our analysis, various processes are at the origin of the volcanism in French Polynesia. As evidence, we show a large-scale anomaly over the Society Islands that we interpret as the gravity signature of a deeply anchored mantle plume. The gravity signature of the Cook-Austral chain indicates a complex origin which may involve deep processes. Finally, we discuss the particular location of the Marquesas chain as suggesting that the origin of the volcanism may interfere with secondary convection rolls or may be controlled by lithospheric weakness due to the regional stress field, or else related to the presence of the nearby Tuamotu plateau.
Directory of Open Access Journals (Sweden)
Giuseppa Sciortino
2016-04-01
Full Text Available We propose a methodology to support the physician in the automatic identification of mid-sagittal sections of the fetus in ultrasound videos acquired during the first trimester of pregnancy. A good mid-sagittal section is a key requirement to make the correct measurement of nuchal translucency which is one of the main marker for screening of chromosomal defects such as trisomy 13, 18 and 21. NT measurement is beyond the scope of this article. The proposed methodology is mainly based on wavelet analysis and neural network classifiers to detect the jawbone and on radial symmetry analysis to detect the choroid plexus. Those steps allow to identify the frames which represent correct mid-sagittal sections to be processed. The performance of the proposed methodology was analyzed on 3000 random frames uniformly extracted from 10 real clinical ultrasound videos. With respect to a ground-truth provided by an expert physician, we obtained a true positive, a true negative and a balanced accuracy equal to 87.26%, 94.98% and 91.12% respectively.
Wavelets a tutorial in theory and applications
1992-01-01
Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
Directory of Open Access Journals (Sweden)
Ming Li
2018-06-01
Full Text Available The effective prediction of storm track (ST is greatly beneficial for analyzing the development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity, and uncertainty of ST intensity index (STII, a new probabilistic prediction model was proposed based on dynamic Bayesian network (DBN and wavelet analysis (WA. We introduced probability theory and graph theory for the first time to quantitatively describe the nonlinear relationship and uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN was constructed through wavelet decomposition, structural learning, parameter learning, and probabilistic inference, which was used for expression of relation among predictors and probabilistic prediction of STII. The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model was able to give more comprehensive prediction information and higher prediction accuracy and had strong generalization ability and good stability.
Effect of vestibular neuritis on postural control using wavelets and fractal analysis.
Lorin, P; Manceau, C; Foubert, F
2010-01-01
What is the status of postural control a few months after an attack of vestibular neuritis (VN)? Using dynamic posturography and stabilometric signal treatment with wavelets and fractal analysis, we tried to answer this question by isolating the pathological postural parameters of VN. The study involved a group of 15 patients (GP) who suffered from VN and were compared to a group of control subjects (GC). Both groups underwent videonystagmography (VNG), dynamic posturography (PDY), and assessment using symptomatic scales (ES). GP and GC were comparable in terms of age mean, sex-ratio, average height and weight. The differences between GP and GC were the following videonystagmography criteria: Spontaneous nystagmus (NS) (P= 0.005), head shaking test (HST) (p= 0.001), vibratory test (TVO) (p= 0.009). There were also differences in the symptomatic scales scores for the vertigo symptom scale (VSS) (p= 0.011), the dizziness handicap inventory (DHI) (p= 0.001), and the short form 36 (SF36) (p= 0.01). All the 84 new parameters of both GP and GC differ. This difference was significant (p conditions were found to be non-discriminating. Vestibular neuritis affects new stabilometric parameters. These parameters are more adapted to the present setup compared to previous parameters which are used to analyse non-periodic oscillations of posture. They are important in follow-up and rehabilitation of patients.
Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies
Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.
2014-11-01
Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
Directory of Open Access Journals (Sweden)
Mingliang Gao
2018-02-01
Full Text Available Land subsidence is the disaster phenomenon of environmental geology with regionally surface altitude lowering caused by the natural or man-made factors. Beijing, the capital city of China, has suffered from land subsidence since the 1950s, and extreme groundwater extraction has led to subsidence rates of more than 100 mm/year. In this study, we employ two SAR datasets acquired by Envisat and TerraSAR-X satellites to investigate the surface deformation in Beijing Plain from 2003 to 2013 based on the multi-temporal InSAR technique. Furthermore, we also use observation wells to provide in situ hydraulic head levels to perform the evolution of land subsidence and spatial-temporal changes of groundwater level. Then, we analyze the accumulated displacement and hydraulic head level time series using continuous wavelet transform to separate periodic signal components. Finally, cross wavelet transform (XWT and wavelet transform coherence (WTC are implemented to analyze the relationship between the accumulated displacement and hydraulic head level time series. The results show that the subsidence centers in the northern Beijing Plain is spatially consistent with the groundwater drop funnels. According to the analysis of well based results located in different areas, the long-term groundwater exploitation in the northern subsidence area has led to the continuous decline of the water level, resulting in the inelastic and permanent compaction, while for the monitoring wells located outside the subsidence area, the subsidence time series show obvious elastic deformation characteristics (seasonal characteristics as the groundwater level changes. Moreover, according to the wavelet transformation, the land subsidence time series at monitoring well site lags several months behind the groundwater level change.
Luo, G. Y.; Osypiw, D.; Irle, M.
2003-05-01
The dynamic behaviour of wood machining processes affects the surface finish quality of machined workpieces. In order to meet the requirements of increased production efficiency and improved product quality, surface quality information is needed for enhanced process control. However, current methods using high price devices or sophisticated designs, may not be suitable for industrial real-time application. This paper presents a novel approach of surface quality evaluation by on-line vibration analysis using an adaptive spline wavelet algorithm, which is based on the excellent time-frequency localization of B-spline wavelets. A series of experiments have been performed to extract the feature, which is the correlation between the relevant frequency band(s) of vibration with the change of the amplitude and the surface quality. The graphs of the experimental results demonstrate that the change of the amplitude in the selective frequency bands with variable resolution (linear and non-linear) reflects the quality of surface finish, and the root sum square of wavelet power spectrum is a good indication of surface quality. Thus, surface quality can be estimated and quantified at an average level in real time. The results can be used to regulate and optimize the machine's feed speed, maintaining a constant spindle motor speed during cutting. This will lead to higher level control and machining rates while keeping dimensional integrity and surface finish within specification.
TJ-II wave forms analysis with wavelets and support vector machines
International Nuclear Information System (INIS)
Dormido-Canto, S.; Farias, G.; Dormido, R.; Vega, J.; Sanchez, J.; Santos, M.
2004-01-01
Since the fusion plasma experiment generates hundreds of signals, it is essential to have automatic mechanisms for searching similarities and retrieving of specific data in the wave form database. Wavelet transform (WT) is a transformation that allows one to map signals to spaces of lower dimensionality. Support vector machine (SVM) is a very effective method for general purpose pattern recognition. Given a set of input vectors which belong to two different classes, the SVM maps the inputs into a high-dimensional feature space through some nonlinear mapping, where an optimal separating hyperplane is constructed. In this work, the combined use of WT and SVM is proposed for searching and retrieving similar wave forms in the TJ-II database. In a first stage, plasma signals will be preprocessed by WT to reduce their dimensionality and to extract their main features. In the next stage, and using the smoothed signals produced by the WT, SVM will be applied to show up the efficiency of the proposed method to deal with the problem of sorting out thousands of fusion plasma signals.From observation of several experiments, our WT+SVM method is very viable, and the results seems promising. However, we have further work to do. We have to finish the development of a Matlab toolbox for WT+SVM processing and to include new relevant features in the SVM inputs to improve the technique. We have also to make a better preprocessing of the input signals and to study the performance of other generic and self custom kernels. To reach it, and since the preprocessing stages are very time consuming, we are going to study the viability of using DSPs, RPGAs or parallel programming techniques to reduce the execution time
Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J
2015-01-01
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in
Directory of Open Access Journals (Sweden)
Ryan B Graham
Full Text Available Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG. Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs to our previous data to comprehensively evaluate: 1 differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power, and 2 muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue
Directory of Open Access Journals (Sweden)
VOLCHUK V. M.
2015-10-01
Full Text Available Problem statement. At present , to implement a deterministic method of assessment of the mechanical features is not possible based on the analysis of causalit links, because they are influenced with a large number of variables that are highly correlated with each other, and some part of them are changing in a wide range of unpredictable ways. Especially, this problem is in assessing the mechanical properties of metal constructions and products of special purpose in the process of their expluatation: oil pipes, carcasses of residential buildings, etc. In these cases, mechanical testing is the problem is not always technically feasible, and out of variety of express methods of non-destructive control are used often in practice in verbal or semiquantitative. The difficulty is that under the impact of various factors: temperature, corrosive environments, etc., structural changes occur far from thermodynamic equilibrium, and as result the mixed structures are got, including widmanshtatten structure. Use of classical methods of metallography is not always possible to quantify such structures with the precision that may be necessary for practical purposes. In this regard, considerable interest is the search for new approaches to assess the metal structure with a purpose of prognosis of its mechanical properties. Purpose. To obtain information about the possible application of wavelet-multifractal analysis to assess the mechanical properties of metal. Conclusion. Sensitiveness between strength properties and uniformity is set with regularity of structure elements of bainite-perlite group, and also between the viscous properties and uniformity, a regularity of element of the ferrite group. The results suggest that the realization of this method allows in the minimal and possible cost for the real tests to provide the necessary accuracy for practical purposes.
OIL PRICES AND TRADE IN TURKEY: A WAVELET CONTINUOUS TRANSFORM ANALYSIS
Directory of Open Access Journals (Sweden)
Nuray Terzi
2016-11-01
Full Text Available Since the beginning of the Great Recession, the conceptuality of the economic literature has been going through an unprecedented change at a rate which is mind-boggling. The flaws of the DSGE model that let to its breakdown, the existence of a zero lower bound for a period that is much longer than expected, the important and intriguing models that the literature on nowcasting offers, heterodox beliefs of yesterday that became orthodox notions such as the non-linearity of all variables used in empirical analysis as well as the role of measurement errors in these variables as the main cause of continuous fluctuations have all been at the forefront of this wave of new research in economics to build robust (or at least not flawed models that are somewhat capable of explaining the nature of human behavior that has been shaped by the global technological advances which hardly has been a part of the past conventional economic analysis. Moreover, questions surrounding the models used to employ expectation formation of individuals and the shifting focus to company culture rather than just a representative agent have added additional fuel to a debate which seems to be only at its infant stages. Nonetheless, there are still important topics which are much simpler to tackle with that are left unattended by the literature among all this chaos that dominates the research and the empirical applications. One of them is the literature between the relation of oil prices and trade deficit. This paper studies the oil price-trade deficit relationship in the emerging market of Turkey, employing one of the recent unconventional methods that take into account the non-linear nature of the variables, the wavelet methodology. Our findings show that these two variables are definitely positively related and oil prices are leading the trade deficit, especially during the periods of turmoil and fluctuations.
Conversation Analysis and Applied Linguistics.
Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David
2002-01-01
Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)
Certain problems concerning wavelets and wavelets packets
International Nuclear Information System (INIS)
Siddiqi, A.H.
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs
Certain problems concerning wavelets and wavelets packets
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A H
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.
Czech Academy of Sciences Publication Activity Database
Stanke, L.; Šmíd, Petr; Horváth, P.
2015-01-01
Roč. 126, 7-8 (2015), s. 865-870 ISSN 0030-4026 R&D Projects: GA MŠk(CZ) LG13007; GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : phase retrieval * wavelets * speckle interferometry * speckle imaging * metrology Subject RIV: BH - Optics , Masers, Lasers Impact factor: 0.742, year: 2015
A novel neural-wavelet approach for process diagnostics and complex system modeling
Gao, Rong
Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.
Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R.
2018-05-01
A multi-scale and multi-object interaction phenomena can arise when a group of walking pedestrians crosses a structure capable of exhibiting dynamic response. This is because each pedestrian is an autonomous dynamic system capable of displaying intricate behaviour affected by social, psychological, biomechanical and environmental factors, including adaptations to the structural motion. Despite a wealth of mathematical models attempting to describe and simulate coupled crowd-structure system, their applicability can generally be considered uncertain. This can be assigned to a number of assumptions made in their development and the scarcity or unavailability of data suitable for their validation, in particular those associated with pedestrian-pedestrian and pedestrian-structure interaction. To alleviate this problem, data on behaviour of individual pedestrians within groups of six walkers with different spatial arrangements are gathered simultaneously with data on dynamic structural response of a footbridge, from a series of measurements utilising wireless motion monitors. Unlike in previous studies on coordination of pedestrian behaviour, the collected data can serve as a proxy for pedestrian vertical force, which is of critical importance from the point of view of structural stability. A bivariate analysis framework is proposed and applied to these data, encompassing wavelet transform, synchronisation measures based on Shannon entropy and circular statistics. A topological pedestrian map is contrived showing the strength and directionality of between-subjects interactions. It is found that the coordination in pedestrians' vertical force depends on the spatial collocation within a group, but it is generally weak. The relationship between the bridge and pedestrian behaviour is also analysed, revealing stronger propensity for pedestrians to coordinate their force with the structural motion rather than with each other.
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.
2018-03-01
Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.
Wavelet analysis of near-inertial currents at the East Flower Garden Bank
Teague, W. J.; Wijesekera, H. W.; Jarosz, E.; Lugo-Fernández, A.; Hallock, Z. R.
2014-10-01
Near-inertial currents (NICs) often dominate the mean circulation at the East Flower Garden Bank (EFGB), part of the Flower Garden Banks National Marine Sanctuary. The EFGB, one of several submerged coral reefs, is located in the northwestern Gulf of Mexico, about 190 km southeast of Galveston, Texas. The bank is about 6 km wide in the east-west direction and rises to within about 20 m from the surface. NICs near the EFGB are described using current data from 5 acoustic Doppler current profilers that were moored at the edges of the bank and on top of the bank for about a year. A wavelet analysis was used in order to better describe the nonstationarity of the NICs. NICs were strongest during spring and summer due to their near resonant response with sea breeze and the shallowness of the mixed layer, and exhibited a first-baroclinic-mode vertical structure. NICS were generally larger near the surface and extended to the bottom on the west side of the EFGB but only to within about 20 m of the bottom on the eastern side of the bank. NIC ellipses were nearly circular and rotated clockwise above the top of the EFGB but became flatter and aligned with the bathymetry with increasing depth; occasionally, on the eastern side of the bank, the NIC vectors rotated counterclockwise due to probable effects of lee vortices arising from the mean flow interacting with the bank. Most energy input by the wind at the surface was likely transferred downward through divergence of the meridional flow against the coastal boundary. The inertial currents were at times more energetic than the mean flow, and often accounted for more than 50% of the total current energy.
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
Wavelets and multiscale signal processing
Cohen, Albert
1995-01-01
Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...
Søgaard, Andreas
For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...
Institute of Scientific and Technical Information of China (English)
Yan Rui; Huang Fuqiong; Chen Yong
2007-01-01
Wavelet decomposition is used to analyze barometric fluctuation and earth tidal response in borehole water level changes. We apply wavelet analysis method to the decomposition of barometric fluctuation and earth tidal response into several temporal series in different frequency ranges. Barometric and tidal coefficients in different frequency ranges are computed with least squares method to remove barometric and tidal response. Comparing this method with general linear regression analysis method, we find wavelet analysis method can efficiently remove barometric and earth tidal response in borehole water level. Wavelet analysis method is based on wave theory and vibration theories. It not only considers the frequency characteristic of the observed data but also the temporal characteristic, and it can get barometric and tidal coefficients in different frequency ranges. This method has definite physical meaning.
Xiong, Si-Ting; Muller, Jan-Peter
2017-04-01
Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Anastasiadou, Maria N; Christodoulakis, Manolis; Papathanasiou, Eleftherios S; Papacostas, Savvas S; Mitsis, Georgios D
2017-09-01
This paper proposes supervised and unsupervised algorithms for automatic muscle artifact detection and removal from long-term EEG recordings, which combine canonical correlation analysis (CCA) and wavelets with random forests (RF). The proposed algorithms first perform CCA and continuous wavelet transform of the canonical components to generate a number of features which include component autocorrelation values and wavelet coefficient magnitude values. A subset of the most important features is subsequently selected using RF and labelled observations (supervised case) or synthetic data constructed from the original observations (unsupervised case). The proposed algorithms are evaluated using realistic simulation data as well as 30min epochs of non-invasive EEG recordings obtained from ten patients with epilepsy. We assessed the performance of the proposed algorithms using classification performance and goodness-of-fit values for noisy and noise-free signal windows. In the simulation study, where the ground truth was known, the proposed algorithms yielded almost perfect performance. In the case of experimental data, where expert marking was performed, the results suggest that both the supervised and unsupervised algorithm versions were able to remove artifacts without affecting noise-free channels considerably, outperforming standard CCA, independent component analysis (ICA) and Lagged Auto-Mutual Information Clustering (LAMIC). The proposed algorithms achieved excellent performance for both simulation and experimental data. Importantly, for the first time to our knowledge, we were able to perform entirely unsupervised artifact removal, i.e. without using already marked noisy data segments, achieving performance that is comparable to the supervised case. Overall, the results suggest that the proposed algorithms yield significant future potential for improving EEG signal quality in research or clinical settings without the need for marking by expert
Torres, A. F.
2011-12-01
two excellent tools from the Learning Machine field know as the Wavelet Decomposition Analysis (WDA) and the Multivariate Relevance Vector Machine (MVRVM) to forecast the results obtained from the SEBAL algorithm using LandSat imagery and soil moisture maps. The predictive capability of this novel hybrid WDA-RVM actual evapotranspiration forecasting technique is tested by comparing the crop water requirements and delivered crop water in the Lower Sevier River Basin, Utah, for the period 2007-2011. This location was selected because of their success increasing the efficiency of water use and control along the entire irrigation system. Research is currently on going to assess the efficacy of the WDA-RVM technique along the irrigation season, which is required to enhance the water use efficiency and minimize climate change impact on the Sevier River Basin.
Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets
International Nuclear Information System (INIS)
Sen, A.K.; Litak, G.; Finney, C.E.A.; Daw, C.S.; Wagner, R.M.
2010-01-01
In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel-air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel-air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel-air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.
Oh, Yun-Yeong; Yun, Seong-Taek; Yu, Soonyoung; Hamm, Se-Yeong
2017-12-01
To identify and quantitatively evaluate complex latent factors controlling groundwater level (GWL) fluctuations in a riverside alluvial aquifer influenced by barrage construction, we developed the combined use of dynamic factor analysis (DFA) and wavelet analysis (WA). Time series data of GWL, river water level and precipitation were collected for 3 years (July 2012 to June 2015) from an alluvial aquifer underneath an agricultural area of the Nakdong river basin, South Korea. Based on the wavelet coefficients of the final approximation, the GWL data was clustered into three groups (WCG1 to WCG3). Two dynamic factors (DFs) were then extracted using DFA for each group; thus, six major factors were extracted. Next, the time-frequency variability of the extracted DFs was examined using multiresolution cross-correlation analysis (MRCCA) with the following steps: 1) major driving forces and their scales in GWL fluctuations were identified by comparing maximum correlation coefficients (rmax) between DFs and the GWL time series and 2) the results were supplemented using the wavelet transformed coherence (WTC) analysis between DFs and the hydrological time series. Finally, relative contributions of six major DFs to the GWL fluctuations could be quantitatively assessed by calculating the effective dynamic efficiency (Def). The characteristics and relevant process of the identified six DFs are: 1) WCG1DF4,1 as an indicative of seasonal agricultural pumping (scales = 64-128 days; rmax = 0.68-0.89; Def ≤ 23.1%); 2) WCG1DF4,4 representing the cycle of regional groundwater recharge (scales = 64-128 days; rmax = 0.98-1.00; Def ≤ 11.1%); 3) WCG2DF4,1 indicating the complex interaction between the episodes of precipitation and direct runoff (scales = 2-8 days; rmax = 0.82-0.91; Def ≤ 35.3%) and seasonal GW-RW interaction (scales = 64-128 days; rmax = 0.76-0.91; Def ≤ 14.2%); 4) WCG2DF4,4 reflecting the complex effects of seasonal pervasive pumping and the local recharge
Applying critical analysis - main methods
Directory of Open Access Journals (Sweden)
Miguel Araujo Alonso
2012-02-01
Full Text Available What is the usefulness of critical appraisal of literature? Critical analysis is a fundamental condition for the correct interpretation of any study that is subject to review. In epidemiology, in order to learn how to read a publication, we must be able to analyze it critically. Critical analysis allows us to check whether a study fulfills certain previously established methodological inclusion and exclusion criteria. This is frequently used in conducting systematic reviews although eligibility criteria are generally limited to the study design. Critical analysis of literature and be done implicitly while reading an article, as in reading for personal interest, or can be conducted in a structured manner, using explicit and previously established criteria. The latter is done when formally reviewing a topic.
Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform
Institute of Scientific and Technical Information of China (English)
WEN Fan
2000-01-01
A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland＇s. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot
Construction of Time-Dependent Spectra Using Wavelet Analysis for Determination of Global Damage
DEFF Research Database (Denmark)
Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R.K.
A new method for computing Maximum Softening Damage Index (MSDI) is proposed. The MSDI, a measure of global damage, is based on the relative reduction of the first eigenfrequency (or equivalently, the relative increase in the fundamental period) of a structure over the course of a damage event. T....... The method proposed here makes use of wavelet transform coefficients of measured output response records to provide time-localized information on structural softening....
Directory of Open Access Journals (Sweden)
Triwiyanto Triwiyanto
2017-01-01
Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
Islam, Md. Matiqul; Kabir, M. Hasnat; Ullah, Sk. Enayet
2012-01-01
The impact of using wavelet based technique on the performance of a MC-CDMA wireless communication system has been investigated. The system under proposed study incorporates Walsh Hadamard codes to discriminate the message signal for individual user. A computer program written in Mathlab source code is developed and this simulation study is made with implementation of various antenna diversity schemes and fading (Rayleigh and Rician) channel. Computer simulation results demonstrate that the p...
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...
Application of Improved Wavelet Thresholding Function in Image Denoising Processing
Directory of Open Access Journals (Sweden)
Hong Qi Zhang
2014-07-01
Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.
Horowitz, F. G.; Gaede, O.
2014-12-01
Wavelet multiscale edge analysis of potential fields (a.k.a. "worms") has been known since Moreau et al. (1997) and was independently derived by Hornby et al. (1999). The technique is useful for producing a scale-explicit overview of the structures beneath a gravity or magnetic survey, including establishing the location and estimating the attitude of surface features, as well as incorporating information about the geometric class (point, line, surface, volume, fractal) of the underlying sources — in a fashion much like traditional structural indices from Euler solutions albeit with better areal coverage. Hornby et al. (2002) show that worms form the locally highest concentration of horizontal edges of a given strike — which in conjunction with the results from Mallat and Zhong (1992) induces a (non-unique!) inversion where the worms are physically interpretable as lateral boundaries in a source distribution that produces a close approximation of the observed potential field. The technique has enjoyed widespread adoption and success in the Australian mineral exploration community — including "ground truth" via successfully drilling structures indicated by the worms. Unfortunately, to our knowledge, all implementations of the code to calculate the worms/multiscale edges (including Horowitz' original research code) are either part of commercial software packages, or have copyright restrictions that impede the use of the technique by the wider community. The technique is completely described mathematically in Hornby et al. (1999) along with some later publications. This enables us to re-implement from scratch the code required to calculate and visualize the worms. We are freely releasing the results under an (open source) BSD two-clause software license. A git repository is available at . We will give an overview of the technique, show code snippets using the codebase, and present visualization results for example datasets (including the Surat basin of Australia
Wavelets and triple difference as a mathematical method for filtering and mitigation of DGPS errors
Directory of Open Access Journals (Sweden)
Aly M. El-naggar
2015-12-01
Wavelet spectral techniques can separate GPS signals into sub-bands where different errors can be separated and mitigated. The main goal of this paper was the development and implementation of DGPS error mitigation techniques using triple difference and wavelet. This paper studies, analyzes and provides new techniques that will help mitigate these errors in the frequency domain. The proposed technique applied to smooth noise for GPS receiver positioning data is based upon the analysis of wavelet transform (WT. The technique is applied using wavelet as a de-noising tool to tackle the high-frequency errors in the triple difference domain and to obtain a de-noised triple difference signal that can be used in a positioning calculation.
Visualization of a Turbulent Jet Using Wavelets
Institute of Scientific and Technical Information of China (English)
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu
2012-05-01
To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving
International Nuclear Information System (INIS)
Shukri Mohd
2013-01-01
Full-text: Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed Wavelet Transform analysis and Modal Location (WTML) based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) technique and DeltaTlocation. The results of the study show that the WTML method produces more accurate location results compared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure. (author)
International Nuclear Information System (INIS)
Mohd, Shukri; Holford, Karen M.; Pullin, Rhys
2014-01-01
Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure
Energy Technology Data Exchange (ETDEWEB)
Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)
2014-02-12
Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.
Essentials of applied dynamic analysis
Jia, Junbo
2014-01-01
This book presents up-to-date knowledge of dynamic analysis in engineering world. To facilitate the understanding of the topics by readers with various backgrounds, general principles are linked to their applications from different angles. Special interesting topics such as statistics of motions and loading, damping modeling and measurement, nonlinear dynamics, fatigue assessment, vibration and buckling under axial loading, structural health monitoring, human body vibrations, and vehicle-structure interactions etc., are also presented. The target readers include industry professionals in civil, marine and mechanical engineering, as well as researchers and students in this area.
WANG, D.; Wang, Y.; Zeng, X.
2017-12-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.
Directory of Open Access Journals (Sweden)
George P. Papaioannou
2015-10-01
Full Text Available We study the co-evolution of the dynamics or co-movement of two electricity markets, the Italian and Greek, by studying the dynamics of their wholesale day-ahead prices, simultaneously in the time-frequency domain. Co-movement is alternatively referred as market integration in financial economics and markets are internationally integrated if the reward for risk is identical regardless the market one trades in. The innovation of this work is the application of wavelet analysis and more specifically the wavelet coherence to estimate the dynamic interaction between these two prices. Our method is compared to other generic econometric tools used in Economics and Finance namely the dynamic correlation and coherence analysis, to study the co-movement of variables of the type related to these two fields. Our study reveals valuable information that we believe will be extremely useful to the authorities as well as other agents participating in these markets to better prepare the national markets towards the European target model, a framework in which the two markets will be coupled.
Directory of Open Access Journals (Sweden)
Shuihua Wang
2015-01-01
Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.
Applied systems analysis. No. 22
International Nuclear Information System (INIS)
1980-12-01
Based on a detailed analysis of demands in the area Cologne/Frankfurt, the amount of the system products for this region were ascertained, which under consideration of technical conditions and entrepreneurial aspects seemed to be disposable at cost equality with competative energy supplies. Based on these data, the technical components of the system, location and piping were fixed and first- and operating costs were determined. For a judgement of the economics, the key numbers, cash value, internal rate of interest and cost recovery rate were determined from the difference of costs between the nuclear long distance energy system and alternative facilities. Furthermore specific production cost, associated prices and contribution margin were presented for each product. (orig.) [de
International Nuclear Information System (INIS)
Kingsbury, J Ng and N G
2004-01-01
treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences. (book review)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Iris image recognition wavelet filter-banks based iris feature extraction schemes
Rahulkar, Amol D
2014-01-01
This book provides the new results in wavelet filter banks based feature extraction, and the classifier in the field of iris image recognition. It provides the broad treatment on the design of separable, non-separable wavelets filter banks, and the classifier. The design techniques presented in the book are applied on iris image analysis for person authentication. This book also brings together the three strands of research (wavelets, iris image analysis, and classifier). It compares the performance of the presented techniques with state-of-the-art available schemes. This book contains the compilation of basic material on the design of wavelets that avoids reading many different books. Therefore, it provide an easier path for the new-comers, researchers to master the contents. In addition, the designed filter banks and classifier can also be effectively used than existing filter-banks in many signal processing applications like pattern classification, data-compression, watermarking, denoising etc. that will...
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Li, Jia; Tian, Yonghong; Gao, Wen
2008-01-01
In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.
Vassilikos, Vassilios P; Mantziari, Lilian; Dakos, Georgios; Kamperidis, Vasileios; Chouvarda, Ioanna; Chatzizisis, Yiannis S; Kalpidis, Panagiotis; Theofilogiannakos, Efstratios; Paraskevaidis, Stelios; Karvounis, Haralambos; Mochlas, Sotirios; Maglaveras, Nikolaos; Styliadis, Ioannis H
2014-01-01
Wider QRS and left bundle branch block morphology are related to response to cardiac resynchronization therapy (CRT). A novel time-frequency analysis of the QRS complex may provide additional information in predicting response to CRT. Signal-averaged electrocardiograms were prospectively recorded, before CRT, in orthogonal leads and QRS decomposition in three frequency bands was performed using the Morlet wavelet transformation. Thirty eight patients (age 65±10years, 31 males) were studied. CRT responders (n=28) had wider baseline QRS compared to non-responders and lower QRS energies in all frequency bands. The combination of QRS duration and mean energy in the high frequency band had the best predicting ability (AUC 0.833, 95%CI 0.705-0.962, p=0.002) followed by the maximum energy in the high frequency band (AUC 0.811, 95%CI 0.663-0.960, p=0.004). Wavelet transformation of the QRS complex is useful in predicting response to CRT. © 2013.
Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong
2009-07-01
A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Energy Technology Data Exchange (ETDEWEB)
Sen, Asok K. [Richard G. Lugar Centre for Renewable Energy, and Department of Mathematical Sciences, Indiana University, (United States)], email: asen@iupui.edu; Akif Ceviz, M.; Volkan Oner, I. [Department of Mechanical Engineering, University of Ataturk (Turkey)], email: aceviz@atauni.edu.tr
2011-07-01
The cycle-to-cycle variations (CCV) of the indicated mean effective pressure (IMEP) in a spark ignition engine fuelled by gasoline and gasoline-hydrogen blends is investigated. CCVs are estimated by using the coefficient of variation (COV) and the overall spectral power given by the global wavelet spectrum (GWS). It was found that the addition of hydrogen reduces the CCV of the IMEP. Analysis of the wavelet can also identify the dominant modes of variability and delineate the engine cycles over which these modes can persist. Air-fuel ratio was varied from 1.0 to 1.3, and hydrogen was added up to 7.74% by volume. The engine was operated at 2000 rpm. Results demonstrate that subject to air-fuel ratio and % of hydrogen added, IMEP time series can exhibit multiscale dynamics consisting of persistent oscillations and intermittent fluctuations. These results can help develop effective control strategies to reduce cyclic variability in a spark ignition engine fuelled by gasoline-hydrogen mixtures.
Malar, E; Kandaswamy, A; Chakravarthy, D; Giri Dharan, A
2012-09-01
The objective of this paper is to reveal the effectiveness of wavelet based tissue texture analysis for microcalcification detection in digitized mammograms using Extreme Learning Machine (ELM). Microcalcifications are tiny deposits of calcium in the breast tissue which are potential indicators for early detection of breast cancer. The dense nature of the breast tissue and the poor contrast of the mammogram image prohibit the effectiveness in identifying microcalcifications. Hence, a new approach to discriminate the microcalcifications from the normal tissue is done using wavelet features and is compared with different feature vectors extracted using Gray Level Spatial Dependence Matrix (GLSDM) and Gabor filter based techniques. A total of 120 Region of Interests (ROIs) extracted from 55 mammogram images of mini-Mias database, including normal and microcalcification images are used in the current research. The network is trained with the above mentioned features and the results denote that ELM produces relatively better classification accuracy (94%) with a significant reduction in training time than the other artificial neural networks like Bayesnet classifier, Naivebayes classifier, and Support Vector Machine. ELM also avoids problems like local minima, improper learning rate, and over fitting. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Ani Shabri
2014-01-01
Full Text Available Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI, has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
International Nuclear Information System (INIS)
Bolzani, M.J.A.; Guarnieri, F.L.; Vieira, Paulo Cesar
2009-01-01
Nowadays, wavelet analysis of turbulent flows have become increasingly popular. However, the study of geometric characteristics from wavelet functions is still poorly explored. In this work we compare the performance of two wavelet functions in extracting the coherent structures from solar wind velocity time series. The data series are from years 1996 to 2002 (except 1998 and 1999). The wavelet algorithm decomposes the annual time-series in two components: the coherent part and non-coherent one, using the daubechies-4 and haar wavelet function. The threshold assumed is based on a percentage of maximum variance found in each dyadic scale. After the extracting procedure, we applied the power spectral density on the original time series and coherent time series to obtain spectral indices. The results from spectral indices show higher values for the coherent part obtained by daubechies-4 than those obtained by the haar wavelet function. Using the kurtosis statistical parameter, on coherent and non-coherent time series, it was possible to conjecture that the differences found between two wavelet functions may be associated with their geometric forms. (author)
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Directory of Open Access Journals (Sweden)
Ram Sewak SINGH
2017-12-01
Full Text Available Power spectral analysis of short-term heart rate variability (HRV can provide instant valuable information to understand the functioning of autonomic control over the cardiovascular system. In this study, an adaptive continuous Morlet wavelet transform (ACMWT method has been used to describe the time-frequency characteristics of the HRV using band power spectra and the median value of interquartile range. Adaptation of the method was based on the measurement of maximum energy concentration. The ACMWT has been validated on synthetic signals (i.e. stationary, non-stationary as slow varying and fast changing frequency with time modeled as closest to dynamic changes in HRV signals. This method has been also tested in the presence of additive white Gaussian noise (AWGN to show its robustness towards the noise. From the results of testing on synthetic signals, the ACMWT was found to be an enhanced energy concentration estimator for assessment of power spectral of short-term HRV time series compared to adaptive Stockwell transform (AST, adaptive modified Stockwell transform (AMST, standard continuous Morlet wavelet transform (CMWT and Stockwell transform (ST estimators at statistical significance level of 5%. Further, the ACMWT was applied to real HRV data from Fantasia and MIT-BIH databases, grouped as healthy young group (HYG, healthy elderly group (HEG, arrhythmia controlled medication group (ARCMG, and supraventricular tachycardia group (SVTG subjects. The global results demonstrate that spectral indices of low frequency power (LFp and high frequency power (HFp of HRV were decreased in HEG compared to HYG subjects (p<0.0001. While LFp and HFp indices were increased in ARCMG compared to HEG (p<0.00001. The LFp and HFp components of HRV obtained from SVTG were reduced compared to other group subjects (p<0.00001.
Estudi d'optimització per a regression wavelet analysis a través de models de regressió combinats
Martín Somé, Ángel
2016-01-01
Basant-nos en el treball realitzat a l'article "Regression wavelet analysis for lossless coding of remote-sensing data", es presenta un aprofundiment en la matèria intentant trobar punts de millora pel que fa a rendiment de compressió o el cost computacional de la transformació. RWA utilitza implementacions de la transformada wavelet discreta, concretament en aquest projecte només la implementada amb el filtre Haar, per dividir les dades en components d'aproximació i components de detall. Les...
Directory of Open Access Journals (Sweden)
Tarek eLajnef
2015-07-01
Full Text Available A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG signals are split into oscillatory (spindles and transient (K-complex components. This decomposition is conveniently achieved by applying morphological component analysis (MCA to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT. Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i the transient component to reveal K-complexes and (ii the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity versus FDR on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1, the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62% and 49.09% respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are
Directory of Open Access Journals (Sweden)
Ruben Gustav Leonhardt Real
2014-09-01
Full Text Available This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT as a method for the extraction and assessment of event-related brain potentials (ERP in data from a single subject. Sensitivity, specificity, positive (PPV and negative predictive values (NPV of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings.
Mostafapour, A; Davoodi, S; Ghareaghaji, M
2014-12-01
In this study, the theories of wavelet transform and cross-time frequency spectrum (CTFS) are used to locate AE source with frequency-varying wave velocity in plate-type structures. A rectangular array of four sensors is installed on the plate. When an impact is generated by an artificial AE source such as Hsu-Nielsen method of pencil lead breaking (PLB) at any position of the plate, the AE signals will be detected by four sensors at different times. By wavelet packet decomposition, a packet of signals with frequency range of 0.125-0.25MHz is selected. The CTFS is calculated by the short-time Fourier transform of the cross-correlation between considered packets captured by AE sensors. The time delay is calculated when the CTFS reaches the maximum value and the corresponding frequency is extracted per this maximum value. The resulting frequency is used to calculate the group velocity of wave velocity in combination with dispersive curve. The resulted locating error shows the high precision of proposed algorithm. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform
Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin
2018-04-01
Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.
Parametric instability analysis of truncated conical shells using the Haar wavelet method
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
Application of Wavelets and Quaternions to NIR Spectra Classification
International Nuclear Information System (INIS)
Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J.C.
2003-01-01
This document describes how multi resolution analysis can combine with the use of quaternions to identify near infrared spectra. The method is applied to spectra of plastics usually present in domestic wastes. First, Haar wavelet is applied to spectrum. With the coefficients obtained, a quaternion is built. We named this quaternion a characteristic quaternion. Distances to characteristic quaternions are used to classify new quaternions. (Author) 54 refs
Hassan, Said A.; Abdel-Gawad, Sherif A.
2018-02-01
Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.
Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin
2008-01-01
Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.
Gomez, C.
2018-04-01
From feature recognition to multiscale analysis, the human brain does this computation almost instantaneously, but reproducing this process for effective computation is still a challenge. Although it is a growing field in computational geomorphology, there has been only limited investigation of those issues on volcanoes. For the present study, we investigated Miyakejima, a volcanic island in the Izu archipelago, located 200 km south of Tokyo City (Japan). The island has experienced numerous Quaternary and historical eruptions, which have been recorded in details and therefore provide a solid foundation to experiment remote-sensing methods and compare the results to existing data. In the present study, the author examines the use of DEM derivatives and wavelet decomposition 5 m DEM available from the Geographic Authority of Japan was used. It was pre-processed to generate grid data with QGIS. The data was then analyzed with remote sensing techniques and wavelet analysis in ENVI and Matlab. Results have shown that the combination of 'Elevation' with 'Local Data Range Variation' and 'Relief Mapping' as a RGB image composite provides a powerful visual interpretation tool, but the feature separation remains a subjective analysis provided a more appropriate dataset for computer-based analysis and information extraction and understanding of topographic features at different scales. In order to confirm the usefulness of these topographic derivatives, the results were compared to known geological features and it was found to be in accordance with the data provided by geological, topographic maps and field research at Miyakejima. The protocol presented in the discussion can therefore be re-used at other volcanoes worldwide where less information is available on past-eruption and geology, in order to explain the volcanic geomorphology.
Investment horizon heterogeneity and wavelet: Overview and further research directions
Chakrabarty, Anindya; De, Anupam; Gunasekaran, Angappa; Dubey, Rameshwar
2015-07-01
Wavelet based multi-scale analysis of financial time series has attracted much attention, lately, from both the academia and practitioners from all around the world. The unceasing metamorphosis of the discipline of finance from its humble beginning as applied economics to the more sophisticated depiction as applied physics and applied psychology has revolutionized the way we perceive the market and its complexities. One such complexity is the presence of heterogeneous horizon agents in the market. In this context, we have performed a generous review of different aspects of horizon heterogeneity that has been successfully elucidated through the synergy between wavelet theory and finance. The evolution of wavelet has been succinctly delineated to bestow necessary information to the readers who are new to this field. The migration of wavelet into finance and its subsequent branching into different sub-divisions have been sketched. The pertinent literature on the impact of horizon heterogeneity on risk, asset pricing and inter-dependencies of the financial time series are explored. The significant contributions are collated and classified in accordance to their purpose and approach so that potential researcher and practitioners, interested in this subject, can be benefited. Future research possibilities in the direction of "agency cost mitigation" and "synergy between econophysics and behavioral finance in stock market forecasting" are also suggested in the paper.
Directory of Open Access Journals (Sweden)
Weide Li
2017-05-01
Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.
International Nuclear Information System (INIS)
Mendez, M O; Cerutti, S; Bianchi, A M; Corthout, J; Van Huffel, S; Matteucci, M; Penzel, T
2010-01-01
This study analyses two different methods to detect obstructive sleep apnea (OSA) during sleep time based only on the ECG signal. OSA is a common sleep disorder caused by repetitive occlusions of the upper airways, which produces a characteristic pattern on the ECG. ECG features, such as the heart rate variability (HRV) and the QRS peak area, contain information suitable for making a fast, non-invasive and simple screening of sleep apnea. Fifty recordings freely available on Physionet have been included in this analysis, subdivided in a training and in a testing set. We investigated the possibility of using the recently proposed method of empirical mode decomposition (EMD) for this application, comparing the results with the ones obtained through the well-established wavelet analysis (WA). By these decomposition techniques, several features have been extracted from the ECG signal and complemented with a series of standard HRV time domain measures. The best performing feature subset, selected through a sequential feature selection (SFS) method, was used as the input of linear and quadratic discriminant classifiers. In this way we were able to classify the signals on a minute-by-minute basis as apneic or nonapneic with different best-subset sizes, obtaining an accuracy up to 89% with WA and 85% with EMD. Furthermore, 100% correct discrimination of apneic patients from normal subjects was achieved independently of the feature extractor. Finally, the same procedure was repeated by pooling features from standard HRV time domain, EMD and WA together in order to investigate if the two decomposition techniques could provide complementary features. The obtained accuracy was 89%, similarly to the one achieved using only Wavelet analysis as the feature extractor; however, some complementary features in EMD and WA are evident
Wavelet-based ground vehicle recognition using acoustic signals
Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.
1996-03-01
We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will
Directory of Open Access Journals (Sweden)
Seyed Alireza Ravanfar
2015-09-01
Full Text Available This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE. The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.
Application of wavelets in speech processing
Farouk, Mohamed Hesham
2014-01-01
This book provides a survey on wide-spread of employing wavelets analysis in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.
Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.
2010-12-01
Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.
Jia, Tao; Gao, Di
2018-04-03
Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.
WAVELETS AND PRINCIPAL COMPONENT ANALYSIS METHOD FOR VIBRATION MONITORING OF ROTATING MACHINERY
Bendjama, Hocine; S. Boucherit, Mohamad
2017-01-01
Fault diagnosis is playing today a crucial role in industrial systems. To improve reliability, safety and efficiency advanced monitoring methods have become increasingly important for many systems. The vibration analysis method is essential in improving condition monitoring and fault diagnosis of rotating machinery. Effective utilization of vibration signals depends upon effectiveness of applied signal processing techniques. In this paper, fault diagnosis is performed using a com...
Construction of wavelets with composite dilations
International Nuclear Information System (INIS)
Wu Guochang; Li Zhiqiang; Cheng Zhengxing
2009-01-01
In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.
International Nuclear Information System (INIS)
Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.
2013-01-01
New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport
What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis
Kristoufek, Ladislav
2015-01-01
The Bitcoin has emerged as a fascinating phenomenon in the Financial markets. Without any central authority issuing the currency, the Bitcoin has been associated with controversy ever since its popularity, accompanied by increased public interest, reached high levels. Here, we contribute to the discussion by examining the potential drivers of Bitcoin prices, ranging from fundamental sources to speculative and technical ones, and we further study the potential influence of the Chinese market. The evolution of relationships is examined in both time and frequency domains utilizing the continuous wavelets framework, so that we not only comment on the development of the interconnections in time but also distinguish between short-term and long-term connections. We find that the Bitcoin forms a unique asset possessing properties of both a standard financial asset and a speculative one. PMID:25874694
Interest rate changes and stock returns in Spain: A wavelet analysis
Directory of Open Access Journals (Sweden)
Pablo Moya-Martínez
2015-04-01
Full Text Available This paper investigates the relationship between changes in interest rates and the Spanish stock market at the industry level over the period from January 1993 to December 2012 using a wavelet-based approach. The empirical results indicate that Spanish industries exhibit, in general, a significant interest rate sensitivity, although the degree of interest rate exposure differs considerably across industries and depending on the time horizon under consideration. In particular, regulated industries such as Utilities, highly indebted industries such as Real Estate, Utilities or Technology and Telecommunications, and the Banking industry emerge as the most vulnerable to interest rates. Further, the link between movements in interest rates and industry equity returns is stronger at the coarsest scales. This finding is consistent with the idea that investors with long-term horizons are more likely to follow macroeconomic fundamentals, such as interest rates, in their investment decisions.
Analysis of blood pressure dynamics in male and female rats using the continuous wavelet transform
International Nuclear Information System (INIS)
Pavlov, A N; Anisimov, A A; Matasova, E G; Semyachkina-Glushkovskaya, O V; Kurths, J
2009-01-01
We study gender-related particularities in cardiovascular responses to stress and nitric oxide (NO) deficiency in rats using HR, mean arterial pressure (MAP) and a proposed wavelet-based approach. Blood pressure dynamics is analyzed: (1) under control conditions, (2) during immobilization stress and recovery and (3) during nitric oxide blockade by N G -nitro-L-arginine-methyl ester (L-NAME). We show that cardiovascular sensitivity to stress and NO deficiency depends upon gender. Actually, in females the chronotropic effect of stress is more pronounced, while the pressor effect is weakened compared with males. We conclude that females demonstrate more favorable patterns of cardiovascular responses to stress and more effective NO control of cardiovascular activity than males
What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis.
Directory of Open Access Journals (Sweden)
Ladislav Kristoufek
Full Text Available The Bitcoin has emerged as a fascinating phenomenon in the Financial markets. Without any central authority issuing the currency, the Bitcoin has been associated with controversy ever since its popularity, accompanied by increased public interest, reached high levels. Here, we contribute to the discussion by examining the potential drivers of Bitcoin prices, ranging from fundamental sources to speculative and technical ones, and we further study the potential influence of the Chinese market. The evolution of relationships is examined in both time and frequency domains utilizing the continuous wavelets framework, so that we not only comment on the development of the interconnections in time but also distinguish between short-term and long-term connections. We find that the Bitcoin forms a unique asset possessing properties of both a standard financial asset and a speculative one.
What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis.
Kristoufek, Ladislav
2015-01-01
The Bitcoin has emerged as a fascinating phenomenon in the Financial markets. Without any central authority issuing the currency, the Bitcoin has been associated with controversy ever since its popularity, accompanied by increased public interest, reached high levels. Here, we contribute to the discussion by examining the potential drivers of Bitcoin prices, ranging from fundamental sources to speculative and technical ones, and we further study the potential influence of the Chinese market. The evolution of relationships is examined in both time and frequency domains utilizing the continuous wavelets framework, so that we not only comment on the development of the interconnections in time but also distinguish between short-term and long-term connections. We find that the Bitcoin forms a unique asset possessing properties of both a standard financial asset and a speculative one.
Applied Behavior Analysis and Statistical Process Control?
Hopkins, B. L.
1995-01-01
Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…
Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-01-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.
Delfino, I.; Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; De Mol, E.; Lepore, M.
2009-02-01
Pemphigus vulgaris (PV) is a potentially fatal autoimmune disease that cause blistering of the skin and oral cavity. It is characterized by disruption of cell-cell adhesion within the suprabasal layers of epithelium, a phenomenon termed acantholysis Patients with PV develop IgG autoantibodies against normal constituents of the intercellular substance of keratinocytes. The mechanisms by which such autoantibodies induce blisters are not clearly understood. The qualitative analysis of such effects provides important clues in the search for a specific diagnosis, and the quantitative analysis of biochemical abnormalities is important in measuring the extent of the disease process, designing therapy and evaluating the efficacy of treatment. Improved diagnostic techniques could permit the recognition of more subtle forms of disease and reveal incipient lesions clinically unapparent, so that progression of potentially severe forms could be reversed with appropriate treatment. In this paper, we report the results of our micro-Raman spectroscopy study on tissue and blood serum samples from ill, recovered and under therapy PV patients. The complexity of the differences among their characteristic Raman spectra has required a specific strategy to obtain reliable information on the illness stage of the patients For this purpose, wavelet techniques and advanced multivariate analysis methods have been developed and applied to the experimental Raman spectra. Promising results have been obtained.
Wavelet transforms as solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Concept analysis of culture applied to nursing.
Marzilli, Colleen
2014-01-01
Culture is an important concept, especially when applied to nursing. A concept analysis of culture is essential to understanding the meaning of the word. This article applies Rodgers' (2000) concept analysis template and provides a definition of the word culture as it applies to nursing practice. This article supplies examples of the concept of culture to aid the reader in understanding its application to nursing and includes a case study demonstrating components of culture that must be respected and included when providing health care.
Applied and computational harmonic analysis on graphs and networks
Irion, Jeff; Saito, Naoki
2015-09-01
In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.
Directory of Open Access Journals (Sweden)
Deyun Wang
2018-04-01
Full Text Available Natural gas consumption has increased with an average annual growth rate of about 10% between 2012 and 2017. Total natural gas consumption accounted for 6.4% of consumed primary energy resources in 2016, up from 5.4% in 2012, making China the world’s third-largest gas user. Therefore, accurately predicting natural gas consumption has become very important for market participants to organize indigenous production, foreign supply contracts and infrastructures in a better way. This paper first presents the main factors affecting China’s natural gas consumption, and then proposes a hybrid forecasting model by combining the particle swarm optimization algorithm and wavelet neural network (PSO-WNN. In PSO-WNN model, the initial weights and wavelet parameters are optimized using PSO algorithm and updated through a dynamic learning rate to improve the training speed, forecasting precision and reduce fluctuation of WNN. The experimental results show the superiority of the proposed model compared with ANN and WNN based models. Then, this study conducts the scenario analysis of the natural gas consumption from 2017 to 2025 in China based on three scenarios, namely low scenario, reference scenario and high scenario, and the results illustrate that the China’s natural gas consumption is going to be 342.70, 358.27, 366.42 million tce (“standard” tons coal equivalent in 2020, and 407.01, 437.95, 461.38 million tce in 2025 under the low, reference and high scenarios, respectively. Finally, this paper provides some policy suggestions on natural gas exploration and development, infrastructure construction and technical innovations to promote a sustainable development of China’s natural gas industry.
A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions
Directory of Open Access Journals (Sweden)
Seyed Hossein Mahdavi
2015-01-01
Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Caldwell University's Department of Applied Behavior Analysis.
Reeve, Kenneth F; Reeve, Sharon A
2016-05-01
Since 2004, faculty members at Caldwell University have developed three successful graduate programs in Applied Behavior Analysis (i.e., PhD, MA, non-degree programs), increased program faculty from two to six members, developed and operated an on-campus autism center, and begun a stand-alone Applied Behavior Analysis Department. This paper outlines a number of strategies used to advance these initiatives, including those associated with an extensive public relations campaign. We also outline challenges that have limited our programs' growth. These strategies, along with a consideration of potential challenges, might prove useful in guiding academicians who are interested in starting their own programs in behavior analysis.
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
A study of biorthogonal multiple vector-valued wavelets
International Nuclear Information System (INIS)
Han Jincang; Cheng Zhengxing; Chen Qingjiang
2009-01-01
The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.
Mahmood, Toqeer; Irtaza, Aun; Mehmood, Zahid; Tariq Mahmood, Muhammad
2017-10-01
The most common image tampering often for malicious purposes is to copy a region of the same image and paste to hide some other region. As both regions usually have same texture properties, therefore, this artifact is invisible for the viewers, and credibility of the image becomes questionable in proof centered applications. Hence, means are required to validate the integrity of the image and identify the tampered regions. Therefore, this study presents an efficient way of copy-move forgery detection (CMFD) through local binary pattern variance (LBPV) over the low approximation components of the stationary wavelets. CMFD technique presented in this paper is applied over the circular regions to address the possible post processing operations in a better way. The proposed technique is evaluated on CoMoFoD and Kodak lossless true color image (KLTCI) datasets in the presence of translation, flipping, blurring, rotation, scaling, color reduction, brightness change and multiple forged regions in an image. The evaluation reveals the prominence of the proposed technique compared to state of the arts. Consequently, the proposed technique can reliably be applied to detect the modified regions and the benefits can be obtained in journalism, law enforcement, judiciary, and other proof critical domains. Copyright © 2017 Elsevier B.V. All rights reserved.
Building an applied activation analysis centre
International Nuclear Information System (INIS)
Bartosek, J.; Kasparec, I.; Masek, J.
1972-01-01
Requirements are defined and all available background material is reported and discussed for the building up of a centre of applied activation analysis in Czechoslovakia. A detailed analysis of potential users and the centre's envisaged availability is also presented as part of the submitted study. A brief economic analysis is annexed. The study covers the situation up to the end of 1972. (J.K.)
Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.
2014-05-01
signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis
International Nuclear Information System (INIS)
Hasegawa, Hideo
2002-01-01
By using the wavelet transformation (WT), I have analyzed the response of an ensemble of N (=1, 10, 100, and 500) Hodgkin-Huxley neurons to transient M-pulse spike trains (M=1 to 3) with independent Gaussian noises. The cross correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the denoising method within the WT, by which the noise contribution is extracted from the output signals. Although the response of a single (N=1) neuron to subthreshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross correlation and SNR is shown to be much improved by increasing the value of N: a population of neurons plays an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for suprathreshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for subthreshold inputs
Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction
Directory of Open Access Journals (Sweden)
Jinxing Shen
2013-01-01
Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.
Investigation of intermittency in simulated and experimental turbulence data by wavelet analysis
International Nuclear Information System (INIS)
Mahdizadeh, N.; Ramisch, M.; Stroth, U.; Lechte, C.; Scott, B.D.
2004-01-01
Turbulent transport in magnetized plasmas has an intermittent nature. Peaked probability density functions and a 1/frequency decay of the power spectra have been interpreted as signs of self-organized criticality generated, similar to a sand pile, by the critical gradients of ion- (ITG) or electron-temperature-gradient (ETG) driven instabilities. In order to investigate the degree of intermittency in toroidally confined plasmas in the absence of critical pressure or temperature gradients, data from the drift-Alfven-wave turbulence code DALF3 [B. Scott, Plasma Phys. Controlled Fusion 39, 1635 (1997)], running with a fixed background pressure gradient, and from a weakly driven low-temperature plasma are analyzed. The intermittency is studied on different temporal scales, which are separated by a wavelet transform. Simulated and experimental data reproduce the results on intermittent transport found in fusion plasmas. It can therefore be expected that in fusion plasmas, too, a substantial fraction of the bursty nature of turbulent transport is not related to avalanches caused by a critical gradient as generated by ITG or ETG turbulence
Ng, J.; Kingsbury, N. G.
2004-02-01
treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
Analysis on diurnal global geomagnetic variability under quiet-time conditions
Klausner, Virginia; Domingues, Margarete Oliveira; Mendes Jr, Odim; Papa, Andres Reinaldo Rodriguez; Frick, Peter
2012-01-01
This paper describes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. For that, we apply the Principal Component Analysis (PCA) technique implemented using gapped wavelet transform and wavelet correlation. The continuous gapped wavelet and the wavelet correlation techniques were used to descri...
Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.
2018-03-01
An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.
Hu, Yue; Tu, Xiaotong; Li, Fucai; Li, Hongguang; Meng, Guang
2017-11-01
The order tracking method based on time-frequency representation is regarded as an effective tool for fault detection of bearings with varying rotating speeds. In the traditional order tracking methods, a tachometer is required to obtain the instantaneous speed which is hardly satisfied in practice due to the technical and economical limitations. Some tacholess order tracking methods have been developed in recent years. In these methods, the instantaneous frequency ridge extraction is one of the most important parts. However, the current ridge extraction methods are sensitive to noise and may easily get trapped in a local optimum. Due to the presence of noise and other unrelated components of the signal, bearing fault features are difficult to be detected from the envelope spectrum or envelope order spectrum. To overcome the abovementioned drawbacks, an adaptive and tacholess order analysis method is proposed in this paper. In this method, a novel ridge extraction algorithm based on dynamic path optimization is adopted to estimate the instantaneous frequency. This algorithm can overcome the shortcomings of the current ridge extraction algorithms. Meanwhile, the enhanced empirical wavelet transform (EEWT) algorithm is applied to extract the bearing fault features. Both simulated and experimental results demonstrate that the proposed method is robust to noise and effective for bearing fault detection under variable speed conditions.
Lessons learned in applying function analysis
International Nuclear Information System (INIS)
Mitchel, G.R.; Davey, E.; Basso, R.
2001-01-01
This paper summarizes the lessons learned in undertaking and applying function analysis based on the recent experience of utility, AECL and international design and assessment projects. Function analysis is an analytical technique that can be used to characterize and asses the functions of a system and is widely recognized as an essential component of a 'systematic' approach to design, on that integrated operational and user requirements into the standard design process. (author)
Directory of Open Access Journals (Sweden)
Kartik V. Bulusu
2015-09-01
Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.
García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David
2018-02-12
Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85-130 Hz). Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 10³nV²Hz -1 ; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 10³nV²Hz -1 s -1 ; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk.
Positive Behavior Support and Applied Behavior Analysis
Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.
2006-01-01
This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…
Applied Behavior Analysis: Beyond Discrete Trial Teaching
Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold
2007-01-01
We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…
Kohei Arai; Tomoko Nishikawa
2013-01-01
Multi-Resolution Analysis: MRA based on the mother wavelet function with which support length differs from the image of the automobile rear under run is performed, and the run characteristic of a car is searched for. Speed, deflection, etc. are analyzed and the method of detecting vehicles with high accident danger is proposed. The experimental results show that vehicles in a dangerous action can be detected by the proposed method.
A Study of Wavelet Analysis and Data Extraction from Second-Order Self-Similar Time Series
Directory of Open Access Journals (Sweden)
Leopoldo Estrada Vargas
2013-01-01
Full Text Available Statistical analysis and synthesis of self-similar discrete time signals are presented. The analysis equation is formally defined through a special family of basis functions of which the simplest case matches the Haar wavelet. The original discrete time series is synthesized without loss by a linear combination of the basis functions after some scaling, displacement, and phase shift. The decomposition is then used to synthesize a new second-order self-similar signal with a different Hurst index than the original. The components are also used to describe the behavior of the estimated mean and variance of self-similar discrete time series. It is shown that the sample mean, although it is unbiased, provides less information about the process mean as its Hurst index is higher. It is also demonstrated that the classical variance estimator is biased and that the widely accepted aggregated variance-based estimator of the Hurst index results biased not due to its nature (which is being unbiased and has minimal variance but to flaws in its implementation. Using the proposed decomposition, the correct estimation of the Variance Plot is described, as well as its close association with the popular Logscale Diagram.
Meziani, F; Debbal, S M; Atbi, A
2013-01-01
The heart is the principal organ that circulates blood. In normal conditions it produces four sounds for each cardiac cycle. However, most often only two sounds appear essential: S1 and S2. Two other sounds: S3 and S4, with lower amplitude than S1 or S2, appear occasionally in the cardiac cycle by the effect of disease or age. The presence of abnormal sounds in one cardiac cycle provide valuable information on various diseases. The aortic stenosis (AS), as being a valvular pathology, is characterized by a systolic murmur due to a narrowing of the aortic valve. The mitral stenosis (MS) is characterized by a diastolic murmur due to a reduction in the mitral valve. Early screening of these diseases is necessary; it's done by a simple technique known as: phonocardiography. Analysis of phonocardiograms signals using signal processing techniques can provide for clinicians useful information considered as a platform for significant decisions in their medical diagnosis. In this work two types of diseases were studied: aortic stenosis (AS) and mitral stenosis (MS). Each one presents six different cases. The application of the discrete wavelet transform (DWT) to analyse pathological severity of the (AS and MS was presented. Then, the calculation of various parameters was performed for each patient. This study examines the possibility of using the DWT in the analysis of pathological severity of AS and MS.
Directory of Open Access Journals (Sweden)
Kravets Tetyana V.
2014-02-01
Full Text Available The article conducts analysis of behaviour of stock indices and currency rates before and after the crisis phenomena with the aim of detection of key features of the pre-crisis state, localisation and description of crisis effects by time and scale using methods of multifractal analysis and wavelet transformation. The article checks the method of allocation of intervals of self-similar behaviour of financial series in practice. For Dow Jones and Sand P 500 indices the article detects in the time interval of 2001 – 2013 fractality spans and also moments of time when behaviour of series was determined with the chaotic component. The article offers the measure of synchronous behaviour of stock indices and currency rates, value of which allows assessment of the degree of propagation of crisis phenomena and forecasting them. This measure is calculated for EUR/GBP, EUR/USD, FTSE 100, S and P 500, Dow Jones, DAX and CAC 40 series. The article observes a close connection between values of the introduced measure and volume of crisis phenomena, which took place in relevant period of time. It gives a characteristics of main economic crises for the period 2001 – 2003 with the aim of comparison of real events and specific features of dynamics of the measure of synchronisation as a precursor of crisis phenomena.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen
2016-02-01
Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.
Building nonredundant adaptive wavelets by update lifting
H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)
2002-01-01
textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations
Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.
2016-12-01
better to predict threshold surpassing. In a second step, the implementation of wavelet decomposition within the neural network model to better apprehend slow and fast dynamics is tested and discussed, which could also allows accounting for non-linearity of the turbid response to some extent. This second approach is still under realization so far.
Directory of Open Access Journals (Sweden)
Hannu Olkkonen
2013-01-01
Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
Skopina, Maria; Protasov, Vladimir
2016-01-01
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...
Optimization of wavelet decomposition for image compression and feature preservation.
Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T
2003-09-01
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.
An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram.
Barraco, R; Persano Adorno, D; Brai, M
2011-12-01
Most biomedical signals are non-stationary. The knowledge of their frequency content and temporal distribution is then useful in a clinical context. The wavelet analysis is appropriate to achieve this task. The present paper uses this method to reveal hidden characteristics and anomalies of the human a-wave, an important component of the electroretinogram since it is a measure of the functional integrity of the photoreceptors. We here analyse the time-frequency features of the a-wave both in normal subjects and in patients affected by Achromatopsia, a pathology disturbing the functionality of the cones. The results indicate the presence of two or three stable frequencies that, in the pathological case, shift toward lower values and change their times of occurrence. The present findings are a first step toward a deeper understanding of the features of the a-wave and possible applications to diagnostic procedures in order to recognise incipient photoreceptoral pathologies. Copyright Â© 2011 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Ying Zhang
2016-07-01
Full Text Available The long-lasting “guns versus butter” argument reflects the fact that China has been experiencing a difficult choice in terms of improving the defense and social welfare sectors, and thus achieving fiscal sustainability. The result, however, is controversial. The present paper therefore re-examines the relationship between defense and social welfare by employing continuous wavelet analysis during a long period of 1950–2014 in China. We focus in particular on their dynamic correlation and the lead-lag relationship across different frequency bands. Our results clearly show the inexistence of the crowding-out effect between defense expenditure and social welfare; moreover, the increase in defense (social welfare expenditure could stimulate the expansion of social welfare (defense spending. In addition, we find a positive relationship between defense and social welfare with defense leading during 1961–1968 in the short term, when China suffered from the economic breakdown and the social turbulence caused by the Great Famine, Sino-Soviet border conflict, etc. Notably, social welfare also led the progress in defense during 1984–1988 and 1995–1998 in the medium and long terms by the further deepening of the opening-up policy and enforcing the economic system reform.
Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary
2017-08-01
Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.
Applied decision analysis and risk evaluation
International Nuclear Information System (INIS)
Ferse, W.; Kruber, S.
1995-01-01
During 1994 the workgroup 'Applied Decision Analysis and Risk Evaluation; continued the work on the knowledge based decision support system XUMA-GEFA for the evaluation of the hazard potential of contaminated sites. Additionally a new research direction was started which aims at the support of a later stage of the treatment of contaminated sites: The clean-up decision. For the support of decisions arising at this stage, the methods of decision analysis will be used. Computational aids for evaluation and decision support were implemented and a case study at a waste disposal site in Saxony which turns out to be a danger for the surrounding groundwater ressource was initiated. (orig.)
Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay
2017-09-01
This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.
Abelova cena v roce 2017 udělena za teorii waveletů
Czech Academy of Sciences Publication Activity Database
Křížek, Michal
2017-01-01
Roč. 62, č. 3 (2017), s. 161-170 ISSN 0032-2423 Institutional support: RVO:67985840 Keywords : wavelet * multiresolution analysis * Meyer set * gravitational waves Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://hdl.handle.net/10338.dmlcz/146921
Directory of Open Access Journals (Sweden)
A. Sreenivasa Murthy
2014-11-01
Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.
Numerical shaping of the ultrasonic wavelet
International Nuclear Information System (INIS)
Bonis, M.
1991-01-01
Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test
Discrete wavelet transform: a tool in smoothing kinematic data.
Ismail, A R; Asfour, S S
1999-03-01
Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.
Applied research in uncertainty modeling and analysis
Ayyub, Bilal
2005-01-01
Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...
Directory of Open Access Journals (Sweden)
Guangbin Wang
2014-09-01
Full Text Available this article is for the coupling fault diagnosis of rotor system, and does in-depth analysis of the rotor unbalance and misalignment, and the fault formed by the coupling of these two. Through research, Rotor Coupling was found filled with rich features. In this paper, Wavelet packet de- noising ideas being introduced to the local Fisher discriminant analysis (LFDA, a new method of fault diagnosis based on Wavelet Packet and Local Fisher Discriminant is proposed. The technology of information fusion is applied to the data processing with coupling faults. By comparing and analyzing the algorithms effect of LE, LPP, FDA, LFDA and IOLFA through experiment, it shows that LE and LPP are unable to identify the fault, while FDA, LFDA has better identification, and Wavelet Packet and Local Fisher discriminant has the best effect.
Wavelet analysis and it's applications to recognition of nuclear explosion and lightning
International Nuclear Information System (INIS)
Zhang Zhongshan; Zhang Enshan; Gao Chunxia
1999-01-01
An approach to feature extraction and recognition of the characteristic signal is studied. And the method is applied to recognition of nuclear explosions and lightning. The results show the method is valid
Strategic decision analysis applied to borehole seismology
International Nuclear Information System (INIS)
Menke, M.M.; Paulsson, B.N.P.
1994-01-01
Strategic Decision Analysis (SDA) is the evolving body of knowledge on how to achieve high quality in the decision that shapes an organization's future. SDA comprises philosophy, process concepts, methodology, and tools for making good decisions. It specifically incorporates many concepts and tools from economic evaluation and risk analysis. Chevron Petroleum Technology Company (CPTC) has applied SDA to evaluate and prioritize a number of its most important and most uncertain R and D projects, including borehole seismology. Before SDA, there were significant issues and concerns about the value to CPTC of continuing to work on borehole seismology. The SDA process created a cross-functional team of experts to structure and evaluate this project. A credible economic model was developed, discrete risks and continuous uncertainties were assessed, and an extensive sensitivity analysis was performed. The results, even applied to a very restricted drilling program for a few years, were good enough to demonstrate the value of continuing the project. This paper explains the SDA philosophy concepts, and process and demonstrates the methodology and tools using the borehole seismology project example. SDA is useful in the upstream industry not just in the R and D/technology decisions, but also in major exploration and production decisions. Since a major challenge for upstream companies today is to create and realize value, the SDA approach should have a very broad applicability
Pando, Jesus; Fang, Li-Zhi
1995-01-01
A method for measuring the spectrum of a density field by a discrete wavelet space-scale decomposition (SSD) has been studied. We show how the power spectrum can effectively be described by the father function coefficients (FFC) of the wavelet SSD. We demonstrate that the features of the spectrum, such as the magnitude, the index of a power law, and the typical scales, can be determined with high precision by the FFC reconstructed spectrum. This method does not require the mean density, which...
Yuan, Yaochu; Yang, Chenghao; Tseng, Yu-heng; Zhu, Xiao-Hua; Wang, Huiqun; Chen, Hong
2017-08-01
Longer period variation of the Kuroshio into the Luzon Strait (LS) was identified using acoustic Doppler current profiler (ADCP) observations as well as pressure and temperature time series data recorded by two TDs (manufactured by the RBR Ltd.) at mooring station N2 (20°40.441‧N, 120°38.324‧E). The ADCP was deployed at depths of 50-300 m between July 7, 2009 and April 10, 2011, and the TDs at around 340 and 365 m between July 9, 2009 and July 9, 2011. Observations provide strong evidence of longer period variation of the Kuroshio into the LS using the Vector rotary spectra (VRS) and Rectified wavelet power spectra analysis (RWPSA). RWPSA of the observations allowed the identification of two types of dominant periods. The first type, with the strongest power spectral density (PSD), had a dominant period of 112 d and was found throughout the upper 300 m. For example, the maximum PSD for western and northern velocity components time series were 3800 and 3550 at 50 m, respectively. The maximum power spectral density decrease with deeper depths, i.e., the depth dependence of maximum PSD. The 112 d period was also identified in the pressure and temperature time series data, at 340 m and 365 m. Combined RWPSA with VRS and mechanism analysis, it is clear that the occurrence of the most dominant period of 112 d in the upper 300 m is related to the clockwise meandering of the Kuroshio into the LS, which is caused by westward propagating stronger anticyclonic eddies from the interior ocean due to the interaction of Rossby eddies with the Kuroshio. The second type of dominant period, for example a 40 d period, is related to the anticlockwise meandering of the Kuroshio. The final dominant period of 14 d coincides with the fortnightly spring-neap tidal period.
A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia
Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.
2017-08-01
In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.
Hydrological model performance and parameter estimation in the wavelet-domain
Directory of Open Access Journals (Sweden)
B. Schaefli
2009-10-01
Full Text Available This paper proposes a method for rainfall-runoff model calibration and performance analysis in the wavelet-domain by fitting the estimated wavelet-power spectrum (a representation of the time-varying frequency content of a time series of a simulated discharge series to the one of the corresponding observed time series. As discussed in this paper, calibrating hydrological models so as to reproduce the time-varying frequency content of the observed signal can lead to different results than parameter estimation in the time-domain. Therefore, wavelet-domain parameter estimation has the potential to give new insights into model performance and to reveal model structural deficiencies. We apply the proposed method to synthetic case studies and a real-world discharge modeling case study and discuss how model diagnosis can benefit from an analysis in the wavelet-domain. The results show that for the real-world case study of precipitation – runoff modeling for a high alpine catchment, the calibrated discharge simulation captures the dynamics of the observed time series better than the results obtained through calibration in the time-domain. In addition, the wavelet-domain performance assessment of this case study highlights the frequencies that are not well reproduced by the model, which gives specific indications about how to improve the model structure.
Applied spectrophotometry: analysis of a biochemical mixture.
Trumbo, Toni A; Schultz, Emeric; Borland, Michael G; Pugh, Michael Eugene
2013-01-01
Spectrophotometric analysis is essential for determining biomolecule concentration of a solution and is employed ubiquitously in biochemistry and molecular biology. The application of the Beer-Lambert-Bouguer Lawis routinely used to determine the concentration of DNA, RNA or protein. There is however a significant difference in determining the concentration of a given species (RNA, DNA, protein) in isolation (a contrived circumstance) as opposed to determining that concentration in the presence of other species (a more realistic situation). To present the student with a more realistic laboratory experience and also to fill a hole that we believe exists in student experience prior to reaching a biochemistry course, we have devised a three week laboratory experience designed so that students learn to: connect laboratory practice with theory, apply the Beer-Lambert-Bougert Law to biochemical analyses, demonstrate the utility and limitations of example quantitative colorimetric assays, demonstrate the utility and limitations of UV analyses for biomolecules, develop strategies for analysis of a solution of unknown biomolecular composition, use digital micropipettors to make accurate and precise measurements, and apply graphing software. Copyright © 2013 Wiley Periodicals, Inc.
Weighted least squares phase unwrapping based on the wavelet transform
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W
2016-09-01
Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.
Altaisky, M V; Soloviev, A G; Stadnik, A V; Shitov, A B
2001-01-01
WASP package is a C++ program aimed to analyze angular distributions of secondary particles generated in nuclear interactions. WASP package is based on wavelet transform algorithms. This work includes the user's guide, description of algorithms and mathematical methods, graphical user interface. We have also analyzed what problems of nuclear physics can be tackled with WASP.
Directory of Open Access Journals (Sweden)
K. Parvathi
2009-01-01
Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.
Digital transceiver implementation for wavelet packet modulation
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Hermawan, E.
2018-04-01
This study is mainly concerned an application of Mini Automatic Weather Station (MAWS) at Kototabang, West Sumatera nearby the location of an Equatorial Atmosphere Radar (EAR) side. We are interest to use this data to investigate the propagation of the Madden-Julian Oscillation (MJO). We examined of daily MAWS data for 3 years observations started from January 2001 to Mei 2004. By applying wavelet analysis, we found the MJO at Kototabang have 32 days oscillations as shown in Fig.1 below. In this study, we concentrate just for local mechanis only. We will show in this paper that at the phase of the MJO with a dipole structure to the convection anomalies, there is enhanced tropical convection over the eastern Indian Ocean and reduced convection over the western Pacific. Over the equatorial western Indian Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This tends to suppress ascent in the boundary layer and shuts off the deep convection, eventually leading to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave response to the east of the enhanced convection includes a region of anomalous surface convergence into the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection in this region. The Indonesian sector is also influenced by an equatorial Rossby wave response (of opposite sign) to the west of the reduced convection over the western Pacific, which also has a region of anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east via their equatorial Kelvin wave response.
Directory of Open Access Journals (Sweden)
Marcelo Vitor da Costa
2012-10-01
Full Text Available http://dx.doi.org/10.5007/1980-0037.2012v14n6p660 The aim of this study was to compare the electromyographic indices of fatigue (slope of median frequency calculated with the fast Fourier transform (FFT and wavelet transform (WT in trained and untrained individuals during cycle exercise. A second objective was to compare the variance of the spectral parameters (median frequency - MF obtained by the FFT and WT during exercise. Twelve cyclists and non-cyclists performed a maximal incremental test to determine the peak power (Wp and electromyographic activity of the vastus lateralis (VL, rectus femoris (RF, biceps femoris (BF, semitendinous (ST and tibialis anterior (TA. Mean values of median frequency, determined by the FFT and WT, were used for the spectral analysis of the electromyographic signals of the studied muscles. The analyzed parameters were obtained for each time period corresponding to 0, 25, 50, 75, and 100% of total duration of the maximal incremental test. No statistically significant differences were found in the values of MF and electromyographic indices of fatigue between the two techniques (FT and WT both in the cyclists and non-cyclists group (P>0.05. Regarding the MF variance, statistically significant differences were found in all analyzed muscles, as well as in different time periods, both in the cyclists and non-cyclists groups when comparing the FFT and WT techniques (P<0.05. The WT seems to be more adequate to dynamic tasks, since it does not require the signal to be quasi-stationary, unlike the limitation imposed upon the use of the FFT.
Liu, Yang; Yucel, Abdulkadir C.; Bagci, Hakan; Gilbert, Anna C.; Michielssen, Eric
2018-01-01
requirement and computational cost of the PWTD algorithm by representing the PWTD ray data using local cosine wavelet bases (LCBs) and performing PWTD operations in the wavelet domain. The memory requirement and computational cost of the LCB-enhanced PWTD
Energy Technology Data Exchange (ETDEWEB)
Wolff, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik
2000-07-01
The derivation and implementation of an algorithm for edge detection in images and for the detection of the Lipschitz regularity in edge points are described. The method is based on the use of the wavelet transform for edge detection at different resolutions. The Lipschitz regularity is a measure that characterizes the edges. The description of the derivation is first performed in one dimension. The approach of Mallat is formulated consistently and proved. Subsequently, the two-dimensional case is addressed, for which the derivation, as well as the description of the algorithm, is analogous. The algorithm is applied to detect edges in nautical radar images using images collected at the island of Sylt. The edges discernible in the images and the Lipschitz values provide information about the position and nature of spatial variations in the depth of the seafloor. By comparing images from different periods of measurement, temporal changes in the bottom structures can be localized at different resolutions and interpreted. The method is suited to the monitoring of coastal areas. It is an inexpensive way to observe long-term changes in the seafloor character. Thus, the results of this technique may be used by the authorities responsible for coastal protection to decide whether measures should be taken or not. (orig.)