WorldWideScience

Sample records for wavelength region observed

  1. Multi-wavelength, Multi-scale Observations of Outflows in Star-Forming Regions

    Science.gov (United States)

    Plunkett, Adele Laurie Dennis

    During the early stages of star formation, an embedded protostar accretes mass and simultaneously expels mass and angular momentum in the form of a bipolar outflow. In the common case of clustered star formation, outflows likely impact their surrounding environment and influence subsequent star formation. Numerical simulations have shown that outflows can sustain turbulence and maintain a cluster in quasi-equilibrium; alternatively, it was proposed that outflows may trigger rather than regulate or inhibit star formation. Observations of outflows and their impact on clusters are challenging because they must probe spatial scales over several orders of magnitude --- from the size of a core (a few hundred AU, or N ~ 10-3 pc) to a cluster (a few pc) --- and previous works generally focused on one scale or the other. This thesis incorporates high-resolution, high-sensitivity interferometry observations (with millimeter/sub-millimeter wavelengths) complemented by observations obtained using single dish telescopes in order to assess molecular outflow properties and their cumulative impact in two young protostellar clusters: Serpens South and NGC 1333. Based on these case studies, I develop an evolutionary scenario for clustered star formation spanning the ages of the two clusters, about 0.1 - 1 Myr. Within this scenario, outflows in both Serpens South and NGC 1333 provide sufficient energy to sustain turbulence early in the protocluster formation process. In neither cluster do outflows provide enough energy to counter the gravitational potential energy and disrupt the entire cluster. However, most of the mass in outflows in both clusters have velocities greater than the escape velocity, and therefore the relative importance of outflow-driven turbulence compared with gravitational potential likely changes with time as ambient gas escapes. We estimate that enough gas mass will escape via outflows in Serpens South so that it will come to resemble NGC 1333 in terms of its

  2. Magnetoseismology of Active Regions using Multi-wavelength Observations from GONG and SDO

    Science.gov (United States)

    Tripathy, Sushanta; Jain, Kiran; Kholikov, Shukur; Hill, Frank; Cally, Paul

    2016-05-01

    The structure and dynamics of active regions beneath the surface show significant uncertainties due to our limited understanding of the wave interaction with magnetic field. Recent numerical simulations further demonstrate that the atmosphere above the photospheric levels also modifies the seismic observables at the surface. Thus the key to improve helioseismic interpretation beneath the active regions requires a synergy between models and helioseismic inferences from observations. In this context, using data from Global Oscillation Network Group and from Helioseismic Magnetic Imager and Atmospheric Imaging Assembly onboard Solar Dynamics Observatory, we characterize the spatio-temporal power distribution in and around active regions. Specifically, we focus on the power enhancements seen around active regions as a function of wave frequencies, strength, inclination of magnetic field and observation height as well as the relative phases of the observables and their cross-coherence functions. It is expected that these effects will help us to comprehend the interaction of acoustic waves with magnetic field in the solar photosphere.

  3. Long-Wavelength Observations of Jets from Polar Regions of the Sun

    Science.gov (United States)

    Ramesh, R.

    1999-10-01

    We report radio observations of enhanced emission associated with the extreme-ultraviolet (EUV) jets from polar coronal hole regions of the Sun, with the Gauribidanur radioheliograph (GRH). We have estimated the brightness temperature, electron density and mass of the ejected material. These jets were not accompanied by nonthermal radio bursts, particularly Type III events.

  4. Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts

    Science.gov (United States)

    Saide, P. E.; Carmichael, G. R.; Liu, Z.; Schwartz, C. S.; Lin, H. C.; da Silva, A. M.; Hyer, E.

    2013-10-01

    An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from the WRF-Chem optical properties module, providing consistency with the forecast. GSI tools such as recursive filters and weak constraints are used to provide correlation within aerosol size bins and upper and lower bounds for the optimization. The system is used to perform assimilation experiments with fine vertical structure and no data thinning or re-gridding on a 12 km horizontal grid over the region of California, USA, where improvements on analyses and forecasts is demonstrated. A first set of simulations was performed, comparing the assimilation impacts of using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) dark target retrievals to those using observationally constrained ones, i.e., calibrated with AERONET (Aerosol RObotic NETwork) data. It was found that using the observationally constrained retrievals produced the best results when evaluated against ground based monitors, with the error in PM2.5 predictions reduced at over 90% of the stations and AOD errors reduced at 100% of the monitors, along with larger overall error reductions when grouping all sites. A second set of experiments reveals that the use of fine mode fraction AOD and ocean multi-wavelength retrievals can improve the representation of the aerosol size distribution, while assimilating only 550 nm AOD retrievals produces no or at times degraded impact. While assimilation of multi-wavelength AOD shows positive impacts on all analyses performed, future work is needed to generate observationally constrained multi-wavelength retrievals, which when assimilated will generate size

  5. Multi-Wavelength Observations of Supernova Remnants

    Science.gov (United States)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  6. Data Reduction of Multi-wavelength Observations

    CERN Document Server

    Pilia, M; Pellizzoni, A P; Bachetti, M; Piano, G; Poddighe, A; Egron, E; Iacolina, M N; Melis, A; Concu, R; Possenti, A; Perrodin, D

    2015-01-01

    Multi-messenger astronomy is becoming the key to understanding the Universe from a comprehensive perspective. In most cases, the data and the technology are already in place, therefore it is important to provide an easily-accessible package that combines datasets from multiple telescopes at different wavelengths. In order to achieve this, we are working to produce a data analysis pipeline that allows the data reduction from different instruments without needing detailed knowledge of each observation. Ideally, the specifics of each observation are automatically dealt with, while the necessary information on how to handle the data in each case is provided by a tutorial that is included in the program. We first focus our project on the study of pulsars and their wind nebulae (PWNe) at radio and gamma-ray frequencies. In this way, we aim to combine time-domain and imaging datasets at two extremes of the electromagnetic spectrum. In addition, the emission has the same non-thermal origin in pulsars at radio and gam...

  7. Multi-wavelength emission region of gamma-ray pulsars

    CERN Document Server

    Kisaka, Shota

    2011-01-01

    Recent obserbations by Fermi Gamma-Ray Space Telescope of gamma-ray pulsars have revealed further details of the structure of the emission region. We investigate the emission region for the multi-wavelength light curve using outer gap model. We assume that gamma-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We also assume that gamma-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parametrize the altitude of the emission region. We find that the outer gap model can explain the multi-wavelength pulse behavior. From observational fitting, we also find a general tendency for the altitude of the gamma-ray emission region to depend on the inclination angle. In particular, the emission region for low inclination angle is required to be located in very low altitude, which corresponds to the inner region within the la...

  8. Regional National Cooperative Observer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA publication dedicated to issues, news and recognition of observers in the National Weather Service Cooperative Observer program. Issues published regionally...

  9. Objective Identification of Informative Wavelength Regions in Galaxy Spectra

    CERN Document Server

    Yip, Ching-Wa; Szalay, Alex; Csabai, Istvan; Budavari, Tamas; Wyse, Rosemary; Dobos, Laszlo

    2013-01-01

    Understanding the diversity in spectra is the key to determining the physical parameters of galaxies. The optical spectra of galaxies are highly convoluted with continuum and lines which are potentially sensitive to different physical parameters. Defining the wavelength regions of interest is therefore an important question. In this work, we identify informative wavelength regions in a single-burst stellar populations model by using the CUR Matrix Decomposition. The region identification method can be applied to any set of spectra of the user's interest, so that we eliminate the need for a common, fixed-resolution index system. We discuss future directions in extending the current analysis to late-type galaxies. (Abridged)

  10. Applications of High-Resolution Observations at Millimeter Wavelengths

    Science.gov (United States)

    Rosenfeld, Katherine

    Interferometric observations at millimeter wavelengths provide a precious, detailed view of certain astrophysical objects. This thesis is composed of studies that both rely on and enable this technique to study the structure of planet-forming disks and soon image the closest regions around super-massive black holes. Young stars form out of a cloud of gas and dust that, before its eventual dissipation, flattens to a disk. However the disk population is diverse and recent high-resolution images have revealed a wide variety of interesting features. To understand these observations we use detailed radiative transfer models to motivate various physical scenarios. First we identify a set of traits in the disk around V4046 Sgr that marks the coupled progression of the gas and dust distributions in the presence of at least one embedded companion. Next, we investigate how the vertical temperature structure of a disk can be spatially resolved and apply our framework to observations of the disk around HD163296. Lastly, we show how large-scale radial flows of gas may be observable and question how this phenomenon might be distinguished from other scenarios such as warps or outflows. The last chapter summarizes the APHIDS project which changes the sampling rate of data taken at the SMA so that it may be used for VLBI campaigns.

  11. Characteristics of Smith-Purcell radiation in millimeter wavelength region

    Science.gov (United States)

    Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P.; Bleko, V.; Sukhikh, L. G.; Shevelev, M. V.; Popov, Yu

    2016-07-01

    Investigations of the Smith-Purcell radiation (SPR) were began with non-relativistic electron beams with some unexpected experimental results. Further the experimental investigations were performed with relativistic electron beams for application to beam diagnostics. Large discrepancy between different theoretical models significantly increases the role of experimental studies of this phenomenon. In this report we present some problems and features of experimental investigations of SPR in millimeter wavelength region. The problems of prewave zone and coherent effects are considered. The shadowing effect, focusing of radiation using a parabolic SPR target and effect of inclination of target strips were investigated with moderately relativistic electron beam.

  12. Saturn's aurora observed by the Cassini camera at visible wavelengths

    CERN Document Server

    Dyudina, Ulyana A; Ewald, Shawn P; Wellington, Danika

    2015-01-01

    The first observations of Saturn's visible-wavelength aurora were made by the Cassini camera. The aurora was observed between 2006 and 2013 in the northern and southern hemispheres. The color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000-1500 km above the horizon. The spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent H-alpha line and roughly agrees with laboratory simulated auroras. Auroras in both hemispheres vary dramatically with longitude. Auroras form bright arcs between 70 and 80 degree latitude north and between 65 and 80 degree latitude south, which sometimes spiral around the pole, and sometimes form double arcs. A large 10,000-km-scale longitudinal brightness structure persists for more than 100 hours. This structure rotates approximately together with Saturn. On top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. These brightenings repeat with a period of about 1 hour....

  13. Simultaneous multi-wavelength observations of GRS 1915+105

    DEFF Research Database (Denmark)

    Fuchs, Y.; Rodriguez, Cayo Juan Ramos; Mirabel, I.F.;

    2003-01-01

    We present the result of multi-wavelength observations of the microquasar GRS 1915 + 105 in a plateau state with a luminosity of similar to7.5 x 10(38) erg s(-1) (similar to40% L-Edd), conducted simultaneously with the INTEGRAL and RXTE satellites, the ESOstarstar/NTT, the Ryle Telescope, the NRAO......(starstarstar) VLA and VLBA, in 2003 April 2-3. For the first time were observed concurrently in GRS 1915 + 105 all of the following properties: a strong steady optically thick radio emission corresponding to a powerful compact jet resolved with the VLBA, bright near-IR emission, a strong QPO at 2.5 Hz in the X...

  14. Saturn's aurora observed by the Cassini camera at visible wavelengths

    Science.gov (United States)

    Dyudina, Ulyana A.; Ingersoll, Andrew P.; Ewald, Shawn P.; Wellington, Danika

    2016-01-01

    The first observations of Saturn's visible-wavelength aurora were made by the Cassini camera. The aurora was observed between 2006 and 2013 in the northern and southern hemispheres. The color of the aurora changes from pink at a few hundred km above the horizon to purple at 1000-1500 km above the horizon. The spectrum observed in 9 filters spanning wavelengths from 250 nm to 1000 nm has a prominent H-alpha line and roughly agrees with laboratory simulated auroras. Auroras in both hemispheres vary dramatically with longitude. Auroras form bright arcs between 70° and 80° latitude north and between 65° and 80° latitude south, which sometimes spiral around the pole, and sometimes form double arcs. A large 10,000-km-scale longitudinal brightness structure persists for more than 100 h. This structure rotates approximately together with Saturn. On top of the large steady structure, the auroras brighten suddenly on the timescales of a few minutes. These brightenings repeat with a period of ∼1 h. Smaller, 1000-km-scale structures may move faster or lag behind Saturn's rotation on timescales of tens of minutes. The persistence of nearly-corotating large bright longitudinal structure in the auroral oval seen in two movies spanning 8 and 11 rotations gives an estimate on the period of 10.65 ± 0.15 h for 2009 in the northern oval and 10.8 ± 0.1 h for 2012 in the southern oval. The 2009 north aurora period is close to the north branch of Saturn Kilometric Radiation (SKR) detected at that time.

  15. Multi-wavelength emission region of gamma-ray emitting pulsars

    CERN Document Server

    Kisaka, Shota

    2011-01-01

    Using the outer gap model, we investigate the emission region for the multi-wavelength light curve from energetic pulsars. We assume that gamma-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We assume that gamma-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parameterize the altitude of the emission region as the deviation from the rotating dipole in vacuum and determine it from the observed multi-wavelength pulse profile using the observationally constrained magnetic dipole inclination angle and viewing angle of the pulsars. We find that the outer gap model can explain the multi-wavelength pulse behavior by a simple distribution of emissivity, and discuss the possibility of further improvement. From observational fitting, we also find a general tendency for the altitude of the gamma-ray emission region to de...

  16. Swept wavelength lasers in the 1 um region

    DEFF Research Database (Denmark)

    Nielsen, Frederik Donbæk

    2006-01-01

    . In this application, the 1-1.1 m wavelength range is particular suitable for imaging features in the deeper lying layers of the human retina. Ytterbium Doped Fiber Amplifiers (YDFAs) are an attractive and available gain medium for the 1-1.1 m wavelength band. However, the relative long upper state lifetime, imposes...

  17. Saturn's Aurora Observed by Cassini Camera in Visible Wavelengths

    Science.gov (United States)

    Dyudina, U.; Ingersoll, A. P.; Ewald, S.; Wellington, D. F.

    2014-12-01

    Cassini camera's movies in 2009-2013 show Saturn's aurora in both the northern and southern hemispheres. The color of the aurora changes from pink at a few hundreds of km above the cloud tops to purple at 1000-1500 km above the cloud tops. The spectrum observed in 9 lters spanning wavelengths from 250 nm to 1000 nm has a prominent H-alpha line and roughly agrees with the laboratory simulated auroras [1]. Auroras in both hemispheres vary dramatically with longitude. Auroras form bright arcs, sometimes a spiral around the pole, and sometimes double arcs at 70-75 both north and south latitude. 10,000-km-scale longitudinal brightness structures can persist for more than 100 hours. This structures rotate together with Saturn. Besides the steady structure, the auroras brighten suddenly on the timescales of few minutes. 1000-km-scale disturbances may move faster or lag behind Saturn's rotation on timescales of tens of minutes. The persistence of the longitudinal structure of the aurora in two long observations in 2009 and 2012 allowed us to estimate its period of rotation of 10.65±0.15 h for 2009 and 10.8±0.1 h for 2012. The 2009 north aurora period is close to the north branch of Saturn Kilometric Radiation (SKR) detected at that time. The 2012 south aurora period is longer than the SKR periods detected at the time. These periods are also close to the rotation period of the lightning storms on Saturn. We discuss those periodicities and their relevance to Saturn's internal rotation. [1] Aguilar, A. et al. The Electron-Excited Mid-Ultraviolet to Near-Infrared Spectrum of H2:Cross Sections and Transition Probabilities. Astrophys. J. Supp. Ser. 177, 388-407 (2008).

  18. Multi-wavelength study of the star-formation in the S237 H II region

    CERN Document Server

    Dewangan, L K; Zinchenko, I; Janardhan, P; Luna, A

    2016-01-01

    We present a detailed multi-wavelength study of observations from X-ray, near-infrared to centimeter wavelengths to probe the star formation processes in the S237 region. Multi-wavelength images trace an almost sphere-like shell morphology of the region, which is filled with the 0.5--2 keV X-ray emission. The region contains two distinct environments - a bell-shaped cavity-like structure containing the peak of 1.4 GHz emission at center, and elongated filamentary features without any radio detection at edges of the sphere-like shell - where {\\it Herschel} clumps are detected. Using the 1.4 GHz continuum and $^{12}$CO line data, the S237 region is found to be excited by a radio spectral type of B0.5V star and is associated with an expanding H{\\sc ii} region. The photoionized gas appears to be responsible for the origin of the bell-shaped structure. The majority of molecular gas is distributed toward a massive {\\it Herschel} clump (M$_{clump}$ $\\sim$260 M$_{\\odot}$), which contains the filamentary features and ...

  19. ALMA observations of alpha Centauri: First detection of main-sequence stars at 3mm wavelength

    CERN Document Server

    Liseau, R; Bayo, A; Bertone, E; Black, J H; del Burgo, C; Chavez, M; Danchi, W; De la Luz, V; Eiroa, C; Ertel, S; Fridlund, M C W; Justtanont, K; Krivov, A; Marshall, J P; Mora, A; Montesinos, B; Nyman, L -A; Olofsson, G; Sanz-Forcada, J; Thebault, P; White, G J

    2014-01-01

    The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. Earlier observations with Herschel and APEX have revealed the temperature minimum of alpha Cen, but these were unable to spatially resolve the binary into individual components. With the data reported here, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870mu. In the present context, we intend to extend the spectral mapping to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. ALMA is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our obj...

  20. Observation of central wavelength dynamics in erbium-doped fiber ring laser.

    Science.gov (United States)

    Xu, Huiwen; Lei, Dajun; Wen, Shuangchun; Fu, Xiquan; Zhang, Jinggui; Shao, Yufeng; Zhang, Lifu; Zhang, Hua; Fan, Dianyuan

    2008-05-12

    We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.

  1. Neptune’s global circulation deduced from multi-wavelength observations

    Science.gov (United States)

    de Pater, Imke; Fletcher, Leigh N.; Luszcz-Cook, Statia; DeBoer, David; Butler, Bryan; Hammel, Heidi B.; Sitko, Michael L.; Orton, Glenn; Marcus, Philip S.

    2014-07-01

    motions from the stratosphere all the way down to the deep troposphere. The enhanced brightness observed at mid-infrared wavelengths is interpreted to be due to adiabatic heating by compression in the stratosphere, and the enhanced brightness temperature at radio wavelengths reveals that the subsiding air over the pole is very dry; the relative humidity of H2S over the pole is only 5% at altitudes above the NH4SH cloud at ∼40 bar. The low humidity region extends from the south pole down to latitudes of 66°S. This is near the same latitudes as the south polar prograde jet signifying the boundary of the polar vortex. We suggest that the South Polar Features (SPFs) at latitudes of 60-70° are convective storms, produced by baroclinic instabilities expected to be produced at latitudes near the south polar prograde jet. Taken together, our data suggest a global circulation pattern where air is rising above southern and northern midlatitudes, from the troposphere up well into the stratosphere, and subsidence of dry air over the pole and equator from the stratosphere down into the troposphere. We suggest that this pattern extends all the way from ≲0.1 mbar down to pressures of ≳40 bar.

  2. Fine Structure in the Mm-Wavelength Spectra of the Active Region

    Science.gov (United States)

    Sawant, H. S.; Cecatto, J. R.

    1990-11-01

    RESUMEN. Faltan observaciones solares espectrosc6picas en la longitud de onda milimetrica. Hay sugerencias de que se puede superponer una fi na estructura en frecuencia a la componente-S de la regi6n solar activa, asi como a la componente del brote en las longitudes de onda milimetri- cas. Se ha desarrollado un receptor de alta sensibilidad de pasos de frecuencia que opera en el intervalo de 23-18 GHz con una resoluci6n de 1 GHz y resoluci6n de tiempo variable entre 1.2 y 96 sec, usando la an- tena de Itapetinga de 13.7-m para estudiar la estructura fina en frecuencia y tiempo. Discutimos el espectro en longitud de onda-mm en re- giones activas y su evoluci6n en el tiempo. El estudio de Ia evoluci6n en el tiempo de la regi6n activa en AR 5569 observada el 29 de junio de 1989, sugiere la existencia de estructuras finas como funci6n deltiempo. ABSTRACT. There is a lack of mm-wavelength spectroscopic solar observations. There are suggestions that a fine structure in frequency may be superimposed on the S-component of solar active region as well as on the burst component at inm-wavelengths. To study fine structure in frequency and time, a high sensitivity step frequency receiver operating in the frequency range 23-18 GHz with frequency resolution of 1 GHz and variable time resolution 1.2 to 96 sec, using 13.7 m diameter Itapetinga radome covered antenna, has been developed. Here, we discuss mm-wavelength spectra of active regions and their time evolution. Study of time evolution of an active region AR 5569 observed on 29th June, 1989 suggests existence of fine structures as a function of time. ( Ck : SUN-ACTIVITY - SUN-RADIO RADIATION

  3. Simultaneous multi-wavelength observations of Saturn's aurorae : energy budget and magnetospheric dynamics

    Science.gov (United States)

    Lamy, L.

    2011-10-01

    Similarly to other magnetized planets, accelerated electrons entering Saturn's auroral regions generate powerful emissions. They divide into Ultraviolet (UV) and Infrared (IR) aurorae, originating from collisions with the upper atmosphere, and Saturn's Kilometric Radiation (SKR), radiated by an electron cyclotron resonance above the atmosphere up a few Saturn's radii (Rs). Previous studies have identified a large scale conjugacy between radio and UV, as well as IR and UV auroral emissions. Here, we investigate two days of observations of Saturn's aurorae at radio, UV and IR wavelengths, by the Cassini RPWS, UVIS and VIMS instruments, and their relationship with a reservoir of equatorial energetic particles mapped by energetic neutral atoms (ENA), as measured by MIMI-INCA (see Figure ??). This interval of time reveals a series of regular SKR modulations at the southern SKR phase, and interestingly includes an unusual (while also regular) enhancement of the auroral activity observed simultaneously at all wavelengths. This event is likely to illustrate a (regular) nightside injection of energetic particles, possibly induced by a plasmoid ejection, then co-rotating with the planet at the southern SKR period, while feeding an extended longitudinal sector of intense auroral emissions. We analyze quantitatively complementary informations brought by these different datasets in terms of energy budget transferred to the southern auroral region, as well as magnetospheric dynamics, in order to address the nature and the scheme of the Saturn's southern rotational modulation.

  4. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  5. Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    CERN Document Server

    Fallows, R A; McKay, D; Vierinen, J; Virtanen, I I; Postila, M; Ulich, Th; Enell, C-F; Kero, A; Iinatti, T; Lehtinen, M; Orispää, M; Raita, T; Roininen, L; Turunen, E; Brentjens, M; Ebbendorf, N; Gerbers, M; Grit, T; Gruppen, P; Meulman, H; Norden, M; de Reijer, J-P; Schoenmakers, A; Stuurwold, K

    2015-01-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disapp...

  6. Kramers-Kronig analysis of soft x-ray reflectivity data of platinum thin film in 40-200 Å wavelength region

    Science.gov (United States)

    Sharma, Saurabh; Gupta, R. K.; Sinha, Mangalika; Yadav, P.; Singh, Amol; Modi, Mohammed H.

    2016-05-01

    Reflectivity beamline at Indus-1 synchrotron source is used to determine optical constants of a platinum thin film in the soft x-ray wavelength region of 40-200Å by applying Kramers-Kronig (KK) technique on R vs wavelength data. Upto 150Å wavelength region the results of KK analysis are found in good agreement with the Henke's optical constants and also with those obtained by the angle dependent reflectivity technique. A significant mismatch is observed above 150Å wavelength region which could be due to the presence of higher harmonics in the toroidal grating spectra of the reflectivity beamline.

  7. Multi-wavelength and polarimetric observations of Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Eckart, A [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Schodel, R [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Meyer, L [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Trippe, S [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Ott, T [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Genzel, R [Max Planck Institut fur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Muzic, K [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Moultaka, J [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Straubmeier, C [I. Physikalisches Institut, University of Cologne, Zuelpicher Strasse 77, 50937 Cologne (Germany); Baganoff, F K [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 021 39-4307 (United States); Morris, M [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Bower, G C [Department of Astronomy and Radio Astronomy Laboratory, University of California at Berkeley, Campbell Hall, Berkeley, CA 94720 (United States)

    2006-12-15

    We summarize the results of some of the latest NIR/sub-millimeter/X-ray observing campaigns. Those include the latest simultaneous observations as well as the most recent results from VLT NACO observations of polarized NIR, flare emission of Sgr A*. We interpret the new NIR, polarimetry results using a model in which spots are on relativistic orbits around Sgr A*, which is associated with the massive 3.6 million solar mass black hole at the Galactic Center. In the NIR, the observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope. In the X-ray and radio domains we used the ACIS-I instrument aboard the Chandra X-ray Observatory and the Submillimeter Array on Mauna Kea, Hawaii, as well as the Very Large Array in New Mexico, respectively.

  8. Surface Response to Regional Uplift of Madagascar Reveals Short Wavelength Dynamic Topography

    Science.gov (United States)

    Stephenson, S.; White, N.

    2016-12-01

    The physiography of Madagascar is characterized by high elevation but low relief topography with 42% of the landscape at an elevation grgeater than 500 m. Eocene marine limestones crop out at an elevation of 400 m, extensive low relief erosion surfaces capped by laterites occur at elevations of up to 2 km, and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar underwent regional uplift in Neogene times. Inverse modeling of drainage networks suggests that regional uplift is diachronous and has occurred on wavelengths of 1000 km. The existence of deeply incised river channels together with low-temperature thermochronologic measurements (i.e. AFT, AHe) implies that erosion occurred in response to regional Neogene uplift. Admittance analysis of long wavelength free-air gravity and topography shows that admittance, Z = 45 ± 5 mGal/km. The history of Neogene volcanism and a lack of significant tectonic shortening both suggest that uplift is dynamically supported. Here we present a suite of U-Th dates of emergent coral reef deposits from northern Madagascar, whose margins are sometimes considered `stable'. Elevation of these coeval coral reefs decreases from 7.2 m at the northern tip of Madagascar to sea level 100 km to the south. The existence of a spatial gradient suggests that differential vertical motions occurred during Late Quaternary times. These results raise significant questions about the reliability both of emergent coral reefs as global sea-level markers and the length-scale of variations in dynamic topography.

  9. The Central Regions of M31 in the 3-5 μm Wavelength Region

    Science.gov (United States)

    Davidge, T. J.; Jensen, Joseph B.; Olsen, K. A. G.

    2006-08-01

    Images obtained with NIRI on the Gemini North telescope are used to investigate the photometric properties of the central regions of M31 in the 3-5 μm wavelength range. The light distribution in the central arcsecond differs from what is seen in the near-infrared in the sense that the difference in peak brightness between P1 and P2 is larger in M' than in K' no obvious signature of P3 is detected in M'. These results can be explained if there is a source of emission that contributes ~20% of the peak M' light of P1, has an effective temperature of no more than a few hundred K, and is located between P1 and P2. Based on the red K-M' color of this source, it is suggested that the emission originates in a circumstellar dust shell surrounding a single bright asymptotic giant branch (AGB) star. Tests of this hypothesis are described. A bright source that is ~8" from the center of the galaxy is also detected in M'. This object has red colors and an absolute brightness in M' that is similar to the most highly evolved AGB stars in the solar neighborhood; hence, it is likely to be a very evolved AGB star embedded in a circumstellar envelope. The K-band brightness of this star is close to the peak expected for AGB evolution, and an age of only a few hundred million years is estimated, which is comparable to that of the P3 star cluster. Finally, using high angular resolution near-infrared adaptive optics images as a guide, a sample of unblended AGB stars outside of the central few arcseconds is defined in L'. The (L', K-L') color-magnitude diagram of these sources shows a dominant AGB population with a peak L' brightness and a range of K-L' colors that are similar to those of the most luminous M giants in the Galactic bulge. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership

  10. Multi-wavelength Observations of H 2356-309

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernloehr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Buehler, R; Bulik, T; Buesching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Conrad, J; Chounet, L -M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Atai, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Foerster, A; Fontaine, G; Fuessling, M; Gabici, S; Gallant, Y A; Gerard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glueck, B; Goret, P; Goering, D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzynski, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Klochkov, D; Kluzniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J -P; Lohse, T; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Mehault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Ona; Opitz, B; Orford, K J; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Puehlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schoeck, F M; Schoenwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sushch, I; Sikora, M; Skilton, J L; Sol, H; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Szostek, A; Tam, P H; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Voelk, H J; Volpe, F; Vorobiov, S; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2010-01-01

    AIMS: The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z=0.165) are investigated. METHODS: Very High Energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. RESULTS: A strong VHE signal, ~13 sigma total, was detected by HESS after the four years HESS observations (116.8 hrs live time). The integral flux above 240 GeV is I(>240 GeV) = (3.06 +- 0.26 {stat} +- 0.61 {syst}) x 10^{-12} cm^{-2} s^{-1}, corresponding to ~1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Gamma = 3.06 +- 0.15 {stat} +- 0.10 {syst}). Significant s...

  11. Multi-Timescale Radio Observations of Multi-Wavelength GRBs

    Science.gov (United States)

    Van der Horst, Alexander

    2016-07-01

    Gamma-ray bursts are a broadband phenomenon, with emission detected across the electromagnetic spectrum from low-frequency radio waves to high-energy gamma-rays. Besides this extremely broad spectral range, they are also observed over a very large range of timescales, from millisecond variability in gamma-rays to the afterglows at radio frequencies that can sometimes be observed for years after the initial gamma-ray trigger. Our current understanding of gamma-ray bursts is based on these multi-frequency and multi-timescale observations. In this talk I will show the role that radio observations have played and will play in putting together a broadband picture of the physics behind the observed emission, the progenitors, and their environment. I will highlight some recent discoveries and developments, in particular the searches for early radio emission within the first minutes after gamma-ray triggers; the increasing number of radio-detected, optically dark bursts; and the possibilities that several new and upgraded radio observatories offer to obtain a better understanding of the macro- and microphysics behind these enigmatic phenomena.

  12. A New Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M.; Kaiser, M.; Fainberg, J.

    2003-04-01

    From May 17 to 22, 2002 a highly circularly polarized solar radio source was observed by the WAVES receivers on the Wind spacecraft. This unique event, which became quite intense and definite after May 19 and which was observed continuously for 6 days, was characterized by fine frequency structures, 1 to 2 hour amplitude periodicities, and a peaked frequency spectrum. Indeed, this emission has characteristics more typical of planetary emissions than of solar emissions. This is the only such event observed by Wind/WAVES in its 8 years of operation. (The only other example of an event of similar nature may have been observed more than 20 years ago by the ISEE-3 spacecraft.) The direction-finding analysis for this event indicates a relatively small radio source that may lie somewhere between 0.06 and 0.36 AU from the sun. The radiation from this event was very weak at the onset, being nearly an order of magnitude below the galactic background radiation level. It is speculated that this radio event may be a unique hectometric manifestation of a moving type IV burst. The radiation mechanism is unknown--possibilities include plasma emission, gyro-synchrotron, and cyclotron maser.

  13. Unusual Solar Radio Burst Observed at Decameter Wavelengths

    Science.gov (United States)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Rucker, H. O.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Panchenko, M.; Stanislavskyy, A. A.

    2014-01-01

    An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16 - 28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz s-1) at frequencies higher than 22 MHz and negative (100 kHz s-1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300 - 400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.

  14. Multi-wavelength observations of H 2356-309

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Klužniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2010-06-01

    Aims: The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z = 0.165) are investigated. Methods: Very high energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. Results: A strong VHE signal, ~13σ total, was detected by HESS after the four years HESS observations (116.8 h live time). The integral flux above 240 GeV is I(>240 GeV) = (3.06 ± 0.26stat ± 0.61syst) × 10-12 cm-2 s-1, corresponding to ~1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Γ = 3.06 ± 0.15stat ± 0.10syst). Significant small-amplitude variations in the VHE flux from H 2356-309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights. Conclusions: The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level.

  15. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    Science.gov (United States)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  16. Photometric Observations of Omega Centauri Multi-Wavelength Observations of Evolved Stars

    CERN Document Server

    Hughes, J; Van Leeuwen, F W; Hughes, Joanne; Wallerstein, George; Leeuwen, Floor van

    2001-01-01

    We present multi-wavelength observations of the northern population of Omega Cen from the main-sequence turn-off to high on the red giant branch. We show that the best information about the metallicity and age of the stars can be gained from combining vby, B-I and V-I colors (in the absence of spectroscopy). We confirm our results for the main-sequence turn-off stars: there is at least a 3 Gyr age spread. We use proper motion studies to confirm cluster membership at and above the level of the horizontal branch, and we show that the age spread is maintained amongst stars from the subgiant branch through the red giants. The available evidence suggests that Omega Cen is the core of a disrupted dwarf galaxy.

  17. MULTI-WAVELENGTHS OBSERVATIONS OF AGN: FIFTEEN YEARS ALONG

    Institute of Scientific and Technical Information of China (English)

    Willem Wamsteker

    2001-01-01

    We discuss the results of the extensive efforts done over the past decade on the near environment of the central engines in Active Galactic Nuclei. The observational material is mainly based on the observations from Ground based observatories in the optical, infrared and radio bands, and of space missions like GINGA, IUE, HST, CGRO, ISO, BeppoSAX and RXTE. The availability of this instrumentation with sufficient sensitivity for the study of these objects in the γ-rays, X-rays, EUV, UV as well as Optical, IR and radio domain has opened a complete new insight. Although the results have not yet lead to a complete and full understanding, they have demonstrated with a high degree of probability that the central engines of these objects are associated with massive blackholes. A strong effort will be required from the theoretical side to make certain that we can actually use the results to distinguish between the different model parameters and place the AGN's in their proper place, not only as individual objects of interest,but also to clarify their place in the general scheme of the evolution in the Universe.The results obtained so far have not solved all the early questions, but with the promise of the new instruments a very exciting outlook exists for the future of the study of the physics of accretion in massive Black Holes.

  18. Atmospheric Waves and Dynamics Beneath Jupiters Clouds from Radio Wavelength Observations

    Science.gov (United States)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy; De Pater, Imke

    2017-01-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between approx. 0.5- 2.0 bars of pressure in Jupiters atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of approx. 1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10 N, likely connected to the same equatorial wave associated with the 5-m hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wave- length map to investigate dynamics of the equatorial region in Jupiters atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 m hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLAs upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric

  19. Atmospheric waves and dynamics beneath Jupiter's clouds from radio wavelength observations

    Science.gov (United States)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberías, Raúl; Simon, Amy; de Pater, Imke

    2017-08-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between ∼ 0.5 - 2.0 bars of pressure in Jupiter's atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of ∼1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10°N, likely connected to the same equatorial wave associated with the 5-μm hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wavelength map to investigate dynamics of the equatorial region in Jupiter's atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 μm hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLA's upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric dynamics

  20. SIZE OF THE VELA PULSAR'S EMISSION REGION AT 18 cm WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, C. R.; Johnson, M. D. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Reynolds, J. E.; Jauncey, D. L.; Tzioumis, A. K.; Edwards, P. G. [Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Hirabayashi, H.; Kobayashi, H.; Murata, Y. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku Sagamihara, Kanagawa 252-5210 (Japan); Dougherty, S.; Carlson, B.; Del Rizzo, D. [National Research Council of Canada, Herzberg Institute for Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); Quick, J. F. H.; Flanagan, C. S. [Hartebeesthoek Radio Astronomy Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); McCulloch, P. M., E-mail: cgwinn@physics.ucsb.edu [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia)

    2012-10-10

    We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength {lambda} = 18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong scintillation, finite size of the emission region produces a characteristic W-shaped signature in the projection of the visibility distribution onto the real axis. This modification involves heightened probability density near the mean amplitude, decreased probability to either side, and a return to the zero-size distribution beyond. We observe this signature with high statistical significance, as compared with the best-fitting zero-size model, in many regions of pulse phase. We find that the equivalent FWHM of the pulsar's emission region decreases from more than 400 km early in the pulse to near zero at the peak of the pulse and then increases again to approximately 800 km near the trailing edge. We discuss possible systematic effects and compare our work with previous results.

  1. First high spatial resolution interferometric observations of solar flares at millimeter wavelengths

    Science.gov (United States)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Bieging, J. H.; Hurford, G. J.

    1990-01-01

    The first high spatial resolution interferometric observations of solar flares at millimeter wavelengths, carried out with the Berkeley-Illinois-Maryland Array are presented. The observations were made at 3.3 mm wavelength during the very active periods of March 1989, using one or three baselines with fringe spacings of 2-5 arcsec. The observations represent an improvement of an order of magnitude in both sensitivity and spatial resolution compared with previous solar observations at these wavelengths. It appears that millimeter burst sources are not much smaller than microwave sources. The most intense bursts imply brightness temperatures of over 10 to the 6th K and are due to nonthermal gyrosynchrotron emission or possibly thermal free-free emission. If the emission in the flash phase is predominantly due to gyrosynchrotron emission, thermal gyrosynchrotron models can be ruled out for the radio emission because the flux at millimeter wavelengths is too high.

  2. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths.

    Science.gov (United States)

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng; Wang, Zheng; Subbaraman, Harish; Wang, Yaguo; Jia, Baohua; Chen, Ray T

    2017-08-29

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here we report the observation of ultrahigh third-order nonlinearity about 0.45 cm(2)/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantly advance the performance of all-optical switches.

  3. Multi-wavelength Study of Transition Region Penumbral Subarcsecond Bright Dots Using IRIS and NST

    CERN Document Server

    Deng, Na; Tian, Hui; Kleint, Lucia; Liu, Chang; Xu, Yan; Wang, Haimin

    2016-01-01

    Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph (IRIS) mission, Tian et al. (2014b) revealed numerous short-lived subarcsecond bright dots (BDs) above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether these subarcsecond TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. This paper presents a multi-wavelength study of the TR penumbral BDs using a coordinated observation of a near disk-center sunspot with IRIS and the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory. NST provides high-resolution chromospheric and photospheric observations with narrow-band H-alpha imaging spectroscopy and broad-band TiO images, respectively, complementary to IRIS TR observations. A total of 2692 TR penumbral BDs are identified from a 37-minute time series of IRIS 1400 A slitjaw images. Their locations tend to be associat...

  4. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd

    DEFF Research Database (Denmark)

    Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes;

    2012-01-01

    We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broadband UV, optical, and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd ext...

  5. Wavelength Analysis of Interface between Two Miscible Solutions Observed in Formation of Fractal Pattern

    Science.gov (United States)

    Shimokawa, Michiko; Takami, Toshiya

    2014-04-01

    When a droplet of a higher-density solution (HDS) is placed on top of a lower-density solution (LDS), the HDS draws a fractal pattern on the surface of the LDS. Before the fractal pattern is formed, a stick-like pattern with a periodic structure emerges in a region surrounding the surface pattern due to interfacial instability. We experimentally measure the wavelength of this stick-like pattern. The wavelength increases with the volume of the HDS and is independent of the viscosities of the two solutions. To understand the stick generation, we propose a model of miscible viscous fingering whose boundary conditions are similar to those of the experiments. The wavelength obtained from the model agrees with the experimentally obtained wavelength. The formation of the fractal pattern is discussed by comparing it with the viscous fingering.

  6. Understanding CME and associated shock in the solar corona by merging multi wavelengths observation

    CERN Document Server

    Zucca, Pietro; Demoulin, Pascal; Kerdraon, Alain; Lecacheux, Alain; Gallagher, Peter T

    2014-01-01

    Using multi-wavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a CME which interact during more than 30 min, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration which has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of large Active Region (AR). The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system which becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient m...

  7. Multi-wavelength afterglow observations of the high redshift GRB 050730

    OpenAIRE

    2006-01-01

    GRB 050730 is a long duration high-redshift burst (z=3.967) discovered by Swift. The afterglow shows variability and is well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations from the millimeter to X-rays. We use multi-wavelength afterglow data to understand the temporal and spectral decay properties with superimposed variability of this high redshift burst. Five telescopes were used to study t...

  8. A MULTI-WAVELENGTH INVESTIGATION OF RCW175: AN H II REGION HARBORING SPINNING DUST EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tibbs, C. T.; Compiegne, M.; Carey, S. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Paladini, R. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dickinson, C.; Davies, R. D.; Davis, R. J. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester M13 9PL (United Kingdom); Alves, M. I. R. [Institut d' Astrophysique Spatiale, Universite Paris Sud XI, Batiment 121, 91405 Orsay (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Shenoy, S. [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States); Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Casassus, S. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Molinari, S.; Elia, D.; Pestalozzi, M.; Schisano, E., E-mail: ctibbs@ipac.caltech.edu [INAF-Istituto Fisica Spazio Interplanetario, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-08-01

    Using infrared, radio continuum, and spectral observations, we performed a detailed investigation of the H II region RCW175. We determined that RCW175, which actually consists of two separate H II regions, G29.1-0.7 and G29.0-0.6, is located at a distance of 3.2 {+-} 0.2 kpc. Based on the observations we infer that the more compact G29.0-0.6 is less evolved than G29.1-0.7 and was possibly produced as a result of the expansion of G29.1-0.7 into the surrounding interstellar medium. We compute a star formation rate for RCW175 of (12.6 {+-} 1.9) Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, and identified six possible young stellar object candidates within its vicinity. Additionally, we estimate that RCW175 contains a total dust mass of 215 {+-} 53 M{sub Sun }. RCW175 has previously been identified as a source of anomalous microwave emission (AME), an excess of emission at centimeter wavelengths often attributed to electric dipole radiation from the smallest dust grains. We find that the AME previously detected in RCW175 is not correlated with the smallest dust grains (polycyclic aromatic hydrocarbons or small carbonaceous dust grains), but rather with the exciting radiation field within the region. This is a similar result to that found in the Perseus molecular cloud, another region which harbors AME, suggesting that the radiation field may play a pivotal role in the production of this new Galactic emission mechanism. Finally, we suggest that these observations may hint at the importance of understanding the role played by the major gas ions in spinning dust models.

  9. A multi-wavelength investigation of RCW175: an HII region harboring spinning dust emission

    CERN Document Server

    Tibbs, C T; Compiegne, M; Dickinson, C; Alves, M I R; Flagey, N; Shenoy, S; Noriega-Crespo, A; Carey, S; Casassus, S; Davies, R D; Davis, R J

    2012-01-01

    Using infrared, radio continuum and spectral observations, we performed a detailed investigation of the HII region RCW175. We determined that RCW175, which actually consists of two separate HII regions, G29.1-0.7 and G29.0-0.6, is located at a distance of 3.2+/-0.2 kpc. Based on the observations we infer that the more compact G29.0-0.6 is less evolved than G29.1-0.7 and was possibly produced as a result of the expansion of G29.1-0.7 into the surrounding interstellar medium. We compute a star formation rate for RCW175 of (12.6+/-1.9)x10^{-5} M_{\\sun}/yr, and identified 6 possible young stellar object candidates within its vicinity. Additionally, we estimate that RCW175 contains a total dust mass of 215+/-53 M_{\\sun}. RCW175 has previously been identified as a source of anomalous microwave emission (AME), an excess of emission at cm wavelengths often attributed to electric dipole radiation from the smallest dust grains. We find that the AME previously detected in RCW175 is not correlated with the smallest dust ...

  10. Studies of Clump Structure of Photodissociation Regions at Millimeter and Sub-millimeter Wavelengths

    Indian Academy of Sciences (India)

    Abdul Qaiyum; Syed Salman Ali

    2003-09-01

    To interpret the millimeter and sub-millimeter line emissions of atomic and molecular species from galactic and extragalactic photodissociation regions, warm gas components and molecular clouds, generally, escape probability formalism of Tielens & Hollenbach (herein referred as TH) are employed which is based on the assumption of plane parallel geometry of infinite slab allowing photons to escape only from the front. Contrary to the assumption observationally it is found that these lines are optically thin except OI(63m) and low rotational transitions of CO and some other molecules. This observational evidence led us to assume that emitting regions are finite parallel plane slab in which photons are allowed to escape from both the surfaces (back and front). Therefore, in the present study escape of radiations from both sides of the homogeneous and also clumpy PDR/molecular clouds are taken into consideration for calculating the line intensities at millimeter and sub-millimeter wavelengths (hereinafter referred as QA). Results are compared with that of the TH model. It is found that thermal and chemical structures of the regions are almost similar in both the formalisms. But line intensities are modified by differing factors. Particularly at lowdensity and lowkinetic temperature and also for optically thin lines line intensities calculated from TH and QA model differ substantially. But at density higher than the critical density and also for optically thick lines TH and QA models converge to almost same values. An attempt has been made to study the physical conditions of the M17 region employing the present formalism.

  11. Spectral characteristics of clay minerals in the 2.5 - 14 µm wavelength region

    NARCIS (Netherlands)

    Yitagesu, F.A.; Meer, F.D. van der; Werff, H.M.A. van der; Hecker, C.A.

    2011-01-01

    Identification and quantification of clay minerals, particularly those that are responsible for susceptibility of soils to expansion and shrinkage, is a constant focus of research in geotechnical engineering. The visible, near infrared and short wave infrared wavelength regions are well explored. Ho

  12. Narrowband and tunable anomalous transmission filters for special monitoring in the extreme ultraviolet wavelength region

    NARCIS (Netherlands)

    Barreaux, J.L.P.; Kozhevnikov, I.V.; Bayraktar, Muharrem; van de Kruijs, Robbert Wilhelmus Elisabeth; Bastiaens, Hubertus M.J.; Bijkerk, Frederik; Boller, Klaus J.

    2017-01-01

    We present the first experimental demonstration of a novel type of narrowband and wavelength-tunable multilayer transmission filter for the extreme ultraviolet (EUV) region. The operating principle of the filter is based on spatially overlapping the nodes of a standing wave field with the absorbing

  13. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-06-01

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources.

  14. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots.

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-06-06

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources.

  15. Discontinuous space variant sub-wavelength structures for generating radially polarized light in visible region

    Science.gov (United States)

    Ghadyani, Z.; Dmitriev, S.; Lindlein, N.; Leuchs, G.; Rusina, O.; Harder, I.

    2011-08-01

    A discontinuous space variant sub-wavelength dielectric grating is designed and fabricated for generating radially polarized light in visible region (l = 632.8 nm). The design is based on sub-wavelength silicon nitride structures introducing a retardation of p/2 by form birefringence, with space variant orientation of the optical axis. The pattern is divided into concentric ring segments with constant structural parameters, therefore reducing electron-beam writing time significantly. The design avoids the technological challenges encountered in the generation of a continuous space variant grating while maintaining good quality of the resulting polarization mode.

  16. Multi-wavelength imaging observations of plasma depletions over Kavalur, India

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    Full Text Available Observations of ionospheric plasma depletions were made over Kavalur (12.56° N, 78.8° E, Mag. Lat 4.6° N, India during March–pril 1998 using an all sky optical imaging system operating at 630 nm, 777.4 nm and 557.7 nm. Out of 14 nights of observations, plasma depletions were seen only on 9 nights. Except for 21 March 1998, which was a magnetically disturbed period, all other nights belonged to a magnetically quiet period. Some of the important results obtained from these observations are: (a After the onset of the equatorial spread F (ESF, plasma depletions take typically about 2 hrs 40 min to come to a fully developed state, (b There are three distinct types of plasma depletions: type 1 have an east-west (e–w extent of 250–350 km with an inter-depletion distance (IDD of 125–300 km; Type 2 have an e–w extent of 100–150 km and IDD of 50–150 km; Type 3 have smallest the e–w extent (40–100 km and IDD of 20–60 km, (c Most of the observed plasma depletions (> 82% had their eastward velocity in the range of 25–125 ms–1. Almost stationary plasma depletions (0–25 ms–1 were observed on one night, which was magnetically disturbed. These very slow moving depletions appear to be the result of a modification of the F-region dynamo field due to direct penetration of the electric field and/or changes in the neutral winds induced by the magnetic disturbance, (d On the night of 21/22 March 1998, which was a magnetically disturbed period, plasma depletions could be seen simultaneously in all three observing wavelengths, i.e. in 630 nm, 777.4 nm and 557.7 nm. It is believed that this simultaneous occurrence was due to neutral density modifications as a result of enhanced magnetic activity. (e Well developed brightness patterns were observed for the first time in 777.4 nm images. Earlier, such brightness patterns were observed only in 630 nm and 557.7 nm images. These brightness patterns initially appear as very

  17. Observation of wavelength-dependent Brewster angle shift in 3D photonic crystals

    CERN Document Server

    Priya,

    2016-01-01

    The interaction of polarized light with photonic crystals exhibit unique features due to its sub-wavelength nature on the surface and the periodic variation of refractive index in the depth of the crystals. Here, we present a detailed study of polarization anisotropy in light scattering associated with three-dimensional photonic crystals with face centered cubic symmetry over a broad wavelength and angular range. The polarization anisotropy leads to a shift in the conventional Brewster angle defined for a planar interface with certain refractive index. The observed shift in Brewster angle strongly depends on the index contrast and lattice constant. Polarization-dependent stop gap measurements are performed on photonic crystals with different index contrast and lattice constants. These measurements indicate unique stop gap branching at high-symmetry points in the Brillouin zone of the photonic crystals. The inherited stop gap branching is observed for TE polarization whereas that is suppressed for TM polarizat...

  18. Reduction of CCD observations made with a scanning Fabry--Perot interferometer. III. Wavelength scale refinement

    CERN Document Server

    Moiseev, A V

    2015-01-01

    We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms. Also the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer are considered.

  19. High spatial resolution observations of solar flares at 3.3 mm wavelength

    Science.gov (United States)

    Kundu, M. R.; White, S. M.; Welch, W. J.; Bieging, J. H.

    1991-01-01

    The first high-spatial-resolution interferometric observations of solar flares at millimeter wavelengths are presented. They are of high sensitivity, and events ranging from subflares to X-class flares were detected. One to three baselines with fringe spacings of 2 to 5 arcsec were available, which demonstrated that generally source sizes were in excess of 2 arcsec, but in some events the sources may be about 1 arcsec.

  20. On the emissivity of wire-grid polarizers for astronomical observations at mm-wavelengths

    OpenAIRE

    Schillaci, Alessandro; Battistelli, Elia; Alessandro, Giuseppe D'; de Bernardis, Paolo; Masi, Silvia

    2012-01-01

    We have measured, using a custom setup, the emissivity of metallic wire-grids, suitable for polarimeters and interferometers at mm and far infrared wavelengths. We find that the effective emissivity of these devices is of the order of a few %, depending on fabrication technology and aging. We discuss their use in astronomical instruments, with special attention to Martin Puplett Interferometers in low-background applications, like astronomical observations of the Cosmic Microwave Background.

  1. On the emissivity of wire-grid polarizers for astronomical observations at mm-wavelengths

    CERN Document Server

    Schillaci, Alessandro; Alessandro, Giuseppe D'; de Bernardis, Paolo; Masi, Silvia

    2012-01-01

    We have measured, using a custom setup, the emissivity of metallic wire-grids, suitable for polarimeters and interferometers at mm and far infrared wavelengths. We find that the effective emissivity of these devices is of the order of a few %, depending on fabrication technology and aging. We discuss their use in astronomical instruments, with special attention to Martin Puplett Interferometers in low-background applications, like astronomical observations of the Cosmic Microwave Background.

  2. MEM imaging of multi-wavelength VLBA polarisation observations of Active Galactic Nuclei

    CERN Document Server

    Coughlan, Colm P

    2013-01-01

    We have developed a C++ implementation of the Maximum Entropy Method (MEM) suitable for deconvolving VLBI polarisation data. The first results of this implementation are presented and compared with CLEAN-based deconvolutions of the same data. We present Faraday rotation measure and intrinsic polarisation maps of AGN which have been made from MEM deconvolutions of multi-wavelength observations of Stokes parameters I, Q and U. The advantages of using MEM are demonstrated, in particular its enhanced resolution over the CLEAN algorithm.

  3. Terahertz dual-wavelength quantum cascade laser based on GaN active region

    Science.gov (United States)

    Mirzaei, B.; Rostami, A.; Baghban, H.

    2012-03-01

    In this paper a novel terahertz (THz) quantum cascade laser (QCL) based on GaN/AlGaN quantum wells has been proposed, which emits at two widely separated wavelengths 33 and 52 μm simultaneously in a single active region. The large LO-phonon energy (˜90 meV), the ultrafast resonant phonon depopulation of the lower radiative levels, suppression of the electrons that escape to the continuum states and selective carrier injection and extraction all together lead to a considerable enhancement in the operating temperature of the structure. All calculations have been done at a temperature of 265 K. Moreover, similar behavior of the output optical powers is another remarkable feature, which makes both wavelengths useful for special applications.

  4. Argentinian multi-wavelength scanning Raman lidar to observe night sky atmospheric transmission

    CERN Document Server

    Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

    2013-01-01

    This paper discusses the multi-wavelength scanning Raman lidar being built at Lidar Division, CEILAP (CITEDEF-CONICET) in the frame of the Argentinean Cherenkov Telescope Array (CTA) collaboration to measure the spectral characteristics of the atmospheric aerosol extinction profiles to provide better transmission calculations at the future CTA site. This lidar emits short laser pulses of 7-9 ns at 355, 532 and 1064 nm at 50 Hz with nominal energy of 125 mJ at 1064 nm. This wavelengths are also used to retrieve the atmospheric (air, aerosol and clouds) backscattered radiation in the UV, VIS and IR ranges. Raman capabilities were added in the UV and VIS wavelengths to retrieve the spectral characteristics of the aerosol extinction and the water vapor profile. Due to the expected low aerosol optical depth of the future site, the short observation period as well as the extension of the observation, an enhanced collection area is required. This system uses six 40 cm f/2.5 newtonian telescopes to avoid dealing with...

  5. Modelling multi-wavelength observational characteristics of bow shocks from runaway early type stars

    CERN Document Server

    Acreman, David M; Harries, Tim J

    2015-01-01

    We assess the multi-wavelength observable properties of the bow shock around a runaway early type star using a combination of hydrodynamical modelling, radiative transfer calculations and synthetic imaging. Instabilities associated with the forward shock produce dense knots of material which are warm, ionised and contain dust. These knots of material are responsible for the majority of emission at far infra-red, H alpha and radio wavelengths. The large scale bow shock morphology is very similar and differences are primarily due to variations in the assumed spatial resolution. However infra-red intensity slices (at 22 microns and 12 microns) show that the effects of a temperature gradient can be resolved at a realistic spatial resolution for an object at a distance of 1 kpc.

  6. Observation of dynamic wavelength shifts of a four-beam laser diode and study of its adaptability to optical heads.

    Science.gov (United States)

    Shinoda, M; Kime, K

    1995-04-01

    Dynamic wavelength shifts for a four-beam laser diode were observed with a streak camera system. The wavelength shift does not exceed 2 nm for pulsed laser beam operation at a bottom power of 5 mW and a peak power of 40 mW. For a 5-mW continuous operation laser beam, the induced wavelength shift in the presence of another laser beam under the above pulse condition does not exceed 1 nm. The observed wavelength shifts are small enough for practical use, and this four-beam laser diode can be successfully applied to multibeam optical heads for parallel data processing.

  7. RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Amy; Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT, 06459 (United States); Carpenter, John [Division of Physics, Mathematics, and Astronomy, MC249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Ricarte, Angelo [J. W. Gibbs Laboratory, Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene, E-mail: asteele@wesleyan.edu [Department of Astronomy, 501 Campbell Hall, University of California, Berkeley, CA 94720-3411 (United States)

    2016-01-01

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

  8. A study of flare buildup from simultaneous observations in microwave, H-alpha, and UV wavelengths

    Science.gov (United States)

    Kundu, M. R.; Schmahl, E. J.; Gaizauskas, V.; Woodgate, B. E.; Shine, R.; Jones, H. P.

    1985-01-01

    The results of high-resolution observations of the solar preflare activity of June 25, 1980 are analyzed. The observations were carried out simultaneously in the UV microwave, and H-alpha wavelengths using the VLA, the Ottawa River photoheliograph, and the Solar Max spectrometer and polarimeter instruments. Increases were observed in the intensitiy and polarization of compact sources at a wavelength of 6-cm during the preflare hour. The increases were associated with rising and twisting motions in the magnetic loops near the sight of the subsequent flare. Consistent with this process, analysis of the transverse and Doppler motions observed in the H-alpha filament before disruption showed that the filament was activated internally by the motions of evolving magnetic flux patterns. Ultraviolet data for C IV brightenings and upflows at the first appearance of the H-alpha filament indicated the presence of rising magnetic loops and material rising within the loops. The complete VLA, microwave and H-alpha data sets are given.

  9. Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 1996 Campaign

    Science.gov (United States)

    Beyerle, G.; Schäfer, H.-J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel “POLARSTERN” on the Atlantic ocean in October-November 1996. On the basis of 57 hours of night-time observations between 23.5°N and 23.5°S we find in 72% of the altitude profiles indications of the presence of cirrus cloud layers. This percentage drops to 32% at subtropical latitudes (23.5°-30°) based on 15 hours of data. About one-half of the subtropical and tropical cirrus layers are subvisual with an optical depth of less than 0.03 at a wavelength of 532 nm. In general the clouds exhibit high spatial and temporal variability on scales of a few tens of meters vertically and a few hundred meters horizontally. No clouds are observed above the tropopause. An abrupt change in the relation between the color ratios of the parallel and perpendicular backscatter coefficients at about 240 K is interpreted in terms of changes of particle shape and/or size distribution. At temperatures between 195 and 255 K only a small fraction of the observations are consistent with the presence of small particles with dimensions of less than 0.1 µm.

  10. A "Rosetta Stone" for protoplanetary disks: The synergy of multi-wavelength observations

    CERN Document Server

    Sicilia-Aguilar, A; Carmona, A; Stolker, T; Kama, M; Mendigutía, I; Garufi, A; Flaherty, K; van der Marel, N; Greaves, J

    2016-01-01

    The recent progress in instrumentation and telescope development has brought us different ways to observe protoplanetary disks, including interferometers, space missions, adaptive optics, polarimetry, and time- and spectrally-resolved data. While the new facilities have changed the way we can tackle the existing open problems in disk structure and evolution, there is a substantial lack of interconnection between different observing techniques and their user communities. Here, we explore the complementarity of some of the state-of-the-art observing techniques, and how they can be brought together in a collective effort to understand how disks evolve and disperse at the time of planet formation. This paper was born at the "Protoplanetary Discussions" meeting in Edinburgh, 2016. Its goal is to clarify where multi-wavelength observations of disks converge in unveiling disk structure and evolution, and where they diverge and challenge our current understanding. We discuss caveats that should be considered when lin...

  11. Multi-wavelength observations of afterglow of GRB 080319B and the modeling constraints

    CERN Document Server

    Pandey, S B; Jelínek, M; Kamble, Atish P; Gorosabel, J; Postigo, A de Ugarte; Prins, S; Oreiro, R; Chantry, V; Trushkin, S; Bremer, M; Winters, J M; Pozanenko, A; Krugly, Yu; Slyusarev, I; Kornienko, G; Erofeeva, A; Misra, K; Ramprakash, A N; Mohan, V; Bhattacharya, D; Volnova, A; Plá, J; Ibrahimov, M; Im, M; Volvach, A; Wijers, R A M J

    2009-01-01

    We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves and spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and it's comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency $\

  12. The environment and star formation of HII region Sh2-163: a multi-wavelength study

    CERN Document Server

    Yu, Naiping; Li, Nan

    2016-01-01

    To investigate the environment of HII region Sh2-163 and search for evidence of triggered star formation in this region, we performed a multi-wavelength study of this HII region. Most of our data were taken from large-scale surveys: 2MASS, CGPS, MSX and SCUBA. We also made CO molecular line observations, using the 13.7-m telescope. The ionized region of Sh2-163 is detected by both the optical and radio continuum observations. Sh2-163 is partially bordered by an arc-like photodissociation region (PDR), which is coincident with the strongest optical and radio emissions, indicating interactions between the HII region and the surrounding interstellar medium. Two molecular clouds were discovered on the border of the PDR. The morphology of these two clouds suggests they are compressed by the expansion of Sh2-163. In cloud A, we found two molecular clumps. And it seems star formation in clump A2 is much more active than in clump A1. In cloud B, we found new outflow activities and massive star(s) are forming inside. ...

  13. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals

    Science.gov (United States)

    Willingale, R.; Mészáros, P.

    2017-07-01

    The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.

  14. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  15. Resolved Millimeter-Wavelength Observations of Debris Disks around Solar-Type Stars

    CERN Document Server

    Steele, Amy; Carpenter, John; Ricarte, Angelo; Andrews, Sean M; Wilner, David J; Chiang, Eugene

    2015-01-01

    The presence of debris disks around young main sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The FEPS (Formation and Evolution of Planetary Systems) $Spitzer$ Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at ~2" resolution that spatially resolve the debris disks around these nearby ($d\\sim$50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array (ALMA) data to enable a uniform analysis of the full five-object sample. We simultaneou...

  16. The SMM UV observations of Active Region 5395

    Science.gov (United States)

    Drake, Stephen A.; Gurman, Joseph B.

    1989-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  17. Observations of Rotating Radio Transients with the First Station of the Long Wavelength Array

    CERN Document Server

    Taylor, G B; McCrackan, M; McLaughlin, M A; Miller, R; Karako-Argaman, C; Dowell, J; Schinzel, F K

    2016-01-01

    Rotating Radio Transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 MHz and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, 2 sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a low detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to the higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.

  18. Unsupervised Method for Correlated Noise Removal for Multi-wavelength Exo-planet Transit Observations

    Science.gov (United States)

    Dehghan Firoozabadi, Ali; Diaz, Alejandro; Rojo, Patricio; Soto, Ismael; Mahu, Rodrigo; Becerra Yoma, Nestor; Sedaghati, Elyar

    2017-07-01

    Exoplanetary atmospheric observations require an exquisite precision in the measurement of the relative flux among wavelengths. In this paper, we aim to provide a new adaptive method to treat light curves before fitting transit parameters in order to minimize systematic effects that affect, for instance, ground-based observations of exo-atmospheres. We propose a neural-network-based method that uses a reference built from the data itself with parameters that are chosen in an unsupervised fashion. To improve the performance of proposed method, K-means clustering and Silhouette criteria are used for identifying similar wavelengths in each cluster. We also constrain under which circumstances our method improves the measurement of planetary-to-stellar radius ratio without producing significant systematic offset. We tested our method in high quality data from WASP-19b and low-quality data from GJ-1214. We succeed in providing smaller error bars for the former when using JKTEBOP, but GJ-1214 light curve was beyond the capabilities of this method to improve as it was expected from our validation tests.

  19. Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; Gonzalez, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Ona; Mendez, C Delgado; Di Pierro, F; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Elsaesser, D; Fernandez-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; Lopez, R J Garcia; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Glawion, D; Godinovic, N; Munoz, A Gonzalez; Guberman, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; Lopez, M; Lopez-Coto, R; Lopez-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martinez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribo, M; Rico, J; Garcia, J Rodriguez; Rugamer, S; Saito, T; Satalecka, K; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpaa, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; Lucarelli, F; Pittori, C; Berdyugin, A; Carini, M T; Lahteenmaki, A; Pasanen, M; Pease, A; Sainio, J; Tornikoski, M; Walters, R

    2016-01-01

    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contempo...

  20. Three spacecraft observe Jupiter's glowing polar regions

    Science.gov (United States)

    1996-09-01

    The aurorae on Jupiter are like the Aurorae Borealis and Australis on the Earth, although visible only by ultraviolet light. They flicker in a similar way in response to variations in the solar wind of charged particles blowing from the Sun. While Galileo monitored the changing environment of particles and magnetism in Jupiter's vicinity, IUE recorded surprisingly large and rapid variations in the overall strength of the auroral activity. IUE's main 45-centimetre telescope did not supply images,but broke up the ultraviolet rays into spectra, like invisible rainbows, from which astrophysicists could deduce chemical compositions, motions and temperatures in the cosmic objects under examination. In the case of Jupiter's aurorae, the strongest emission came from activated hydrogen atoms at a wavelength of 1216 angstroms. The Hubble Space Telescope's contributions to the International Jupiter Watch included images showing variations in the form of the aurorae, and "close-up" spectra of parts of the auroral ovals. Astronomers will compare the flickering aurorae on Jupiter with concurrent monitoring of the Sun and the solar wind by the ESA-NASA SOHO spacecraft and several satellites of the Interagency Solar-Terrestrial Programme. It is notable that changes in auroral intensity by a factor of two or three occurred during the 1996 observational period, even though the Sun was in an exceptionally quiet phase, with very few sunspots. In principle, a watch on Jupiter's aurorae could become a valuable means of checking the long-range effects of solar activity, which also has important consequences for the Earth. The situation at Jupiter is quite different from the Earth's, with the moons strongly influencing the planet's space environment. But with Hubble busy with other work, any such Jupiter-monitoring programme will have to await a new ultraviolet space observatory. IUE observed Jupiter intensively in 1979-80 in conjunction with the visits of NASA's Voyager spacecraft, and

  1. Multi-Wavelength Near Infrared Observations of Marum and Yasur Volcanoes, Vanuatu

    Science.gov (United States)

    Howell, Robert R.; Radebaugh, Jani; Lopes, Rosaly M.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2014-11-01

    To help understand and test models of thermal emission from planetary volcanoes, we obtained in May 2014 a variety of near-infrared observations of the very active Marum lava lake on Ambrym, Vanuatu, as well as the Strombolian activity at Yasur on Tanna. Our observations include high resolution images and movies made with standard and modified cameras and camcorders. In addition, to test the planetary emission models, which typically rely on multi-wavelength observations, we developed a small inexpensive prototype imager named "Kerby", which consists of three simultaneously active near-infrared cameras operating at 0.860, 0.775, and 0.675 microns, as well as a fourth visible wavelength RGB camera. This prototype is based on the Raspberry Pi and Pi-NoIR cameras. It can record full high definition video, and is light enough to be carried by backpack and run from batteries. To date we have concentrated on the analysis of the Marum data. During our observations of the 40 m diameter lava lake, convection was so vigorous that areas of thin crust formed only intermittently and persisted for tens of seconds to a few minutes at most. The convection pattern primarily consisted of two upwelling centers located about 8 m in from the margins on opposite sides of the lake. Horizontal velocities away from the upwelling centers were approximately 4 m/s. A hot bright margin roughly 0.4 m wide frequently formed around parts of the lake perimeter. We are in the process of establishing the absolute photometry calibration to obtain temperatures, temperature distributions, and magma cooling rates.

  2. Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations

    CERN Document Server

    Haubois, X; Weiss, A; Paumard, T; Perrin, G; Clénet, Y; Gillessen, S; Kervella, P; Eisenhauer, F; Genzel, R; Rouan, D; 10.1051/0004-6361/201117725

    2013-01-01

    Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (submm) emission of the source Sgr A* associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, compa...

  3. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin; Keane, Jacqueline; Meech, Karen [NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Owen, Tobias; Wainscoat, Richard, E-mail: yangbin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.

  4. A Highly Circularly Polarized Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M. J.; Kaiser, M. L.; Fainberg, J.; Bougeret, J.-L.

    2006-04-01

    We report here the observation of a rare solar radio event at hectometric wavelengths that was characterized by essentially 100% circularly polarized radiation and that was observed continuously for about six days, from May 17 to 23, 2002. This was the first time that a solar source with significantly polarized radiation was detected by the WAVES experiment on the Wind spacecraft. From May 19 to 22, the intense polarized radio emissions were characterized by quasi-periodic intensity variations with periods from one to two hours and with superposed drifting, narrowband, fine structures. The bandwidth of this radiation extended from about 400 kHz to 7 MHz, and the peak frequency of the frequency spectrum slowly decreased from 2 MHz to about 0.8 MHz over the course of four days. The radio source, at each frequency, was observed to slowly drift from east to west about the Sun, as viewed from the Earth and was estimated to lie between 26 and 82 R ⊙ ( R ⊙ = 696 000 km). We speculate that this unusual event may represent an interplanetary manifestation of a moving type IV burst and discuss possible radio emission mechanisms. The ISEE-3 spacecraft may possibly have detected a similar event some 26 years ago.

  5. Multi-Wavelength Observations of the Type IIb Supernova 2009mg

    Science.gov (United States)

    Oates, S. R.; Bayless, A. J.; Stritzinger, M. D.; Prichard, T.; Prieto, J. L.; Immler, S.; Brown, P. J.; Breeveld, A. A.; DePasquale, M.; Kuin, N. P. M.; Hamuy, M.; Holland, S. T.; Taddia, F.; Roming, P. W. A.

    2012-01-01

    We present Swift UVOT and XRT observations, and visual wavelength spectroscopy of the Type IIb supernova (SN) 2009mg, discovered in the Sb galaxy ESO 121-G26. The observational properties of SN 2009mg are compared to the prototype Type IIb SNe 1993J and 2008ax, with which we find many similarities. However,minor differences are discernible including SN 2009mg not exhibiting an initial fast decline or micro-band upturn as observed in the comparison objects, and its rise to maximum is somewhat slower leading to slightly broader light curves. The late-time temporal index of SN 2009mg, determined from 40 days post-explosion, is consistent with the decay rate of SN 1993J, but inconsistent with the decay of Co-56. This suggests leakage of gamma-rays out of the ejecta and a stellar mass on the small side of the mass distribution. Our XRT nondetection provides an upper limit on the mass-loss rate of the progenitor of M less than 1.5 x 10(exp -5) solar mass yr(exp -1). Modelling of the SN light curve indicates a kinetic energy of 0.15 sup +0.02 sub -0.13 x 10(exp 51) erg, an ejecta mass of 0.56 sup+0.10 sub -.26 solar mass and a Ni-56 mass of 0.10 plus or minus 0.01 solar mass.

  6. Multi-Wavelength Observations of GRB 111228A and Implications for the Fireball and its environment

    CERN Document Server

    Xin, Li-Ping; Lin, Ting-Ting; Liang, En-Wei; Lü, Hou-Jun; Zhong, Shu-Qing; Urata, Yuji; Zhao, Xiao-Hong; Wu, Chao; Wei, Jian-Yan; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Jin-Song

    2015-01-01

    Observations of very early multi-wavelength afterglows are critical to reveal the properties of the radiating fireball and its environment as well as the central engine of gamma-ray bursts (GRBs). We report our optical observations of GRB 111228A from 95 sec to about 50 hours after the burst trigger and investigate its properties of the prompt gamma-rays and the ambient medium using our data and the data observed with {\\em Swift} and {\\em Fermi} missions. Our joint optical and X-ray spectral fits to the afterglow data show that the ambient medium features as low dust-to-gas ratio. Incorporating the energy injection effect, our best fit to the afterglow lightcurves with the standard afterglow model via the Markov Chain Monte Carlo (MCMC) technique shows that $\\epsilon_e=(6.9\\pm 0.3)\\times 10^{-2}$, $\\epsilon_B=(7.73\\pm 0.62)\\times 10^{-6}$, $E_{\\rm K}=(6.32\\pm 0.86)\\times 10^{53}\\rm erg$, $n=0.100\\pm 0.014$ cm$^{-3}$. The low medium density likely implies that the afterglow jet may be in a halo or in a hot ISM...

  7. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    Science.gov (United States)

    Schanne, S.; Atteia, J.-L.; Barret, D.; Basa, S.; Boer, M.; Casse, F.; Cordier, B.; Daigne, F.; Klotz, A.; Limousin, O.; Manchanda, R.; Mandrou, P.; Mereghetti, S.; Mochkovitch, R.; Paltani, S.; Paul, J.; Petitjean, P.; Pons, R.; Ricker, G.; Skinner, G.

    2006-11-01

    Gamma-ray bursts (GRB)—at least those with a duration longer than a few seconds—are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore, in 2009 ECLAIRs is expected to be the only space-borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground-based spectroscopic telescopes available by then. A “Phase A study” of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the “Myriade” family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.

  8. Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst

    CERN Document Server

    Bozzo, E; Pradhan, P; Tomsick, J; Romano, P; Ferrigno, C; Chaty, S; Oskinova, L; Manousakis, A; Walter, R; Falanga, M; Campana, S; Stella, L; Ramolla, M; Chini, R

    2016-01-01

    In this paper we report on a long multi-wavelength observational campaign of the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long observation was carried out simultaneously with XMM-Newton and NuSTAR, catching the source in an initial faint X-ray state and then undergoing a bright X-ray outburst lasting about 7 ks. We studied the spectral variability during outburst and quiescence by using a thermal and bulk Comptonization model that is typically adopted to describe the X-ray spectral energy distribution of young pulsars in high mass X-ray binaries. Although the statistics of the collected X-ray data were relatively high we could neither confirm the presence of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor detect any of the previously reported tentative detection of the source spin period. The monitoring carried out with Swift/XRT during the same orbit of the system observed by XMM-Newton and NuSTAR revealed that the source remained in a low emission state...

  9. Observing coronal nanoflares in active region moss

    OpenAIRE

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss r...

  10. Study for relation between direction of relativistic jet and optical polarization angle with multi-wavelength observation

    CERN Document Server

    Itoh, Ryosuke; Tanaka, Yasuyuki T; Uemura, Makoto; Kawabata, Koji S; Akitaya, Hiroshi; Kawaguchi, Kenji; Kanda, Yuka

    2015-01-01

    Blazars are thought to possess a relativistic jet that is pointing toward the direction of the Earth and the elect of relativistic beaming enhances its apparent brightness. They radiate in all wavebands from the radio to the gamma-ray bands via the synchrotron and the inverse Compton scattering process. Numerous observations are performed but the mechanism of variability, creation and composition of jets are still controversial. We performed multi-wavelength monitoring with optical polarization for 3C 66A, Mrk 421, CTA 102 and PMN J0948+0022 to investigate the mechanisms of variability and research the emission region in the relativistic jets. Consequently, an emergence of new emission component in flaring state is suggested in each object. The most significant aspect of these results is its wide range of sizes of emission regions from $10^{14}-10^{16}$ cm, which implies the model with a number of independent emission regions with variety sizes and randomly orientation. The "shock-in-jet" scenario can explain...

  11. The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    CERN Document Server

    Schanne, S; Barret, D; Basa, S; Boër, M; Casse, F; Cordier, B; Daigne, F; Klotz, A; Limousin, O; Manchanda, R; Mandrou, P; Mereghetti, S; Mochkovitch, R; Paltani, S; Paul, J; Petitjean, P; Pons, R; Ricker, G; Skinner, G K

    2006-01-01

    Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A "Phase A study" of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the "Myriade" family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB ...

  12. High sensitive observations of the planetary radio emission in decameter wavelength

    Science.gov (United States)

    Litvinenko, Galina; Zakharenko, Vyacheslav; Rucker, Helmut; Konovalenko, Alexander; Shaposhnikov, Vladimir; Zarka, Philippe; Griessmeier, Jean-M.; Fisher, Georg; Vinogradov, Vladimir; Mylostna, Krystyna

    2013-04-01

    The progress of the ground-based low frequency radio astronomy has opened a new approach to the study of planetary radio emission in the solar system and beyond. This is manifested in the study of the Jupiter (detection of various types of the sporadic emission), of the Saturn (investigation of the electrostatic discharges emission, SED), as well as other planets and exoplanets. High efficiency decameter wavelength radio telescope UTR-2 and modern registration systems (effective area is more than 100 000 sq.m., instant frequency band is 8-33 MHz, dynamic range is about 90 dB, the frequency resolution is about 1 kHz, the temporal resolution is about 1 microsecond) allow for a new observation and detect many interesting phenomena. This includes the detection of superfine time-frequency structures and new types of the modulations effects in the Jovian radio emission, the detection of microsecond scales in the SED emission of the Saturn, and dispersion delay of the SED signals in the interplanetary medium. In addition, the described above method of observation of the planetary signals allowed for the first time to start ground-based searching radio emission from Uranus, Venus, Mars and exoplanets.

  13. A multi-wavelength observation and investigation of six infrared dark clouds

    CERN Document Server

    Zhang, Chuan-Peng; Li, Guang-Xing; Zhou, Jian-Jun; Wang, Jun-Jie

    2016-01-01

    Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet they play a crucial role in breeding newly-formed stars. Aims. With the aim of further understanding the dynamics, chemistry, and evolution of IRDCs, we carried out multi-wavelength observations on a small sample. Methods. We performed new observations with the IRAM 30 m and CSO 10.4 m telescopes, with tracers ${\\rm HCO^+}$, HCN, ${\\rm N_2H^+}$, ${\\rm C^{18}O}$, DCO$^+$, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01, G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05. Results. We investigated 44 cores including 37 cores reported in previous work and seven newly-identified cores. Toward the dense cores, we detected 6 DCO$^+$, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution (SED) fits of the $\\textit{Herschel}$ 70 to 500 $\\mu$m, we obtained dust temperature and column density distributions of the IRDCs. We found that ${\\rm N_2H^+}$ emission has a strong correlation with the dust temperature and...

  14. Observation of small sub-pulses out of the delayed-interference signal-wavelength converter

    DEFF Research Database (Denmark)

    Sakaguchi, J.; Nielsen, Mads Lønstrup; Ohira, T.;

    2005-01-01

    The generation of small sub-pulses in the delayed-interference signal-wavelength converter (DISC), which has been studied for use in future 160-Gb/s optical time division multiplexing-wavelength division multiplexing (OTDM-WDM) communication systems, was recently predicted as a potential problem....

  15. 7 mm continuum observations of ultra compact HII regions

    Science.gov (United States)

    Leto, P.; Umana, G.; Trigilio, C.; Buemi, C. S.; Dolei, S.; Manzitto, P.; Cerrigone, L.; Siringo, C.

    2009-12-01

    Aims: Ultra compact HII (UCHII) regions are indicators of high-mass star formation sites and are distributed mainly in the Galactic plane. They exhibit a broad band spectrum with significant emission between near-IR and radio wavelengths. We intend to investigate the possible contribution of the forthcoming ESA Planck mission to the science of UCHII regions by evaluating the possibility of detecting UCHIIs that are bright in the radio regime. Methods: We performed new 7 mm observations of a sample of UCHII regions. The observations were designed to acquire high-frequency radio spectra. For each source in our sample, the free-free radio spectrum has been modeled. Along with far-IR measurements, our spectra allow us to estimate the flux densities of the sources in the millimeter and sub-millimeter bands. We extrapolated and summed the ionized-gas (free-free radio emission) and dust (thermal emission) contributions in the afore mentioned wavelength ranges. The possibility of Planck detecting the selected sources can be assessed by comparing the estimated flux densities to the expected sensitivity in each Planck channel. To obtain a realistic estimation of the noise produced by the Galactic emission, the Planck sky model software package was used. Results: For each target source, from our new 7 mm data and other radio measurements from the literature, important physical parameters such as electron density and their spatial distribution, source geometry and emission measure were derived. We conclude that, in the case of the present sample, located close to the Galactic center, Planck will have a very low detection rate. In contrast, assuming that our sample is representative of the whole UCHII-region population, we derive a very high probability of detecting this kind of source with Planck if located instead close to the anticenter. From the analysis of the ionized-gas properties, we suggest that the selected sample could also be contaminated by other kinds of Galactic

  16. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  17. Multi-wavelength Observations of GRB 111228A and Implications for the Fireball and its Environment

    Science.gov (United States)

    Xin, Li-Ping; Wang, Yuan-Zhu; Lin, Ting-Ting; Liang, En-Wei; Lü, Hou-Jun; Zhong, Shu-Qing; Urata, Yuji; Zhao, Xiao-Hong; Wu, Chao; Wei, Jian-Yan; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Jin-Song

    2016-02-01

    Observations of very early multi-wavelength afterglows are critical to reveal the properties of the radiating fireball and its environment as well as the central engine of gamma-ray bursts (GRBs). We report our optical observations of GRB 111228A from 95 s to about 50 hr after the burst trigger and investigate its properties of the prompt gamma-rays and the ambient medium using our data and the data from the Swift and Fermi missions. Our joint optical and X-ray spectral fits to the afterglow data show that the ambient medium features a low dust-to-gas ratio. Incorporating the energy injection effect, our best fit to the afterglow light curves with the standard afterglow model via the Markov Chain Monte Carlo technique shows that {ɛ }e=(6.9+/- 0.3)× {10}-2, {ɛ }B=(7.73+/- 0.62)× {10}-6,{E}K=(6.32+/- 0.86)× {10}53 {erg}, n=0.100+/- 0.014 cm-3. The low medium density likely implies that the afterglow jet may be in a halo or in a hot ISM. A chromatic shallow decay segment observed in the optical and X-ray bands is well explained with the long-lasting energy injection from the central engine, which would be a magnetar with a period of about 1.92 ms inferred from the data. The Ep of its time-integrated prompt gamma-ray spectrum is ˜26 KeV. Using the initial Lorentz factor ({{{Γ }}}0={476}-237+225) derived from our afterglow model fit, it is found that GRB 111228A satisfies the {L}{{iso}}-{E}p,z-{{{Γ }}}0 relation and bridges the typical GRBs and low luminosity GRBs in this relation.

  18. Multi-Wavelength Photometric and Polarimetric Observations of the Outburst of 3C 454.3 in Dec. 2009

    CERN Document Server

    Sasada, Mahito; Fukazawa, Yasushi; Kawabata, Koji S; Itoh, Ryosuke; Sakon, Itsuki; Fujisawa, Kenta; Kadota, Akiko; Ohsugi, Takashi; Yoshida, Michitoshi; Yasuda, Hajimu; Yamanaka, Masayuki; Sato, Shuji; Kino, Masaru

    2011-01-01

    In December 2009, the bright blazar, 3C 454.3 exhibited a strong outburst in the optical, X-ray and gamma-ray regions. We performed photometric and polarimetric monitoring of this outburst in the optical and near-infrared bands with TRISPEC and HOWPol attached to the Kanata telescope. We also observed this outburst in the infrared band with AKARI, and the radio band with the 32-m radio telescope of Yamaguchi University. The object was in an active state from JD 2455055 to 2455159. It was 1.3 mag brighter than its quiescent state before JD 2455055 in the optical band. After the end of the active state in JD 2455159, a prominent outburst was observed in all wavelengths. The outburst continued for two months. Our optical and nearinfrared polarimetric observations revealed that the position angle of the polarization (PA) apparently rotated clockwise by 240 degrees within 11 d in the active state (JD 2455063-2455074), and after this rotation, PA remained almost constant during our monitoring. In the outburst state...

  19. Observing coronal nanoflares in active region moss

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by SDO/AIA in the 94A channel, and by Hinode/XRT. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few $10^{23}rg, also supporting the nanoflare scenario. These Hi-C...

  20. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    Science.gov (United States)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models

  1. NST and IRIS multi-wavelength observations of an M1.0 class solar flare

    Science.gov (United States)

    Vargas Domínguez, Santiago; Sadykov, Viacheslav; Kosovichev, Alexander; Sharykin, Ivan; Struminsky, Alexei; Zimovets, Ivan

    2015-08-01

    Although solar flares are the most energetic events in the Solar System and have direct impact in the interplanetary space and ultimately in our planet, there are still many unresolved issues concerning their generation, the underlying processes of particle acceleration involved, the effect at different layer in the solar atmosphere, among others. This work presents new coordinated observations from the New Solar Telescope (NST) and the space telescope IRIS that acquired simultaneous observations of an M1.0 class flare occurred on 12 June, 2014 in active region NOAA 12087. NST filtergrams using the TiO filter, together with chromospheric data from the Halpha line allow us to study the evolution of the event from the first signs of the intensification of the intensity in the region. We focused on a small portion where the intensity enhancement in Halpha (blue and red wings) seems to be triggered, and discovered a rapid expansion of a flux-rope structure near the magnetic neutral line, in the sequence of high-resolution photospheric images. IRIS observations evidenced strong emission of the chromospheric and transition region lines during the flare. Jet-like structures are detected before the initiation of the flare in chromospheric lines and strong non-thermal emission in the transition region at the beginning of the impulsive phase. Evaporation flows with velocities up to 50 km/s occurred in the hot chromospheric plasma. We interpreted the result in terms of the “gentle” evaporation that occurs after accelerated particles heat the chromosphere.

  2. Experimental observation of long-wavelength dispersive wave generation induced by self-defocusing nonlinearity in BBO crystal

    CERN Document Server

    Zhou, Binbin

    2015-01-01

    We experimentally observe long-wavelength dispersive waves generation in a BBO crystal. A soliton was formed in normal GVD regime of the crystal by a self-defocusing and negative nonlinearity through phase-mismatched quatradic interaction. Strong temporal pulse compression confirmed the formation of soliton during the pulse propagation inside the crystal. Significant dispersive wave radiation was measured in the anomalous GVD regime of the BBO crystal. With the pump wavelengths from 1.24 to 1.4 $\\mu$m, tunable dispersive waves are generated around 1.9 to 2.2 $\\mu$m. The observed dispersive wave generation is well understood by simulations.

  3. Criteria for spectral classification of cool stars in the near-IR GAIA wavelength region

    CERN Document Server

    Boschi, F; Sordo, R; Marrese, P M

    2002-01-01

    The far-red portion of the spectrum offers bright prospects for an accurate classification of cool stars, like the giant components of symbiotic stars. The 8480--8740 Ang region, free from telluric absorptions and where the GAIA Cornerstone mission by ESA will record spectra for 3x10^8 stars, is investigated on the base of available observed and synthetic spectral atlases. We have identified and calibrated diagnostic line ratios useful to derive the effective temperature (spectral type) and gravity (luminosity class) for cool stars observed at spectral resolutions 10,000 <= lambda/delta-lambda <= 20,000, bracketing that eventually chosen for GAIA. A few are presented here.

  4. Ultrahigh resolution optical coherence tomography using high power fiber laser supercontinuum at 1.7 μm wavelength region

    Science.gov (United States)

    Ishida, S.; Kawagoe, H.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N.

    2013-03-01

    Optical coherence tomography (OCT) is a non-invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) using fiber based supercontinuum (SC) source. Although UHR-OCT has many advantages in medical equipments, low penetration depth is a serious limitation for wider applications. Recently, we have demonstrated high penetration depth UHR-OCT by use of fiber based Gaussian shaped SC source at 1.7 μm center wavelength. However, the penetration depth has been limited by the low power of SC source. In this paper, to realize deeper penetration imaging, we have developed the high power Gaussian shaped SC source at 1.7 μm wavelength region based on the custom-made Er-doped ultrashort pulse fiber laser with single-wall carbon nanotube and nonlinear phenomena in fibers. This SC source has 43.3 mW output power, 242 nm full-width at half maximum bandwidth, and 109 MHz repetition rate. The repetition rate and average power were almost twice as large as those of previous SC source. Using this light source, 105 dB sensitivity and ultrahigh resolution of 4.3 μm in tissue were achieved simultaneously. We have demonstrated the UHR-OCT imaging of pig thyroid gland and hamster's cheek pouch with this developed SC source and compared the images with those measured by the previous SC source. We have observed the fine structures such as round or oval follicles, epithelium, connective tissue band, and muscular layer. From the comparison of the UHR-OCT images and signals, we confirmed the improvement of imaging contrast and penetration depth with the developed SC source.

  5. Multi-wavelength observations of PSR B1259-63 during the 2014 periastron passage

    Science.gov (United States)

    van Soelen, B.; Armstrong, R. P.; Väisänen, P.; Sushch, I.; Odendaal, A.; Meintjes, P. J.

    The gamma-ray binary star system PSR B1259-63 is unique among the five known systems since it is the only one where a radio pulsar has been directly detected. Close to periastron the system produces non-thermal/unpulsed emission from radio to TeV gamma-ray energies. In 2010 Fermi/LAT detected a rapid increase and peak emission at ˜30 days after periastron, at a time when emission at other wavelengths was already decreasing. PSR B1259-63 will go through periastron again on 2014 May 4. We have proposed to use the Southern African Large Telescope and the KAT-7 radio telescope array in order to contribute to the multi-wavelength coverage of the system. An outline of this proposed multi-wavelength campaign is presented.

  6. Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma

    Science.gov (United States)

    Kaluza, M. C.; Mangles, S. P. D.; Thomas, A. G. R.; Najmudin, Z.; Dangor, A. E.; Murphy, C. D.; Collier, J. L.; Divall, E. J.; Foster, P. S.; Hooker, C. J.; Langley, A. J.; Smith, J.; Krushelnick, K.

    2010-08-01

    We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wavelength of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation λhosing depends on the background plasma density ne and scales as λhosing˜ne-3/2. Comparisons with an analytical model and two-dimensional particle-in-cell simulations reveal that this laser hosing can be induced by a spatiotemporal asymmetry of the intensity distribution in the laser focus which can be caused by a misalignment of the parabolic focusing mirror or of the diffraction gratings in the pulse compressor.

  7. Mrk 421 active state in 2008: the MAGIC view, simultaneous multi-wavelength observations and SSC model constrained

    Science.gov (United States)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Huber, B.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, A.; López, M.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-06-01

    Context. The blazar Markarian 421 is one of the brightest TeV gamma-ray sources of the northern sky. From December 2007 until June 2008 it was intensively observed in the very high energy (VHE, E > 100 GeV) band by the single-dish Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC-I). Aims: We aimed to measure the physical parameters of the emitting region of the blazar jet during active states. Methods: We performed a dense monitoring of the source in VHE with MAGIC-I, and also collected complementary data in soft X-rays and optical-UV bands; then, we modeled the spectral energy distributions (SED) derived from simultaneous multi-wavelength data within the synchrotron self-Compton (SSC) framework. Results: The source showed intense and prolonged γ-ray activity during the whole period, with integral fluxes (E > 200 GeV) seldom below the level of the Crab Nebula, and up to 3.6 times this value. Eight datasets of simultaneous optical-UV (KVA, Swift/UVOT), soft X-ray (Swift/XRT) and MAGIC-I VHE data were obtained during different outburst phases. The data constrain the physical parameters of the jet, once the spectral energy distributions obtained are interpreted within the framework of a single-zone SSC leptonic model. Conclusions: The main outcome of the study is that within the homogeneous model high Doppler factors (40 ≤ δ ≤ 80) are needed to reproduce the observed SED; but this model cannot explain the observed short time-scale variability, while it can be argued that inhomogeneous models could allow for less extreme Doppler factors, more intense magnetic fields and shorter electron cooling times compatible with hour or sub-hour scale variability.

  8. Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies

    Science.gov (United States)

    Xu, KONG; Lin, LIN; Jin-rong, LI; Xu, ZHOU; Hu, ZOU; Hong-yu, LI; Fu-zhen, CHEN; Wei, DU; Zhou, FAN; Ye-wei, MAO; Jing, WANG; Yi-nan, ZHU; Zhi-min, ZHOU

    2014-10-01

    In recent years the number of worldwide 8∼10 m-class ground-based telescopes is continually increased, the 4 m-diameter or smaller telescopes have become the small and medium-sized telescopes. In order to obtain some noticeable scientific results by using these existing small and medium-sized telescopes, we have to consider very carefully what we can do, and what we can not. For this reason, the Time Allocation Committee of the 2.16 m telescope of the National Astronomical observatories of China (NAOC) has decided to support some key projects since 2013. The long-term project “Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies” proposed by us is one of three key projects, it is supported by the committee with 30 dark/grey nights in each of three years. The primary goal of this project is to make the spectroscopic observations of the star formation regions along the directions parallel and perpendicular to the main-axes of 20 nearby galaxies with the NAO 2.16 m telescope and the Hec-tospec multi-fiber spectrograph on the 6.5 m MMT (Multiple Mirror Telescope) via the Telescope Access Program (TAP). With the spectra of a large sample of star formation regions, combining with the exising multi-wavelength data from UV to IR, we can study the galaxy dust extinction, star formation rate, metal abundance, and the two-dimensional distributions of stellar population proper-ties, as well as the relationships of the galaxy two-dimensional properties with the galaxy morphologies and environments. As the first paper of this project, we describe here the scientific objectives, sample selection, observation strategy, and present the preliminary result of the spectroscopic observation towards the galaxy NGC 2403.

  9. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength

    Science.gov (United States)

    Saldin; Sandner; Sanok; Schlarb; Schmidt; Schmuser; Schneider; Schneidmiller; Schreiber; Schreiber; Schutt; Sekutowicz; Serafini; Sertore; Setzer; Simrock; Sonntag; Sparr; Stephan; Sytchev; Tazzari; Tazzioli; Tigner; Timm; Tonutti; Trakhtenberg

    2000-10-30

    We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the present models for SASE FELs.

  10. Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at mm-wavelengths

    CERN Document Server

    D'Alessandro, Giuseppe; Masi, Silvia; Schillaci, Alessandro

    2015-01-01

    The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer (FTS), measuring the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embeddend in a large common background. In this paper we investigate experimentally the common-mode rejection achievable in the MPI at mm wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background (CMB) anisotropy.

  11. Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths.

    Science.gov (United States)

    D'Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia; Schillaci, Alessandro

    2015-11-01

    The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer that measures the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embedded in a large common background. In this paper, we experimentally investigate the common-mode rejection achievable in the MPI at millimeter wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background anisotropy.

  12. VLA observations of Jupiter at 1.3 - 20 cm wavelengths

    Science.gov (United States)

    Depater, Imke

    1986-01-01

    In order to study the vertical distribution of ammonia as a function of Jovian latitude, high resolution images were obtained with the VLA at 1.3, 2, 6 and 20 cm wavelengths. Although the interpretation of the data is quite complicated due to Jupiter's synchrotron radiation, which in fact is the dominant source of radiation at 29 cm, the belt-zone structure is clearly present at 2 and 6 cm wavelengths. At 1.3 cm near the center of the ammonia band, the structure is less pronounced, and at 20 cm it is absent. The data is currently being fitted with model atmosphere calculations. Since one probes in and through the visible cloud layers at these wavelengths (temperatures of 135 to 400 K), and the opacity is likely all provided by ammonia gas, a detailed vertical distribution of this gas can be obtained as a function of Jovian latitude. This ought to give insight in the formation processes of the white cloud layers in the zones and their absence above the belts.

  13. Multi-wavelength Observations of Galaxies in the Southern Zone of Avoidance

    CERN Document Server

    Schröder, A; Mamon, G A

    2000-01-01

    We discuss the possibilities of extragalactic large-scale studies behind the Zone of Avoidance (ZOA) using complementary multi-wavelength data from optical, systematic blind HI, and near-infrared (NIR) surveys. Applying these data to the NIR Tully-Fisher relation permits the mapping of the peculiar velocity field across the ZOA. Here, we present results of a comparison of galaxies identified in the rich low-latitude cluster Abell 3627 in the B-band with NIR (DENIS) data, and cross-identifications of galaxies detected with the blind Parkes HI Multibeam survey with NIR data - many of which are optically invisible.

  14. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H.E.S.S. Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Huber, B.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Munar, P.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thom, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hui, C. M.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nuñez, P. D.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Prokoph, H.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Ruppel, J.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vivier, M.; Wakely, S. P.; Weekes, T. C.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Barres de Almeida, U.; Cara, M.; Casadio, C.; Cheung, C. C.; McConville, W.; Davies, F.; Doi, A.; Giovannini, G.; Giroletti, M.; Hada, K.; Hardee, P.; Harris, D. E.; Junor, W.; Kino, M.; Lee, N. P.; Ly, C.; Madrid, J.; Massaro, F.; Mundell, C. G.; Nagai, H.; Perlman, E. S.; Steele, I. A.; Walker, R. C.; Wood, D. L.

    2012-02-01

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) × 109 M ⊙) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE γ-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1.69 ± 0.30) days and τdecay d = (0.611 ± 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0.35 TeV ~= (1-3) × 10-11 photons cm-2 s-1), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network

  15. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    Science.gov (United States)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  16. Gemini Planet Imager Observational Calibrations IV: Wavelength Calibration and Flexure Correction for the Integral Field Spectrograph

    CERN Document Server

    Wolff, Schuyler G; Maire, Jérôme; Ingraham, Patrick J; Rantakyrö, Fredrik T; Hibon, Pascale

    2014-01-01

    We present the wavelength calibration for the lenslet-based Integral Field Spectrograph (IFS) that serves as the science instrument for the Gemini Planet Imager (GPI). The GPI IFS features a 2.7" x 2.7" field of view and a 190 x 190 lenslet array (14.3 mas/lenslet) operating in $Y$, $J$, $H$, and $K$ bands with spectral resolving power ranging from $R$ $\\sim$ 35 to 78. Due to variations across the field of view, a unique wavelength solution is determined for each lenslet characterized by a two-dimensional position, the spectral dispersion, and the rotation of the spectrum with respect to the detector axes. The four free parameters are fit using a constrained Levenberg-Marquardt least-squares minimization algorithm, which compares an individual lenslet's arc lamp spectrum to a simulated arc lamp spectrum. This method enables measurement of spectral positions to better than 1/10th of a pixel on the GPI IFS detector using Gemini's facility calibration lamp unit GCAL, improving spectral extraction accuracy compar...

  17. MULTI-WAVELENGTH OBSERVATIONS OF 3FGL J2039.6–5618: A CANDIDATE REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, D.; Mignani, R. P.; Luca, A. De; Belfiore, A.; Marelli, M.; Pizzocaro, D. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Delvaux, C.; Greiner, J.; Becker, W. [Max-Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85741 Garching bei München (Germany); Pallanca, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6-2, I-40127, Bologna (Italy); Breeveld, A. A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom)

    2015-12-01

    We present multi-wavelength observations of the unassociated γ-ray source 3FGL J2039.6−5618 detected by the Fermi Large Area Telescope. The source γ-ray properties suggest that it is a pulsar, most likely a millisecond pulsar, for which neither radio nor γ-ray pulsations have been detected. We observed 3FGL J2039.6−5618 with XMM-Newton and discovered several candidate X-ray counterparts within/close to the γ-ray error box. The brightest of these X-ray sources is variable with a period of 0.2245 ± 0.0081 days. Its X-ray spectrum can be described by a power law with photon index Γ{sub X} = 1.36 ± 0.09, and hydrogen column density N{sub H} < 4 × 10{sup 20} cm{sup −2}, which gives an unabsorbed 0.3–10 keV X-ray flux of 1.02 × 10{sup −13} erg cm{sup −2} s{sup −1}. Observations with the Gamma-Ray Burst Optical/Near-Infrared Detector discovered an optical counterpart to this X-ray source, with a time-averaged magnitude g′ ∼ 19.5. The counterpart features a flux modulation with a period of 0.22748 ± 0.00043 days that coincides, within the errors, with that of the X-ray source, confirming the association based on the positional coincidence. We interpret the observed X-ray/optical periodicity as the orbital period of a close binary system where one of the two members is a neutron star. The light curve profile of the companion star, which has two asymmetric peaks, suggests that the optical emission comes from two regions with different temperatures on its tidally distorted surface. Based upon its X-ray and optical properties, we consider this source as the most likely X-ray counterpart to 3FGL J2039.6−5618, which we propose to be a new redback system.

  18. The long-wavelength thermal emission of the Pluto-Charon system from Herschel observations. Evidence for emissivity effects

    CERN Document Server

    Lellouch, E; Fornasier, S; Lim, T; Stansberry, J; Vilenius, E; Kiss, Cs; Müller, T; Marton, G; Protopapa, S; Panuzzo, P; Moreno, R

    2016-01-01

    Thermal observations of the Pluto-Charon system acquired by the Herschel Space Observatory in February 2012 are presented. They consist of photometric measurements with the PACS and SPIRE instruments (nine visits to the Pluto system each), covering six wavelengths from 70 to 500 $\\mu$m altogether. The thermal light curve of Pluto-Charon is observed in all filters, albeit more marginally at 160 and especially 500 $\\mu$m. Putting these data into the context of older ISO, Spitzer and ground-based observations indicates that the brightness temperature (T$_B$) of the system (rescaled to a common heliocentric distance) drastically decreases with increasing wavelength, from $\\sim$53 K at 20 $\\mu$m to $\\sim$35 K at 500 $\\mu$m, and perhaps ever less at longer wavelengths. Considering a variety of diurnal and/or seasonal thermophysical models, we show that T$_B$ values of 35 K are lower than any expected temperature for the dayside surface or subsurface of Pluto and Charon, implying a low surface emissivity. Based on m...

  19. Tunable microwave output over a wide RF region generated by an optical dual-wavelength fiber laser

    Science.gov (United States)

    Soltanian, M. R. K.; Ahmad, H.; Pua, C. H.; Harun, S. W.

    2014-10-01

    The dual-wavelength fiber laser provides a compact, robust and stable platform for the generation of microwave signals. Two approaches towards generating microwave emissions using dual wavelengths are explored in this work, with both exploiting the heterodyning beat technique. Both approaches are based on a ring fiber laser with an erbium-doped fiber, having absorption coefficients of 16.0-20.0 dBm at 1531 nm and 11.0-13.0 dBm at 980 nm, serving as the active gain medium. A 10 cm long photonic crystal fiber with a solid core diameter of 4.37 μm and surrounded by air holes of 5.06 μm diameter with a separation of 5.52 μm between them serves to create the desired dual-wavelength output. A tunable band pass filter with bandwidth of 0.8 nm serves as a tuning mechanism together with a polarization controller. Channel spacings as narrow as 0.00043 nm can be realized, giving a microwave output of about 671.9 MHz. Furthermore, the channel spacing can be extended to as large as 0.03631 nm, giving a microwave emission in excess of 4.59 GHz. The output is highly stable, with little change in power or wavelength observed over a test period of 22 min.

  20. InAs/InAsSb Avalanche Photodiode (APD) for applicaions in long-wavelength infrared region

    Institute of Scientific and Technical Information of China (English)

    P.K.Maurya; H.Agarwal; A.Singh; P.Chakrabarti

    2008-01-01

    A generic numerical model of a long-wavelength Avalanche Photodiode (APD) based on narrow bandgap semiconductor InAsSb on lnAs substrate is reported for the first time. This model has been applied for theoretical characterization of a proposed N+ InAS/P-InAsSb avalanche photodiode structure for possible application in 2-5 μm wavelength region. The parameters such as gain, excess noise factor and their trade-offwith variation of doping concentration and bias voltage have been estimated for the APD taking into account history-dependent theory of avalanche multiplication process. The LWIR APD is expected to find application in optical gas sensor and in future generation of optical communication system.

  1. Multi-Wavelength Observations of the Supernova Remnant Populations in the Nearby Spiral Galaxies IC 342 and NGC 4258

    Science.gov (United States)

    Pannuti, Thomas; Chomiuk, L.; Grimes, C. K.; Staggs, W. D.; Tussey, J. M.; Laine, S.; Schlegel, E.

    2011-01-01

    Supernova remnants (SNRs) are intimately tied to many crucial processes associated with the interstellar medium of galaxies, such as the acceleration of cosmic-ray particles and the deposition of vast amounts of kinetic energy and chemically-enriched material. Well-known observational challenges in the study of SNRs located in the Milky Way Galaxy (for example, formidable extinction along Galactic lines of sight and considerable uncertainties in the distances to these sources) have motivated searches for SNRs in nearby galaxies at such characteristic wavelengths as X-ray, optical and radio. These searches have revealed a considerable number of SNRs and led to new insights into their properties, but the SNR populations in only a handful of nearby galaxies have been adequately surveyed at multiple wavelengths. To help remedy this situation, we are conducting a multi-wavelength study of the SNR population of selected nearby galaxies. To illustrate our work, we present the results of studies of the SNR population in two nearby spiral galaxies, IC 342 and NGC 4258. Our results draw upon the analysis of pointed archival radio and X-ray observations of these two galaxies. Initial results will be presented and discussed.

  2. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    Science.gov (United States)

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188-Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  3. Multi-wavelength study of Mrk 421 TeV flare observed with \\emph{TACTIC} telescope in February 2010

    CERN Document Server

    Singh, K K; Chandra, P; Sahayanathan, S; Bhatt, N; Rannot, R C; Tickoo, A K; Koul, R

    2014-01-01

    We present results from multi-wavelength study of intense flaring activity from a high frequency peaked BL Lac object Mrk 421. The source was observed in its flaring state on February 16, 2010 with the $TACTIC$ at energies above 1.5 TeV. Near simultaneous multi-wavelength data were obtained from high energy (MeV-GeV) $\\gamma$--ray observations with \\emph{Fermi}--LAT, X--ray observations by the \\emph{Swift} and \\emph{MAXI} satellites, optical V-band observation by SPOL at \\emph{Steward Observatory} and radio 15 GHz observation at OVRO 40 meter-telescope. We have performed a detailed spectral and temporal analysis of $TACTIC$, \\emph{Fermi}--LAT and \\emph{Swift}--XRT observations of Mrk 421 during February 10--23, 2010 (MJD 55237-55250). The flaring activity of the source is studied by investigating the properties of daily light curves from radio to $TeV$ energy range and we present the correlation and variability analysis in each energy band. The $TeV$ flare detected by $TACTIC$ on February 16, 2010 is well cor...

  4. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    Science.gov (United States)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  5. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    Science.gov (United States)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  6. Multi-wavelength study of triggered star formation around 25 H II regions

    CERN Document Server

    Xu, Jin-Long; Zhang, Chuan-peng

    2013-01-01

    We have investigated 25 H II regions with bubble morphology in 13CO(1-0) and infrared data, to search the quantitative evidence for the triggering star formation by collect and collapse (CC) and radiatively driven implosion (RDI) models. These H II regions display the morphology of the complete or partial bubble at 8 um, which all are associated with the surrounding molecular clouds. We obtained that the electron temperature ranges from 5627 K to 6839 K in these H II regions, and the averaged electron temperature is 6083 K. The age of these H II regions is from 3.0\\times10^{5} yr to 1.7\\times10^{6} yr, and the mean age is 7.7\\times10^{5} yr. Based on the morphology of the associated molecular clouds, we divided these H II regions into three groups, which may support CC and RDI models. We selected 23 young IRAS sources with the infrared luminosity of >10^{3}L_{\\odot} in 19 H II regions. In addition, we identified some young stellar objects (including Class I sources), which are concentrated only in H II region...

  7. 3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    CERN Document Server

    Agudo, Ivan; Wiesemeyer, Helmut; Molina, Sol N; Casadio, Carolina; Gomez, Jose L; Emmanoulopoulos, Dimitrios

    2012-01-01

    Context. A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. Aims. Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. Methods. Here we present the 3 and 1mm monitoring observations obtained between September 2006 and October 2011 with the XPOL polarimeter on the IRAM 30m Millimeter Telescope. Results. Our observations show that 3C 286 is a bright source of constant total flux with 3mm flux density S_3mm = (0.90 \\pm 0.02) Jy. ...

  8. A `Rosetta Stone' for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations

    Science.gov (United States)

    Sicilia-Aguilar, A.; Banzatti, A.; Carmona, A.; Stolker, T.; Kama, M.; Mendigutía, I.; Garufi, A.; Flaherty, K.; van der Marel, N.; Greaves, J.

    2016-12-01

    Recent progress in telescope development has brought us different ways to observe protoplanetary disks: interferometers, space missions, adaptive optics, polarimetry, and time- and spectrally-resolved data. While the new facilities have changed the way we can tackle open problems in disk structure and evolution, there is a substantial lack of interconnection between different observing communities. Here, we explore the complementarity of some of the state-of-the-art observing techniques, and how they can be brought together to understand disk dispersal and planet formation.

  9. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  10. Multi-wavelength observations of PKS 2155-304 with HESS

    Science.gov (United States)

    Aharonian, F.; Akhperjanian, A. G.; Bazer-Bachi, A. R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; Braun, I.; Breitling, F.; Brown, A. M.; Chadwick, P. M.; Chounet, L.-M.; Cornils, R.; Costamante, L.; Degrange, B.; Dickinson, H. J.; Djannati-Ataï, A.; O'C. Drury, L.; Dubus, G.; Emmanoulopoulos, D.; Espigat, P.; Feinstein, F.; Fontaine, G.; Fuchs, Y.; Funk, S.; Gallant, Y. A.; Giebels, B.; Gillessen, S.; Glicenstein, J. F.; Goret, P.; Hadjichristidis, C.; Hauser, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Holleran, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Khélifi, B.; Komin, Nu.; Konopelko, A.; Latham, I. J.; Le Gallou, R.; Lemière, A.; Lemoine-Goumard, M.; Leroy, N.; Lohse, T.; Martin, J. M.; Martineau-Huynh, O.; Marcowith, A.; Masterson, C.; McComb, T. J. L.; de Naurois, M.; Nolan, S. J.; Noutsos, A.; Orford, K. J.; Osborne, J. L.; Ouchrif, M.; Panter, M.; Pelletier, G.; Pita, S.; Pühlhofer, G.; Punch, M.; Raubenheimer, B. C.; Raue, M.; Raux, J.; Rayner, S. M.; Reimer, A.; Reimer, O.; Ripken, J.; Rob, L.; Rolland, L.; Rowell, G.; Sahakian, V.; Saugé, L.; Schlenker, S.; Schlickeiser, R.; Schuster, C.; Schwanke, U.; Siewert, M.; Sol, H.; Spangler, D.; Steenkamp, R.; Stegmann, C.; Tavernet, J.-P.; Terrier, R.; Théoret, C. G.; Tluczykont, M.; Vasileiadis, G.; Venter, C.; Vincent, P.; Völk, H. J.; Wagner, S. J.

    2005-11-01

    The High Energy Stereoscopic System (HESS) has observed the high-frequency peaked BL Lac object PKS 2155-304 in 2003 between October 19 and November 26 in Very High Energy (VHE) γ-rays (E≥ 160 GeV for these observations). Observations were carried out simultaneously with the Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer satellite (RXTE), the Robotic Optical Transient Search Experiment (ROTSE) and the Nançay decimetric radiotelescope (NRT). Intra-night variability is seen in the VHE band, the source being detected with a high significance on each night it was observed. Variability is also found in the X-ray and optical bands on kilosecond timescales, along with flux-dependent spectral changes in the X-rays. A transient X-ray event with a 1500 s timescale is detected, making this the fastest X-ray flare seen in this object. No correlation can be established between the X-ray and the γ-ray fluxes, or any of the other wavebands, over the small range of observed variability. The average HESS spectrum shows a very soft power law shape with a photon index of 3.37 ± 0.07_stat ± 0.10sys. The energy outputs in the 2 10 keV and in the VHE γ-ray range are found to be similar, with the X-rays and the optical fluxes at a level comparable to some of the lowest historical measurements, indicating that PKS 2155-304 was in a low or quiescent state during the observations. Both a leptonic and a hadronic model are used to derive source parameters from these observations. These parameters are found to be sensitive to the model of Extragalactic Background Light (EBL) that attenuates the VHE signal at this source's redshift (z=0.117).

  11. Aerosol retrievals from multi-angle, multi-wavelength, photo-polarimetric observations near clouds

    NARCIS (Netherlands)

    Stap, F.A.

    2016-01-01

    Aerosol plays a complex but important role in the Earth's climate. Better global coverage of aerosol observations and more information on the aerosol microphysical parameters are needed to improve our understanding of the climate. This book contains 3 studies of improving the global coverage of aero

  12. Observations of solar radio emissions in meter wavelengths carried by CALLISTO-BR

    Science.gov (United States)

    Fernandes, F. C. R.; Silva, R. D. C.; Sodré, Z. A. L.; Costa, J. E. R.; Sawant, H. S.

    2012-04-01

    Two Callisto-type (Compound Astronomical Low-cost Low frequency Instrument for Spectroscopy and Transportable Observatory) spectrographs are in operation in Cachoeira Paulista, Brazil, since 2010. The CALLISTO-BR integrates the e-Callisto network consisting of several radio spectrographs distributed around the world, for provide continuous monitoring (24 hours) of the solar activity in the meter frequency range of 45 - 870 MHz. The solar radio emissions observations carried out by Callisto can be used as a diagnostic of several physical processes on the Sun. Here, we present the observations of several bursts recorded by CALLISTO-BR, such as type I bursts associated with a long lasting noise storm, recorded on March 30, 2010 in the typical frequency band around 200 MHz; a group of normal drifting type III bursts recorded in March 31, 2010 and also in February 15, 2011 and a rarely observed broadband (~180 - 800 MHz) continuum emission presenting positive frequency drifting (from low to high frequencies), suggesting the source is moving towards photosphere. Observations of type II and type IV bursts were also recorded. Details of these and many other solar radio emissions recorded by CALLISTO-BR will be presented and their implications for the solar activity and space weather investigations will be discussed.

  13. Multi-wavelength observations and modelling of a canonical solar flare

    CERN Document Server

    Raftery, Claire L; Milligan, Ryan O; Klimchuk, James A

    2008-01-01

    This paper investigates the temporal evolution of temperature, emission measure, energy loss and velocity in a C-class solar flare from both an observational and theoretical perspective. The properties of the flare were derived by following the systematic cooling of the plasma through the response functions of a number of instruments -- RHESSI (>5 MK), GOES-12 (5-30 MK), TRACE 171 A (1 MK) and SOHO/CDS (~0.03-8 MK). These measurements were studied in combination with simulations from the 0-D EBTEL model. At the flare on-set, upflows of ~90 km s-1 and low level emission were observed in Fe XIX, consistent with pre-flare heating and gentle chromospheric evaporation. During the impulsive phase, upflows of ~80 km s-1 in Fe XIX and simultaneous downflows of 20 km s-1 in He I and O V were observed, indicating explosive chromospheric evaporation. The plasma was subsequently found to reach a peak temperature of ~13 MK in approximately 10 minutes. Using EBTEL, conduction was found to be the dominant loss mechanism dur...

  14. The repeating Fast Radio Burst FRB 121102: Multi-wavelength observations and additional bursts

    CERN Document Server

    Scholz, P; Hessels, J W T; Chatterjee, S; Cordes, J M; Kaspi, V M; Wharton, R S; Bassa, C G; Bogdanov, S; Camilo, F; Crawford, F; Deneva, J; van Leeuwen, J; Lynch, R; Madsen, E C; McLaughlin, M A; Mickaliger, M; Parent, E; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; Tendulkar, S P

    2016-01-01

    We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Arecibo Observatory for a total of 17 bursts from this source. All have dispersion measures consistent with a single value ($\\sim559$ pc cm$^{-3}$) that is three times the predicted maximum Galactic value. The 2-GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2-GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5$\\sigma$ upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined wit...

  15. Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region.

    Science.gov (United States)

    Sui, Ke-Rong; Shi, Yi-Wei; Tang, Xiao-Li; Zhu, Xiao-Song; Iwai, Katsumasa; Miyagi, Mitsunobu

    2008-02-15

    We report on AgI/Ag infrared hollow fiber with low-loss in visible region. Improved methods of silver plating and iodination were proposed to fabricate the hollow fiber. The surface roughness of the silver layer and the silver iodide layer was reduced by the pretreatment with an SnCl2 solution and low iodination temperature. Losses for the Er:YAG and green laser light were 0.4 and 7dB/m. The loss property of green laser beam was low to deliver a pilot beam for the invisible infrared laser light. Owing to the smooth and uniform AgI film, the loss spectrum of the hollow fiber showed clear interference peaks in the visible region. An empirical formula for AgI material dispersion was derived, which is of special importance for the design of high-performance AgI/Ag hollow fiber.

  16. Regional gravity field modelling from GOCE observables

    Science.gov (United States)

    Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert

    2017-01-01

    In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.

  17. Suzaku And Multi-Wavelength Observations of OJ 287 During the Periodic Optical Outburst in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Seta, Hiromi; /Saitama U.; Isobe, N.; /Kyoto U.; Tashiro, Makoto S.; /Saitama U.; Yaji, Yuichi; /Saitama U.; Arai, Akira; /Hiroshima U.; Fukuhara, Masayuki; /Tokyo U. /Grad. U. for Adv. Stud., Nagano; Kohno, Kotaro; /Tokyo U.; Nakanishi, Koichiro; /Grad. U. for Adv. Stud., Nagano; Sasada, Mahito; /Hiroshima U.; Shimajiri, Yoshito; /Tokyo U. /Grad. U. for Adv. Stud., Nagano; Tosaki, Tomoka; /Grad. U. for Adv. Stud., Nagano; Uemura, Makoto; /Hiroshima U.; Anderhub, Hans; /Zurich, ETH; Antonelli, L.A.; /INFN, Rome; Antoranz, Pedro; /Madrid U.; Backes, Michael; /Dortmund U.; Baixeras, Carmen; /Barcelona, Autonoma U.; Balestra, Silvia; /Madrid U.; Barrio, Juan Abel; /Madrid U.; Bastieri, Denis; /Padua U. /INFN, Padua; Becerra Gonzalez, Josefa; /IAC, La Laguna /Dortmund U. /Lodz U. /Lodz U. /DESY /Zurich, ETH /Munich, Max Planck Inst. /Padua U. /INFN, Padua /Siena U. /INFN, Siena /Barcelona, IEEC /Munich, Max Planck Inst. /Barcelona, IEEC /Madrid U. /Zurich, ETH /Wurzburg U. /Zurich, ETH /Madrid U. /Munich, Max Planck Inst. /Zurich, ETH /Madrid U. /Barcelona, IFAE /IAC, La Laguna /Laguna U., Tenerife /INFN, Rome /Dortmund U. /Udine U. /INFN, Udine /INFN, Padua /Udine U. /INFN, Udine /Barcelona, IEEC /Madrid U. /Udine U. /INFN, Udine /Udine U. /INFN, Udine /Udine U. /INFN, Udine /IAC, La Laguna /Madrid, CIEMAT /Sierra Nevada Observ. /Zurich, ETH /Padua U. /INFN, Padua /Wurzburg U. /Barcelona, IFAE /UC, Davis /Barcelona, IFAE /Barcelona, IFAE /Madrid U. /Barcelona, Autonoma U. /Munich, Max Planck Inst. /IAC, La Laguna /Laguna U., Tenerife /Barcelona, IFAE /IAC, La Laguna /Munich, Max Planck Inst. /Barcelona, Autonoma U. /Munich, Max Planck Inst. /SLAC /IAC, La Laguna /Laguna U., Tenerife /Zurich, ETH /Wurzburg U. /Munich, Max Planck Inst. /Munich, Max Planck Inst. /Munich, Max Planck Inst. /Zurich, ETH /INFN, Rome /UC, Davis /Siena U. /INFN, Siena /Turku U. /Padua U. /INFN, Padua /Udine U. /INFN, Udine /Padua U. /INFN, Padua /Zurich, ETH /Munich, Max Planck Inst. /DESY /Sofiya, Inst. Nucl. Res. /Udine U. /INFN, Udine /Wurzburg U. /INFN, Rome /Padua U. /INFN, Padua /Barcelona, IFAE /Barcelona, IFAE /Siena U. /INFN, Siena /Wurzburg U. /Madrid U. /Munich, Max Planck Inst. /Munich, Max Planck Inst. /Barcelona, IEEC /Sierra Nevada Observ. /Barcelona, IFAE /Madrid U. /Turku U. /Munich, Max Planck Inst. /Munich, Max Planck Inst. /UC, Santa Cruz /Madrid U. /Siena U. /INFN, Siena /Barcelona, IEEC /Turku U. /Padua U. /INFN, Padua /Zurich, ETH /Siena U. /INFN, Siena /Sierra Nevada Observ. /Udine U. /INFN, Udine /INFN, Trieste /Padua U. /INFN, Padua /Sierra Nevada Observ. /Padua U. /INFN, Padua /Barcelona, IFAE /Barcelona, IFAE /Dortmund U. /Barcelona, IEEC /ICREA, Barcelona /Barcelona, IFAE /Zurich, ETH /Barcelona, Autonoma U. /Wurzburg U. /Padua U. /INFN, Padua /Munich, Max Planck Inst. /INFN, Rome /Sierra Nevada Observ. /DESY /Padua U. /INFN, Padua /Udine U. /INFN, Udine /Munich, Max Planck Inst. /Munich, Max Planck Inst. /Pisa U. /INFN, Pisa /Barcelona, IFAE /Barcelona, IEEC /Turku U. /Munich, Max Planck Inst. /Lodz U. /Lodz U. /Wurzburg U. /Siena U. /INFN, Siena /Zurich, ETH /Turku U. /INFN, Rome /Sofiya, Inst. Nucl. Res. /Barcelona, IFAE /Munich, Max Planck Inst. /DESY /ICREA, Barcelona /Barcelona, IEEC /Siena U. /INFN, Siena /Sofiya, Inst. Nucl. Res. /Munich, Max Planck Inst. /Munich, Max Planck Inst. /Barcelona, IEEC /Sierra Nevada Observ. /Barcelona, IFAE /Barcelona, Autonoma U.

    2011-12-01

    Suzaku observations of the blazar OJ 287 were performed in 2007 April 10-13 and November 7-9. They correspond to a quiescent and a flaring state, respectively. The X-ray spectra of the source can be well described with single power-law models in both exposures. The derived X-ray photon index and the flux density at 1 keV were found to be {Lambda} = 1.65 {+-} 0.02 and S{sub 1keV} = 215 {+-} 5 nJy, in the quiescent state. In the flaring state, the source exhibited a harder X-ray spectrum ({Lambda} = 1.50 {+-} 0.01) with a nearly doubled X-ray flux density S{sub 1keV} = 404{sub -5}{sup +6} nJy. Moreover, significant hard X-ray signals were detected up to {approx} 27 keV. In cooperation with the Suzaku, simultaneous radio, optical, and very-high-energy {gamma}-ray observations of OJ 287 were performed with the Nobeyama Millimeter Array, the KANATA telescope, and the MAGIC telescope, respectively. The radio and optical fluxes in the flaring state (3.04 {+-} 0.46 Jy and 8.93 {+-} 0.05 mJy at 86.75 Hz and in the V-band, respectively) were found to be higher by a factor of 2-3 than those in the quiescent state (1.73 {+-} 0.26 Jy and 3.03 {+-} 0.01 mJy at 86.75 Hz and in the V-band, respectively). No notable {gamma}-ray events were detected in either observation. The spectral energy distribution of OJ 287 indicated that the X-ray spectrum was dominated by inverse Compton radiation in both observations, while synchrotron radiation exhibited a spectral cutoff around the optical frequency. Furthermore, no significant difference in the synchrotron cutoff frequency was found between the quiescent and flaring states. According to a simple synchrotron self-Compton model, the change of the spectral energy distribution is due to an increase in the energy density of electrons with small changes of both the magnetic field strength and the maximum Lorentz factor of electrons.

  18. TeV and Multi-wavelength Observations of Mrk 421 in 2006-2008

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Maier, G; McArthur, S; McCutcheon, M; Moriarty, P; Ong, R A; Otte, A N; Ouellette, M; Pandel, D; Perkins, J S; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Rovero, A C; Schroedter, M; Sembroski, G H; Senturk, G Demet; Steele, D; Swordy, S P; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; Garson, A; Lee, K; Sadun, A C; Carini, M; Barnaby, D; Cook, K; Maune, J; Pease, A; Smith, S; Walters, R; Berdyugin, A; Lindfors, E; Nilsson, K; Pasanen, M; Sainio, J; Sillanpaa, A; Takalo, L O; Villforth, C; Montaruli, T; Baker, M; Lahteenmaki, A; Tornikoski, M; Hovatta, T; Nieppola, E; Aller, H D; Aller, M F

    2011-01-01

    We report on TeV gamma-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV gamma-ray fluxes and energy spectra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hrs of VERITAS and 96 hrs of Whipple 10m data were acquired between January 2006 and June 2008. We present the results of a study of the TeV gamma-ray energy spectra as a function of time, and for different flux levels. On May 2nd and 3rd, 2008, bright TeV gamma-ray flares were detected with fluxes reaching the level of 10 Crab. The TeV gamma-ray data were complemented with radio, optical, and X-ray observations, with flux variability found in all bands except for the radio waveband. The combination of the RXTE and Swift X-ray data reveal spectral hardening with increasing flux levels, often correlated with an increase of the source activity in TeV gamma-rays. Cont...

  19. Suzaku and Multi-wavelength Observations of OJ 287 during the Periodic Optical Outburst in 2007

    CERN Document Server

    Seta, Hiromi; Tashiro, Makoto S; Yaji, Yuichi; Arai, Akira; Fukuhara, Masayuki; Kohno, Kotaro; Nakanishi, Koichiro; Sasada, Mahito; Shimajiri, Yoshito; Tosaki, Tomoka; Uemura, Makoto

    2009-01-01

    Suzaku observations of the blazar OJ 287 were performed in 2007 April 10--13 and November 7--9. They correspond to a quiescent and a flaring state, respectively. The X-ray spectra can be well described with single power-law models in both exposures. The derived X-ray photon index and the flux density at 1 keV were found to be Gamma = 1.65 +- 0.02 and S_{1 keV} = 215 +- 5 nJy, in the quiescent state. In the flaring state, the source exhibited a harder X-ray spectrum (Gamma = 1.50 +- 0.01) with a nearly doubled X-ray flux density S_{1 keV} = 404^{+6}_{-5} nJy. Moreover, significant hard X-ray signals were detected up to ~ 27 keV. In cooperation with the Suzaku, simultaneous radio, optical, and very-high-energy gamma-ray observations were performed with the Nobeyama Millimeter Array, the KANATA telescope, and the MAGIC telescope, respectively. The radio and optical fluxes in the flaring state (3.04 +- 0.46 Jy and 8.93 +- 0.05 mJy at 86.75 Hz and in the V-band, respectively) were found to be higher by a factor of...

  20. Multi-wavelength observations of the transitional millisecond pulsar binary XSSJ12270-4859

    CERN Document Server

    de Martino, Domitilla; Belloni, Tomaso; Burgay, Marta; Wilhelmi, Emma De Ona; Li, J; Pellizzoni, Alberto; Possenti, Andrea; Rea, Nanda; Torres, Diego F

    2015-01-01

    We present an analysis of X-ray, Ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSSJ12270-4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observations, while confirming the large-amplitude orbital modulation found in previous studies after the state change, also reveal an energy dependence of the amplitudes as well as variations on time scale of months. The amplitude variations are anti-correlated in the X-ray and the UV/optical bands. The average X-ray spectrum is described by a power law with \\Gamma index of 1.07(8) without requiring an additional thermal component. The power law index \\Gamma varies from 1.2 to 1.0 between superior and inferior conjunction of the neutron star. We interpret the observed X-ray behaviour in terms of synchrotron radiation emitted in an extended intrabinary shock, located between the pulsar and the donor star, which is eclipsed due to the companion orbital motion. The G5 type do...

  1. Formation and Fractionation of CO (carbon monoxide) in diffuse clouds observed at optical and radio wavelengths

    CERN Document Server

    Liszt, Harvey S

    2016-01-01

    We modelled \\HH\\ and CO formation incorporating the fractionation and selective photodissociation affecting CO when \\AV\\ $\\la2$mag. UV absorption measurements typically have N(\\cotw)/N(\\coth) $\\approx 65$ that are reproduced with the standard UV radiation and little density dependence at n(H) $\\approx32-1024\\pccc$: Densities n(H) $\\la256\\pccc$ avoid overproducing CO. Sightlines observed in mm-wave absorption and a few in UV show enhanced \\coth\\ by factors of 2-4 and are explained by higher n(H) $\\ga256\\pccc$ and/or weaker radiation. The most difficult observations to understand are UV absorptions having N(\\cotw)/N(\\coth) $>$100 and N(CO)$\\ga10^{15}\\pcc$. Plots of \\WCO\\ vs. N(CO) show that \\WCO\\ remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. \\cotw\\ and \\coth\\ have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H)$\\ga128\\pccc$, plots of \\WCO\\ vs N(CH) ...

  2. Multi-wavelength Observations of the Binary System \\psrb/LS~2883 around the 2014 Periastron Passage

    CERN Document Server

    Chernyakova, M; van Soelen, B; Callanan, P; O'Shaughnessy, L; Babyk, Iu; Tsygankov, S; Vovk, Ie; Krivonos, R; Tomsick, J A; Malyshev, D; Li, J; Wood, K; Torres, D; Zhang, S; Kretschmar, P; McSwain, M V; Buckley, D; Koen, C

    2015-01-01

    We report on the results of the extensive multi-wavelength campaign from optical to GeV gamma-rays of the 2014 periastron passage of PSR B1259-63, which is a unique high-mass gamma-ray emitting binary system with a young pulsar companion. Observations demonstrate the stable nature of the post-periastron GeV flare and prove the coincidence of the flare with the start of rapid decay of the H$\\alpha$ equivalent width, usually interpreted as a disruption of the Be stellar disk. Intensive X-ray observations reveal changes in the X-ray spectral behaviour happening at the moment of the GeV flare. We demonstrate that these changes can be naturally explained as a result of synchrotron cooling of monoenergetic relativistic electrons injected into the system during the GeV flare.

  3. Observations of Transient Active Region Heating with Hinode

    OpenAIRE

    Warren, Harry P.; Ugarte-Urra, Ignacio; Brooks, David H.; Cirtain, Jonathan W.; Williams, David R.; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track t...

  4. Can a regional climate model reproduce observed extreme temperatures?

    Directory of Open Access Journals (Sweden)

    Peter F. Craigmile

    2013-10-01

    Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

  5. Formation and Fractionation of CO (Carbon Monoxide) in Diffuse Clouds Observed at Optical and Radio Wavelengths

    Science.gov (United States)

    Liszt, H. S.

    2017-02-01

    We modeled {{{H}}}2 and CO formation incorporating the fractionation and selective photodissociation affecting CO when {A}{{V}} ≲ 2 mag. UV absorption measurements typically have N({}12{CO})/N({}13{CO}) ≈ 65 that are reproduced with the standard UV radiation and little density dependence at n(H) ≈ 32–1024 {{cm}}-3: densities n(H) ≲ 256 {{cm}}-3 avoid overproducing CO. Sightlines observed in millimeter wave absorption and a few in UV show enhanced {}13{CO} by factors of two to four and are explained by higher n(H) ≳ 256 {{cm}}-3 and/or weaker radiation. The most difficult observations to understand are UV absorptions having N({}12{CO})/N({}13{CO}) > 100 and N(CO) ≳ 1015 {{cm}}-2. Plots of {W}{CO} versus N(CO) show that {W}{CO} remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. {}12{CO} and {}13{CO} have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H) ≳ 128 {{cm}}-3, plots of {W}{CO} versus N(CO) are insensitive to n(H), and {W}{CO}/N(CO) ≈ 1 {{K}} {km} {{{s}}}-1/(1015 CO {{cm}}-2); this compensates for small CO/{{{H}}}2 to make {W}{CO} more readily detectable. Rapid increases of N(CO) with n(H), N(H), and N({{{H}}}2) often render the CO bright, i.e., a small CO-{{{H}}}2 conversion factor. For n(H) ≲ 64 {{cm}}-3, CO enters the regime of truly weak excitation, where {W}{CO} ∝ n(H)N(CO). {W}{CO} is a strong function of the average {{{H}}}2 fraction and models with {W}{CO} = 1 {{K}} {km} {{{s}}}-1 fall in the narrow range of 0.65–0.8 or 0.4–0.5 at {W}{CO} 0.1 {{K}} {km} {{{s}}}-1. The insensitivity of easily detected CO emission to gas with small implies that even deep CO surveys using broad beams may not discover substantially more emission.

  6. Multi-wavelength observations of a nearby multi-phase interstellar cloud

    CERN Document Server

    Nehme, C; Boulanger, F; Bourlot, J Le; Forets, G Pineau des; Falgarone, E

    2008-01-01

    High-resolution spectroscopic observations (UV HST/STIS and optical) are used to characterize the physical state and velocity structure of the multiphase interstellar medium seen towards the nearby (170 pc) star HD102065, located behind the tail of a cometary-shaped, infrared cirrus-cloud, in the area of interaction between the Sco-Cen OB association and the Local Bubble. We analyze interstellar components present along the line of sight by fitting multiple transitions from CO, CH, CH+, C I, S I, Fe I, Mg I, Mg II, Mn II, P II, Ni II, C II, N I, O I, Si III, C IV, and Si IV. The absorption spectra are complemented by H I, CO and C II emission-line spectra, H$_2$ column-densities derived from FUSE spectra, and IRAS images. Gas components of a wide range of temperatures and ionization states are detected along the line of sight. Most of the hydrogen column-density is in cold, diffuse, molecular gas at low LSR velocity. This gas is mixed with traces of warmer molecular gas traced by H2 in the J>2 levels, in whic...

  7. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    CERN Document Server

    Dominguez, Santiago Vargas; Yurchyshyn, Vasyl

    2014-01-01

    State-of-the-art solar instrumentation is revealing magnetic activity of the Sun with unprecedented resolution. Observations with the 1.6m New Solar Telescope of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research. As part of a joint observing program with NASA's IRIS mission, the NST observed active region NOAA 11810 in photospheric and chromospheric wavelengths. Complimentary data are provided by SDO and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing abnormal granulation and interacting with the pre-existing ambient field in upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the HeI data. IRIS catched ejection of a hot plasma jet...

  8. Polar mesosphere summer echoes: a comparison of simultaneous observations at three wavelengths

    Directory of Open Access Journals (Sweden)

    E. Belova

    2008-01-01

    Full Text Available On 5 July 2005, simultaneous observations of Polar Mesosphere Summer Echoes (PMSE were made using the EISCAT VHF (224 MHz and UHF (933 MHz radars located near Tromsø, Norway and the ALWIN VHF radar (53.5 MHz situated on Andøya, 120 km SW of the EISCAT site. During the short interval from 12:20 UT until 12:26 UT strong echoes at about 84 km altitude were detected with all three radars. The radar volume reflectivities were found to be 4×10−13 m−1, 1.5×10−14 m−1 and 1.5×10−18 m−1 for the ALWIN, EISCAT-VHF and UHF radars, respectively. We have calculated the reflectivity ratios for each pair of radars and have compared them to ratios obtained from the turbulence-theory model proposed by Hill (1978a. We have tested different values of the turbulent energy dissipation rate ε and Schmidt number Sc, which are free parameters in the model, to try to fit theoretical reflectivity ratios to the experimental ones. No single combination of the parameters ε and Sc could be found to give a good fit. Spectral widths for the EISCAT radars were estimated from the spectra computed from the autocorrelation functions obtained in the experiment. After correction for beam-width broadening, the spectral widths are about 4 m/s for the EISCAT-VHF and 1.5–2 m/s for the UHF radar. However, according to the turbulence theory, the spectral widths in m/s should be the same for both radars. We also tested an incoherent scatter (IS model developed by Cho et al. (1998, which takes into account the presence of charged aerosols/dust at the summer mesopause. It required very different sizes of particles for the EISCAT-VHF and UHF cases, to be able to fit the experimental spectra with model spectra. This implies that the IS model cannot explain PMSE spectra, at least not for monodisperse distributions of particles.

  9. The impact of SZ effect on cm-wavelength (1-30 GHz) observation of galaxy cluster radio relics

    CERN Document Server

    Basu, Kaustuv; Erler, Jens; Sommer, Martin

    2015-01-01

    (Abridged) Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power-law spectrum has been found, most noticeably in the famous 'Sausage' relic. In this paper, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed radio flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed radio fluxes can be diminished by a...

  10. WSRT observations of the Hubble Deep Field region

    NARCIS (Netherlands)

    Garrett, MA; de Bruyn, AG; Giroletti, M; Baan, WA; Schilizzi, RT

    We present deep WSRT 1.4 GHz observations of the Hubble Deep Field region. At the 5 sigma level, the WSRT clearly detects 85 regions of radio emission in a 10' x 10' field centred on the HDF Eight of these regions fall within the HDF itself, four of these are sources that have not previously been

  11. Influence of galaxy stellar mass and observed wavelength on disc breaks in S4G, NIRS0S, and SDSS data

    Science.gov (United States)

    Laine, Jarkko; Laurikainen, Eija; Salo, Heikki

    2016-11-01

    Context. Breaks in the surface brightness profiles in the outer regions of galactic discs are thought to have formed by various internal (e.g. bar resonances) and external (e.g. galaxy merging) processes. By studying the disc breaks we aim to better understand what processes are responsible for the evolution of the outer discs of galaxies, and galaxies in general. Aims: We use a large well-defined sample to study how common the disc breaks are, and whether their properties depend on galaxy mass. By using both optical and infrared data we study whether the observed wavelength affects the break features as a function of galaxy mass and Hubble type. Methods: We studied the properties of galaxy discs using radial surface brightness profiles of 753 galaxies, obtained from the 3.6 μm images of the Spitzer Survey of Stellar Structure in Galaxies (S4G), and the Ks-band data from the Near InfraRed S0-Sa galaxy Survey (NIRS0S), covering a wide range of galaxy morphologies (-2 ≤ T ≤ 9) and stellar masses (8.5 ≲ log 10(M∗/M⊙) ≲ 11). In addition, optical Sloan Digital Sky Survey (SDSS) or Liverpool telescope data was used for 480 of these galaxies. Results: We find that in low-mass galaxies the single exponential profiles (Type I) are most common, and that their fraction decreases with increasing galaxy stellar mass. The fraction of down-bending (Type II) profiles increases with stellar mass, possibly due to more common occurrence of bar resonance structures. The up-bending (Type III) profiles are also more common in massive galaxies. The observed wavelength affects the scalelength of the disc of every profile type. Especially the scalelength of the inner disc (hi) of Type II profiles increases from infrared to u-band on average by a factor of 2.2. Consistent with the previous studies, but with a higher statistical significance, we find that Type II outer disc scalelengths (ho) in late-type and low mass galaxies (T > 4, log 10(M∗/M⊙) ≲ 10.5) are shorter in

  12. Characteristics of Mesospheric Gravity Waves Observed in the Central Region of Brazil

    Science.gov (United States)

    Wrasse, Cristiano Max; Messias Almeida, Lazaro; Abalde Guede, Jose Ricardo; Valentin Bageston, José; Pillat, Valdir G.; Lima, Washington L. C.

    Gravity waves observations were carried out at Palmas (10.16o S, 48.26o W) Brazil, between September 2007 and December 2008, using an all-sky airglow imager to measure the OH emis-sion. The gravity waves were divided in two groups following they morphology as band and ripples type waves. The main characteristics of the band type waves are: horizontal wavelength between 10-35 km; observed period raging from 5 to 25 minutes; observed phase speed between 5-60 m/s. Preferential propagation directions of the bands are northward and southward, show-ing a clear anisotropy. For the ripples the main wave parameters are: horizontal wavelength ranging between 5 and 15 km; observed period mainly distributed between 5 and 15 minutes and horizontal phase velocity from 5 to 30 m/s. The ripples showed the same anisotropy as in the preferential propagation direction as the band type waves. The gravity wave characteristics observed at Palmas were compared with other observations carried out in Brazil, showing simi-lar features. In order to explain the seasonal variation of the wave propagation direction, maps of Outgoing Longwave Radiation (ORL) were used to locate regions with intense deep con-vection (OLR < 220 W.m-2 ) in the lower atmosphere. During summer and autumn the wave sources regions are well correlated with deep convection areas located at west and northwest of Palmas.

  13. Mrk 421 active state in 2008: the MAGIC view, simultaneous multi-wavelength observations and SSC model constrained

    CERN Document Server

    Aleksic, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; Barrio, J A; Bastieri, D; Gonzalez, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Canellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Dominguez1, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; Lopez, R J Garcia; Garczarczyk, M; Garrido, D; Giavitto, G; Godinovic, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Huber, B; Jogler, T; Kellermann, H; Klepser, S; Krahenbuh, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; Lopez, A; Lopez, M; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martinez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldon, J; Moralejo, A; Munar-Adrover, P; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribo, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpaa, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Suric, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2011-01-01

    Context. The HBL-type blazar Markarian 421 is one of the brightest TeV gamma-ray sources of the northern sky. From December 2007 until June 2008 it was intensively observed in the VHE (E > 100 GeV) band by the single dish Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC-I). Aims. We aimed to sample the evolution of the source emission at VHE and in other bands, and to model the broad band spectral energy distribution (SED) of selected states, reconstructed by means of sets of multi-wavelength (MWL) data observed simultaneously. Methods. We performed a dense monitoring of the source in VHE with MAGIC-I, collecting also complementary data in soft X-rays and optical-UV bands; then, we modeled the SEDs derived from simultaneous MWL data within the Synchrotron Self-Compton (SSC) framework. Results. The source showed intense and prolonged gamma-ray activity during the whole period, with integral fluxes (E > 200 GeV) sel- dom below the level of Crab Nebula, and up to 3.6 times this value. Eight dataset...

  14. Multi-wavelength observations of blazar AO 0235+164 in the 2008-2009 flaring state

    CERN Document Server

    Ackermann, M; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cutini, S; D'Ammando, F; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Dubois, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fuhrmann, L; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Hadasch, D; Hayashida, M; Hughes, R E; Itoh, R; Johannesson, G; Johnson, A S; Katagiri, H; Kataoka, J; Knodlseder, J; Kuss, M; Lande, J; Larsson, S; Lee, S -H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nishino, S; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Panetta, J H; Pelassa, V; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Raino, S; Rando, R; Rastawicki, D; Razzano, M; Readhead, A; Reimer, A; Reimer, O; Reyes, L C; Richards, J L; Sbarra, C; Sgro, C; Siskind, E J; Spandre, G; Spinelli, P; Szostek, A; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Moderski, R; Nalewajko, K; Sikora, M; Villata, M; Raiteri, C M; Aller, H D; Aller, M F; Arkharov, A A; Benitez, E; Berdyugin, A; Blinov, D A; Boettcher, M; Calle, O J A Bravo; Buemi, C S; Carosati, D; Chen, W P; Diltz, C; Di Paola, A; Dolci, M; Efimova, N V; Forn\\', E; Gurwell, M A; Heidt, J; Hiriart, D; Jordan, B; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O M; Lahteenmaki, A; Larionova, E G; Larionova, L V; Larionov, V M; Leto, P; Lindfors, E; Lin, H C; Morozova, D A; Nikolashvili, M G; Nilsson, K; Oksman, M; Roustazadeh, P; Sievers, A; Sigua, L A; Sillanpaa, A; Takahashi, T; Takalo, L O; Tornikoski, M; Trigilio, C; Troitsky, I S; Umana, G; Angelakis, E; Krichbaum, T P; Nestoras, I; Riquelme, D; Krips, M; Trippe, S; Arai, A; Kawabata, K S; Sakimoto, K; Sasada, M; Sato, S; Uemura, M; Yamanaka, M; Yoshida, M; Belloni, T; Tagliaferri, G; Bonning, E W; Isler, J; Urry, C M; Hoversten, E; Falcone, A; Pagani, C; Stroh, M

    2012-01-01

    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to {\\gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {\\gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of th...

  15. MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J.; Casandjian, J. M. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Caliandro, G. A. [Institut de Ciencies de l' Espai (IEEE-CSIC), Campus UAB, 08193 Barcelona (Spain); Caraveo, P. A., E-mail: eduardo@slac.stanford.edu, E-mail: madejski@slac.stanford.edu, E-mail: fabio.gargano@ba.infn.it, E-mail: silvia.raino@ba.infn.it, E-mail: lreyes04@calpoly.edu, E-mail: knalew@colorado.edu, E-mail: sikora@camk.edu.pl [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Collaboration: Fermi-LAT Collaboration; GASP-WEBT consortium; F-GAMMA; Iram-PdBI; Kanata; RXTE; SMARTS; Swift-XRT; and others

    2012-06-01

    The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to {gamma}-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma}-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R{sub g}. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.

  16. Multi-wavelength Observations of Photospheric Vortex Flows in the Photosphere Using Ground-based and Space-borne Telescopes

    Science.gov (United States)

    Palacios, J.; Vargas Domínguez, S.; Balmaceda, L. A.; Cabello, I.; Domingo, V.

    2016-04-01

    In this work we follow a series of papers on high-resolution observations of small-scale structures in the solar atmosphere (Balmaceda et al. 2009, 2010; Vargas Domínguez et al. 2011; Palacios et al. 2012; Domingo et al. 2012; Vargas Domínguez et al. 2015, Cabello et al., in prep), combining several multi-wavelength data series. These were acquired by both ground-based (SST) and space-borne (Hinode) instruments during the joint campaign of the Hinode Operation Program 14, in September 2007. Diffraction-limited SST data were taken in the G-band and G-cont, and were restored by the MFBD technique. Hinode instruments, on the other hand, provided multispectral data from SOT-FG in the CN band, and Mg I and Ca II lines, as well as from SOT-SP in the Fe I line. In this series of works we have thoroughly studied vortex flows and their statistical occurrences, horizontal velocity fields by means of Local Correlation Tracking (LCT), divergence and vorticity. Taking advantage of the high-cadence and high spatial resolution data, we have also studied bright point statistics and magnetic field intensification, highlighting the importance of the smallest-scale magnetic element observations.

  17. Multi-wavelength observations of the black widow pulsar 2FGL J2339.6-0532 with OISTER and Suzaku

    CERN Document Server

    Yatsu, Yoichi; Takahashi, Yosuke; Tachibana, Yutaro; Kawai, Nobuyuki; Shibata, Shimpei; Pike, Sean; Yoshii, Taketoshi; Arimoto, Makoto; Saito, Yoshihiko; NakamorI, Takeshi; Sekiguchi, Kazuhiro; Kuroda, Daisuke; Yanagisawa, Kenshi; Hanayama, Hidekazu; Watanabe, Makoto; Hamamoto, Ko; Nakao, Hikaru; Ozaki, Akihito; Motohara, Kentaro; Konishi, Masahiro; Tateuchi, Ken; Matsunaga, Noriyuki; Morokuma, Tomoki; Nagayama, Takahiro; Murata, Katsuhiro; Akitaya, Hiroshi; Yoshida, Michitoshi; Ali, Gamal B; Mohamed, A Essam; Isogai, Mizuki; Arai, Akira; Takahashi, Hidenori; Hashimoto, Osamu; Miyanoshita, Ryo; Omodaka, Toshihiro; Takahashi, Jun; Tokimasa, Noritaka; Matsuda, Kentaro; Okumura, Shin-Ichiro; Nishiyama, Kota; Urakawa, Seitaro; Nogami, Daisaku; Oasa, Yumiko

    2015-01-01

    Multi-wavelength observations of the black-widow binary system 2FGL J2339.6-0532 are reported. The Fermi gamma-ray source 2FGL J2339.6-0532 was recently categorized as a black widow in which a recycled millisecond pulsar (MSP) is evaporating up the companion star with its powerful pulsar wind. Our optical observations show clear sinusoidal light curves due to the asymmetric temperature distribution of the companion star. Assuming a simple geometry, we constrained the range of the inclination angle of the binary system to 52$^{\\circ}$ < i < 59$^{\\circ}$, which enables us to discuss the interaction between the pulsar wind and the companion in detail. The X-ray spectrum consists of two components: a soft, steady component that seems to originate from the surface of the MSP, and a hard variable component from the wind-termination shock near the companion star. The measured X-ray luminosity is comparable to the bolometric luminosity of the companion, meaning that the heating efficiency is less than 0.5. In t...

  18. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    Science.gov (United States)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  19. Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    CERN Document Server

    Verma, R P; Mookerjea, B; Rengarajan, T N

    2003-01-01

    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and ...

  20. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.

  1. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2011-04-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

  2. Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network

    Directory of Open Access Journals (Sweden)

    Eric Dupuy

    2016-05-01

    Full Text Available Understanding the atmospheric distribution of water (H 2 O is crucial for global warming studies and climate change mitigation. In this context, reliable satellite data are extremely valuable for their global and continuous coverage, once their quality has been assessed. Short-wavelength infrared spectra are acquired by the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS aboard the Greenhouse gases Observing Satellite (GOSAT. From these, column-averaged dry-air mole fractions of carbon dioxide, methane and water vapor (XH 2 O have been retrieved at the National Institute for Environmental Studies (NIES, Japan and are available as a Level 2 research product. We compare the NIES XH 2 O data, Version 02.21, with retrievals from the ground-based Total Carbon Column Observing Network (TCCON, Version GGG2014. The datasets are in good overall agreement, with GOSAT data showing a slight global low bias of −3.1% ± 24.0%, good consistency over different locations (station bias of −1.53% ± 10.35% and reasonable correlation with TCCON (R = 0.89. We identified two potential sources of discrepancy between the NIES and TCCON retrievals over land. While the TCCON XH 2 O amounts can reach 6000–7000 ppm when the atmospheric water content is high, the correlated NIES values do not exceed 5500 ppm. This could be due to a dry bias of TANSO-FTS in situations of high humidity and aerosol content. We also determined that the GOSAT-TCCON differences directly depend on the altitude difference between the TANSO-FTS footprint and the TCCON site. Further analysis will account for these biases, but the NIES V02.21 XH 2 O product, after public release, can already be useful for water cycle studies.

  3. The Envelope and Embedded Disk around the Class 0 Protostar L1157-mm: Dual-wavelength Interferometric Observations and Modeling

    CERN Document Server

    Chiang, Hsin-Fang; Tobin, John J

    2012-01-01

    We present dual-wavelength observations and modeling of the nearly edge-on Class 0 young stellar object L1157-mm. Using the Combined Array for Research in Millimeter-wave Astronomy, a nearly spherical structure is seen from the circumstellar envelope at the size scale of 10^2 to 10^3 AU in both 1 mm and 3 mm dust emission. Radiative transfer modeling is performed to compare data with theoretical envelope models, including a power-law envelope model and the Terebey-Shu-Cassen model. Bayesian inference is applied for parameter estimation and information criteria is used for model selection. The results prefer the power-law envelope model against the Terebey-Shu-Cassen model. In particular, for the power-law envelope model, a steep density profile with an index of ~2 is inferred. Moreover, the dust opacity spectral index (beta) is estimated to be ~0.9, implying that grain growth has started at L1157-mm. Also, the unresolved disk component is constrained to be < 40 AU in radius and < 4-25 M_Jup in mass. How...

  4. The Radiated Energy Budget of Chromospheric Plasma in a Major Solar Flare Deduced From Multi-Wavelength Observations

    CERN Document Server

    Milligan, Ryan O; Dennis, Brian R; Hudson, Hugh S; Fletcher, Lyndsay; Allred, Joel C; Chamberlin, Phillip C; Ireland, Jack; Mathioudakis, Mihalis; Keenan, Francis P

    2014-01-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be $>2\\times10^{31}$ erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304\\AA\\ and H I (Ly$\\alpha$) at 1216\\AA\\ by SDO/EVE, the UV continua at 1600\\AA\\ and 1700\\AA\\ by SDO/AIA, and the WL continuum at 4504\\AA, 5550\\AA, and 6684\\AA, along with the Ca II H line at 3968\\AA\\ using Hinode/SOT. The summed energy detected by these in...

  5. THE ENVELOPE AND EMBEDDED DISK AROUND THE CLASS 0 PROTOSTAR L1157-mm: DUAL-WAVELENGTH INTERFEROMETRIC OBSERVATIONS AND MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsin-Fang; Looney, Leslie W. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Tobin, John J., E-mail: hchiang@ifa.hawaii.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-09-10

    We present dual-wavelength observations and modeling of the nearly edge-on Class 0 young stellar object L1157-mm. Using the Combined Array for Research in Millimeter-wave Astronomy, a nearly spherical structure is seen from the circumstellar envelope at the size scale of 10{sup 2}-10{sup 3} AU in both 1 mm and 3 mm dust emission. Radiative transfer modeling is performed to compare data with theoretical envelope models, including a power-law envelope model and the Terebey-Shu-Cassen model. Bayesian inference is applied for parameter estimation and information criterion is used for model selection. The results prefer the power-law envelope model against the Terebey-Shu-Cassen model. In particular, for the power-law envelope model, a steep density profile with an index of {approx}2 is inferred. Moreover, the dust opacity spectral index {beta} is estimated to be {approx}0.9, implying that grain growth has started at L1157-mm. Also, the unresolved disk component is constrained to be {approx}<40 AU in radius and {approx}<4-25 M{sub Jup} in mass. However, the estimate of the embedded disk component relies on the assumed envelope model.

  6. An Eruptive Hot-Channel Structure Observed at Metric Wavelength as a Moving Type-IV Solar Radio Burst

    CERN Document Server

    Vasanth, V; Feng, Shiwei; Ma, Suli; Du, Guohui; Song, Hongqiang; Kong, Xiangliang; Wang, Bing

    2016-01-01

    Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($\\sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structu...

  7. The impact of the SZ effect on cm-wavelength (1-30 GHz) observations of galaxy cluster radio relics

    Science.gov (United States)

    Basu, Kaustuv; Vazza, Franco; Erler, Jens; Sommer, Martin

    2016-07-01

    Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power law spectrum has been found, most noticeably in the famous "Sausage" relic. Such spectral steepening is seen as an evidence for non-standard relic models, such as ones requiring seed electron population with a break in their energy spectrum. In this paper, however, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed synchrotron flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed synchrotron fluxes can be diminished by a factor of several from their true values. At higher redshift the contamination gets stronger due to the redshift independence of the SZ effect. Interferometric observations are not immune to this contamination, since the change in the SZ signal occurs roughly at the same length scale as the synchrotron emission, although there the flux loss is less severe than single-dish observations. Besides presenting this warning to observers, we suggest that the negative contribution from the SZ effect can be regarded as one of the best evidence for the physical association between radio relics and shock waves. We present a simple analytical approximation for the synchrotron-to-SZ flux ratio, based on a theoretical radio relic model that connects the nonthermal emission to the thermal gas properties

  8. ISO Mid-Infrared Observations of Giant HII Regions in M33

    Science.gov (United States)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.

    1999-01-01

    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  9. ISO Mid-Infrared Observations of Giant HII Regions in M33

    Science.gov (United States)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.

    1999-01-01

    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  10. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    Science.gov (United States)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  11. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    Science.gov (United States)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  12. PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

    Science.gov (United States)

    H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2010-02-01

    Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.

  13. Western Pond Turtle Observations - Region 1 [ds313

    Data.gov (United States)

    California Department of Resources — This dataset was developed in an effort to compile Western Pond Turtle (Clemmys marmorata) observations in CDFG Region 1. Steve Burton (CDFG Staff Environmental...

  14. High Resolution Spectroscopy of Halo Stars in the Near UV and Blue Region I. Spectra in the Wavelength Region 3550-5000(A)

    Institute of Scientific and Technical Information of China (English)

    V. G. Klochkova; Gang Zhao; S. V. Ermakov; V. E. Panchuk

    2006-01-01

    An atlas of high resolution (R = 60 000) CCD-spectra in the wavelength range 3500-5000(A) is presented for four objects in metallicity range -3.0 < [Fe/H] < -0.6,temperature range 4750 < Teff < 5900K, and surface gravity range 1.6 < lgg < 5.0.We describe the calibration of the stellar atmospheric parameters using Alonso's formula based on the method of infrared flux and outline the determination of the abundances of a total number of 25 chemical elements. An analysis of the abundance determination errors for different chemical elements is carried out, and a method is provided for the observations and reduction of spectral material. Properties of the method of producing an atlas of spectra and line identifications are described.

  15. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  16. Performance Analysis on 16-Channels Wavelength Division Multiplexing in Free Space Optical Transmission under Tropical Regions Environment

    Directory of Open Access Journals (Sweden)

    Ratna K.Z. Sahbudin

    2012-01-01

    Full Text Available Problem statement: Wavelength-Division-Multiplexing (WDM is a promising technique for meeting the growing demand for increased bandwidth and various types of services in the optical access network. For wide area or metropolitan networks, fibers are deployed to provide huge bandwidth. In access networks, the fiber-to-the-home will partially solve the last mile problem. However, some environmentally sensitive area such as housing areas, tower buildings and national parks are not allowed to deploy fibers. Therefore, Radio Frequency (RF is normally used to overcome this problem. The incompatibility of RF and optical channels is now widely believed to be the limiting factor in efforts to further increase transport capabilities. Free Space Optical (FSO communication is the technology that can address any connectivity needed in optical networks, such as core, edge, or access networks. Approach: In this project, the simulation software namely Optical System version 7 is used to simulate the design of WDM in FSO transmission. The total losses that have been considered in this design are geometric loss, transmitter and receiver loss and atmospheric attenuation which focus on nonselective scattering during heavy rainfall condition in Malaysian environment. Malaysian weather data are used to reflect the conditions particularly in tropical regions. Results: We have presented the results of 16-channels WDM at 100-GHz channel spacing. The simulated results show that this system can support a higher bit rate up to 2.5 Gbps over 2.4 km distance. Conclusion: Simulation results showed that WDM FSO system may be a good candidate to solve the last mile problem and also it has capability to accommodate the channels more than 16. By introducing the error correction code or balance detection, the transmission distance might be increased further.

  17. IRIS Observation of a Sunspot and the Surrounding Plage Region

    Science.gov (United States)

    TIAN, H.; DeLuca, E. E.; Mcintosh, S. W.; Reeves, K. K.; McKillop, S.; Weber, M.; Saar, S.; Golub, L.; Testa, P.

    2013-12-01

    NASA's IRIS mission is providing high-cadence and high-resolution observations of the solar transition region and chromosphere. We present preliminary results from IRIS observation of a sunspot and the surrounding plage region. The major findings in this observation can be summarized as following: (1) The slit jaw images in the filters of 1400Å and 1330Å reveal the presence of many rapidly evolving fibril-like structures in the transition region for the first time. These thin and long structures mainly reside in the plage region. They could be strands of low-lying cool transition region loops or the transition region counterpart of chromospheric spicules. (2) The C II and Mg II line profiles are almost Gaussian in the sunspot umbra and clearly exhibit a deep reversal at the line center in the plage region, suggesting a greatly reduced opacity in the sunspot atmosphere. (3) Bidirectional jets are frequently occurring mainly in the plage region immediately outside the sunspot throughout the observation. Triple or double Gaussian fit to the line profiles of Si IV suggests a velocity as high as 100 km/s. These velocity values are of the same order of the Alfven speed in the transition region. (4)Three-minute oscillation is clearly present in the sunspot umbra. The oscillation is identified in not only the slit jaw images of 2796Å, 1400Å and 1330Å, but also in spectra of the bright Mg II, C II and Si IV lines. Strong non-linearity is clearly seen in the intensity and Doppler shift oscillations. Interestingly, the obvious increase of the line width only occurs at the times of largest blue shift. The correlated change of the intensity and Doppler shift suggests an upward propagating magneto-acoustic shock wave.

  18. The effect of magnetic fields on gamma-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999

    NARCIS (Netherlands)

    Galama, TJ; Briggs, MS; Wijers, RAMJ; Rol, E; Band, D; van Paradijs, J; Kouveliotou, C; Preece, RD; Smith, IA; Tilanus, RPJ; de Bruyn, AG; Strom, RG; Pooley, G; Castro-Tirado, AJ; Tanvir, N; Robinson, C; Hurley, K; Heise, J; Telting, J; Rutten, RGM; Packham, C; Swaters, R; Fassia, A; Green, SF; Foster, MJ; Sagar, R; Pandey, AK; Nilakshi, [No Value; Yadav, RKS; Ofek, EO; Leibowitz, E; Ibbetson, P; Rhoads, J; Falco, E; Petry, C; Impey, C; Geballe, TR; Bhattacharya, D

    1999-01-01

    Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature of which is still unclear) Interacts with material surrounding the site of the explosion. observations of the evolving changes in emission at many wavelengths allow u

  19. Odin spectral line observations of Sgr A and Sgr B2 at submm wavelengths and in the 118-GHz band

    Energy Technology Data Exchange (ETDEWEB)

    Sandqvist, A [Stockholm Observatory, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Bergman, P [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Bernath, P [Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Frisk, U [Swedish Space Corporation, PO Box 4207, SE-171 04 Solna (Sweden); Hjalmarson, A [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Larsson, B [Stockholm Observatory, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Lindqvist, M [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Olberg, M [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Olofsson, A O H [Onsala Space Observatory, SE-439 92 Onsala (Sweden); Pagani, L [LERMA and ERE 2460 du CNRS, Observatoire de Paris, FR-75014 Paris (France)

    2006-12-15

    Since its launch in 2001, the Odin satellite has been observing the Galactic Centre Sgr A Complex (CND, +20 and +50 km s{sup -1} Clouds) as well as the nearby star formation region, Sgr B2, a number of times. Observations have been made in the 118-119 GHz and 486-581 GHz bands. A limited mapping of the Sgr A Complex in the H{sup 16}{sub 2}O line has been performed and new observations of the H{sup 18}{sub 2}O line took place in 2006. In the 118-119 GHz band, a strong line of HC{sub 3}N (J = 13 - 12) has been detected at a number of positions - sensitive upper limits have been obtained for the O{sub 2} (1{sub 1} - 1{sub 0}) and the SiC (3{pi}{sub 2}, J = 3 - 2) lines. Towards Sgr B2, submm observations have yielded absorption profles of H{sup 16}{sub 2}O, H{sup 18}{sub 2}O, H{sup 17}{sub 2}O, NH{sub 3}, and {sup 15}NH{sub 3}.

  20. Large Amplitude Variations of an L/T Transition Brown Dwarf: Multi-Wavelength Observations of Patchy, High-Contrast Cloud Features

    CERN Document Server

    Radigan, Jacqueline; Lafrenière, David; Artigau, Etienne; Marley, Mark; Saumon, Didier

    2012-01-01

    We present multiple-epoch photometric monitoring in the $J$, $H$, and $K_s$ bands of the T1.5 dwarf 2MASS J21392676+0220226 (2M2139), revealing persistent, periodic ($P=7.72\\pm$0.05 hr) variability with a peak-to-peak amplitude as high as 26% in the $J$-band. The light curve shape varies on a timescale of days, suggesting that evolving atmospheric cloud features are responsible. Using interpolations between model atmospheres with differing cloud thicknesses to represent a heterogeneous surface, we find that the multi-wavelength variations and the near-infrared spectrum of 2M2139 can be reproduced by either (1)cool, thick cloud features sitting above a thinner cloud layer, or (2)warm regions of low condensate opacity in an otherwise cloudy atmosphere, possibly indicating the presence of holes or breaks in the cloud layer. We find that temperature contrasts between thick and thin cloud patches must be greater than 175 K and as high as 425 K. We also consider whether the observed variability could arise from an ...

  1. Influence of galaxy stellar mass and observed wavelength on disc breaks in S$^4$G, NIRS0S, and SDSS data

    CERN Document Server

    Laine, Jarkko; Salo, Heikki

    2016-01-01

    Breaks in the surface brightness profiles in the outer regions of galactic discs are thought to have formed by various internal and external processes, and by studying the breaks we aim to better understand what processes are responsible for the evolution of the outer discs. We use a large well-defined sample to study how common the breaks are, and whether their properties depend on galaxy stellar mass or observed wavelength. We study radial surface brightness profiles of 753 galaxies, obtained from the $3.6 \\mu m$ images of the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G), and the $K_s$-band data from the Near InfraRed S0-Sa galaxy Survey (NIRS0S), covering a wide range of galaxy morphologies and stellar masses. Optical SDSS or Liverpool telescope data was used for 480 of these galaxies. We find that in low-mass galaxies the single exponential discs (Type I) are most common, and that their fraction decreases with increasing galaxy stellar mass. The fraction of down-bending (Type II) discs increas...

  2. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  3. Observation of vapor bubble of non-azeotropic binary mixture in microgravity with a two-wavelength interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yoshiyuki; Iwasaki, Akira

    1999-07-01

    Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and with the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger

  4. Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level.

    Science.gov (United States)

    Ikuta, Rikizo; Kobayashi, Toshiki; Kato, Hiroshi; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Fujiwara, Mikio; Yamamoto, Takashi; Sasaki, Masahide; Wang, Zhen; Koashi, Masato; Imoto, Nobuyuki

    2013-11-18

    We experimentally demonstrate that both of the two output light pulses of different wavelengths from a wavelength converter with various branching ratios preserve phase information of an input light at a single-photon level. In our experiment, we converted temporally-separated two coherent light pulses with average photon numbers of ∼ 0.1 at 780 nm to light pulses at 1522 nm by using difference-frequency generation in a periodically-poled lithium niobate waveguide. We observed an interference between temporally-separated two modes for both the converted and the unconverted light pulses at various values of the conversion efficiency. We observed interference visibilities greater than 0.88 without suppressing the background noises for any value of the conversion efficiency the wavelength converter achieves. At a conversion efficiency of ∼ 0.5, the observed visibilities are 0.98 for the unconverted light and 0.99 for the converted light. Such a phase-preserving wavelength converter with high visibilities will be useful for manipulating quantum states encoded in the frequency degrees of freedom.

  5. Multi-wavelength observations of the gamma-ray flaring quasar S4 1030+61 in 2009-2014

    CERN Document Server

    Kravchenko, E V; Hovatta, T; Ramakrishnan, V

    2016-01-01

    We present a study of the parsec-scale multi-frequency properties of the quasar S4 1030+61 during a prolonged radio and gamma-ray activity. Observations were performed within Fermi gamma-ray telescope, OVRO 40-m telescope and MOJAVE VLBA monitoring programs, covering five years from 2009. The data are supplemented by four-epoch VLBA observations at 5, 8, 15, 24, and 43 GHz, which were triggered by the bright gamma-ray flare, registered in the quasar in 2010. The S4 1030+61 jet exhibits an apparent superluminal velocity of (6.4+-0.4)c and does not show ejections of new components in the observed period, while decomposition of the radio light curve reveals nine prominent flares. The measured variability parameters of the source show values typical for Fermi-detected quasars. Combined analysis of radio and gamma-ray emission implies a spatial separation between emitting regions at these bands of about 12 pc and locates the gamma-ray emission within a parsec from the central engine. We detected changes in the val...

  6. Observations of Transient Active Region Heating with Hinode

    CERN Document Server

    Warren, Harry P; Brooks, David H; Cirtain, Jonathan W; Williams, David R; Harra, Hirohisa

    2007-01-01

    We present observations of transient active region heating events observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode. This initial investigation focuses on NOAA active region 10940 as observed by Hinode on February 1, 2007 between 12 and 19 UT. In these observations we find numerous examples of transient heating events within the active region. The high spatial resolution and broad temperature coverage of these instruments allows us to track the evolution of coronal plasma. The evolution of the emission observed with XRT and EIS during these events is generally consistent with loops that have been heated and are cooling. We have analyzed the most energetic heating event observed during this period, a small GOES B-class flare, in some detail and present some of the spectral signatures of the event, such as relative Doppler shifts at one of the loop footpoints and enhanced line widths during the rise phase of the event. While the analysis of these transient even...

  7. Deep VLA observations of nearby star forming regions I: Barnard 59 and Lupus 1

    Science.gov (United States)

    Dzib, S. A.; Loinard, L.; Medina, S.-N. X.; Rodríguez, L. F.; Mioduszewski, A. J.; Torres, R. M.

    2016-10-01

    Barnard 59 and Lupus 1 are two nearby star-forming regions visible from the southern hemisphere. In this manuscript, we present deep (σ˜15 μJy) radio observations (ν=6 GHz) of these regions, and report the detection of a total of 114 sources. Thirteen of these sources are associated with known young stellar objects, nine in Barnard 59 and four in Lupus 1. The properties of the radio emission (spectral index and, in some cases, polarization) suggest a thermal origin for most young stellar objects. Only for two sources (Sz 65 and Sz 67) are there indications for a possible non-thermal origin. The remaining radio detections do not have counterparts at other wavelengths, and the number of sources detected per unit solid angle is in agreement with extragalactic number counts, suggesting that they are extragalactic sources.

  8. Multi-wavelength observations of PKS 2142–75 during active and quiescent gamma-ray states

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, Michael S. [The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Ojha, Roopesh [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Pottschmidt, Katja [Center for Research and Exploration in Space Science and Technology (CRESST), University of Maryland Baltimore Campus (UMBC) and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Finke, Justin D. [Naval Research Laboratory, Space Science Division, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stevens, Jamie [CSIRO Astronomy and Space Science, Locked Bag 194, Narrabri, NSW 2390 (Australia); Edwards, Philip G. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Blanchard, Jay [Departamento de Astronoma, Universidad de Concepción, Casilla 160 C, 4089100 Concepción (Chile); Lovell, James E. J. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tas 7001 (Australia); Nesci, Roberto [INAF/IAPS, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Kadler, Matthias; Müller, Cornelia [Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer-Straße 31, D-97074 Würzburg (Germany); Wilms, Joern; Krauss, Felicia [Remeis Observatory and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); Tosti, Gino [University of Perugia, Piazza Università 1, I-06123 Perugia (Italy); Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma Santa Cruz de Tenerife (Spain); Gehrels, Neil, E-mail: ditko86@gmail.com [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States)

    2013-12-20

    PKS 2142–75 (a.k.a. 2FGL J2147.4–7534) is a flat-spectrum radio quasar that was observed quasi-simultaneously by a suite of instruments across the electromagnetic spectrum during two flaring states in 2010 April and 2011 August as well as a quiescent state from 2011 December through 2012 January. The results of these campaigns and model spectral energy distributions (SEDs) from the active and quiescent states are presented. The SED model parameters of PKS 2142–75 indicate that the two flares of the source are created by unique physical conditions. SED studies of flat-spectrum radio quasars are beginning to indicate that there might be two types of flares, those that can be described purely by changes in the electron distribution and those that require changes in other parameters, such as the magnetic field strength or the size of the emitting region.

  9. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena [Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Colina, Luis [Centro de Astrobiología (INTA-CSIC), Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Efstathiou, Andreas [School of Sciencies, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Miralles-Caballero, Daniel [Instituto de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Väisänen, Petri [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 Cape Town (South Africa); Packham, Christopher C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Rajpaul, Vinesh [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Zijlstra, Albert A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  10. High Resolution CO Observations of Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D; Keto, E R; Zhang, Q; Galván-Madrid, R; Liu, H-Y B

    2011-01-01

    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \\times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being ...

  11. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength

    Science.gov (United States)

    Wang, Yingwei; Mu, Haoran; Li, Xiaohong; Yuan, Jian; Chen, Jiazhang; Xiao, Si; Bao, Qiaoliang; Gao, Yongli; He, Jun

    2016-05-01

    We report the large nonlinear response and ultrafast carrier relaxation dynamics of a graphene-Bi2Te3 heterostructure produced by two-step chemical vapour deposition. The nonlinear refractive index reaches n2 = 0.2 × 10-7 cm2/W at the telecommunication wavelength of 1550 nm, which is almost seven orders of magnitude larger than that of the bulk Si material. Additionally, a pump-probe experiment is performed to investigate the ultrafast dynamic process (intraband relaxation time τ1 = 270 ± 20 fs; interband relaxation time τ2 = 3.6 ± 0.2 ps) of the graphene-Bi2Te3 heterostructure. Then, based on the donor-acceptor structure model, we propose a theoretical model to explain the dynamic relaxation process. Our results show that the graphene-Bi2Te3 heterostructure is a promising saturable absorber for ultrafast pulse laser applications at telecommunication wavelengths.

  12. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  13. Diagnostic Modeling of PAMS VOC Observation on Regional Scale Environment

    Science.gov (United States)

    Chen, S.; Liu, T.; Chen, T.; Ou Yang, C.; Wang, J.; Chang, J. S.

    2008-12-01

    While a number of gas-phase chemical mechanisms, such as CBM-Z, RADM2, SAPRC-07 had been successful in studying gas-phase atmospheric chemical processes they all used some lumped organic species to varying degrees. Photochemical Assessment Monitoring Stations (PAMS) has been in use for over ten years and yet it is not clear how the detailed organic species measured by PAMS compare to the lumped model species under regional-scale transport and chemistry interactions. By developing a detailed mechanism specifically for the PAMS organics and embedding this diagnostic model within a regional-scale transport and chemistry model we can then directly compare PAMS observation with regional-scale model simulations. We modify one regional-scale chemical transport model (Taiwan Air Quality Model, TAQM) by adding a submodel with chemical mechanism for interactions of the 56 species observed by PAMS. This submodel then calculates the time evolution of these 56 PAMS species within the environment established by TAQM. It is assumed that TAQM can simulate the overall regional-scale environment including impact of regional-scale transport and time evolution of oxidants and radicals. Therefore we can scale these influences to the PAMS organic species and study their time evolution with their species-specific source functions, meteorological transport, and chemical interactions. Model simulations of each species are compared with PAMS hourly surface measurements. A case study located in a metropolitan area in central Taiwan showed that with wind speeds lower than 3 m/s, when meteorological simulation is comparable with observation, the diurnal pattern of each species performs well with PAMS data. It is found that for many observations meteorological transport is an influence and that local emissions of specific species must be represented correctly. At this time there are still species that cannot be modeled properly. We suspect this is mostly due to lack of information on local

  14. Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77

    CERN Document Server

    Kassin, Susan A; Goodsall, T; Clarke, F J; Houghton, R W C; Salter, G; Thatte, N; Tecza, M; Davies, Roger L; Weiner, Benjamin J; Willmer, C N A; Salim, Samir; Cooper, Michael C; Newman, Jeffrey A; Bundy, Kevin; Conselice, C J; Koekemoer, A M; Lin, Lihwai; Moustakas, Leonidas A; Wang, Tao

    2011-01-01

    The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-...

  15. Multispectral optical observations of ionospheric F-region storm effects at low latitude

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Y.; Bittencourt, J.A.; Takahashi, H.; Teixeira, N.R.; Sobral, J.H.A.; Tinsley, B.A.; Rohrbaugh, R.P.

    1988-04-01

    Simultaneous measurements of specified nightglow emissions have been carried out at Cachoeira Paulista, since 1982, to study the response of the low-latitude ionospheric F-region to magnetic storms. The observations obtained during three magnetic storms in Brazil in 1983 and 1984 are presented and discussed. Emissions excited by energetic particle precipitation were observed during the main phase of strong magnetic storms. In contrast to the observations reported from mid-latitude stations by other investigators, no enhancements in the OI 7774 A emission due to energetic particle precipitation were evident at our latitude. Radiative recombination is suggested as the main excitation mechanism. The OI 6300 A emission, on 7-8 August and 28-29 March, showed periodic intensity variations, which are associated with vertical oscillations of the ionospheric F-region plasma, as shown by the periodic height variations of the F-region seen from the ionograms obtained at the same location. Also, the North-South scanning observation of this wavelength on one occasion showed no meridional and longitudinal phase change, indicating the absence of propagation.

  16. A Transition Region Explosive Event Observed in He II with the MOSES Sounding Rocket

    Science.gov (United States)

    Fox, J. Lewis; Kankelborg, Charles C.; Thomas, Roger J.

    2010-08-01

    Transition region explosive events (EEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548 Å, 1550 Å) and Si IV (1393 Å, 1402 Å). We report what we believe to be the first observation of a transition region EE in He II 304 Å. With the Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket, a novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel. The jets have sky-plane velocities of order 75 km s-1 and line-of-sight velocities of +75 km s-1 (blue) and -30 km s-1 (red). The core is a region of high non-thermal Doppler broadening, characteristic of EEs, with maximal broadening 380 km s-1 FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum Doppler velocities +160 km s-1 and -220 km s-1. The event lasts more than 150 s. Its properties correspond to the larger, long-lived, and more energetic EEs observed in other wavelengths.

  17. A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure

    CERN Document Server

    Tazzari, M; Ercolano, B; Natta, A; Isella, A; Chandler, C J; Pérez, L M; Andrews, S; Wilner, D J; Ricci, L; Henning, T; Linz, H; Kwon, W; Corder, S A; Dullemond, C P; Carpenter, J M; Sargent, A I; Mundy, L; Storm, S; Calvet, N; Greaves, J A; Lazio, J; Deller, A T

    2015-01-01

    Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence ...

  18. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  19. A multi-wavelength view of the central kiloparsec region in the Luminous Infrared Galaxy NGC1614

    CERN Document Server

    Herrero-Illana, Rubén; Alonso-Herrero, Almudena; Alberdi, Antxon; Colina, Luis; Efstathiou, Andreas; Hernández-García, Lorena; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C; Rajpaul, Vinesh; Zijlstra, Albert A

    2014-01-01

    The Luminous Infrared Galaxy NGC1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ~100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Pa-alpha, optical, and X-ray observations of NGC1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array (VLA) and the Gemini/T-ReCS 8.7 micron emission, as well as the Pa-alpha line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used an HST/NICMOS Pa-alpha map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power-law for each individual region within the central kpc of NGC1614. The radio ring surrounds a relatively faint, steep-spectrum...

  20. Discovery of VHE γ-ray emission and multi-wavelength observations of the BL Lacertae object 1RXS J101015.9-311909

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-06-01

    1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus (called AGN) belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006 and 2010 with the H.E.S.S. instrument, an array of four imaging atmospheric Cherenkov telescopes. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1 standard deviations. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Γ = 3.08 ± 0.42stat ± 0.20sys. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission in the 100 MeV to 200 GeV energy range is significant at 8.3 standard deviations in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the atom telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F(0.3-7) keV = 1.04+0.04-0.05 × 10-11 erg cm-2 s-1 in the 0.3-7 keV range. Finally, all the available data are used to study the multi-wavelength properties of the source. The spectral energy distribution (SED) can be reproduced using a simple one-zone Synchrotron Self Compton (SSC) model with emission from a region with a Doppler factor of 30 and a

  1. Optical, radio, and infrared observations of compact H II regions. V. The hourglass in M8

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, C.E.; Pipher, J.L.; Helfer, H.L.; Sharpless, S.; Moneti, A.; Kozikowski, D.; Oliveri, M.; Willner, S.P.; Lacasse, M.G.; Herter, T.

    1986-04-01

    Multiwavelength observations of the inner core of the M8 Hourglass region are presented, including VLA interferometric maps, 2--4 ..mu..m and 8--13 ..mu..m spectroscopy, photometric mapping in the K (2.2 ..mu..m) and L (3.45 ..mu..m) bands and in the 3.28 ..mu..m dust-emission feature, optical CCD imaging, and optical and infrared polarimetry. The compact H II region is excited by the O7 V star Herschel 36, and its apparent bipolar structure at optical wavelengths may be due to variable line-of-sight extinction and scattered light. Standard reddening laws are not applicable in the Hourglass region. A power law extinction lambda/sup -0.78/ yields consistent agreement between ultraviolet, optical, and infrared extinction estimates and suggests that one component of the total grain distribution is on the average larger than that found in the interstellar medium. The spatial distribution of the 3.28 ..mu..m dust-emission feature shows that the feature emission is associated with the boundary layer in the H II region/molecular cloud interface. The observations favor models in which feature emission comes from small refractory grains rather than from fluorescence or thermal emission from volatile mantles.

  2. First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    CERN Document Server

    Partnership, ALMA; Perez, L M; Hunter, T R; Dent, W R F; Hales, A S; Hills, R; Corder, S; Fomalont, E B; Vlahakis, C; Asaki, Y; Barkats, D; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kneissl, R; Liuzzo, E; Lucas, R; Marcelino, N; Matsushita, S; Nakanishi, K; Phillips, N; Richards, A M S; Toledo, I; Aladro, R; Broguiere, D; Cortes, J R; Cortes, P C; Dhawan, V; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Marconi, G; Nikolic, B; Nyman, L -A; Radiszcz, M; Remijan, A; Rodon, J A; Sawada, T; Takahashi, S; Tilanus, R P J; Vilaro, B Vila; Watson, L C; Wiklind, T; Akiyama, E; Chapillon, E; de Gregorio, I; Di Francesco, J; Gueth, F; Kawamura, A; Lee, C -F; Luong, Q Nguyen; Mangum, J; Pietu, V; Sanhueza, P; Saigo, K; Takakuwa, S; Ubach, C; van Kempen, T; Wootten, A; Castro-Carrizo, A; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hill, T; Kaminski, T; Kurono, Y; Liu, H -Y; Lopez, C; Morales, F; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Andreani, P; Hibbard, J E; Tatematsu, K

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($\\alpha$), which ranges from $\\alpha\\sim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for ...

  3. Electron acceleration in the reconnection diffusion region: Cluster observations

    Science.gov (United States)

    Huang, S. Y.; Vaivads, A.; Khotyaintsev, Y. V.; Zhou, M.; Fu, H. S.; Retinò, A.; Deng, X. H.; André, M.; Cully, C. M.; He, J. S.; Sahraoui, F.; Yuan, Z. G.; Pang, Y.

    2012-06-01

    We present one case study of magnetic islands and energetic electrons in the reconnection diffusion region observed by the Cluster spacecraft. The cores of the islands are characterized by strong core magnetic fields and density depletion. Intense currents, with the dominant component parallel to the ambient magnetic field, are detected inside the magnetic islands. A thin current sheet is observed in the close vicinity of one magnetic island. Energetic electron fluxes increase at the location of the thin current sheet, and further increase inside the magnetic island, with the highest fluxes located at the core region of the island. We suggest that these energetic electrons are firstly accelerated in the thin current sheet, and then trapped and further accelerated in the magnetic island by betatron and Fermi acceleration.

  4. Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar Flares with AIA/SDO: I. Universal Scaling Laws of Space and Time Parameters

    CERN Document Server

    Aschwanden, Markus J; Liu, Kai

    2013-01-01

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO (Aschwanden 2012) to all 7 coronal wavelengths (94, 131, 171, 193, 211, 304, 335 \\ang) to test the wavelength-dependence of scaling laws and statistical distributions. Except for the 171 and 193 \\ang\\ wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths $L$, flare areas $A$, volumes $V$, fractal dimension $D_2$), temporal (flare durations $T$), and spatio-temporal parameters (diffusion coefficient $\\kappa$, spreading exponent $\\beta$, and maximum expansion velocities $v_{max}$) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly-driven self-organized criticality (FD-SOC) system, i.e., $N(L) \\propto L^{-3}$, $N(A) \\propto A^{-2}$, $N(V) \\propto V^{-5/3}$, $N(T) \\propto T^{-2}$, $D_2=3/2$, for a Euclidean dimension $d=3$. Empirical...

  5. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    CERN Document Server

    Randall, S W; van Weeren, R J; Intema, H T; Dawson, W A; Mroczkowski, T; Blanton, E L; Bulbul, E; Giacintucci, S

    2016-01-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post core passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces while the effectively collisionless galaxies (and presumably their associated dark matter halos) do not. This system contains double peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of dark matter. Low frequency r...

  6. Multi-wavelength GOALS Observations of Star Formation and Active Galactic Nucleus Activity in the Luminous Infrared Galaxy IC 883

    CERN Document Server

    Modica, F; Evans, A S; Kim, D C; Mazzarella, J M; Iwasawa, K; Petric, A; Howell, J H; Surace, J A; Armus, L; Spoon, H W W; Sanders, D B; Barnes, J E

    2011-01-01

    New optical HST, Spitzer, GALEX, and Chandra observations of the single-nucleus, luminous infrared galaxy (LIRG) merger IC 883 are presented. The galaxy is a member of the Great Observatories All-sky LIRG Survey (GOALS), and is of particular interest for a detailed examination of a luminous late-stage merger due to the richness of the optically-visible star clusters and the extended nature of the nuclear X-ray, mid-IR, CO and radio emission. In the HST ACS images, the galaxy is shown to contain 156 optically visible star clusters distributed throughout the nuclear regions and tidal tails of the merger, with a majority of visible clusters residing in an arc ~ 3-7 kpc from the position of the mid-infrared core of the galaxy. The luminosity functions of the clusters have an alpha_F435W ~ -2.17+/-0.22 and alpha_F814W ~ -2.01+/-0.21. Further, the colors and absolute magnitudes of the majority of the clusters are consistent with instantaneous burst population synthesis model ages in the range of a few x10^7 - 10^8 ...

  7. Estimating the Economic Benefits of Regional Ocean Observing Systems

    Science.gov (United States)

    2005-04-01

    Approved for Distribution: Andrew Solow , Director Marine Policy Center Estimating the Economic Benefits of Regional Ocean Observing Systems Report to...models that produce "nowcasts" or forecasts. See R. Adams, M. Brown, C. Colgan, N. Flemming, H. Kite-Powell, B. McCarl, J. Mjelde, A. Solow , T...like to acknowledge helpful discussions held with the following personnel: Ken Schaudt, Marathon; Norman Guinasso, Jr., Texas A&M University; Robert

  8. Enhancing Earth Observation Capacity in the Himalayan Region

    Science.gov (United States)

    Shrestha, B. R.

    2012-12-01

    Earth observations bear special significance in the Himalayan Region owing to the fact that routine data collections are often hampered by highly inaccessible terrain and harsh climatic conditions. The ongoing rapid environmental changes have further emphasized its relevance and use for informed decision-making. The International Center for Integrated Mountain Development (ICIMOD), with a regional mandate is promoting the use of earth observations in line with the GEOSS societal benefit areas. ICIMOD has a proven track record to utilize earth observations notably in the areas of understanding glaciers and snow dynamics, disaster risk preparedness and emergency response, carbon estimation for community forestry user groups, land cover change assessment, agriculture monitoring and food security analysis among others. This paper presents the challenges and lessons learned as a part of capacity building of ICIMOD to utilize earth observations with the primary objectives to empower its member countries and foster regional cooperation. As a part of capacity building, ICIMOD continues to make its efforts to augment as a regional resource center on earth observation and geospatial applications for sustainable mountain development. Capacity building possesses multitude of challenges in the region: the complex geo-political reality with differentiated capacities of member states, poorer institutional and technical infrastructure; addressing the needs for multiple user and target groups; integration with different thematic disciplines; and high resources intensity and sustainability. A capacity building framework was developed based on detailed needs assessment with a regional approach and strategy to enhance capability of ICIMOD and its network of national partners. A specialized one-week training course and curriculum have been designed for different thematic areas to impart knowledge and skills that include development practitioners, professionals, researchers and

  9. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  10. Spectral-line Survey at Millimeter and Submillimeter Wavelengths toward an Outflow-shocked Region, OMC 2-FIR 4

    Science.gov (United States)

    Shimajiri, Yoshito; Sakai, Takeshi; Kitamura, Yoshimi; Tsukagoshi, Takashi; Saito, Masao; Nakamura, Fumitaka; Momose, Munetake; Takakuwa, Shigehisa; Yamaguchi, Takahiro; Sakai, Nami; Yamamoto, Satoshi; Kawabe, Ryohei

    2015-12-01

    We performed the first spectral line survey at 82-106 GHz and 335-355 GHz toward the outflow-shocked region OMC 2-FIR 4, the outflow driving source FIR 3, and the northern outflow lobe FIR 3N. We detected 120 lines of 20 molecular species. The line profiles can be classified into two types: one type is a single Gaussian component with a narrow (3 km s-1) widths. The narrow components for most of the lines are detected at all positions, suggesting that they trace the ambient dense gas. For CO, CS, HCN, and HCO+, the wide components are detected at all positions, suggesting an outflow origin. The wide components of C34S, SO, SiO, H13CN, HC15N, {{{H}}}213CO, H2CS, HC3N, and CH3OH are only detected at FIR 4, suggesting an origin as outflow-shocked gas. The rotation diagram analysis revealed that the narrow components of C2H and H13CO+ show low temperatures of 12.5 ± 1.4 K, while the wide components show high temperatures of 20-70 K. This supports our interpretation that the wide components trace the outflow and/or outflow-shocked gas. We compared the observed molecular abundances relative to H13CO+ with those of the outflow-shocked region L 1157 B1 and the hot corino IRAS 16293-2422. Although we cannot exclude the possibility that the chemical enrichment in FIR 4 is caused by hot-core chemistry, the chemical compositions in FIR 4 are more similar to those in L 1157 B1 than those in IRAS 16293-2422.

  11. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  12. Transition Region Explosive Events in He II 304Å: Observation and Analysis

    Science.gov (United States)

    Rust, Thomas; Kankelborg, Charles C.

    2016-05-01

    We present examples of transition region explosive events observed in the He II 304Å spectral line with the Multi Order Solar EUV Spectrograph (MOSES). With small (thermal (100-150 km/s) velocities these events satisfy the observational signatures of transition region explosive events. Derived line profiles show distinct blue and red velocity components with very little broadening of either component. We observe little to no emission from low velocity plasma, making the plasmoid instability reconnection model unlikely as the plasma acceleration mechanism for these events. Rather, the single speed, bi-directional jet characteristics suggested by these data are consistent with acceleration via Petschek reconnection.Observations were made during the first sounding rocket flight of MOSES in 2006. MOSES forms images in 3 orders of a concave diffraction grating. Multilayer coatings largely restrict the passband to the He II 303.8Å and Si XI 303.3Å spectral lines. The angular field of view is about 8.5'x17', or about 20% of the solar disk. These images constitute projections of the volume I(x,y,λ), the intensity as a function of sky plane position and wavelength. Spectral line profiles are recovered via tomographic inversion of these projections. Inversion is carried out using a multiplicative algebraic reconstruction technique.

  13. FLARE FOOTPOINT REGIONS AND A SURGE OBSERVED BY HINODE/EIS, RHESSI, AND SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Caspi, A. [Southwest Research Institute, Boulder, CO 80302 (United States)

    2015-11-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for an M3.7 flare observed on 2011 September 25 at N12 E33 in active region 11302. The flare was observed in spectral lines of O vi, Fe x, Fe xii, Fe xiv, Fe xv, Fe xvi, Fe xvii, Fe xxiii, and Fe xxiv. The EIS observations were made coincident with hard X-ray bursts observed by RHESSI. Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena were observed, including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe xxiii and Fe xxiv lines were observed with Doppler speeds greater than 500 km s{sup −1}. For ions such as Fe xv both evaporative outflows (∼200 km s{sup −1}) and downflows (∼30–50 km s{sup −1}) were observed. Nonthermal motions from 120 to 300 km s{sup −1} were measured in flare lines. In the surge, Doppler speeds are found from about 0 to over 250 km s{sup −1} in lines from ions such as Fe xiv. The nonthermal motions could be due to multiple sources slightly Doppler-shifted from each other or turbulence in the evaporating plasma. We estimate the energetics of the hard X-ray burst and obtain a total flare energy in accelerated electrons of ≥7 × 10{sup 28} erg. This is a lower limit because only an upper limit can be determined for the low-energy cutoff to the electron spectrum. We find that detailed modeling of this event would require a multithreaded model owing to its complexity.

  14. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  15. A Multi-Wavelength High Resolution Study of the S255 Star Forming Region. General structure and kinematics

    CERN Document Server

    Zinchenko, I; Su, Y -N; Kurtz, S; Ojha, D K; Samal, M R; Ghosh, S K

    2012-01-01

    We present observational data for two main components (S255IR and S255N) of the S255 high mass star forming region in continuum and molecular lines obtained at 1.3 mm and 1.1 mm with the SMA, at 1.3 cm with the VLA and at 23 and 50 cm with the GMRT. The angular resolution was from ~ 2" to ~ 5" for all instruments. With the SMA we detected a total of about 50 spectral lines of 20 different molecules (including isotopologues). About half of the lines and half of the species (in particular N2H+, SiO, C34S, DCN, DNC, DCO+, HC3N, H2CO, H2CS, SO2) have not been previously reported in S255IR and partly in S255N at high angular resolution. Our data reveal several new clumps in the S255IR and S255N areas by their millimeter wave continuum emission. Masses of these clumps are estimated at a few solar masses. The line widths greatly exceed expected thermal widths. These clumps have practically no association with NIR or radio continuum sources, implying a very early stage of evolution. At the same time, our SiO data ind...

  16. Herschel observations of the Galactic H II region RCW 79

    Science.gov (United States)

    Liu, Hong-Li; Figueira, Miguel; Zavagno, Annie; Hill, Tracey; Schneider, Nicola; Men'shchikov, Alexander; Russeil, Delphine; Motte, Frédérique; Tigé, Jérémy; Deharveng, Lise; Anderson, Loren D.; Li, Jin-Zeng; Wu, Yuefang; Yuan, Jing-Hua; Huang, Maohai

    2017-06-01

    Context. Triggered star formation around H II regions could be an important process. The Galactic H II region RCW 79 is a prototypical object for triggered high-mass star formation. Aims: We aim to obtain a census of the young stellar population observed at the edges of the H II region and to determine the properties of the young sources in order to characterize the star formation processes that take place at the edges of this ionized region. Methods: We take advantage of Herschel data from the surveys HOBYS, "Evolution of Interstellar Dust", and Hi-Gal to extract compact sources. We use the algorithm getsources. We complement the Herschel data with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. Results: We created the dust temperature and column density maps along with the column density probability distribution function (PDF) for the entire RCW 79 region. We obtained a sample of 50 compact sources in this region, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 M⊙, densities of 0.1-44 × 105 cm-3, and luminosities of 19-12 712 L⊙. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 M⊙, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its

  17. Long term (2007-2013) observations of columnar aerosol optical properties and retrieved size distributions over Anantapur, India using multi wavelength solar radiometer

    Science.gov (United States)

    Raja Obul Reddy, K.; Balakrishnaiah, G.; Rama Gopal, K.; Siva Kumar Reddy, N.; Chakradhar Rao, T.; Lokeswara Reddy, T.; Nazeer Hussain, S.; Vasudeva Reddy, M.; Reddy, R. R.; Boreddy, S. K. R.; Suresh Babu, S.

    2016-10-01

    This paper presents the long - term observational studies on aerosol optical properties measured at Sri Krishnadevaraya University (SKU) campus (14° 62‧ N, 77° 65‧ E, 331m asl), Anantapur, in southern India during 2007-2013 using a ground based Multi - Wavelength solar Radiometer (MWR). Seasonal mean values of Aerosol Optical Depth (AOD) for the whole study period were observed to be 0.34 ± 0.03, 0.45 ± 0.04, 0.24 ± 0.04, and 0.31 ± 0.03 during the winter, summer, monsoon and post - monsoon, respectively. Annual mean values of Ångström exponent (α) (turbidity coefficient (β)) varied from 0.68 ± 0.25 (0.18 ± 0.03) to 1.1 ± 0.12 (0.32 ± 0.12) during 2007-2013. However, high values of α in the range of 0.8-1.1 were observed during the winter, while low values in the range 0.3-0.7 were noticed during the monsoon. The frequency distribution of AODs during winter in the range of 0.2-0.4 is about 78%, while summer these were shifted from 0.3 to 0.6 around ∼70%, which indicated the dust strongly affects this region. The accumulated frequencies of Ångström exponent (α) less than 1.0 and greater than 1.0 were about 69% and 31%, respectively, occurred in the summer months indicates the dominance of coarse particles. Columnar size distributions, retrieved from the spectral optical depths, in general, show a bimodal log normal distribution in the optically active size range. The seasonal mean effective radius (Reff) was found to be high in monsoon (∼0.61 μm) and low in winter (∼0.38 μm). The highest mean mass loading values are lies between 475 ± 36 to 769 ± 49 mg m-2 during the summer, whereas the lowest value in the range 204 ± 19 to 278 ± 23 mg m-2 during the monsoon. The difference between α and curvature effect have been studied as a function of AOD on seasonal basis. Finally, to understand the contribution of long range transported aerosols, we have investigated this analysis making use of back trajectories obtained from the HYSPLIT

  18. 4.5-year simultaneous multi-wavelength observation of Mrk 421 in the ARGO-YBJ and Fermi overlap era

    CERN Document Server

    Chen, Songzhan

    2015-01-01

    As one of the most active blazars, Mrk421 is an excellent candidate for the study of the physical processes within the jets of AGN. Here we report on the extensive multi-wavelength observations of Mrk 421 over 4.5 years, from 2008 August to 2013 February. This source was simultaneously monitored by several experiments at different wavelengths: ARGO-YBJ in TeV $\\gamma$-rays, $Fermi$-LAT in GeV $\\gamma$-rays, $Swift$-BAT in hard X-rays, $RXTE$-ASM, $MAXI$ and $Swift$-XRT in soft X-rays, $Swift$-UVOT in ultraviolet, and OVRO in radio frequencies. In particular, thanks to the ARGO-YBJ and $Fermi$ data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. According to the observed light curves, ten states (including seven large flares, two quiescent phases and one outburst) were selected. For the first time, the multi-wavelength spectral evolutions of Mrk 421 during different states were systematically analyzed. During the outburst phase and the seven flaring episodes, the peak energy in X-ray...

  19. A submllimeter observation and study of star-forming regions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using the 3-m radio telescope of KOSMA, we mapped 12CO (J = 3-2) lines for three molecular clouds, B35, S146 and TMC-2A. High-velocity molecular outflows are found in all these regions. The physical and dynamical parameters of the outflows are derived, and their shapes and driving sources are analyzed. Contour maps of center velocities show that the large scale systematic gradients exist in the three clouds. These observed motions are best explained by rotation after excluding the cause of outflows. Furthermore, in the core region of TMC-2A there is a velocity gradient in opposite direction from that of the large scale. It may be caused by magnetic braking. Finally, angular velocities of the clouds are calculated, and the effects of rotation against gravity and lowering the star-formation rate are also analyzed.

  20. Coronal loops above an Active Region - observation versus model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2014-01-01

    We conducted a high-resolution numerical simulation of the solar corona above a stable active region. The aim is to test the field-line braiding mechanism for a sufficient coronal energy input. We also check the applicability of scaling laws for coronal loop properties like the temperature and density. Our 3D-MHD model is driven from below by Hinode observations of the photosphere, in particular a high-cadence time series of line-of-sight magnetograms and horizontal velocities derived from the magnetograms. This driving applies stress to the magnetic field and thereby delivers magnetic energy into the corona, where currents are induced that heat the coronal plasma by Ohmic dissipation. We compute synthetic coronal emission that we directly compare to coronal observations of the same active region taken by Hinode. In the model, coronal loops form at the same places as they are found in coronal observations. Even the shapes of the synthetic loops in 3D space match those found from a stereoscopic reconstruction ...

  1. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  2. Lidar observations of tropical high-altitude cirrus clouds: results from dual-wavelength Raman lidar measurements during the ALBATROSS campaign 1996

    Science.gov (United States)

    Beyerle, Georg; Schaefer, H. J.; Schrems, Otto; Neuber, R.; Rairoux, P.; McDermid, I. S.

    1997-05-01

    Results from dual wavelength Raman lidar observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus clouds were present in more than 50% of the observations at latitudes between 23.5 degrees south and 23.5 degrees north and altitudes between 11 and 16 km. Volume depolarization is found to be a sensitive parameter for the detection of subvisible cloud layers. Using Mie scattering calculations estimates of the ice water content are derived.

  3. SPI/INTEGRAL observation of the Cygnus region

    OpenAIRE

    Bouchet, L.; Jourdain, E; Roques, JP; Mandrou, P.; von Ballmoos, P.; Boggs, S; Caraveo, P.; Casse, M.; Cordier, B.; Diehl, R.; Durouchoux, P.; von Kienlin, A.; Knodlseder, J.; Jean, P.; Leleux, Pierre

    2003-01-01

    We present the analysis of the first observations of the Cygnus region by the SPI spectrometer onboard the Integral Gamma Ray Observatory, encompassing similar to600 ks of data. Three sources namely Cyg X-1, Cyg X-3 and EXO 2030+375 were clearly detected. Our data illustrate the temporal variability of Cyg X-1 in the energy range from 20 keV to 300 keV. The spectral analysis shows a remarkable stability of the Cyg X-1 spectra when averaged over one day timescale. The other goal of these obser...

  4. Flare Footpoint Regions and a Surge Observed by the Hinode/EUV Imaging Spectrometer (EIS), RHESSI, and SDO/AIA

    CERN Document Server

    Doschek, George A; Dennis, Brian R; Reep, Jeffrey W; Caspi, Amir

    2015-01-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for a M3.7 flare observed on 25 September 2011 at N12 E33 in active region 11302. The flare was observed in spectral lines of O VI, Fe X, Fe XII, Fe XIV, Fe XV, Fe XVI, Fe XVII, Fe XXIII and Fe XXIV. The EIS observations were made coincident with hard X-ray bursts observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena was observed including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe XX...

  5. Spitzer Observations of M83 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, R H; Colgan, S W J; Dufour, R J; Ray, K L; Erickson, E F; Haas, M R; Pauldrach, A W A; Citron, R I; Rubin, Robert H.; Simpson, Janet P.; Colgan, Sean W.J.; Dufour, Reginald J.; Ray, Katherine L.; Erickson, Edwin F.; Haas, Michael R.; Pauldrach, Adalbert W.A.; Citron, Robert I.

    2007-01-01

    We have undertaken a program to observe emission lines of SIV 10.5, NeII 12.8, NeIII 15.6, & SIII 18.7 um in a number of extragalactic HII regions with the Spitzer Space Telescope. We report our results for the nearly face-on spiral galaxy M83. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph in the short wavelength, high dispersion configuration. The above set of 4 lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne and S for HII regions, Ne/S ~ (Ne+ + Ne++)/(S++ + S3+). Our findings of ratios that exceed the benchmark Orion value are more likely due to other effects than a true gradient in Ne/S. Both Ne and S are primary elements produced in alpha- chain...

  6. Spitzer Observations of M33 and the Hot Star, H II Region Connection

    CERN Document Server

    Rubin, Robert H; Colgan, Sean W J; Dufour, Reginald J; Brunner, Gregory; McNabb, Ian A; Pauldrach, Adalbert W A; Erickson, Edwin F; Haas, Michael R; Citron, Robert I

    2008-01-01

    We have observed emission lines of [S IV] 10.51, H(7-6) 12.37, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71 um in a number of extragalactic H II regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the local group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph with the short wavelength, high resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) for H II regions, we can estimate the Ne/H, S/H, and Ne/S ratios. We find from linear least-squares fits that ...

  7. Three Dimensional Structure and Time Evolution of a Transition Region Explosive Event Observed in He II

    Science.gov (United States)

    Fox, J. L.; Kankelborg, C. C.; Thomas, R. J.; Longcope, D.

    2007-12-01

    Transition Region Explosive Events (TREEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548A,1550A) and Si IV (1393A, 1402A). We report what we believe to be the first observation of a TREE in He II 304A. With the MOSES sounding rocket, a novel type of imaging spectrograph, we are able to see the spatial and spectral structure of the event. It consists of a bright core expelling two jets, oppositely directed but not collinear, which curve away from the axis of the core. The jets have both line-of-sight and sky-plane motion. The core is a region of high non-thermal doppler broadening, characteristic of TREEs. It is possible to resolve the core broadening into red and blue line-of-sight components. MOSES captured approximately 150 sec of time evolution before the rocket flight ended. We see the beginning (core activation) and middle (jet ejection), but not the end. It is clear from our data-set that TREEs in He II 304A are much less common than observed in other wavelengths.

  8. SPI/INTEGRAL observation of the Cygnus region

    Science.gov (United States)

    Bouchet, L.; Jourdain, E.; Roques, J. P.; Mandrou, P.; von Ballmoos, P.; Boggs, S.; Caraveo, P.; Cassé, M.; Cordier, B.; Diehl, R.; Durouchoux, P.; von Kienlin, A.; Knodlseder, J.; Jean, P.; Leleux, P.; Lichti, G. G.; Matteson, J.; Sanchez, F.; Schanne, S.; Schoenfelder, V.; Skinner, G.; Strong, A.; Teegarden, B.; Vedrenne, G.; Wunderer, C.

    2003-11-01

    We present the analysis of the first observations of the Cygnus region by the SPI spectrometer onboard the Integral Gamma Ray Observatory, encompassing ~600 ks of data. Three sources namely Cyg X-1, Cyg X-3 and EXO 2030+375 were clearly detected. Our data illustrate the temporal variability of Cyg X-1 in the energy range from 20 keV to 300 keV. The spectral analysis shows a remarkable stability of the Cyg X-1 spectra when averaged over one day timescale. The other goal of these observations is SPI inflight calibration and performance verification. The latest objective has been achieved as demonstrated by the results presented in this paper.

  9. Optical Observation of Oxygen Ion Upflow in the Cusp/Cleft Region

    Science.gov (United States)

    Tashiro, S.; Yamazaki, A.; Yoshikawa, I.; Takizawa, Y.; Ogawa, Y.; Miyake, W.; Nakamura, M.

    2002-12-01

    We built the Extreme ultraviolet scanner (XUV) for imaging oxygen ions to outflow from the polar ionosphere into the magnetosphere. The XUV onboard a sounding rocket SS-520-2 imaged the oxygen ions above 1000 km altitude near the polar cusp on December 4, 2000. The XUV is a normal incidence telescope that has a peak sensitivity at the wavelength 83.4 nm of OII emission and consists of a Mo coated mirror, a band pass filter and a channel electron multiplier. The band pass filter selectively transmits OII emission and eliminates background emissions such as HeI emission at the 30.4 nm, HeII emission at the 58.4 nm, and HI emission at the 121.6 nm. The observed OII emission intensity is proportional to the ion density integrated along the line of sight. Therefore the observed OII emission intensity distribution makes possible to determine the oxygen ion distribution. After 0928UT, the sudden increase in the OII emission intensity was observed from the cusp region identified by the radar observation. In this presentation, we will discuss the cause of the sudden increase in the OII emission intensity in comparison with the result of ground-based observations.

  10. Photolysis of NO2 at multiple wavelengths in the spectral region 200-205 nm - A velocity map imaging study

    NARCIS (Netherlands)

    Coroiu, A.M.; Parker, D.H.; Groenenboom, G.C.; Barr, J.; Novalbos, I.T.; Whitaker, B.J.

    2006-01-01

    A study of the photodissociation dynamics of NO2 in the 200-205 nm region using resonance enhanced multiphoton ionization (REMPI) in conjunction with the velocity map imaging technique is presented. We chose this region because it allowed the use of a single laser to photodissociate the NO2 molecule

  11. Observational Evidence of Magnetic Reconnection for Brightenings and Transition Region Arcades in IRIS Observations

    Science.gov (United States)

    Zhao, Jie; Schmieder, Brigitte; Li, Hui; Pariat, Etienne; Zhu, Xiaoshuai; Feng, Li; Grubecka, Michalina

    2017-02-01

    By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory. Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of the Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.

  12. Regional and local new particle formation events observed in the Yangtze River Delta region, China

    Science.gov (United States)

    Dai, Liang; Wang, Honglei; Zhou, Luyu; An, Junlin; Tang, Lili; Lu, Chunsong; Yan, Wenlian; Liu, Ruiyang; Kong, Shaofei; Chen, Mindong; Lee, Shanhu; Yu, Huan

    2017-02-01

    To study the spatial inhomogeneity of new particle formation (NPF) in the polluted atmosphere of China, we conducted simultaneous measurements at an urban site near a petrochemical industrial area and a regional background site in the Yangtze River Delta region from September to November 2015. At the urban site we observed a type of local NPF event (number of events: n = 5), in which nucleation was limited to a small area but persisted for 6.8 h on average during the daytime. Formation rates of 5 nm particles (J5) were found to be correlated positively with the H2SO4 proxy (log J5 versus log[H2SO4] slope near 1) in both local and regional events. Furthermore, J5 was enhanced by the anthropogenic volatile organic carbon (VOC) plumes from nearby industrial area in the local events compared to the regional events. Size-dependent aerosol dynamics calculation showed that in comparison with the observed regional events, the local events were featured with high nucleation rate (J1.3 > 1000 cm-3 s-1), high growth rate of sub-3 nm particles (GRsub-3 > 20 nm h-1), and high number concentration of nucleation mode particles (mean peak N5-20: 6 × 104 cm-3). Considering these features, the local NPF events of anthropogenic origin may also be an important contributor to cloud condensation nuclei concentrations in urban and regional scales. In addition, the comparison of simultaneous regional NPF events between the two sites (number of events: n = 7) suggested that regional NPF intensity may be underestimated by the single-point measurement at an urban site, due to the heterogeneity of air masses.

  13. First observation of top quark production in the forward region.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Matthieu, K; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Ninci, D; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-09-11

    Top quark production in the forward region in proton-proton collisions is observed for the first time. The W+b final state with W→μν is reconstructed using muons with a transverse momentum, p_{T}, larger than 25 GeV in the pseudorapidity range 2.020  GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0  fb^{-1} collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are σ(top)[7  TeV]=239±53(stat)±33(syst)±24(theory)  fb,σ(top)[8  TeV]=289±43(stat)±40(syst)±29(theory)  fb.These results, along with the observed differential yields and charge asymmetries, are in agreement with next-to-leading order standard model predictions.

  14. Regional Scaling of Airborne Eddy Covariance Flux Observation

    Science.gov (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  15. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    Science.gov (United States)

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  16. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    Science.gov (United States)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available

  17. Earth observation for regional scale environmental and natural resources management

    Science.gov (United States)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  18. Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts

    Indian Academy of Sciences (India)

    G. Thejappa; R. J. MacDowall

    2000-09-01

    The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50-300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.

  19. Simultaneous Multi-Wavelength Observations of the TeV Blazar Mrk 421 during February - March, 2003: X-Ray and NIR Correlated Variability

    Institute of Scientific and Technical Information of China (English)

    Alok C. Gupta; B. S. Acharya; Debanjan Bose; Varsha R. Chitnis; Jun-Hui Fan

    2008-01-01

    We report the result of simultaneous multi-wavelength observations of the TeV blazar Mrk 421 during February - March 2003. We observed Mrk 421 using the Pachmarhi Array of Cerenkov Telescopes (PACT) of Tata Institute of Fundamental Research at Pachmarhi, India. Other simultaneous data were taken from the literature and public data archives. We have analyzed the high quality X-ray (2-20keV) observations from the NASA Rossi X-Ray Timing Explorer (RXTE). We obtained a possible correlated variability between X-ray and J band (1.25 μ) near infrared (NIR) wavelength. This is the first case of X-ray and NIR correlated variability in Mrk 421 or any high energy peaked (HBL) blazar. The correlated variability reported here indicates a similar origin for the NIR and X-ray emissions. The emission is not affected much by the environment of the surrounding medium of the central engine of Mrk 421. The observations are consistent with the shock-in-jet model for the emissions.

  20. Simultaneous multi-wavelength observations of the TeV Blazar Mrk 421 during February - March 2003: X-ray and NIR correlated variability

    CERN Document Server

    Gupta, Alok C; Bose, Debanjan; Chitnis, Varsha R; Fan, Jun-Hui

    2008-01-01

    In the present paper, we have reported the result of simultaneous multi-wavelength observations of the TeV blazar Mrk 421 during February $-$ March 2003. In this period, we have observed Mrk 421 using Pachmarhi Array of \\v{C}erenkov Telescopes (PACT) of Tata Institute of Fundamental Research at Pachmarhi, India. Other simultaneous data were taken from the published literature and public data archives. We have analyzed the high quality X-ray (2-20 keV) observations from the NASA Rossi X-Ray Timing Explorer (RXTE). We have seen a possible correlated variability between X-ray and J band (1.25 $\\mu$) near infrared (NIR) wavelength. This is the first case of X-ray and NIR correlated variability in Mrk 421 or any high energy peaked (HBL) blazar. The correlated variability reported here is indicating a similar origin for NIR and X-ray emission. The emission is not affected much by the environment of the surrounding medium around the central engine of the Mrk 421. The observations are consistent with the shock-in-jet...

  1. Multi-wavelength study of a delta-spot I: A region of very strong, horizontal magnetic field

    CERN Document Server

    Jaeggli, Sarah A

    2015-01-01

    Active region NOAA 11035 appeared in December 2009, early in the new solar activity cycle. This region achieved a delta sunspot ($\\delta$-spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe I line pairs at 6302 \\AA\\ and 15650 \\AA\\ show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne-Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic ...

  2. The Impulsive Phase in Solar Flares: Recent Multi-wavelength Results and their Implications for Microwave Modeling and Observations

    CERN Document Server

    Fletcher, Lyndsay

    2013-01-01

    This short paper reviews several recent key observations of the processes occurring in the lower atmosphere (chromosphere and photosphere) during flares. These are: evidence for compact and fragmentary structure in the flare chromosphere, the conditions in optical flare footpoints, step-like variations in the magnetic field during the flare impulsive phase, and hot, dense 'chromospheric' footpoints. The implications of these observations for microwaves are also discussed.

  3. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-02-10

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.

  4. Database of the Operational Drifter Observations in the Arctic Region

    Directory of Open Access Journals (Sweden)

    T.M. Bayankina

    2017-04-01

    Full Text Available The database (formed in MHI for 22 drifters deployed in the Arctic region in 2012 – 2016 is represented. The most intensive drifter observations were performed in the Beaufort Sea (the Canada Basin and in the Central Arctic. According to the data of temperature-profiling drifters, ∼ 2 million temperature profiles (including the ones acquired under the ice formations and ∼ 120.000 atmospheric pressure measurements were obtained. Total life time of drifters as at August 2016 exceeded 7000 days. General information and technical characteristics of BTC60/GPS/ice/1ps, BTC60/GPS/ice/3ps, SVP-BTC80/GPS temperature-profiling drifters are given. Features of drifter information primary preparation are enumerated and the technique of database quality assessment is shown. The studies have shown that temperature-profiling data provides the assessment of the ice thickness and its spatial-temporal variability in the region. The results of the experiments carried out in the Arctic reveal the fact that autonomous temperature-profiling “ice” drifters are an effective instrument for studying the Arctic region. According to the results of the experiments carried out in the Arctic and verification of data quality in the formed database, the drifters showed the reliability of operational characteristics. This is confirmed by failure-free operation of IMEI 245950/WMO 48541 drifter which had been performed the measurements during 1.083 days. The obtained unique long-term series of systematic operational data can be applied for clarifying the concepts of thermal processes variability in the upper ocean layer (including the under-ice one, the dynamics of ice fields and air pressure fields in a wide range of spatial-temporal scales as well as for refining the concept of interaction processes in the Atmosphere – Ice – Ocean system.

  5. Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC Telescopes and simultaneous multi-wavelength observations

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Berdyugin, A; Buson, S; Järvelä, E; Larsson, S; Lähteenmäki, A; Tammi, J; de Lausanne, now at: Ecole polytechnique fédérale; Lausanne,; Switzerland,; Padova, supported by INFN; Energéticas, now at: Centro de Investigaciones; Tecnológicas, Medioambientales y; Madrid,; Spain,; KIPAC, now at:; Laboratory, SLAC National Accelerator; USA,; ESO, now at: Finnish Centre for Astronomy with; Turku, University of; Finland,; Observatory, Aalto University Metsähovi Radio; Metsähovintie,; Finland,; Physics, Department of; University, Stockholm; Stockholm,; Sweden,; Physics, The Oskar Klein Centre for Cosmoparticle; Stockholm,; Sweden,; Astronomy, Department of; University, Stockholm; Stockholm,; Sweden),

    2012-01-01

    Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Mets\\"ahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significanc...

  6. A Regional CO2 Observing System Simulation Experiment for the ASCENDS Satellite Mission

    Science.gov (United States)

    Wang, J. S.; Kawa, S. R.; Eluszkiewicz, J.; Baker, D. F.; Mountain, M.; Henderson, J.; Nehrkorn, T.; Zaccheo, T. S.

    2014-01-01

    Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions) generated by the WRF-STILT Lagrangian transport model in a regional Bayesian synthesis inversion. The regional Lagrangian framework is well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this case at 1 degree latitude x 1 degree longitude and weekly for North America. We consider random measurement errors only, modeled as a function of mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the 1 degree x 1 degree, weekly scale, the largest uncertainty reductions, on the order of 50 percent, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 micron candidate wavelength than for a 2.05 micron wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada). Uncertainty reductions at the annual, biome scale range from 40 percent to 75 percent across our four instrument design cases, and from 65 percent to 85 percent for the continent as a whole. Our uncertainty

  7. A regional CO2 observing system simulation experiment for the ASCENDS Satellite Mission

    Directory of Open Access Journals (Sweden)

    J. S. Wang

    2014-05-01

    Full Text Available Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions generated by the WRF-STILT Lagrangian transport model in a regional Bayesian synthesis inversion. The regional Lagrangian framework is well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this case at 1° latitude × 1° longitude and weekly for North America. We consider random measurement errors only, modeled as a function of mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the 1° × 1°, weekly scale, the largest uncertainty reductions, on the order of 50%, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 μm candidate wavelength than for a 2.05 μm wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada. Uncertainty reductions at the annual, biome scale range from ∼40% to ∼75% across our four instrument design cases, and from ∼65% to ∼85% for the continent as a whole. Our uncertainty reductions at various scales are

  8. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    CERN Document Server

    Skogsrud, H; De Pontieu, B

    2015-01-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolution. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1-m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si IV 1394 and 1403 {\\AA} lines, reveal ubiquitous bright "grains" which are short-lived (2-5 min) bright roundish small patches of sizes 0.5-1.7" that generally move limbward with velocities up to about 30 km s$^{-1}$. In this paper we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in H{\\alpha}. We find that the grains show ...

  9. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  10. MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Chomiuk, Laura; Sanders, Nathan E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pignata, Giuliano; Bufano, Filomena [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Parker, Stuart [Parkdale Observatory, 225 Warren Road, RDl Oxford, Canterbury 7495 (New Zealand); Mazzali, Paolo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Pian, Elena [Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, Santa Barbara, CA 93106-4030 (United States); Pickering, Timothy; Buckley, David A. H.; Crawford, Steven M.; Gulbis, Amanda A. S.; Hettlage, Christian [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Hooper, Eric; Nordsieck, Kenneth H. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); O' Donoghue, Darragh, E-mail: dmilisav@cfa.harvard.edu [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); and others

    2013-04-10

    We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within {approx}1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on a timescale of one week. High-cadence monitoring of this transition suggests absorption attributable to a high-velocity ({approx}> 12, 000 km s{sup -1}) H-rich shell, which is likely present in many Type Ib events. Radio observations imply a shock velocity of v Almost-Equal-To 0.13 c and a progenitor star average mass-loss rate of M-dot {approx}1.4 Multiplication-Sign 10{sup -5} M{sub sun} yr{sup -1} (assuming wind velocity v{sub w} = 10{sup 3} km s{sup -1}). This is consistent with independent constraints from deep X-ray observations with Swift-XRT and Chandra. Overall, the multi-wavelength properties of SN 2011ei are consistent with the explosion of a lower-mass (3-4 M{sub Sun }), compact (R{sub *} {approx}< 1 Multiplication-Sign 10{sup 11} cm), He-core star. The star retained a thin hydrogen envelope at the time of explosion, and was embedded in an inhomogeneous circumstellar wind suggestive of modest episodic mass loss. We conclude that SN 2011ei's rapid spectral metamorphosis is indicative of time-dependent classifications that bias estimates of the relative explosion rates for Type IIb and Ib objects, and that important information about a progenitor star's evolutionary state and mass loss immediately prior to SN explosion can be inferred from timely multi-wavelength observations.

  11. Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions

    Science.gov (United States)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2011-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the

  12. Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions

    Science.gov (United States)

    Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.

    2011-01-01

    Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the

  13. Promoting discovery and access to real time observations produced by regional coastal ocean observing systems

    Science.gov (United States)

    Anderson, D. M.; Snowden, D. P.; Bochenek, R.; Bickel, A.

    2015-12-01

    In the U.S. coastal waters, a network of eleven regional coastal ocean observing systems support real-time coastal and ocean observing. The platforms supported and variables acquired are diverse, ranging from current sensing high frequency (HF) radar to autonomous gliders. The system incorporates data produced by other networks and experimental systems, further increasing the breadth of the collection. Strategies promoted by the U.S. Integrated Ocean Observing System (IOOS) ensure these data are not lost at sea. Every data set deserves a description. ISO and FGDC compliant metadata enables catalog interoperability and record-sharing. Extensive use of netCDF with the Climate and Forecast convention (identifying both metadata and a structured format) is shown to be a powerful strategy to promote discovery, interoperability, and re-use of the data. To integrate specialized data which are often obscure, quality control protocols are being developed to homogenize the QC and make these data more integrate-able. Data Assembly Centers have been established to integrate some specialized streams including gliders, animal telemetry, and HF radar. Subsets of data that are ingested into the National Data Buoy Center are also routed to the Global Telecommunications System (GTS) of the World Meteorological Organization to assure wide international distribution. From the GTS, data are assimilated into now-cast and forecast models, fed to other observing systems, and used to support observation-based decision making such as forecasts, warnings, and alerts. For a few years apps were a popular way to deliver these real-time data streams to phones and tablets. Responsive and adaptive web sites are an emerging flexible strategy to provide access to the regional coastal ocean observations.

  14. Observational studies of regions of massive star formation

    Science.gov (United States)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line

  15. Multiple wavelength microwave observations of the RS Canum Venaticorum stars UX Arietis, HR 1099, HR 5110, and II Pegasi

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.

    1987-01-01

    The variabilities, core size and magnetic field of the RS CVn star UX Arietis was measured with the VLA at pairs of frequencies near 1415 MHz and 4835 MHz on June 10, 1985. Data were also gathered on HR 1099, HR 5110 and II Peg. UX Arietis exhibited variability on time scales ranging from 30 sec to 1 hr at 4835 MHz, but no detectable variations at 1415 MHz. An upper limit of 900 billion cm was placed on the size of the core emitting region, which is estimated to have a magnetic field strength of 15 G. The 30 sec variations are attributed to absorption by thermal plasma between the G5 and K1 companions of the UX Arietis system.

  16. FAST EXTREME-ULTRAVIOLET DIMMING ASSOCIATED WITH A CORONAL JET SEEN IN MULTI-WAVELENGTH AND STEREOSCOPIC OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.-S.; Moon, Y.-J.; Lee, Jin-Yi [Department of Astronomy and Space Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Innes, D. E. [Max Plank Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany); Shibata, K. [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Park, Y.-D., E-mail: lksun@khu.ac.kr [Solar and Space Weather Research Group, Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2013-03-20

    We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption seen in Ca II images of the SOT before the jet eruption. We found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period which was supported by the spectroscopic analysis of the jet's emission. The STEREO observation, which enabled us to observe the jet projected against the disk, showed dimming at 195 A along a large loop connected to the jet. We measured a propagation speed of {approx}800 km s{sup -1} for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the photospheric field measured five days earlier by the SDO/Helioseismic and Magnetic Imager, and the loop densities obtained from EIS Fe XIV {lambda}264.79/274.20 line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  17. EROs found behind lensing clusters: II.Empirical properties, classification, and SED modelling based on multi-wavelength observations

    CERN Document Server

    Hempel, A; Egami, E; Pelló, R; Wise, M; Richard, J; Le Borgne, J F; Kneib, J -P

    2007-01-01

    We study the properties and nature of extremely red galaxies (ERO, R-K>5.6) found behind two lensing clusters and compare them with other known galaxy populations. New HST/ACS observations, Spitzer IRAC and MIPS, and Chandra/ACIS observations of the two lensing clusters Abell 1835 and AC114 contemplate our earlier optical and near-IR observations and have been used to study extremely red objects (EROs) in these deep fields. We have found 6 and 9 EROs in Abell 1835 and AC114. Several (7) of these objects are undetected up to the I and/or z band, and are hence ``optical'' drop-out sources. The photometric redshifts of most of our sources (80%) are z~0.7-1.5. According to simple colour-colour diagrams the majority of our objects would be classified as hosting old stellar populations. However, there are clear signs of dusty starbursts for several among them. These objects correspond to the most extreme ones in R-K colour. We estimate a surface density of (0.97+-0.31) arcmin-2 for EROs with (R-K>5.6) at K3) is fou...

  18. Discovery of VHE γ-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations

    Science.gov (United States)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Ansoldi, S.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giavitto, G.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Huber, B.; Jankowski, F.; Jogler, T.; Kadenius, V.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; Berdyugin, A.; Buson, S.; Järvelä, E.; Larsson, S.; Lähteenmäki, A.; Tammi, J.

    2012-08-01

    Context. We present the discovery of very high energy (VHE, E > 100 GeV) γ-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to γ-rays. Aims: We study the VHE γ-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods: Triggered by an optical outburst, MAGIC observed the source in 2011 January - February for 20.3 h. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsähovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results: The MAGIC observations of 1ES 1215+303 carried out in 2011 January - February resulted in the first detection of the source at VHE with a statistical significance of 9.4σ. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV γ-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.

  19. Observing the reconnection region in a transequatorial loop system

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Tong-Jiang Wang; Jeongwoo Lee; Guillermo Stenborg; Chang Liu; Sung-Hong Park; Hai-Min Wang

    2011-01-01

    A vertical current sheet is a crucial element in many flare/coronal mass ejection (CME) models.For the first time,Liu et al.reported a vertical current sheet directly imaged during the flare rising phase with the EUV Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO).As a follow-up study,here we present the comprehensive analysis and detailed physical interpretation of the observation.The current sheet formed due to the gradual rise of a transequatorial loop system.As the loop legs approached each other,plasma flew at ~6 km s-1 into a local area where a cusp-shaped flare loop subsequently formed and the current sheet was seen as a bright,collimated structure of global length (≥ 0.25 R(@)) and macroscopic width ((5-10)× 103 km),extending from 50 Mm above the flaring loop to the border of the EIT field of view (FOV).The reconnection rate in terms of the Alfvén Mach number is estimated to be only 0.005-0.009,albeit a halo CME was accelerated from ~ 400 km s- 1 to ~ 1300 km s- 1 within the coronagraph FOV.Drifting pulsating structures at metric frequencies were recorded during the impulsive phase,implying tearing of the current sheet in the high corona.A radio Type Ⅲ burst occurred when the current sheet was clearly seen in EUV,indicative of accelerated electrons beaming upward from the upper tip of the current sheet.A cusp-shaped dimming region was observed to be located above the post-flare arcade during the decay phase in EIT;both the arcade and the dimming expanded with time.With the Coronal Diagnostic Spectrometer (CDS) aboard SOHO,a clear signature of chromospheric evaporation was seen during the decay phase,i.e.,the cusp-shaped dimming region was associated with plasma upflows detected with EUV hot emission lines,while the post-flare loop was associated with downflows detected with cold lines.This event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  20. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    CERN Document Server

    Huang, Zhenghua; Li, Bo; Madjarska, Maria S

    2015-01-01

    We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops. This class of loops has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si IV 1402.8 \\AA\\ spectral raster and 1400 \\AA\\ slit-jaw (SJ) images. We divide the loops into three groups and study their dynamics and interaction. The first group comprises relatively stable loops, with 382--626\\,km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km/s at one end to 20 km/s at the other end of the loops. Nonthermal velocities from 15 to 25 km/s were determined. These physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of $10^{15}$ Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two footpoin...

  1. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    CERN Document Server

    Herzog, Andreas; Middelberg, Enno; Spitler, Lee R; Leipski, Christian; Parker, Quentin A

    2015-01-01

    Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts >=2. This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS and on the potential link between IFRS and high-redshift radio galaxies (HzRGs). A sample of six IFRS was observed with the Herschel Space Observatory between 100 um and 500 um. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. All six observed IFRS were undetected in all five Herschel far-infrared ...

  2. New physical insights about Tidal Disruption Events from a comprehensive observational inventory at X-ray wavelengths

    CERN Document Server

    Auchettl, Katie; Ramirez-Ruiz, Enrico

    2016-01-01

    We perform a comprehensive study of the X-ray emission from 66 transient sources which have been classified as a tidal disruption event (TDE) in the literature. We explore the properties of these candidates using nearly three decades of X-ray observations to quantify the properties and characteristics of X-ray TDEs observationally. We find that the emission from X-ray TDEs increase by two to four orders of magnitude compared to pre-flare constraints, which evolves significantly with time and decays with powerlaw indices that are typically shallower than the canonical $t^{-5/3}$ decay law, implying that X-ray TDEs are viscously delayed. These events exhibit enhanced column densities relative to Galactic and are quite soft in nature, with no strong correlation between the amount of detected soft and hard emission. At peak, jetted events have an X-ray to optical ratio $\\gg$1, while non-jetted events have a ratio $\\sim$1, which suggests that these events undergo reprocessing at different rates. X-ray TDEs have lo...

  3. Radio-selected Galaxies in Very Rich Clusters at z < 0.25 I. Multi-wavelength Observations and Data Reduction Techniques

    CERN Document Server

    Morrison, G E; Ledlow, M J; Keel, W C; Hill, J M; Voges, W; Herter, T L

    2002-01-01

    Radio observations were used to detect the `active' galaxy population within rich clusters of galaxies in a non-biased manner that is not plagued by dust extinction or the K-correction. We present wide-field radio, optical (imaging and spectroscopy), and ROSAT All-Sky Survey (RASS) X-ray data for a sample of 30 very rich Abell (R > 2) cluster with z 2E22 W/Hz) galaxy population within these extremely rich clusters for galaxies with M_R 5 M_sun/yr) and active galactic nuclei (AGN) populations contained within each cluster. Archival and newly acquired redshifts were used to verify cluster membership for most (~95%) of the optical identifications. Thus we can identify all the starbursting galaxies within these clusters, regardless of the level of dust obscuration that would affect these galaxies being identified from their optical signature. Cluster sample selection, observations, and data reduction techniques for all wavelengths are discussed.

  4. Multi-Wavelength Observations of the Soft Gamma Repeater SGR 1900+14 During its April 2001 Activation

    Science.gov (United States)

    Kouveliotou, C.; Tennant, A. F.; Woods, P.; Hurley, K.; Fender, R. P.; Garrington, S. T.; Patel, S. K.; Gogus, E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The soft-gamma repeater SGR became active on 18 April 2001 after about a year of quiescence; it had remained at a very low state of activity since the fall of 1998, when it exhibited extraordinary flaring. We have observed the source in the gamma and X-rays with \\ulysses and \\chandra, and in the radio with MERLIN. We report here the confirmation of a two component X-ray spectrum (power law $+$ blackbody), indicating emission from the neutron star surface. We have determined that there is a dust halo surrounding the source that extends up to $\\gtrsim100^{\\prime\\prime}$ from the SGR center, which is due to the scattering in the Interstellar Medium.

  5. LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Page, K. L.; O’Brien, P. T.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Metzger, B. D. [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Fruchter, A. S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bloom, J. S., E-mail: A.J.Levan@warwick.ac.uk [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States)

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t{sup −70}. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L{sub X} ∼ 5 × 10{sup 42} erg s{sup −1} and are marginally inconsistent with a continuing decay of t{sup −5/3}, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M{sub BH} = 3 × 10{sup 6} M{sub ⊙}, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of M{sub R} ∼ −22 to −23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  6. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  7. The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; de Almeida, U Barres; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Clapson, A C; Coignet, G; Cologna, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Häffner, S; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schöck, F M; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; Aleksić, J; Antonelli, L A; Antoranz, P; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Huber, B; Jogler, T; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moralejo, A; Munar, P; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thom, M; Tibolla, O; Torres, D F; Treves, A; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Errando, M; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hui, C M; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Nuñez, P D; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Prokoph, H; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Schroedter, M; Sembroski, G H; Şentürk, G D; Telezhinsky, I; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vivier, M; Wakely, S P; Weekes, T C; Williams, D A; Zitzer, B; de Almeida, U Barres; Cara, M; Casadio, C; Cheung, C C; McConville, W; Davies, F; Doi, A; Giovannini, G; Giroletti, M; Hada, K; Hardee, P; Harris, D E; Junor, W; Kino, M; Lee, N P; Ly, C; Madrid, J; Massaro, F; Mundell, C G; Nagai, H; Perlman, E S; Steele, I A; Walker, R C; Wood, D L

    2011-01-01

    Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and very massive black hole provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times. While the overall variability pattern of...

  8. The Discovery of Fermi Bubbles: Multi-wavelength Observations and Implications to the Past Activity of Galactic Center

    Science.gov (United States)

    Su, Meng

    2012-01-01

    Data from the Fermi-LAT reveal two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE E-2) than the IC emission from electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; the edges of the bubbles also line up with features in the ROSAT X-ray maps at 1.5 - 2 keV. We further discovered arge cocoon structures in Fermi gamma-ray data, which is presumably produced by relativistic large scale jets. I will summarize observational evidence of the Fermi bubbles and cocoons, including features of polarization and rotation measure of the bubble edges. The bubbles have sharp edges in gamma-ray, X-ray, and polarized microwave emission. I'm going to argue that these Galactic gamma-ray bubbles are ongoing shocks (instead of a stable structure), and were most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜10 Myr.

  9. Multi-wavelength observations of a rich galaxy cluster at z ~ 1: the HST/ACS colour-magnitude diagram

    CERN Document Server

    Santos, Joana S; Gobat, Raphael; Lidman, Chris; Dawson, Kyle; Perlmutter, Saul; Boehringer, Hans; Balestra, Italo; Mullis, Chris R; Fassbender, Rene; Kohnert, Jan; Lamer, Georg; Rettura, Alessandro; Rite, Charles; Schwope, Axel

    2009-01-01

    XMMU J1229+0151 is a rich galaxy cluster with redshift z=0.975, that was serendipitously detected in X-rays within the scope of the XMM-Newton Distant Cluster Project. HST/ACS observations in the i775 and z850 passbands, as well as VLT/FORS2 spectroscopy were further obtained, in addition to follow-up Near-Infrared (NIR) imaging in J- and Ks-bands with NTT/SOFI. We investigate the photometric, structural and spectral properties of the early-type galaxies in the high-redshift cluster XMMU J1229+0151. Source detection and aperture photometry are performed in the optical and NIR imaging. Galaxy morphology is inspected visually and by means of Sersic profile fitting to the 21 spectroscopically confirmed cluster members in the ACS field of view. The i775-z850 colour-magnitude relation (CMR) is derived with a method based on galaxy magnitudes obtained by fitting the surface brightness of the galaxies with Sersic models. The i775-z850 CMR of the spectroscopic members shows a very tight red-sequence with a zero point...

  10. New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths

    Science.gov (United States)

    Auchettl, Katie; Guillochon, James; Ramirez-Ruiz, Enrico

    2017-04-01

    We perform a comprehensive study of the X-ray emission from 70 transient sources that have been classified as tidal disruption events (TDEs) in the literature. We explore the properties of these candidates, using nearly three decades of X-ray observations to quantify their properties and characteristics. We find that the emission from X-ray TDEs increase by two to three orders of magnitude, compared to pre-flare constraints. These emissions evolve significantly with time, and decay with power-law indices that are typically shallower than the canonical t ‑5/3 decay law, implying that X-ray TDEs are viscously delayed. These events exhibit enhanced (relative to galactic) column densities and are quite soft in nature, with no strong correlation between the amount of detected soft and hard emission. At their peak, jetted events have an X-ray to optical ratio ≫1, whereas non-jetted events have a ratio ∼1, which suggests that these events undergo reprocessing at different rates. X-ray TDEs have long T 90 values, consistent with what would be expected from a viscously driven accretion disk formed by the disruption of a main-sequence star by a black hole with a mass disruptions and/or disruptions of low-mass stars.

  11. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    Indian Academy of Sciences (India)

    Ananda Hota; C. Konar; C. S. Stalin; Sravani Vaddi; Pradeepta K. Mohanty; Pratik Dabhade; Sai Arun Dharmik Bhoga; Megha Rajoria; Sagar Sethi

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  12. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    Science.gov (United States)

    Hota, Ananda; Konar, C.; Stalin, C. S.; Vaddi, Sravani; Mohanty, Pradeepta K.; Dabhade, Pratik; Dharmik Bhoga, Sai Arun; Rajoria, Megha; Sethi, Sagar

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny's Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  13. Fermi-LAT and multi-wavelength observations of the flaring activity of PKS 1510-089 between September 2008 and June 2009

    Science.gov (United States)

    Tramacere, Andrea; Massaro, Enrico

    We report on the MW observations of PKS 1510-089 (z=0.361) during a period of about 11 months, when the source exhibited a relevant evolution of its broad-band spectral energy distribution (SED), characterized by a complex variability both at Optical/UV and gamma-ray energies, with time scales detected down to the level of 6/12 hours. The brightest gamma-ray isotropic luminosity, recorded on 2009-03-26, was of about 2 x 1048 erg s-1 . The spectrum, in the Fermi-LAT energy range, shows a mild curvature well described by a log-parabolic law, and can be understood as signature of the Klein-Nishina effect. The gamma-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a week correlation with the UV, and a relevant correlation with the optical flux. Moreover, the gamma-ray flux seems to lead the optical one of about 13 days. Using UV data we estimated a black hole mass of about 5.6 x 108 solar masses, and an accretion rate of about 0.5 solar masses/year. Although the power in the thermal and non-thermal outputs is smaller if compared to the very luminous and distant flat spectrum radio quasars (FSQR), PKS 1510-089 exhibits a quite large Compton dominance and prominent a big blue bump (BBB) signature, as observed in the most powerful gamma-ray quasars. This objects could be a representative of an aged FSQR, hence the analysis here presented is relevant in order to understand the evolution of these objects. We remark the puzzling feature of the BBB UV shape. Indeed, we note that the BBB was still prominent during the historical maximum optical state in May 2009, although the optical/UV spectral index was softer compared to that in quiescent state. This seems to be not fully compatible with a pure BBB emission, with the BBB supposed to be completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the high energy bump is

  14. Fermi Large Area Telescope and multi-wavelength observations of the flaring activity of PKS 1510-089 between 2008 September and 2009 June

    CERN Document Server

    ,

    2010-01-01

    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar at z=0.361) during its high activity period between 2008 September and 2009 June. During this 11 months period, the source was characterized by a complex variability at optical, UV and gamma-ray bands, on time scales down to 6-12 hours. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was ~ 2x10^48erg s^-1. The spectrum in the Fermi-LAT energy range shows a mild curvature well described by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The gamma-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The gamma-ray flux seems to lead the optical one by about 13 days. From the UV photometry we estimated a black hole mass of ~ 5.4x10^8 solar masses, and an accretion rate of ~ 0.5 solar masses/year. Although the power in the ...

  15. Spectral-Line Survey at Millimeter and Submillimeter Wavelengths toward an Outflow-Shocked Region, OMC 2-FIR 4

    CERN Document Server

    Shimajiri, Yoshito; Kitamura, Yoshimi; Tsukagoshi, Takashi; Saito, Masao; Nakamura, Fumitaka; Momose, Munetake; Takakuwa, Shigehisa; Yamaguchi, Takahiro; Sakai, Nami; Yamamoto, Satoshi; Kawabe, Ryohei

    2015-01-01

    We performed the first spectral-line survey at 82--106 GHz and 335--355 GHz toward the outflow-shocked region, OMC 2-FIR 4, the outflow driving source, FIR 3, and the northern outflow lobe, FIR 3N. We detected 120 lines of 20 molecular species. The line profiles are found to be classifiable into two types: one is a single Gaussian component with a narrow ($$ 3km s$^{-1}$) widths. The narrow components for the most of the lines are detected at all positions, suggesting that they trace the ambient dense gas. For CO, CS, HCN, and HCO$^{+}$, the wide components are detected at all positions, suggesting the outflow origin. The wide components of C$^{34}$S, SO, SiO, H$^{13}$CN, HC$^{15}$N, H$_2^{13}$CO, H$_2$CS, HC$_3$N, and CH$_3$OH are detected only at FIR 4, suggesting the outflow-shocked gas origin. The rotation diagram analysis revealed that the narrow components of C$_2$H and H$^{13}$CO$^+$ show low temperatures of 12.5$\\pm$1.4 K, while the wide components show high temperatures of 20--70 K. This supports our...

  16. Diode Laser Detection of Greenhouse Gases in the Near-Infrared Region by Wavelength Modulation Spectroscopy: Pressure Dependence of the Detection Sensitivity

    Directory of Open Access Journals (Sweden)

    Takashi Asakawa

    2010-05-01

    Full Text Available We have investigated the pressure dependence of the detection sensitivity of CO2, N2O and CH4 using wavelength modulation spectroscopy (WMS with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO2, N2O and CH4, by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO2, N2O and CH4, the limits of detection in the present system were determined.

  17. Contemporaneous multi-wavelength observations of the gamma-ray emitting active galaxy IC 310. New clues on particle acceleration in extragalactic jets

    Energy Technology Data Exchange (ETDEWEB)

    Glawion, Dorit

    2015-05-08

    In this thesis, the broad band emission, especially in the gamma-ray and radio band, of the active galaxy IC 310 located in the Perseus cluster of galaxies was investigated. The main experimental methods were Cherenkov astronomy using the MAGIC telescopes and high resolution very long baseline interferometry (VLBI) at radio frequencies (MOJAVE, EVN). Additionally, data of the object in different energy bands were studied and a multi-wavelength campaign has been organized and conducted. During the campaign, an exceptional bright gamma-ray flare at TeV energies was found with the MAGIC telescopes. The results were compared to theoretical acceleration and emission models for explaining the high energy radiation of active galactic nuclei. Many open questions regarding the particle acceleration to very high energies in the jets of active galactic nuclei, the particle content of the jets, or how the jets are launched, were addressed in this thesis by investigating the variability of IC 310 in the very high energy band. It is argued that IC310 was originally mis-classified as a head-tail radio galaxy. Instead, it shows a variability behavior in the radio, X-ray, and gamma-ray band similar to the one found for blazars. These are active galactic nuclei that are characterized by flux variability in all observed energy bands and at all observed time scales. They are viewed at a small angle between the jet axis and the line-of-sight. Thus, strong relativistic beaming influences the variability properties of blazars. Observations of IC 310 with the European VLBI Network helped to find limits for the angle between the jet axis and the line-of-sight, namely 10 - 20 . This places IC 310 at the borderline between radio galaxies (larger angles) and blazars (smaller angles). During the gamma-ray outburst detected at the beginning of the multi-wavelength campaign, flux variability as short as minutes was measured. The spectrum during the flare can be described by a simple power

  18. Multi-wavelength Observations of the Radio Magnetar PSR J1622-4950 and Discovery of its Possibly Associated Supernova Remnant

    CERN Document Server

    Anderson, Gemma E; Slane, Patrick O; Rea, Nanda; Kaplan, David L; Posselt, Bettina; Levin, Lina; Johnston, Simon; Murray, Stephen S; Brogan, Crystal L; Bailes, Matthew; Bates, Samuel; Benjamin, Robert A; Bhat, N D Ramesh; Burgay, Marta; Burke-Spolaor, Sarah; Chakrabarty, Deepto; D'Amico, Nichi; Drake, Jeremy J; Esposito, Paolo; Grindlay, Jonathan E; Hong, Jaesub; Israel1, G L; Keith, Michael J; Kramer, Michael; Lazio, T Joseph W; Lee, Julia C; Mauerhan, Jon C; Milia, Sabrina; Possenti, Andrea; Stappers, Ben; Steeghs, Danny T H

    2012-01-01

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nat...

  19. MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622-4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gemma E.; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics A29, The University of Sydney, NSW 2006 (Australia); Slane, Patrick O.; Drake, Jeremy J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rea, Nanda [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell, 2a planta, 08193, Bellaterra, Barcelona (Spain); Kaplan, David L. [Department of Physics, University of Wisconsin, Milwaukee, WI 53201 (United States); Posselt, Bettina [Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802 (United States); Levin, Lina; Bailes, Matthew; Ramesh Bhat, N. D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, VIC 3122 (Australia); Johnston, Simon; Burke-Spolaor, Sarah [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Murray, Stephen S. [Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218 (United States); Brogan, Crystal L. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Bates, Samuel [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Benjamin, Robert A. [Department of Physics, University of Wisconsin, Whitewater, WI 53190 (United States); Burgay, Marta; D' Amico, Nichi; Esposito, Paolo [INAF/Osservatorio Astronomico di Cagliari, 09012 Capoterra (Italy); Chakrabarty, Deepto, E-mail: g.anderson@physics.usyd.edu.au [MIT Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2012-05-20

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of {approx}50 over 3.7 years, decaying exponentially with a characteristic time of {tau} = 360 {+-} 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggest that these two objects could be physically associated.

  20. A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints

    Science.gov (United States)

    Wang, James S.; Kawa, S. Randolph; Eluszkiewicz, Janusz; Collatz, G. J.; Mountain, Marikate; Henderson, John; Nehrkorn, Thomas; Aschbrenner, Ryan; Zaccheo, T. Scott

    2012-01-01

    Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments.

  1. 4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    CERN Document Server

    Bartoli, B; Bi, X J; Cao, Z; Catalanotti, S; Chen, S Z; Chen, T L; Cui, S W; Dai, B Z; Damone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Mastroianni, S; Montini, P; Ning, C C; Perrone, L; Pistilli, P; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q

    2016-01-01

    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. T...

  2. Simultaneous SMM flat crystal spectrometer and Very Large Array observations of solar active regions

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    High-resolution images of the quiescent emission from two solar active regions at 20 cm (VLA) and soft X-ray (SMM FCS) wavelengths are compared. There are regions where the X-ray coronal loops have been completely imaged at 20 cm wavelength. In other regions, the X-ray radiation was detected without detectable 20 cm radiation, and vice versa. The X-ray data were used to infer average electron temperatures of about 3-million K and average electron densities of about 2.5 x 10 to the 9th/cu cm for the X-ray emitting plasma in the two active regions. The thermal bremsstrahlung of the X-ray emitting plasma is optically thin at 20 cm wavelength. The 20 cm brightness temperatures were always less than T(e), which is consistent with optically thin bremsstrahlung. The low T(B) can be explained if a higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyroresonance radiation must account for the intense 20 cm radiation near and above sunspots where no X-ray radiation is detected.

  3. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  4. Aging worlds in contradiction: gerontological observations in the Mediterranean region

    Directory of Open Access Journals (Sweden)

    Hans-Joachim von Kondratowitz

    2015-12-01

    Full Text Available This article discusses the existing and developing aging regimes in the Northern and Southern rim countries of the whole Mediterranean region which are all undergoing considerable social and political transformation processes. It is argued that several eye-opening theoretical interventions for such a gerontological project may lead to some methodological problems and pitfalls, which have to be dealt with productively. Central collective concepts of such an analysis (as the change-oriented "modernization effects" of societal aging and the continuity-oriented gaze at the "unity of the region" have to be reconsidered and ought to be more differentiated in order to allow smaller social entities (such as kinship and community systems and their connectivity to be central orientations for analyzing poverty and care management in old age in the Mediterranean region. How to reconnect such a rather micro-political agenda with large processes and big structures of aging policies in the region however still remains an open question.

  5. Observations of the cusp region under northward IMF

    Directory of Open Access Journals (Sweden)

    F. Pitout

    Full Text Available We present a comparative study of the cusp region using the EISCAT Svalbard Radars (ESR and the Cluster spacecraft. We focus in this paper on 2 February 2001, over the time period from 07:30 UT to 12:00 UT when the oblique ESR antenna pointing northward at a low elevation recorded latitudinal motions of the cusp region in response to the IMF. Meanwhile, the Cluster satellites were flying over the EISCAT Svalbard Radar field-of-view around local magnetic noon. The spacecraft first flew near ESR, northeast of Svalbard and then passed over the field-of-view of the antenna at about 11:30 UT. From 08:00 UT to 09:00 UT, the IMF remains primarily southward yet several variations in the Z-component are seen to move the cusp. Around 09:00 UT, an abrupt northward turning of the IMF moves the cusp region to higher latitudes. As a result, the Cluster satellites ended up in the northernmost boundary of the high-altitude cusp region where the CIS instrument recorded highly structured plasma due to ion injections in the lobe of the magnetosphere. After 09:00 UT, the IMF remains northward for more than two hours. Over this period, the ESR records sunward plasma flow in the cusp region due to lobe reconnection, while Cluster spacecraft remain in the high-altitude cusp.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; plasma convection Ionosphere (polar ionosphere

  6. Coulomb explosion of methyl iodide clusters using giga watt laser pulses in the visible region: Effect of wavelength, polarisation and doping

    Indian Academy of Sciences (India)

    S Das; P Sharma; R K Vatsa

    2009-11-01

    Nanosecond laser-induced Coulomb explosion studies have been carried out for methyl iodide clusters at 532 and 563 nm under similar laser intensity (∼ 5 × 109 W/cm2) conditions. Multiply charged atomic ions of carbon and iodine having large kinetic energy (∼ 100 s of eV) were observed in both the cases. Observation of higher charged states at 563 nm for Coulomb exploded atomic ions supports the preposition of enhanced inverse bremsstrahlung heating of the ionized cluster system at this wavelength. The angular distribution of the multiply charged atomic ions is found to be isotropic with respect to laser polarization direction at 532 nm. When water doped methyl iodide clusters were irradiated at 563 nm, highly charged atomic ions of oxygen along with carbon and iodine were also observed. This result suggests that the mechanism leading to Coulomb explosion is a collective property of the cluster as a whole and individual molecular properties do not play significant role.

  7. The systematic radial downflow in the transition region of the quiet sun from limb-to-limb observations of the C IV resonance lines

    Science.gov (United States)

    Rottman, Gary J.; Hassler, Donald D.; Jones, Michael D.; Orrall, Frank Q.

    1990-08-01

    This paper presents absolute velocities of C IV 1548, 1550 nm measured as a function of position along the solar equator, which was free of both active regions and coronal holes, and uniformly representative of the quiet sun. These observations were made with moderate spatial resolution (18 arcsec) using an EUV spectrometer dedicated to measuring absolute wavelengths (velocities) by direct comparison with a platinum spectrum generated on board the sounding rocket. On the assumption that systematic horizontal motions cancel statistically so that the line-of-sight velocities approach zero at the limb, a net radial downflow of 7.5 + or - 1.0 km/sec was found. The assumption was tested using the wavelength reference and found to be valid within the absolute accuracy of the rest wavelengths of the C IV lines.

  8. First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques mission

    Science.gov (United States)

    Defer, Eric; Galligani, Victoria S.; Prigent, Catherine; Jimenez, Carlos

    2014-11-01

    Polarized scattering by frozen hydrometeors is investigated for the first time up to 157 GHz, based on the passive microwave observations of the Microwave Analysis and Detection of Rain and Atmospheric Structures (MADRAS) instrument on board the Indo-French Megha-Tropiques satellite mission. A comparison with time-coincident Tropical Rainfall Measurement Mission Microwave Imager records confirms the consistency of the coincident observations collected independently by the two instruments up to 89 GHz. The MADRAS noise levels of 1.2 K at 89 GHz and of 2.5 K at 157 GHz are in agreement with the required specifications of the mission. Compared to the 89 GHz polarized channels that mainly sense large ice particles (snow and graupel), the 157 GHz polarized channel is sensitive to smaller particles and provides additional information on the cloud systems. The analysis of the radiometric signal at 157 GHz reveals that the ice scattering can induce a polarization difference of the order of 10 K at that frequency. Based on radiative transfer modeling the specific signature is interpreted as the effect of mainly horizontally oriented ice cloud particles. This suggests that the effects of the cloud particle orientation should be considered in rain and cloud retrievals using passive radiometry at microwave and millimeter wavelengths.

  9. Trap and nonradiative centers in Ba₃Si₆O₁₂N₂:Eu²⁺ phosphors observed by thermoluminescence and two-wavelength excited photoluminescence methods.

    Science.gov (United States)

    Li, Tingting; Kamata, Norihiko; Kotsuka, Yosuke; Fukuda, Takeshi; Honda, Zentaro; Kurushima, Tomoyuki

    2015-06-29

    We have studied trap centers and nonradiative (NRR) recombination centers in a Ba3Si6O12N2:Eu2+ (BSON), one of promising materials for efficient and stable phosphors in white LED lamp applications. The energy distribution of four trap centers was obtained by thermo-luminescence (TL) with the excitation energy of 5.59eV. By superposing a below-gap excitation light of 1.77eV and observing the intensity change of the 5d-4f emission of Eu2+ centered at 2.36eV in our two-wavelength excited photoluminescence (TWEPL) measurement, both transient and steady state enhancement were observed. Such peculiar behavior of photo-stimulation is attributed to the coexistence of trap centers and NRR centers: the photoexcitation of electrons from trap centers generates the transient component, while that from NRR centers maintains the steady state component. An optical detection of relatively faint contribution of defects became possible in order to improve further the reliability and efficiency of phosphor materials.

  10. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  11. Fermi Large Area Telescope and Multi-wavelength Observations of the Flaring Activity of PKS 1510-089 between 2008 September and 2009 June

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Allafort, A.; Aller, H. D.; Aller, M. F.; Antolini, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berdyugin, A.; Berenji, B.; Blandford, R. D.; Blinov, D. A.; Bloom, E. D.; Boettcher, M.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buemi, C. S.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carosati, D.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Chen, W. P.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Corbel, S.; Costamante, L.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Donato, D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Forné, E.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gurwell, M. A.; Gusbar, C.; Gómez, J. L.; Hadasch, D.; Hagen-Thorn, V. A.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kimeridze, G.; Knödlseder, J.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kovalev, Y. Y.; Kurtanidze, O. M.; Kuss, M.; Lahteenmaki, A.; Lande, J.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Larsson, S.; Latronico, L.; Lee, S.-H.; Leto, P.; Lister, M. L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McHardy, I. M.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morozova, D. A.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nikolashvili, M. G.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pasanen, M.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Pushkarev, A. B.; Rainò, S.; Raiteri, C. M.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reinthal, R.; Ripken, J.; Ritz, S.; Roca-Sogorb, M.; Rodriguez, A. Y.; Roth, M.; Roustazadeh, P.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Sgrò, C.; Sigua, L. A.; Smith, P. D.; Sokolovsky, K.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Takalo, L. O.; Tanaka, T.; Taylor, B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tornikoski, M.; Torres, D. F.; Tosti, G.; Tramacere, A.; Trigilio, C.; Troitsky, I. S.; Umana, G.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-10-01

    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and γ-ray bands, on timescales down to 6-12 hr. The brightest γ-ray isotropic luminosity, recorded on 2009 March 26, was sime2 × 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The γ-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The γ-ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of sime5.4 × 108 M sun and an accretion rate of sime0.5 M sun yr-1. Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful γ-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.

  12. Global observations of substorm injection region evolution: 27 August 2001

    Directory of Open Access Journals (Sweden)

    E. Spanswick

    2009-05-01

    Full Text Available We present riometer and in situ observations of a substorm electron injection on 27 August 2001. The event is seen at more than 20 separate locations (including ground stations and 6 satellites: Cluster, Polar, Chandra, and 3 Los Alamos National Laboratory (LANL spacecraft. The injection is observed to be dispersionless at 12 of these locations. Combining these observations with information from the GOES-8 geosynchronous satellite we argue that the injection initiated near geosynchronous orbit and expanded poleward (tailward and equatorward (earthward afterward. Further, the injection began several minutes after the reconnection identified in the Cluster data, thus providing concrete evidence that, in at least some events, near-Earth reconnection has little if any ionospheric signature.

  13. The black disk to be observed in the Orear region

    CERN Document Server

    Dremin, I M

    2012-01-01

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or $\\sqrt {|t|}$) regime beyond the diffraction peak will become replaced by an oscillatory behavior. Some estimates of energies where this can happen are presented.

  14. Quantifying solar superactive regions with vector magnetic field observations

    CERN Document Server

    Chen, A Q

    2012-01-01

    The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities, 2) the total photospheric free magnetic energy, 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient, and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. We found that most of the SARs have a net magnetic flux higher than 7.0\\times10^21 Mx, a total photospheric free magnetic energy higher than 1.0\\times10^24 erg/c...

  15. The black disk to be observed in the Orear region

    Science.gov (United States)

    Dremin, I. M.

    2012-08-01

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or √{|t|} ) regime beyond the diffraction peak will become replaced by an oscillatory behavior or by the power-like falloff. Some estimates of energies where this can happen are presented.

  16. The black disk to be observed in the Orear region

    Energy Technology Data Exchange (ETDEWEB)

    Dremin, I.M., E-mail: dremin@td.lpi.ru [Lebedev Physical Institute, Moscow 119991 (Russian Federation)

    2012-08-15

    It is argued that the very first signatures of the approach to the black disk asymptotical limit in hadron collisions may be observed in the differential cross section of elastic scattering. The exponentially decreasing with the angle (or {radical}(|t|) ) regime beyond the diffraction peak will become replaced by an oscillatory behavior or by the power-like falloff. Some estimates of energies where this can happen are presented.

  17. Statistical region-based active contours with exponential family observations

    CERN Document Server

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette

    2008-01-01

    In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. Using shape derivation tools, our effort focuses on constructing a general expression for the derivative of the energy (with respect to a domain) and derive the corresponding evolution speed. A general result is stated within the framework of multi-parameter exponential family. More particularly, when using Maximum Likelihood estimators, the evolution speed has a closed-form expression that depends simply on the probability density function, while complicating additive terms appear when using other estimators, e.g. moments method. Experimental results on both synthesized and real images demonstrate the applicability of our approach.

  18. UVIS G280 Wavelength Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Wavelength calibration of the UVIS G280 grism will be established using observations of the Wolf Rayet star WR14. Accompanying direct exposures will provide wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be obtained.

  19. Lroc Observations of Permanently Shadowed Regions: Seeing into the Dark

    Science.gov (United States)

    Koeber, S. D.; Robinson, M. S.

    2013-12-01

    Permanently shadowed regions (PSRs) near the lunar poles that receive secondary illumination from nearby Sun facing slopes were imaged by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NAC). Typically secondary lighting is optimal in polar areas around respective solstices and when the LRO orbit is nearly coincident with the sub-solar point (low spacecraft beta angles). NAC PSR images provide the means to search for evidence of surface frosts and unusual morphologies from ice rich regolith, and aid in planning potential landing sites for future in-situ exploration. Secondary illumination imaging in PSRs requires NAC integration times typically more than ten times greater than nominal imaging. The increased exposure time results in downtrack smear that decreases the spatial resolution of the NAC PSR images. Most long exposure NAC images of PSRs were acquired with exposure times of 24.2-ms (1-m by 40-m pixels, sampled to 20-m) and 12-ms (1-m by 20-m, sampled to 10-m). The initial campaign to acquire long exposure NAC images of PSRs in the north pole region ran from February 2013 to April 2013. Relative to the south polar region, PSRs near the north pole are generally smaller (D6-km were successfully imaged (ex. Whipple, Hermite A, and Rozhestvenskiy U). The third PSR south polar campaign began in April 2013 and will continue until October 2013. The third campaign will expand previous NAC coverage of PSRs and follow up on discoveries with new images of higher signal to noise ratio (SNR), higher resolution, and varying secondary illumination conditions. Utilizing previous campaign images and Sun's position, an individualized approach for targeting each crater drives this campaign. Secondary lighting within the PSRs, though somewhat diffuse, is at low incidence angles and coupled with nadir NAC imaging results in large phase angles. Such conditions tend to reduce albedo contrasts, complicating identification of patchy frost or ice deposits. Within

  20. Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. III. An Extensive Survey for Molecular Outflows

    CERN Document Server

    Takahashi, Satoko; Ohashi, Nagayoshi; Kusakabe, Nobuhiko; Takakuwa, Shigehisa; Shimajiri, Yoshito; Tamura, Motohide; Kawabe, Ryohei

    2008-01-01

    Using the ASTE 10 m submillimeter telescope and the 1.4 m Infrared Survey Facility (IRSF), we performed an extensive outflow survey in the Orion Molecular Cloud -2 and -3 region. Our survey, which includes 41 potential star-forming sites, has been newly compiled using multi-wavelength data based on millimeter- and submillimeter-continuum observations as well as radio continuum observations. From the CO (3-2) observations performed with the ASTE 10 m telescope, we detected 14 CO molecular outflows, seven of which were newly identified. This higher detection rate, as compared to previous CO (1-0) results in the same region, suggests that CO (3-2) may be a better outflow tracer. Physical properties of these outflows and their possible driving sources were derived. Derived parameters were compared with those of CO outflows in low- and high-mass starforming regions. We show that the CO outflow momentum correlates with the bolometric luminosity of the driving source and with the envelope mass, regardless of the mas...

  1. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations

    CERN Document Server

    Kim, Hwihyun; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C; Mutchler, Max; Cohen, Seth H; Calzetti, Daniela; O'Connell, Robert W; Windhorst, Rogier A; Balick, Bruce; Bond, Howard E; Carollo, C Marcella; Disney, Michael J; Dopita, Michael A; Frogel, Jay A; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; Paresce, Francesco; Silk, Joe I; Trauger, John T; Walker, Alistair R; Young, Erick T

    2012-01-01

    We present a multi-wavelength photometric study of ~15,000 resolved stars in the nearby spiral galaxy M83 (NGC5236, D=4.61Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83, and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction towards each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in...

  2. Optical polarization observations in the Scorpius region: NGC 6124

    Science.gov (United States)

    Vergne, M. Marcela; Feinstein, Carlos; Martínez, Ruben; Orsatti, Ana María; Alvarez, María Paula

    2010-04-01

    We have obtained optical multicolour (UBVRI) linear polarimetric data for 46 of the brightest stars in the area of the open cluster NGC 6124 in order to investigate the properties of the interstellar medium (ISM) that lies along the line of sight towards the cluster. Our data yield a mean polarization efficiency of PV/E(B - V) = 3.1 +/- 0.62, i.e. a value lower than the polarization produced by the ISM with normal efficiency for an average colour excess of E(B - V) = 0.80 as that found for NGC 6124. Besides, the polarization shows an orientation of which is not parallel to the Galactic disc, an effect that we think may be caused by the Lupus cloud. Our analysis also indicates that the observed visual extinction in NGC 6124 is caused by the presence of three different absorption sheets located between the Sun and NGC 6124. The values of the internal dispersion of the polarization (ΔPV ~ 1.3 per cent) and of the colour excess (ΔE(B - V) ~ 0.29 mag) for the members of NGC 6124 seem to be compatible with the presence of an intracluster dust component. Only six stars exhibit some evidence of intrinsic polarization. Our work also shows that polarimetry provides an excellent tool to distinguish between member and non-member stars of a cluster. Based on observations obtained at Complejo Astronómico El Leoncito (CASLEO), operated under agreement between the CONICET and the National Universities of La Plata, Córdoba, and San Juan, Argentina. E-mail: cfeinstein@fcaglp.unlp.edu.ar (CF)

  3. 4.5 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF MRK 421 DURING THE ARGO-YBJ AND FERMI COMMON OPERATION TIME

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Università di Napoli “Federico II,” Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica “Ennio De Giorgi,” Università del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W. [Hebei Normal University, 050024, Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: chensz@ihep.ac.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2016-01-15

    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to γ-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from 2008 August to 2013 February. These long-term observations, extending over an energy range of 18 orders of magnitude, provide a unique chance to study the variable emission of Mrk 421. In particular, due to the ARGO-YBJ and Fermi data, the entire energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low- and high-activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. The X-ray flux is clearly correlated with the TeV γ-ray flux, while the GeV γ-rays only show a partial correlation with the TeV γ-rays. Radio and UV fluxes seem to be weakly or not correlated with the X-ray and γ-ray fluxes. Seven large flares, including five X-ray flares and two GeV γ-ray flares with variable durations (3–58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to a few keV. The TeV γ-ray flux increases up to 0.9–7.2 times the flux of the Crab Nebula. The behavior of GeV γ-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be

  4. Optical polarization observations in the Scorpius region: NGC 6124

    CERN Document Server

    Vergne, M Marcela; Martinez, Ruben; Orsatti, Ana Maria; Alvarez, Maria Paula

    2010-01-01

    We have obtained optical multicolour (UBVRI) linear polarimetric data for 46 of the brightest stars in the area of the open cluster NGC 6124 in order to investigate the properties of the interstellar medium (ISM) that lies along the line of sight toward the cluster. Our data yield a mean polarization efficiency of $P_V/E_{B-V}=3.1\\pm$0.62, i.e., a value lower than the polarization produced by the ISM with normal efficiency for an average color excess of $E_{B-V}=0.80$ as that found for NGC 6124. Besides, the polarization shows an orientation of $\\theta \\sim 8^\\circ$.1 which is not parallel to the Galactic Disk,an effect that we think may be caused by the Lupus Cloud. Our analysis also indicates that the observed visual extinction in NGC 6124 is caused by the presence of three different absorption sheets located between the Sun and NGC 6124. The values of the internal dispersion of the polarization ($\\Delta P_V\\sim 1.3% $) and of the colour excess ($\\Delta E_{B-V}\\sim 0.29$ mag) for the members of NGC 6124 see...

  5. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  6. Radio Observations of the Hubble Deep Field South region: I. Survey Description and Initial Results

    CERN Document Server

    Norris, R P; Jackson, C A; Boyle, B J; Ekers, R D; Mitchell, D A; Sault, R J; Wieringa, M H; Williams, R E; Hopkins, A M; Higdon, J; Norris, Ray P.; Huynh, Minh T.; Jackson, Carole A.; Boyle, Brian J.; Ekers, Ronald. D.; Mitchell, Daniel A.; Sault, Robert J.; Wieringa, Mark H.; Williams, Robert E.; Hopkins, Andrew M.; Higdon, James

    2005-01-01

    This paper is the first of a series describing the results of the Australia Telescope Hubble Deep Field South (ATHDFS) radio survey. The survey was conducted at four wavelengths - 20, 11, 6, and 3 cm, over a 4-year period, and achieves an rms sensitivity of about 10 microJy at each wavelength. We describe the observations and data reduction processes, and present data on radio sources close to the centre of the HDF-S. We discuss in detail the properties of a subset of these sources. The sources include both starburst galaxies and galaxies powered by an active galactic nucleus, and range in redshift from 0.1 to 2.2. Some of them are characterised by unusually high radio-to-optical luminosities, presumably caused by dust extinction.

  7. Source Regions of the Type II Radio Burst Observed During a CME-CME Interaction on 2013 May 22

    CERN Document Server

    Gopalswamy, P Mäkelä N; Akiyama, S; Krupar, V

    2016-01-01

    We report on our study of radio source regions during the type II radio burst on 2013 May 22 based on direction finding (DF) analysis of the Wind/WAVES and STEREO/WAVES (SWAVES) radio observations at decameter-hectometric (DH) wavelengths. The type II emission showed an enhancement that coincided with interaction of two coronal mass ejections (CMEs) launched in sequence along closely spaced trajectories. The triangulation of the SWAVES source directions posited the ecliptic projections of the radio sources near the line connecting the Sun and the STEREO-A spacecraft. The WAVES and SWAVES source directions revealed shifts in the latitude of the radio source indicating that the spatial location of the dominant source of the type II emission varies during the CME-CME interaction. The WAVES source directions close to 1 MHz frequencies matched the location of the leading edge of the primary CME seen in the images of the LASCO/C3 coronagraph. This correspondence of spatial locations at both wavelengths confirms tha...

  8. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  9. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O' Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  10. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  11. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  12. Multi-wavelength study of two possible cloud-cloud collision regions: IRAS 02459+6029 and IRAS 22528+5936

    Institute of Scientific and Technical Information of China (English)

    Nan Li; Jun-Jie Wang

    2012-01-01

    Based on observations of 12CO (J=2-1),we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision,according to the criteria given by Vallee.Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps.The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029.However,in the possible collision region of IRAS 22528+5936,NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star.The velocity fields of the two regions indicate the direction of the pressure and interaction.In addition,we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram.The distribution of YSOs shows that the possible collision region is denser than other regions.All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision,and that IRAS 22528+5936 could be two separate non-colliding clouds.

  13. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations

    Science.gov (United States)

    Kim, Hwihyun; Whitmore, Bradley C.; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C.; Mutchler, Max; Cohen, Seth H.; Calzetti, Daniela; O’Connell, Robert W.; Windhorst, Rogier A.; hide

    2012-01-01

    We present a multi-wavelength photometric study of approximately 15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones.We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations ofWolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  14. THE RESOLVED STELLAR POPULATION IN 50 REGIONS OF M83 FROM HST/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwihyun; Cohen, Seth H.; Windhorst, Rogier A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Whitmore, Bradley C.; Mutchler, Max; Bond, Howard E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Saha, Abhijit [National Optical Astronomy Observatories, Tucson, AZ 85726-6732 (United States); Kaleida, Catherine C. [Cerro Tololo Inter-American Observatory, La Serena (Chile); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); O' Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Carollo, Marcella [Department of Physics, ETH-Zurich, Zurich 8093 (Switzerland); Disney, Michael J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, Michael A. [Mount Stromlo and Siding Spring Observatories, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Frogel, Jay A. [Galaxies Unlimited, 1 Tremblant Court, Lutherville, MD 21093 (United States); Hall, Donald N. B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Holtzman, Jon A. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Kimble, Randy A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McCarthy, Patrick J., E-mail: hwihyun.kim@asu.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101-1292 (United States); and others

    2012-07-01

    We present a multi-wavelength photometric study of {approx}15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations of Wolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  15. The Structure and Properties of Solar Active Regions and Quiet Sun Areas Observed With SERTS and YOHKOH

    Science.gov (United States)

    Brosius, J. W.; Davila, J. M.; Thomas, R. J.; Hara, H.

    1996-05-01

    We observed solar active regions, quiet sun areas, and a coronal hole simultaneously with Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS), and with the Yohkoh Soft X-Ray Telescope (SXT) on 1993 August 17. SERTS provided spatially resolved active region and quiet sun spectra in the 280 to 420 Angstroms wavelength range, and images in the lines of He II 304 Angstroms, Mg IX 368 Angstroms, Fe XV 284 Angstroms, and Fe XVI 335 Angstroms and 360 Angstroms. The SERTS waveband is accessible to CDS, SUMER, and EIT on SOHO. SXT provided images through multiple broadband filters. The SERTS images in Fe XV (T=2 MK) and XVI (T=2.5 MK) exhibit remarkable morphological similarity to the SXT images. Whereas the Fe XV and XVI images outline the loop structures seen with SXT, the cooler He II (T=0.1 MK) and Mg IX (T=1 MK) images seem to outline loop footpoints. From the spatially resolved spectra, we obtained emission line profiles for lines of Fe X (1 MK) through Fe XVI, and Mg IX and Ni XVIII (3.2 MK) for each spatial position. Based upon the spatial variations of the line intensities, the active region systematically narrows as it is viewed with successively hotter lines. The active region appears narrowest in the X-ray emission, which is consistent with our understanding that Yohkoh is most sensitive to the hottest plasma in its line of sight. EUV emission from Fe XVII (T=5 MK) is weak but detectable in the active region core. The most intense, central core straddles the magnetic neutral line. Temperature maps obtained with SERTS image ratios and with SXT filter ratios are compared. Line intensity ratios indicate that the active region temperature is greatest in the central core, but that the density varies very little across the region. Significant Doppler shifts are not detected in the EUV lines.

  16. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  17. Jupiter before Juno: State of the atmosphere at cloud level in 2016 from PlanetCam observations in the 0.4-1.7 microns wavelength range and amateur observations in the visible

    Science.gov (United States)

    Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team

    2016-10-01

    The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.

  18. Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    Science.gov (United States)

    Luszcz-Cook, S. H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. B.

    2016-09-01

    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m W.M. Keck II telescope, from 26 July 2009. These data have a spatial resolution of 0.035/pixel and spectral resolution of R ∼3800 in the H (1.47-1.80 μm) and K (1.97-2.38 μm) broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark - that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ∼4 bar in these near-infrared dark regions. We construct a set of high signal-to-noise spectra spanning a range of viewing geometries to constrain the vertical structure of Neptune's aerosols in a cloud-free latitude band from 2-12°N. We find that Neptune's cloud opacity at these wavelengths is dominated by a compact, optically thick cloud layer with a base near 3 bar. Using the pyDISORT algorithm for the radiative transfer and assuming a Henyey-Greenstein phase function, we observe this cloud to be composed of low albedo (single scattering albedo = 0.45-0.01+0.01), forward scattering (asymmetry parameter g = 0.50-0.02+0.02) particles, with an assumed characteristic size of ∼1μm. Above this cloud, we require an aerosol layer of smaller (∼0.1μm) particles forming a vertically extended haze, which reaches from the upper troposphere (0.59-0.03+0.04 bar) into the stratosphere. The particles in this haze are brighter (single scattering albedo = 0.91-0.05+0.06) and more isotropically scattering (asymmetry parameter g = 0.24-0.03+0.02) than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20°N to 87°S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4) profile, and find that our retrievals

  19. VizieR Online Data Catalog: MGRO J2019+37 region radio and IR observations (Paredes+, 2009)

    Science.gov (United States)

    Paredes, J. M.; Marti, J.; Ishwara-Chandra, C. H.; Sanchez-Sutil, J. R.; Munoz-Arjonilla, A. J.; Moldon, J.; Peracaula, M.; Luque-Escamilla, P. L.; Zabalza, V.; Bosch-Ramon, V.; Bordas, P.; Romero, G. E.; Ribo, M.

    2009-09-01

    This table contains information about all radio sources detected with the Giant Metrewave Radio Telescope (GMRT) of the National Centre for Radio Astrophysics (NCRA) in Khodad (India) in the MGRO J2019+37 region. The observations were carried out at 610MHz (49cm wavelength) in July 2007. An hexagonal pattern of 19 pointings was designed in order to cover the region of 2.5 square degree centered on the MGRO J2019+37 peak of emission. The list of sources was determined using the SExtractor automatic procedure over our 5" resolution radio mosaic. Only sources with peak ux density higher than about ten times the local noise after primary beam correction were included. There are 42 of the 362 detected radio sources inside the area imaged in the near-infrared Ks-band. A total of 6 out of these 42 sources have a near-infrared counterpart candidate within 0.6" of their radio position. On the other hand, a total of 41 of the 362 radio sources are located in fields observed in X-rays. In this case, 5 of the 41 radio sources have an X-ray counterpart candidate within 5" (the typical uncertainty for XMM-Newton). Both, the Ks magnitude and the X-ray flux, are listed when available. (1 data file).

  20. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, Feng; Peter, Hardi, E-mail: zjun@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: lepingli@nao.cas.cn, E-mail: chen@mps.mpg.de, E-mail: peter@mps.mpg.de [Max-Planck Institute for Solar System Research (MPS), D-37077, Göttingen (Germany)

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  1. Intracellular Assembly of Nuclear-Targeted Gold Nanosphere Enables Selective Plasmonic Photothermal Therapy of Cancer by Shifting Their Absorption Wavelength toward Near-Infrared Region.

    Science.gov (United States)

    Panikkanvalappil, Sajanlal R; Hooshmand, Nasrin; El-Sayed, Mostafa A

    2017-09-07

    Despite the important applications of near-infrared (NIR) absorbing nanomaterials in plasmonic photothermal therapy (PPT), their high yield synthesis and nonspecific heating during the active- and passive-targeted cancer therapeutic strategies remain challenging. In the present work, we systematically demonstrate that in situ aggregation of typical non-NIR absorbing plasmonic nanoparticles at the nuclear region of the cells could translate them into an effective NIR photoabsorber in plasmonic photothermal therapy of cancer due to a significant shift of the plasmonic absorption band to the NIR region. We evaluated the potential of nuclear-targeted AuNSs as photoabsorber at various stages of endocytosis by virtue of their inherent in situ assembling capabilities at the nuclear region of the cells, which has been considered as one of the most thermolabile structures within the cells, to selectively destruct cancer cells with minimal damage to healthy cells. Various plasmonic nanoparticles such as rods and cubes have been exploited to elucidate the role of plasmonic field coupling in assembled nanoparticles and their subsequent killing efficiency. The NIR absorbing capabilities of aggregated AuNSs have been further demonstrated both experimentally and theoretically using discrete dipolar approximation (DDA) techniques, which was in concordance with the observed results in plasmonic photothermal therapeutic studies. While the current work was able to demonstrate the utility of non-NIR absorbing plasmonic nanoparticles as a potential alternative for plasmonic photothermal therapy by inducing localized plasmonic heating at the nuclear region of the cells, these findings could potentially open up new possibilities in developing more efficient nanoparticles for efficient cancer treatment modalities.

  2. Comets at radio wavelengths

    CERN Document Server

    Crovisier, Jacques; Colom, Pierre; Biver, Nicolas

    2016-01-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nan\\c{c}ay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

  3. Towards a Mg lattice clock: Observation of the $^1S_{0}-$$^3P_{0}$ transition and determination of the magic wavelength

    CERN Document Server

    Kulosa, A P; Zipfel, K H; Rühmann, S; Sauer, S; Jha, N; Gibble, K; Ertmer, W; Rasel, E M; Safronova, M S; Safronova, U I; Porsev, S G

    2015-01-01

    We optically excite the electronic state $3s3p~^3P_{0}$ in $^{24}$Mg atoms, laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift and the transition frequency to be 468.463(207)$\\,$nm, -206.6(2.0)$\\,$MHz/T$^2$ and 655 058 646 691(101)$\\,$kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also developed a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift and discuss a clock based on bosonic magnesium.

  4. Formation and Eruption of a Flux Rope from the Sigmoid Active Region NOAA 11719 and Associated M6.5 Flare: A Multi-wavelength Study

    Science.gov (United States)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.; Dhara, Sajal Kumar; Shanmugaraju, A.; Moon, Yong-Jae

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  5. Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison

    Science.gov (United States)

    Janssen, Christof; Boursier, Corinne; Jeseck, Pascal; Té, Yao

    2016-08-01

    Atmospheric ozone concentration measurements mostly depend on spectroscopic methods that cover different spectral regions. Despite long years of measurement efforts, the uncertainty goal of 1% in absolute line intensities has not yet been reached. Multispectral inter-comparisons using both laboratory and atmospheric studies reveal that important discrepancies exist when ozone columns are retrieved from different spectral regions. Here, we use ground based FTIR to study the sensitivity of ozone columns on different spectroscopic parameters as a function of individual bands for identifying necessary improvements of the spectroscopic databases. In particular, we examine the degree of consistency that can be reached in ozone retrievals using spectral windows in the 5 and 10 μm bands of ozone. Based on the atmospheric spectra, a detailed database inter-comparison between HITRAN (version 2012), GEISA (version 2011) and S&MPO (as retrieved from the website at the end of 2015) is made. Data from the 10 μm window are consistent to better than 1%, but there are larger differences when the windows at 5 μm are included. The 5 μm results agree with the results from 10 μm within ±2% for all databases. Recent S&MPO data are even more consistent with the desired level of 1%, but spectroscopic data from HITRAN give about 4% higher ozone columns than those from GEISA. If four sub-windows in the 5 μm band are checked for consistency, retrievals using GEISA or S&MPO parameters show less dispersion than those using HITRAN, where one window in the P-branch of the ν1 + ν3 band gives about 2% lower results than the other three. The atmospheric observations are corroborated by a direct comparison of the spectroscopic databases, using a simple statistical analysis based on intensity weighted spectroscopic parameters. The bias introduced by the weighted average approach is investigated and it is negligible if relative differences between databases do not correlate with line

  6. Analysis of visibility simulation of three polar regions from lunar-based earth observation

    Science.gov (United States)

    Ye, Hanlin; Liu, Guang; Ren, Yuanzhen; Guo, Huadong; Ding, Yixing

    2016-07-01

    Global environment change has caught the attention of many scientists around the world. The Arctic, Antarctic and Tibet Plateau are known as the three polar regions. They are the world's largest storage of cold and carbon which are the sensitive regions of global environment change. These three regions have significant impacts on the global environment change. It is extremely obvious that the environment change of these three regions is one of the major factors of global environment change. The special geographical positions of these three regions have great influence on the local climate and ecological environment that caused the climate is very bad and few people can get there, so there is very little observation data exists. In addition, these three regions have large scale and long-term observation characteristics. Since the meaning of remote sensing technology came out, we have developed airborne and space-borne Earth observation system. However, when taking three polar regions for researching, we will have to face the problems of temporal coherence and spatial continuity in the global scale, which challenges the Earth observation on the satellite and airborne platform. Moon is the unique natural satellite of the Earth, which always has one side facing it, with the advantages of large coverage, long-life platform, stable geological structure and multi-spheres three-dimensional detecting, turning out to be the ideal platform for observing three polar regions. At present and in the near future, the study of Earth observation data from a lunar observatory would be difficult to carry out, so a simulation is used in this paper to analyze the visibility of three polar regions. At first, we discuss the motion pattern of the Sun-Earth-Moon system. Then we construct a simulation system with simulated optical sensors setting up at different places on the Moon, finding that sunlight has great influence on optical observation. The visible region of a lunar-based optical

  7. Comparing tide gauge observations to regional patterns of sea-level change (1961–2003)

    NARCIS (Netherlands)

    Slangen, A.B.A.; Van de Wal, R.S.W.; Wada, Y.; Vermeersen, L.L.A.

    2014-01-01

    Although the global mean sea-level budget for the 20th century can now be closed, the understanding of sea-level change on a regional scale is still limited. In this study we compare observations from tide gauges to regional patterns from various contributions to sea-level change to see how much of

  8. Comparing tide gauge observations to regional patterns of sea-level change (1961–2003)

    NARCIS (Netherlands)

    Slangen, A.B.A.; van de Wal, R.S.W.; Wada, Y.; Vermeersen, L.L.A.

    2014-01-01

    Although the global mean sea-level budget for the20th century can now be closed, the understanding of sealevelchange on a regional scale is still limited. In this studywe compare observations from tide gauges to regional patternsfrom various contributions to sea-level change to seehow much of the re

  9. Comparing tide gauge observations to regional patterns of sea-level change (1961-2003)

    NARCIS (Netherlands)

    Slangen, A. B. A.; van de Wal, R. S. W.; Wada, Y.; Vermeersen, L. L. A.

    2014-01-01

    Although the global mean sea-level budget for the 20th century can now be closed, the understanding of sea-level change on a regional scale is still limited. In this study we compare observations from tide gauges to regional patterns from various contributions to sea-level change to see how much of

  10. The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010

    CERN Document Server

    Vercellone, S; Vittorini, V; Donnarumma, I; Pacciani, L; Pucella, G; Tavani, M; Raiteri, C M; Villata, M; Romano, P; Fiocchi, M; Bazzano, A; Bianchin, V; Ferrigno, C; Maraschi, L; Pian, E; Türler, M; Ubertini, P; Bulgarelli, A; Chen, A W; Giuliani, A; Longo, F; Barbiellini, G; Cardillo, M; Cattaneo, P W; Del Monte, E; Evangelista, Y; Feroci, M; Ferrari, A; Fuschino, F; Gianotti, F; Giusti, M; Lazzarotto, F; Pellizzoni, A; Piano, G; Pilia, M; Rapisarda, M; Rappoldi, A; Sabatini, S; Soffitta, P; Trifoglio, M; Trois, A; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Agudo, I; Aller, H D; Aller, M F; Arkharov, A A; Bach, U; Berdyugin, A; Borman, G A; Chigladze, R; Efimov, Yu S; Efimova, N V; Gómez, J L; Gurwell, M A; McHardy, I M; Joshi, M; Kimeridze, G N; Krajci, T; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Lindfors, E; Molina, S N; Morozova, D A; Nazarov, S V; Nikolashvili, M G; Nilsson, K; Pasanen, M; Reinthal, R; Ros, J A; Sadun, A C; Sakamoto, T; Sallum, S; Sergeev, S G; Schwartz, R D; Sigua, L A; Sillanpää, A; Sokolovsky, K V; Strelnitski, V; Takalo, L; Taylor, B; Walker, G

    2011-01-01

    Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after t...

  11. Dynamics in Restructuring Active Regions Observed During Soho/Yohkoh/Gbo Campaigns

    Science.gov (United States)

    Schmieder, B.; Deng, Y.; Mandrini, C. H.; Rudawy, P.; Nitta, N.; Mason, H.; Fletcher, L.; Martens, P.; Brynildsen, N.

    JOP17 and JOP 33 are SOHO Joint Observing Programs in collaboration with Yohkoh/SXT and ground based observatories (GBO's), dedicated to observe dynamical events through the atmosphere. During runs of these programs we observed in restructuring active regions (ARs), surges, subflares, bright knots, but not large flares and jets. From these observations we have been able to derive some of the responses of the coronal and chromospheric plasma to the evolution of the photospheric magnetic field. Emerging flux in an AR led to the formation of Arch Filament Systems in the chromosphere, hot loops and knots in the transition region, and X-ray loops. Frequent surges have been observed in relation to parasitic or mixed polarities, but coronal jets have not yet been found. We discuss the possible mechanisms acting during the restructuring of the active regions (reconnection or ``sea-serpent'' geometries)

  12. TIME DEPENDENT NONEQUILIBRIUM IONIZATION OF TRANSITION REGION LINES OBSERVED WITH IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Gudiksen, Boris, E-mail: j.m.sykora@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-01-20

    The properties of nonstatistical equilibrium ionization of silicon and oxygen ions are analyzed in this work. We focus on five solar targets (quiet Sun; coronal hole; plage; quiescent active region, AR; and flaring AR) as observed with the Interface Region Imaging Spectrograph (IRIS). IRIS is best suited for this work owing to the high cadence (up to 0.5 s), high spatial resolution (up to 0.″32), and high signal-to-noise ratios for O iv λ1401 and Si iv λ1402. We find that the observed intensity ratio between lines of three times ionized silicon and oxygen ions depends on their total intensity and that this correlation varies depending on the region observed (quiet Sun, coronal holes, plage, or active regions) and on the specific observational objects present (spicules, dynamic loops, jets, microflares, or umbra). In order to interpret the observations, we compare them with synthetic profiles taken from 2D self-consistent radiative MHD simulations of the solar atmosphere, where the statistical equilibrium or nonequilibrium treatment of silicon and oxygen is applied. These synthetic observations show vaguely similar correlations to those in the observations, i.e., between the intensity ratios and their intensities, but only in the nonequilibrium case do we find that (some of) the observations can be reproduced. We conclude that these lines are formed out of statistical equilibrium. We use our time-dependent nonequilibrium ionization simulations to describe the physical mechanisms behind these observed properties.

  13. Polarimetric observations of the innermost regions of relativistic jets in X-ray binaries

    Directory of Open Access Journals (Sweden)

    Russell D.M.

    2013-12-01

    Full Text Available Synchrotron emission from the relativistic jets launched close to black holes and neutron stars can be highly linearly polarized, depending on the configuration of the magnetic field. In X-ray binaries, optically thin synchrotron emission from the compact jets resides at infrared–optical wavelengths. The polarimetric signature of the jets is detected in the infrared and is highly variable in some X-ray binaries. This reveals the magnetic geometry in the compact jet, in a region close enough to the black hole that it is influenced by its strong gravity. In some cases the magnetic field is turbulent and variable near the jet base. In Cyg X–1, the origin of the γ-ray, X-ray and some of the infrared polarization is likely the optically thin synchrotron power law from the inner regions of the jet. In order to reproduce the polarization properties, the magnetic field in this region must be highly ordered, in contrast to other sources.

  14. Spitzer IRS Observations of the XA Region in the Cygnus Loop Supernova Remnant

    CERN Document Server

    Sankrit, R; Bautista, M; Gaetz, T J; Williams, B J; Blair, W P; Borkowski, K J; Long, K S

    2014-01-01

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 micron wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km/s shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is mat...

  15. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.

    2013-02-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  16. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J. [U.S. Naval Research Laboratory, Washington DC 20375 (United States); Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C. [Research Support Instruments, Lanham, Maryland 20905 (United States); Phillips, L. [Alogus Research Corporation, McLean, Virginia 22101 (United States); Afeyan, B. [Polymath Research, Inc., Pleasanton, California 94566 (United States); Seely, J.; Feldman, U. [Berkeley Research Associates, Inc., Beltsville, Maryland 20705 (United States)

    2013-02-15

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  17. Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations

    Science.gov (United States)

    Peddapati, PavanChaitanya; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Patra, Amit

    2016-07-01

    The Equatorial Atmosphere Radar (EAR), located at Kototabang (0.2o S, 100.32o E, mag. lat. 10.36o S), Indonesia, is capable of detecting both E region and 150 km echoes during daytime. We have conducted multi-beam observations using the EAR during daytime covering all seasons to study seasonal variations of these echoes and their dynamics. Given the facts that drifts at the 150 km region are governed primarily by electric field, drifts at the E region are governed by both electric field and neutral wind, simultaneous observations of drifts in both E and 150 km regions would help understand their variations. In this paper we present local time and seasonal variations of zonal drifts in the E and 150 km regions estimated using multi-beam observations. Zonal drifts (positive eastward) in the E and 150 km regions are found to be in the range of -10 to -60 m/s and -40 to 80 m/s, respectively. In the E region, zonal drifts show height reversal and temporal variations having tidal signature and noticeable seasonal variations. Zonal drifts in the 150 km region also show noticeable height and seasonal variations. These results are compared with model drifts and evaluated in terms of electric field and neutral wind.

  18. A Rapidly Evolving Active Region NOAA 8032 observed on April 15th, 1997

    Indian Academy of Sciences (India)

    Shibu K. Mathew; Ashok Ambastha

    2000-09-01

    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic field configuration due to the emergence of new magnetic flux regions (EFR). Most of the new emergence occured very close to the existing magnetic regions, which resulted in strong magnetic field gradients in this region. EFR driven reconnection of the field lines and subsequent flux cancellation might be the reason for the continuous occurrence of sub-flares and other related activities.

  19. Results of seismological observations in the western Kaliningrad region and in the Baltic Sea water area

    Science.gov (United States)

    Kovachev, S. A.

    2008-09-01

    In 2006 2007, researchers of the IO RAS conducted seismological observations in the Baltic Sea and western Kaliningrad region with the use of ocean-bottom and land-based autonomous seismic stations. According to maps of general seismic zoning of the territory of Russia, the Kaliningrad region is aseismic. However, a series of seismic phenomena with magnitudes of about 5 and sources located near the Bay of Gdansk coast occurred here in September 2004. The total duration of the IO RAS seismological observations in five areas of the region under investigation was more than 200 days. The analysis of seismic records of the IO RAS network located sources of two local weak earthquakes with magnitudes M L = 3.4 3.5, which indicates that the seismic process in the western part of the Kaliningrad region continues and the region is far from being seismically stable.

  20. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.

    Key words. Ionosphere (ionospheric irregularities

  1. Testing models of low-excitation photodissociation regions with far-infrared observations of reflection nebulae

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Fong, D; Haas, MR; Rudolph, AL; Tielens, AGGM

    2002-01-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions ( PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 mum, [C II] 158 mum, and [Si II] 35 mum and the adjacent far-infrared continuu

  2. Clinical Observation on Comprehensive Treatment on Cutaneous Region for Low Back Pain

    Institute of Scientific and Technical Information of China (English)

    Zhao Feng; Liu Shu-tian

    2014-01-01

    Objective: To observe the clinical effects of comprehensive treatmenton cutaneous region for low back pain. Methods: One hundred and twenty outpatients with low back pain who met the diagnostic criteria were randomly divided into a cutaneous region group or a medication group, 60 cases in each group. The cases in the cutaneous region group were treated by Nie-pinching up the skin of the lumbosacral region, cupping and acupuncture. Those in the medication group were treated by oral administration of Celecoxib capsule. The visual analogue scale (VAS) and Oswestry disability index (ODI) were used to assess the therapeutic effects. Results: After treatment, the VAS scores of both groups were different from those before treatment, showing statistical significances (allP Conclusion: Both comprehensive treatment on the cutaneous region and Celecoxib capsule can obviously relieve low back pain. But comprehensive treatment on the cutaneous region is better than Celecoxib capsule in the therapeutic effects.

  3. The Sagittarius B2 star-forming region - Subarcsecond radio spectral line and continuum observations

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R.A.; Claussen, M.J. (E. O. Hulburt Center for Space Research, Washington, DC (USA))

    1990-03-01

    Results are reported of a subarcsecond spatial resolution RF line and continuum study of the Sgr B2 region, observed at the frequency of the 76-alpha hydrogen recombination line and at the (J,K = 3,2) transition of NH3. Also reported are new observations of the ground-state OH main line masers toward Sgr B2 in both left and right circular polarization. The continuum images showed no less than 19 separate H II regions in the Sgr B2 complex. Ammonia emission was observed in the Sgr B2 K and F regions. The emission toward K was found near the K1, K2, and K3 regions. The NH3 emission and absorption toward the F region, along with the OH maser emission, delineate a rotating disk or torus of molecular material surrounding the Sgr B2 F complex of H II regions. The mass interior to the NH3 and OH emission regions was calculated to be on the order of 1400 solar masses. 38 refs.

  4. Spitzer IRS observations of the XA region in the cygnus loop supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Sankrit, Ravi [SOFIA Science Center, NASA Ames Research Center, M/S N211-3, Moffett Field, CA 94035 (United States); Raymond, John C.; Gaetz, Terrance J. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 15, Cambridge, MA 02138 (United States); Bautista, Manuel [Department of Physics, Western Michigan University, Kalamazoo MI 49008-5252 (United States); Williams, Brian J. [Goddard Space Flight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borkowski, Kazimierz J. [North Carolina State University, Raleigh, NC 27607 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-05-20

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 μm wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s{sup –1} shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s{sup –1} that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 × 10{sup 18} cm{sup –2}, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.

  5. Optimization of the GOSAT global observation from space with region-by-region target-mode operations

    Science.gov (United States)

    kuze, A.; Suto, H.; Shiomi, K.; Kawakami, S.; Nakajima, M.

    2013-12-01

    Since its launch in 2009, the Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has continued its grid observation and acquired about 20,000 samples per day. Now that more than 10 programs are planned or proposed to monitor greenhouse gases from space. TANSO-FTS is the only instrument that uses a Fourier transfer spectrometer. It is not an imaging spectrometer but has a symmetrical instrument line shape function (ILSF) that can be expressed to high precision for all wavelengths with a simple analytical function and can reduce fitting errors for atmosphere remote sensing. Therefore, other future instruments can cross-calibrate their data with accurate and precise GOSAT spectra. Since August 2010, TANSO-FTS has selected 3-point cross-track scan mode, which has the current best pointing stability and observes a single point three times in 14 sec. Column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) have been well validated at the TCCON sites, where surface albedo is not high and aerosol optical thickness is small. Long term GOSAT data show seasonal and latitudinal variation and annual increase accurately and precisely. JAXA has been processing and providing all the Level 1B spectra data that were acquired on-orbit. Thus the distribution of the Level 1B is spatially equal. The Level 2 users are retrieving XCO2 and XCH4 from the Level 1 by filtering cloud contaminated, aerosol thick, and low signal-to-noise ratio scenes. As a result, the yield rate at cloudy area such as Amazon, south-east Asia, and Central America, low surface albedo area such as snow and ice, bay and channels is very low. Aerosol thick area such as Sahara also has larger errors. Now that GOSAT demonstrated accurate XCO2 and XCH4 remote sensing, demand for emission source measurements of mega cities, power plants, gas fields, and volcanos has increased. In addition to grid

  6. Transition-Region/Coronal Signatures of Penumbral Microjets: Hi-C, SDO/AIA and Hinode (SOT/FG) Observations

    Science.gov (United States)

    Tiwari, Sanjiv K.; Alpert, Shane E.; Moore, Ronald L.; Winebarger, Amy R.

    2014-01-01

    Penumbral microjets are bright, transient features seen in the chromosphere of sunspot penumbrae. Katsuaka et al. (2007) noted their ubiquity and characterized them using the Ca II H-line filter on Hinode's Solar Optical Telescope (SOT). The jets are 1000{4000 km in length, 300{400 km in width, and last less than one minute. It was proposed that these penumbral microjets could contribute to the transition-region and coronal heating above sunspots. We examine whether these microjets appear in the transition-region (TR) and/or corona or are related{ temporally and spatially{ to similar brightenings in the TR and/or corona. First, we identify penumbral microjets with the SOT's Ca II H-line filter. The chosen sunspot is observed on July 11, 2012 from 18:50:00 UT to 20:00:00 UT at approx. 14 inches, -30 inches. We then examine the sunspot in the same field of view and at the same time in other wavelengths. We use the High Resolution Coronal Imager Telescope (Hi-C) at 193A and the 1600A, 304A, 171A, 193A, and 94A passbands of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. We include examples of these jets and where they should appear in the other passbands, but find no signifcant association, except for a few jets with longer lifetimes and bigger sizes seen at locations in the penumbra with repeated stronger brightenings. We conclude that the normal microjets are not heated to transition-region/coronal temperatures, but the larger jets are.

  7. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien K.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-02-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Alb → cGa1-b → 1-cN / AldGa1-dN, where a UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  8. Statistical study of network jets observed in the solar transition region: A comparison between coronal holes and quiet sun regions

    CERN Document Server

    Narang, Nancy; Tian, Hui; Banerjee, Dipankar; Cranmer, Steven R; DeLuca, Ed E; McKillop, Sean

    2016-01-01

    Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets appear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition r...

  9. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    Science.gov (United States)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an

  10. Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah

    Science.gov (United States)

    Yuan, T.; Heale, C. J.; Snively, J. B.; Cai, X.; Pautet, P.-D.; Fish, C.; Zhao, Y.; Taylor, M. J.; Pendleton, W. R.; Wickwar, V.; Mitchell, N. J.

    2016-01-01

    Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the waves' evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is used to simulate the observed gravity wave processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.

  11. Non-LTE Inversion of Spectropolarimetric and Spectroscopic Observations of a Small Active-region Filament Observed at the VTT

    Science.gov (United States)

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Kučera, A.; Heinzel, P.

    2016-04-01

    An active region mini-filament was observed by VTT simultaneously in the HeI 10 830 Å triplet by the TIP 1 spectropolarimeter, in Hα by the TESOS Fabry-Pérot interferometer, and in Ca II 8542 Å by the VTT spectrograph. The spectropolarimetric data were inverted using the HAZEL code and Hα profiles were modelled solving a NLTE radiative transfer in a simple isobaric and isothermal 2D slab irradiated both from bottom and sides. It was found that the mini-filament is composed of horizontal fluxtubes, along which the cool plasma of T˜10 000 K can flow by very large - even supersonic - velocities.

  12. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    CERN Document Server

    Tang, Xiangwei; Dombeck, John; Dai, Lei; Wilson, Lynn B; Breneman, Aaron; Hupach, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region at the sub-solar magnetopause using data from one THEMIS satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves and electrostatic electron cyclotron waves, are observed in the same 12-sec waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves which are at the electron scale and enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (~30 keV) within the electron diffusion region have anisotropic distributions with T_{e\\perp}/T_{e\\parallel}>1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whi...

  13. The Unresolved Fine Structure Resolved - IRIS observations of the Solar Transition Region

    CERN Document Server

    Hansteen, V; Carlsson, M; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Pereira, T M D; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martinez-Sykora, J

    2014-01-01

    The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low lying loops or loop segments at transition-region temperatures that vary rapidly, on the timescales of minutes. We argue that the existence of these loops solves a long standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.

  14. The unresolved fine structure resolved: IRIS observations of the solar transition region.

    Science.gov (United States)

    Hansteen, V; De Pontieu, B; Carlsson, M; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Pereira, T M D; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martínez-Sykora, J

    2014-10-17

    The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long-standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low-lying loops or loop segments at transition-region temperatures that vary rapidly, on the time scales of minutes. We argue that the existence of these loops solves a long-standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.

  15. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    Science.gov (United States)

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  16. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    OpenAIRE

    Li, Ting; ZHANG, JUN

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Af...

  17. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  18. Determining the solar wind speed above active regions using remote radio-wave observations.

    Science.gov (United States)

    Bougeret, J L; Fainberg, J; Stone, R G

    1983-11-04

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  19. [Ne II] Observations of Gas Motions in Compact and Ultracompact H II Regions

    CERN Document Server

    Zhu, Qingfeng; Jaffe, Daniel T; Richter, Matthew J; Greathouse, Thomas K

    2008-01-01

    We present high spatial and spectral resolution observations of sixteen Galactic compact and ultracompact H II regions in the [Ne II] 12.8 microns fine structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km/s) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by ...

  20. Modelling Carbon Radio Recombination Line observation towards the Ultra-Compact HII region W48A

    CERN Document Server

    Jeyakumar, S

    2013-01-01

    We model Carbon Recombination Line (CRL) emission from the Photo Dissociation Region (PDR) surrounding the Ultra-Compact (UC) HII region W48A. Our modelling shows that the inner regions ($A_V \\sim 1$) of the CII layer in the PDR contribute significantly to the CRL emission. The dependence of line ratios of CRL emission with the density of the PDR and the far ultra-violet (FUV) radiation incident on the region is explored over a large range of these parameters that are typical for the environments of UCHII regions. We find that by observing a suitable set of CRLs it is possible to constrain the density of the PDR. If the neutral density in the PDR is high ($\\gtrsim 10^7$ \\cmthree) CRL emission is bright at high frequencies ($\\gtrsim 20$ GHz), and absorption lines from such regions can be detected at low frequencies ($\\lesssim 10$ GHz). Modelling CRL observations towards W48A shows that the UCHII region is embedded in a molecular cloud of density of about $4 \\times$ 10$^7$ \\cmthree.

  1. Chromospheric Observations of a Kink Wave in an On-disk Active Region Fibril

    Science.gov (United States)

    Pietarila, A. M.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S.

    2011-12-01

    Most observations of kink and Alfven waves in the chromosphere are made in off-limb spicules. Here we present observations of a kink wave in high spatial and temporal resolution Ca II 8542 data of an active region fibril on the solar disk. The properties of the observed wave are similar to kink waves in spicules. From the inferred wave phase and period we estimate the lower limit for the field strength in the chromospheric fibril to be a few hundred Gauss. The observations indicate that the event may have been triggered by a small-scale reconnection event higher up in the atmosphere.

  2. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  3. Lubbock Regional Airport, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    Science.gov (United States)

    1982-11-12

    FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 7 267 LUBOCK REGIONAL ARPT TX 73-81 ALUG ALL WEATHER 1 ]0-ZC02 SPEED MEAN IN’S) 5.- 4.-6 7.10...VISIBILITYA!;- EAITHER SF0VlCF/-AC :-’ LUBOCK ;ZE IONAL Af T T - C PERCENTAGE FREQUENCY OF OCCURRENCE FROM HOURLY OBSERVATIONS 672- 6 0. T 6 67 69.1~ 64

  4. Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

    Science.gov (United States)

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-07-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses.

  5. Effect of time-varying tropospheric models on near-regional and regional infrasound propagation as constrained by observational data

    Science.gov (United States)

    McKenna, Mihan H.; Stump, Brian W.; Hayward, Chris

    2008-06-01

    The Chulwon Seismo-Acoustic Array (CHNAR) is a regional seismo-acoustic array with co-located seismometers and infrasound microphones on the Korean peninsula. Data from forty-two days over the course of a year between October 1999 and August 2000 were analyzed; 2052 infrasound-only arrivals and 23 seismo-acoustic arrivals were observed over the six week study period. A majority of the signals occur during local working hours, hour 0 to hour 9 UT and appear to be the result of cultural activity located within a 250 km radius. Atmospheric modeling is presented for four sample days during the study period, one in each of November, February, April, and August. Local meteorological data sampled at six hour intervals is needed to accurately model the observed arrivals and this data produced highly temporally variable thermal ducts that propagated infrasound signals within 250 km, matching the temporal variation in the observed arrivals. These ducts change dramatically on the order of hours, and meteorological data from the appropriate sampled time frame was necessary to interpret the observed arrivals.

  6. High spatial resolution FeXII observations of solar active region

    CERN Document Server

    Testa, Paola; Hansteen, Viggo

    2016-01-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33"). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), FeXII emission can be studied with IRIS at high spatial and spectral resolution, at least for high density plasma (e.g., post-flare loops, and active region moss). We find that upper transition region (moss) FeXII emission shows very small average Doppler redshifts (v_Dop ~3 km/s), as well as modest non-thermal velocities (with an average ~24 km/s, and the peak of the distribution at ~15 km/s). The observed distribution of Doppler shifts appears to be compatible with advanced 3D radiative MHD simulations in which impulsive heating is concentrated at the transition region footpoints of a hot corona. While the non-thermal broadening of FeXII 1349.4A peaks at similar values as lower resolut...

  7. VHF radar observations of the dip equatorial E-region during sunset in the Brazilian sector

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2006-07-01

    Full Text Available Using the RESCO 50 MHz backscatter radar (2.33° S, 44.2° W, DIP: –0.5, at São Luís, Brazil, we obtained Range Time Intensity (RTI maps covering the equatorial electrojet heights during daytime and evening. These maps revealed a scattering region at an altitude of about 108 km during the sunset period. The type of 3-m irregularity region we present here has not been reported before in the literature, to our knowledge. It was mainly observed around the Southern Hemisphere summer-solstice period, under quiet magnetic activity condition. The occurrence of this echo region coincides in local time with the maximum intensity of an evening pre-reversal eastward electric field of the ionospheric F-region. A tentative explanation is proposed here in terms of the theory of the divergence of the equatorial electrojet (EEJ current in the evening ionosphere presented by Haerendel and Eccles (1992, to explain the partial contribution of the divergence to the development of the pre-reversal electric field. The theory predicts an enhanced zonal electric field and hence a vertical electric field below 300 km as a consequence of the EEJ divergence in the evening. The experimental results of the enhanced echoes from the higher heights of the EEJ region seem to provide evidence that the divergence of the EEJ current can indeed be the driver of the observed scattering region.

  8. Two centuries of observed atmospheric variability and change over the North Sea region

    Science.gov (United States)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  9. Airborne Observations of Regional Variations in Fluorescent Aerosol Across the U.S.

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G. L.; McMeeking, G.; McQuaid, J. B.; Fahey, D. W.

    2014-12-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wide band of longitude across the continental US between Florida and California between 28 and 37N latitude. Sampling occurred from near the surface to 1000 m above the ground. A Wide-band Integrated Bioaerosol Sensor (WIBS-4) measured concentrations of supermicron fluorescent particles with average regional concentrations ranging from 1.4±0.7 to 6.8±1.4 x 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol populations. Fluorescent aerosol signatures detected in the east is largely consistent with those of mold spores observed in a laboratory setting. A shift to larger sizes associated with different fluorescent patterns is observed in the west. Loadings in the desert west were nearly as high as those near the Gulf of Mexico, indicating that bioaerosol is a substantial component of supermicron aerosol both of these humid and arid environments. The observations are compared to simulated fungal and bacterial loadings. Good agreement in both particle size and concentrations is observed in the east. In the west the model underestimates observed concentrations by a factor of 2 to 3 and the prescribed particle sizes are smaller than the observed bioaerosol.

  10. FLOWS AT THE EDGE OF AN ACTIVE REGION: OBSERVATION AND INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, C.; Buchlin, E.; Vial, J.-C. [Universite Paris Sud, Institut d' Astrophysique Spatiale, UMR8617, 91405 Orsay (France); Regnier, S., E-mail: eric.buchlin@ias.u-psud.fr [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2012-06-10

    Upflows observed at the edges of active regions have been proposed as the source of the slow solar wind. In the particular case of Active Region (AR) 10942, where such an upflow has been already observed, we want to evaluate the part of this upflow that actually remains confined in the magnetic loops that connect AR 10942 to AR 10943. Both active regions were visible simultaneously on the solar disk and were observed by STEREO/SECCHI EUVI. Using Hinode/EIS spectra, we determine the Doppler shifts and densities in AR 10943 and AR 10942 in order to evaluate the mass flows. We also perform magnetic field extrapolations to assess the connectivity between AR 10942 and AR 10943. AR 10943 displays a persistent downflow in Fe XII. Magnetic extrapolations including both ARs show that this downflow can be connected to the upflow in AR 10942. We estimate that the mass flow received by AR 10943 areas connected to AR 10942 represents about 18% of the mass flow from AR 10942. We conclude that the upflows observed on the edge of active regions represent either large-scale loops with mass flowing along them (accounting for about one-fifth of the total mass flow in this example) or open magnetic field structures where the slow solar wind originates.

  11. Observations of the frontal region of a buoyant river plume using an autonomous underwater vehicle

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Chen, Jialin

    2014-11-01

    To characterize the transitional region from the near-field to far-field of a river plume entering coastal waters, we conducted four surveys using an autonomous underwater vehicle (AUV) to target the outflow of the New River Inlet, North Carolina, during maximum ebb tide. The utilization of a mobile sensor to synoptically observe current velocity data in tandem with natural river plume tracers (e.g., colored dissolved organic matter, salinity) was essential in understanding the mechanisms driving the observed circulation and mixing patterns within these waters. We find that this region is regularly impacted by two primary processes: (1) the interaction of an old dredged channel plume with the main discharge and (2) the recirculation of the discharge plume by an eddy that persistently forms between the old channel and main discharge location. Wind-driven processes in the nearshore can enhance the interaction of these two plumes resulting in unstable regions where mixing of the merged plume with the receiving waters is accelerated. We also conduct comparisons between AUV velocity observations from two surveys and their corresponding velocity outputs from a parallelized quasi-3-D model. We conclude that the ability to observe the estuarine outflow transitional region at near-synoptic temporal scales and resolutions discussed in this paper is key in providing the mechanisms driving local circulation which is essential for proper parameterization of high-resolution numerical coastal models.

  12. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  13. An Observing System Simulation Experiment for the Western North Pacific Region

    Directory of Open Access Journals (Sweden)

    Shuhei Masuda

    2014-01-01

    Full Text Available This study investigated the effectiveness of concentrated observations for ocean state estimation in a region remote from the observation site. I executed a twin observing system simulation experiment (OSSE for the North Pacific region, using an ocean data synthesis system, to examine how the potential effectiveness is for a well-defined criterion, the representativeness of the subsurface salinity minimum corresponding to North Pacific Intermediate Water (NPIW. The results of the OSSE show that data synthesis confined to the region corresponding to the recent origin of the NPIW (35°N–53°N, 130°E–170°E can affect the modeled extent of the NPIW in the central Pacific at 35°N, 180°. The interannual variability of the NPIW is not well reproduced in terms of the standard deviation value (std, only by the data input in the origin region. The root mean square difference between the “true” and the synthesized field is twice larger than the std although there the representativeness of the scale of salinity minimum is improved by about one-third of the difference between the “true” and “first-guess” fields in a snapshot. These results imply that combinations of concentrated and other in situ observations should be required for the dynamic state estimation of the NPIW.

  14. The effect of Galactic foreground subtraction on redshifted 21-cm observations of quasar HII regions

    CERN Document Server

    Geil, Paul M; Petrovic, Nada; Oh, Peng

    2008-01-01

    We assess the impact of Galactic synchrotron foreground removal on the observation of high-redshift quasar HII regions in redshifted 21-cm emission. We consider the case where a quasar is observed in an intergalactic medium (IGM) whose ionisation structure evolves slowly relative to the light crossing time of the HII region, as well as the case where the evolution is rapid. The latter case is expected towards the end of the reionisation era where the highest redshift luminous quasars will be observed. In the absence of foregrounds the fraction of neutral hydrogen in the IGM could be measured directly from the contrast between the HII region and surrounding IGM. However, we find that foreground removal lowers the observed contrast between the HII region and the IGM. This indicates that measurement of the neutral fraction would require modelling to correct for this systematic effect. On the other hand, foreground removal does not modify the most prominent features of the 21-cm maps. Using a simple algorithm we ...

  15. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data Sparse Regions

    Science.gov (United States)

    Kucera, Paul; Steinson, Martin

    2017-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.

  16. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    Science.gov (United States)

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  17. Magnetic field observations as Voyager 1 entered the heliosheath depletion region.

    Science.gov (United States)

    Burlaga, L F; Ness, N F; Stone, E C

    2013-07-12

    Magnetic fields measured by Voyager 1 (V1) show that the spacecraft crossed the boundary of an unexpected region five times between days 210 and ~238 in 2012. The magnetic field strength B increased across this boundary from ≈0.2 to ≈0.4 nanotesla, and B remained near 0.4 nanotesla until at least day 270, 2012. The strong magnetic fields were associated with unusually low counting rates of >0.5 mega-electron volt per nuclear particle. The direction of B did not change significantly across any of the five boundary crossings; it was very uniform and very close to the spiral magnetic field direction, which was observed throughout the heliosheath. The observations indicate that V1 entered a region of the heliosheath (the heliosheath depletion region), rather than the interstellar medium.

  18. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    Science.gov (United States)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  19. Carrier dynamics in nitride-based light-emitting p-n junction diodes with two active regions emitting at different wavelengths

    Science.gov (United States)

    Li, Y.-L.; Gessmann, Th.; Schubert, E. F.; Sheu, J. K.

    2003-08-01

    The carrier transport and recombination dynamics of monolithic InGaN/GaN light-emitting p-n junction structures with two active regions are investigated. Room-temperature and low-temperature photoluminescence and room-temperature electroluminescence measurements show two emission bands originating from the two active regions. In electroluminescence, the intensity ratio of the two emission bands is independent of injection current. In contrast, the intensity ratio depends strongly on the excitation intensity in photoluminescence measurements. The dependency of the emission on excitation is discussed and attributed to carrier transport between the two active regions and to the different carrier injection dynamics in photoluminescence and electroluminescence. The luminous efficacy of a Gaussian dichromatic white-light source is calculated assuming a line broadening ranging from 2kT to 10kT. Luminous efficacies ranging from 380 to 440 lm/W are obtained for broadened dichromatic sources.

  20. Observations of nightside auroral plasma upflows in the F-region and topside ionosphere

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 m s–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion tem- peratures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHF data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.

  1. Regional nitrogen oxides emission trends in East Asia observed from space

    Directory of Open Access Journals (Sweden)

    B. Mijling

    2013-07-01

    Full Text Available Due to changing economic activity, emissions of air pollutants in East Asia change rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight in the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a~mesoscopic scale (~ 0.25° × 0.25°. The algorithm is used to construct a monthly NOx emission time series for 2007–2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007–2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and Beijing province, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  2. Regional nitrogen oxides emission trends in East Asia observed from space

    Science.gov (United States)

    Mijling, B.; van der A, R. J.; Zhang, Q.

    2013-12-01

    Due to changing economic activity, emissions of air pollutants in East Asia are changing rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight into the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a mesoscopic scale (~ 0.25° × 0.25°). The algorithm is used to construct a monthly NOx emission time series for the period 2007-2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007-2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and the Beijing municipality, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  3. Explosive events in active region observed by IRIS and SST/CRISP

    Science.gov (United States)

    Huang, Z.; Madjarska, M. S.; Scullion, E. M.; Xia, L.-D.; Doyle, J. G.; Ray, T.

    2017-01-01

    Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km s-1. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyse observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394 Å line and the slit-jaw (SJ) 1400 Å images, and the Swedish 1-m Solar Telescope in the Hα line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400 Å images. Only four events show a counterpart in the Hα-35 km s-1 and Hα+35 km s-1 images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the Hα-35 km s-1 and Hα+35 km s-1 images. 16 are general loop brightenings that do not show any discernible response in the Hα images. Six EEs appear as propagating loop brightenings, from which two are associated with dark jet-like features clearly seen in the Hα-35 km s-1 images. We found that chromospheric events with jet-like appearance seen in the wings of the Hα line can trigger EEs in the transition region and in this case the IRIS Si IV 1394 Å line profiles are seeded with absorption components resulting from Fe II and Ni II. Our study indicates that EEs occurring in active regions have mostly upper-chromosphere/transition-region origin. We suggest that magnetic reconnection resulting from the braidings of small-scale transition region loops is one of the possible mechanisms of energy release that are responsible for the EEs reported in this paper.

  4. Multi-wavelength study of MGRO J2019+37

    Science.gov (United States)

    Hou, Chao; Chen, Song-Zhan; Yuan, Qiang; Cao, Zhen; He, Hui-Hai; Sheng, Xiang-Dong

    2014-08-01

    MGRO J2019+37, within the Cygnus region, is a bright extended source revealed by Milagro at 12-35 TeV. This source is almost as bright as the Crab Nebula in the northern sky, but is not confirmed by ARGO-YBJ around the TeV scale. Up to now, no obvious counterpart at low energy wavelengths has been found. Hence, MGRO J2019+37 is a rather mysterious object and its VHE γ-ray emission mechanism is worth investigating. In this paper, a brief summary of the multi-wavelength observations from radio to γ-rays is presented. All the available data from XMM-Newton and INTEGRAL at X-ray, and Fermi-LAT at γ-ray bands, are used to get constraints on its emission flux at low energy wavelengths. Then, its possible counterparts and the VHE emission mechanism are discussed.

  5. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  6. VSA Observations of the Anomalous Microwave Emission in the Perseus Region

    OpenAIRE

    2009-01-01

    The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment \\citep{Watson:05} on angular scales of $\\approx$ 1$^{\\circ}$, and was found to exhibit anomalous microwave emission. We present new observations of this dust feature, performed with the Very Small Array (VSA) at 33 GHz, to help increase the understanding of the nature of this anomalous emission. On the angular scales observed with the VSA ($\\approx$ 10 -- 40$^{\\prime}$), G159.6--18....

  7. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    Science.gov (United States)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  8. Multi-Wavelength Observations of Supernova 2011ei: Time-Dependent Classification of Type IIb and Ib Supernovae and Implications for their Progenitors

    CERN Document Server

    Milisavljevic, D; Soderberg, A M; Pignata, G; Chomiuk, L; Fesen, R; Bufano, F; Sanders, N E; Parrent, J T; Parker, S; Pickering, T; Buckley, D; Crawford, S; Gulbis, A A M; Hettlage, C; Hooper, E; Nordsieck, K; O'Donoghue, D; Husser, T -O; Potter, S; Kniazev, A; Kotze, P; Romero-Colmenero, E; Vaisanen, P; Wolf, M; Bartel, N; Bietenholz, M; Fransson, C; Mazzali, P; Brunthaler, A; Chakraborti, S; Levesque, E M; MacFadyen, A; Drescher, C; Bock, G; Marples, P; Anderson, J P; Benetti, S; Reichart, D; Ivarsen, K

    2012-01-01

    We present X-ray, UV/optical, and radio observations of the stripped-envelope, core-collapse supernova (SN) 2011ei, one of the least luminous SNe IIb or Ib observed to date. Our observations begin with a discovery within ~ 1 day of explosion and span several months afterward. Early optical spectra exhibit broad, Type II-like hydrogen Balmer profiles that subside rapidly and are replaced by Type Ib-like He-rich features on the timescale of one week. High-cadence monitoring of this transition identifies an absorption feature around 6250 Angstrom to be chiefly due to hydrogen, as opposed to C II, Ne I, or Si II. Similarities between this observed feature and several SNe Ib suggest that hydrogen absorption attributable to a high velocity (>12,000 km/s) H-rich shell is not rare in Type Ib events. Radio observations imply a shock velocity of v ~ 0.13c and a progenitor star mass-loss rate of ~ 1.4 x 10^{-5} Msolar yr^{-1} (assuming wind velocity v_w=1000 km/s). This is consistent with independent constraints estimat...

  9. Overlapping $B^{3}_{0u}← X^{1}^{+}_{g}$ and $^{1}_{1u} ← X^{1}^{+}_{g}$ non-radiative characteristic of Br2 vapour in the wavelength region 505–541 nm

    Indian Academy of Sciences (India)

    Ramesh C Sharma; S N Thakur

    2001-01-01

    The vibronic vapour phase photoacoustic spectrum of Br2 in the wavelength region 505–541 nm (19796–18480 cm-1) has been recorded using microphone as well as pump-probe method. Discrete vibronic bands superimposed on a monotonically increasing continuum background towards the dissociation limit results from the overlapping $B^{3}^{+}_{0u}← X^{1}^{+}_{g}$ and $^{1}_{1u}← X^{1}^{+}_{g}$ electronic transitions. Vibronic bands originating from '' = 0 have been used to estimate the relative rate of non-radiative relaxation as a function of the excited state $^{3}_{0u}$ vibrational quantum number '. A comparison with the optical absorption spectroscopy of Br2 leads to the identification of three broad spectral regions between 505 and 541 nm (19796 and 18480 cm-1) on the basis of different non-radiative relaxation processes.

  10. Earliest recorded ground-based decameter wavelength observations of Saturn's lightning during the giant E-storm detected by Cassini spacecraft in early 2006

    Science.gov (United States)

    Konovalenko, A. A.; Kalinichenko, N. N.; Rucker, H. O.; Lecacheux, A.; Fischer, G.; Zarka, P.; Zakharenko, V. V.; Mylostna, K. Y.; Grießmeier, J.-M.; Abranin, E. P.; Falkovich, I. S.; Sidorchuk, K. M.; Kurth, W. S.; Kaiser, M. L.; Gurnett, D. A.

    2013-05-01

    We report the history of the first recorded ground-based radio detection of Saturn's lightning using the Ukrainian UTR-2 radiotelescope at frequencies from 20 to 25 MHz. The observations were performed between 29 January and 3 February 2006, during which lighting activity (E-storm) on Saturn was detected by the radio experiment onboard Cassini spacecraft. The minimum detectable flux density (1σ-level) at UTR-2 reached 40 Jy (1Jy=10-26WmHz) for narrowband observations (Δf=10kHz) and 4 Jy for broadband observations (Δf=1MHz), for an effective telescope area of ≈100,000m and integration time of 20 ms. Selection criteria including comparison of simultaneous ON/OFF-source observations were applied to distinguish detection of lightning-associated radio pulses from interference. This allowed us to identify about 70 events with signal-to-noise ratio more than 5. Measured flux densities (between 50 and 700 Jy) and burst durations (between 60 and 220 ms) are in good agreement with extrapolation of previous Cassini measurements to a ground-based observer. This first detection demonstrates the possibility of Solar System planetary lightning studies using large, present and future ground-based radio instruments. The developed methods of observations and identification criteria are also implemented on the UTR-2 radio telescope for the investigation of the next Saturn's storms. Together with recently published UTR-2 measurements of activity measured after the 2006 storm reported here, the results have significant implications for detectable planetary radio emission in our Solar System and beyond.

  11. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  12. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  13. Observation of a Sharp Negative Dipolarization Front in the Reconnection Outflow Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; HUANG Shi-Yong; DENG Xiao-Hua; PANG Ye

    2011-01-01

    A sharp dipolarization front (DF) has recently been detected in the Earth's magnetotail and is associated with complex kinetic effects. We present one event where a tailward propagating negative DF (with Bz decreasing sharply to negative value) was observed near a reconnection region. The thickness of the negative DF is comparable with the local ion gyro-radius/inertial length. There is a strong field-aligned current at the front. Electromagnetic whistler wave enhancements are observed around the front, associated with counter-streaming electron beams. We further compare the features of the observed negative DF with the recent kinetic simulation results, as well as the Earthward propagating DFs observed by the THEMIS spacecraft.%A sharp dipolarization front (DF) has recently been detected in the Earth's magnetotail and is associated with complex kinetic effects.We present one event where a tailward propagating negative DF (with Bz decreasing sharply to negative value) was observed near a reconnection region.The thickness of the negative DF is comparable with the local ion gyro-radius/inertial length.There is a strong field-aligned current at the front.Electromagnetic whistler wave enhancements are observed around the front,associated with counter-streaming electron beams.We further compare the features of the observed negative DF with the recent kinetic simulation results,as well as the Earthward propagating DFs observed by the THEMIS spacecraft.A substorm is an explosive energy release process that occurs in the magnetosphere of many planets.Magnetic field dipolarization is believed to be an essential ingredient of the substorm process,each of which is generally associated with dipolarization.Traditionally,dipolarization was believed to be associated with a decrease in the cross-tail current in the nearEarth region,which might be caused by cross-tail current instability[1] or the dawnward inertial current due to fast-flow braking.[2

  14. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2010-03-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small-scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluctuation level of approximately 15% in an individual pixel. Short-lived impulsive heating events are observed, but they appear to be unrelated to the steady emission that dominates the active region. Furthermore, we find no evidence for warm emission that is spatially correlated with the hot emission, as would be expected if the high temperature loops are the result of impulsive heating. Finally, we also find that intensities in the "moss," the footpoints of high temperature loops, are consistent with steady heating models provided that we account for the local expansion of the loop from the base of the transition region to the corona. In combination, these results provide strong evidence that the heating in the core of an active region is effectively steady, that is, the time between heating events is short relative to the relevant radiative and conductive cooling times.

  15. Swift multi-wavelength observations of the high-redshift Blazar S5 0836+710 (4C 71.07)

    Science.gov (United States)

    Vercellone, Stefano; Romano, Patrizia; Raiteri, Claudia Maria; Acosta Pulido, Jose; Villata, Massimo; Carnerero Martin, Maria Isabel

    2016-04-01

    We present the preliminary results of a year-long Swift monitoring campaign of the high-redshift (z=2.172) flat-spectrum radio quasar (FSRQ) S5 0836+710 (4C 71.07). The campaign, based on one observation per month, 5 ks each observation, for 12 months, allowed us to investigate the synchrotron and nuclear emission contributions to the optical-UV frequency range of its spectral energy distribution and the X-ray spectral variations along a baseline of a year. We obtained a high-accuracy determination of UVOT magnitudes, an X-ray photon index with an uncertainty of the order of 5%, and well-sampled light curves both in the optical-UV and X-ray energy bands to study their possible modulations and correlations. Our study allowed us to exploit the unique Swift capabilities in terms of both simultaneous energy coverage and schedule flexibility. The Swift monitoring campaign was supported by observations by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) Collaboration, which provided radio, near-infrared, and optical photometric data as well as optical polarimetry. Moreover, a spectroscopic monitoring was obtained at the William Herschel Telescope (WHT) and the Nordic Optical Telescope (NOT). All these observations will allow us to obtain a comprehensive picture of the jet as well as of the nuclear source emission.

  16. Multi-wavelength Observations of the Gas-rich Host Galaxy of PDS 456: a New Challenge for the ULIRG-to-QSO Transition Scenario

    CERN Document Server

    Yun, M S; Frayer, D T; Tilanus, R P J; Yun, Min S.

    2004-01-01

    We report new K-band, radio continuum, and CO (1-0) imaging observations and 850 micron photometric observations of PDS 456, the most luminous QSO in the local universe (z<0.3). The 0.6'' resolution K-band image obtained using the Keck telescope shows three compact K~16.5 (M(K)~ -21) sources at a projected distance of ~10 kpc to the southwest, and the host galaxy of PDS 456 may be interacting or merging with one or more companions. The observations using the OVRO millimeter array has revealed a narrow CO (1-0) line (FWHM = 181 km/s) centered at z=0.1849, and 9 x 10^9 solar mass of molecular gas mass is inferred. Radio continuum luminosity is nearly an order of magnitude larger than expected from its FIR luminosity, and the radio source, unresolved by the 2" beam of the VLA, is dominated by the AGN activity. Our 850 micron photometric observations suggest that the cold dust content of the host galaxy is less than one half of the amount in Arp 220. Its SED has both a QSO-like and a ULIRG-like nature, and the...

  17. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  18. Insights from Synthetic Star-forming Regions: I. Reliable Mock Observations from SPH Simulations

    CERN Document Server

    Koepferl, Christine M; Dale, James E; Biscani, Francesco

    2016-01-01

    Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties which trace star formation. Testing and calibrating observational measurements requires synthetic observations which are as realistic as possible. In this part of the paper series (Paper I), we explore different techniques for how to map the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give a detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 microns is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a consta...

  19. ICMEs Likely From the Same Active Region Observed by Both Helios 1 and IMP 8

    Institute of Scientific and Technical Information of China (English)

    DU Dan; WANG Chi

    2007-01-01

    The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in the heliosphere. On day 72 of 1975, an ICME was observed by Helios 1 at 0.3 AU, while a similar solar wind structure was observed by IMP 8 at Earth on day 70 of 1975. On the basis of comparison of the plasma signatures and the transit time from Helios 1 to IMP 8, we hypothesize the observed ICMEs by both spacecraft are resulted from the same active region on the solar surface. A one-dimensional MHD model was used to track the ICME from Helios 1 (0.3 AU) to Earth. The observed plasma profiles and timing are close to those predicted by our MHD model and thus, give the supports to the model.

  20. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    CERN Document Server

    Warren, Harry P; Brooks, David H

    2009-01-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluct...

  1. First observation of natural circular dichroism spectra in the extreme ultraviolet region using a polarizing undulator-based optical system and its polarization characteristics.

    Science.gov (United States)

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2009-07-01

    Natural circular dichroism (CD) spectra in the extreme ultraviolet (EUV) region down to a wavelength of 80 nm have been observed for the first time, using an alanine thin film deposited on sodium salicylate coated glass as a sample. Calibrated EUV-CD spectra of L-alanine exhibited a large negative peak at around 120 nm and a positive CD signal below 90 nm, which were roughly predicted by theoretical calculations. A CD measurement system with an Onuki-type polarizing undulator was used to obtain the EUV-CD spectra. This CD system, the development of which took five years, can be used to observe even weak natural CD spectra. The polarization characteristics of this system were also evaluated in order to calibrate the recorded CD spectra.

  2. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region

    Science.gov (United States)

    Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.

  3. Observational evidence for new instabilities in the midlatitude E and F region

    Science.gov (United States)

    Hysell, David L.; Larsen, Miguel; Sulzer, Michael

    2016-11-01

    Radar observations of the E- and F-region ionosphere from the Arecibo Observatory made during moderately disturbed conditions are presented. The observations indicate the presence of patchy sporadic E (Es) layers, medium-scale traveling ionospheric disturbances (MSTIDs), and depletion plumes associated with spread F conditions. New analysis techniques are applied to the dataset to infer the vector plasma drifts in the F region as well as vector neutral wind and temperature profiles in the E region. Instability mechanisms in both regions are evaluated. The mesosphere-lower-thermosphere (MLT) region is found to meet the conditions for neutral dynamic instability in the vicinity of the patchy Es layers even though the wind shear was relatively modest. An inversion in the MLT temperature profile contributed significantly to instability in the vicinity of one patchy layer. Of particular interest is the evidence for the conditions required for neutral convective instability in the lower-thermosphere region (which is usually associated with highly stable conditions) due to the rapid increase in temperature with altitude. A localized F-region plasma density enhancement associated with a sudden ascent up the magnetic field is shown to create the conditions necessary for convective plasma instability leading to the depletion plume and spread F. The growth time for the instability is short compared to the one described by [Perkins(1973)]. This instability does not offer a simple analytic solution but is clearly present in numerical simulations. The instability mode has not been described previously but appears to be more viable than the various mechanisms that have been suggested previously as an explanation for the occurrence of midlatitude spread F.

  4. Observations about chemical composition of aerosols in the Brazilian Amazon region - Case study: Biomass burning in the subequatorial Amazon region

    Science.gov (United States)

    Gioda, A.; Monteiro, I. L.; Almeida, A. C.; Hacon, S. S.; Dallacort, R.; Ignotti, E.; Godoy, J. M.; Loureiro, A. L.; Morais, F.; Artaxo, P.

    2012-04-01

    The study was carried out in two cities in the Brazilian Amazon region, Tangará da Serra (14 ° 37'10 "S, 57 ° 29'09" W, 427 m asl), located in a transition area between the Amazon biome and the Cerrado and has the characteristics of urban area in Amazon region; and Alta Floresta (9 ° 52 '32 "S, 56 ° 5' 10" W, 283 m asl) situated in the extreme north of the state of Mato Grosso (MT), both in the subequatorial Amazon region. Tangara da Serra has the largest production of sugar cane in the subequatorial Amazon region. They are located 800 km from each other. These two regions are inserted in a region with typical cycles of drought and rain that alter air pollution levels, and lies in the dispersion path of the pollution plume resulting from burnings in the Brazilian Amazon and pollution emanating from neighboring countries. Both cities have wet tropical climate with two well defined seasons: rainy summer (November to May) and dry winter (June to October). During the dry winter, biomass burnings are frequent in these regions. In 2008, the Department of the Environment has banned fires in the period from July 15 to September 15 throughout the State. In this study chemical characterization was performed for approximately 100 aerosol samples collected in each site during 2008. Fine and coarse aerosol samples collected in SFUs were analyzed by ion chromatography for determination of cations (Na+, K+, NH3+, Ca2+ and Mg2+), anions (SO42-, Cl- and NO3-) and organic acids (acetate and formiate) and also measures of black carbon (BC) (Aethalometer). The results showed that for both sites the average concentrations were quite similar for PM2.5 (16 µg/m3), PM10 (11 and 13 µg/m3) and black carbon (1.4 µg/m3 for PM2.5 and 1.6 µg/m3 for PM10). Sulfate was the predominant species in fine (45%) and coarse (26%) particles in both sites. The sulfate concentrations ranged from 0.01-1.92 µg/m3 in PM2.5 and 0.01-1.66 µg/m3 in PM10 in Tangará da Serra and 0.01-2.93 µg/m3 in PM2

  5. Spatial Variations of the Synchrotron Spectrum Within Tycho’s Supernova Remnant (3C 10): A Spectral Tomography Analysis of Radio Observations at 20 and 90 Centimeter Wavelengths

    Science.gov (United States)

    2000-01-20

    individual ( Tycho ) 1. INTRODUCTION A new star observed by Tycho Brahe (1573) is now identi- Ðed as a supernova whose remnant (SNR) is 3C 10 (SN 1572... Tycho SNR, SNR 120.1]1.4 ; Lozinskaya 1992 and references therein). The explosion itself was mostly likely a Type Ia supernova, and the remnant seems...we adopted.3 Again, this procedure tends to reduce any spectral variations. However, as Reynoso et al. (1997) found, Tycho is not expanding

  6. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: multi-wavelength analysis

    CERN Document Server

    Adam, R; Bartalucci, I; Adane, A; Ade, P; André, P; Arnaud, M; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Hasnoun, B; Hermelo, I; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J -F; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA, the prototype of the NIKA2 camera, is an instrument operating at the IRAM 30m telescope that can observe the sky simultaneously at 150 and 260GHz. One of the main goals of NIKA is to measure the pressure distribution in galaxy clusters at high angular resolution using the Sunyaev-Zel'dovich (SZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources that can significantly affect the reconstructed signal. Here we report <20arcsec angular resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphological distribution of the SZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the ICM electronic pressure and density by combining NI...

  7. Extensive HST Ultraviolet Spectra and Multi-wavelength Observations of SN 2014J in M82 Indicate Reddening and Circumstellar Scattering by Typical Dust

    CERN Document Server

    Foley, Ryan J; McCully, C; Phillips, M M; Sand, D J; Zheng, W; Challis, P; Filippenko, A V; Folatelli, G; Hillebrandt, W; Hsiao, E Y; Jha, S W; Kirshner, R P; Kromer, M; Marion, G H; Nelson, M; Pakmor, R; Pignata, G; Roepke, F K; Seitenzahl, I R; Silverman, J M; Skrutskie, M; Stritzinger, M D

    2014-01-01

    SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 years and perhaps in 410 years. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity, we infer an observed visual extinction of A_V = 2.0 +/- 0.1 mag. But this picture, with R_V = 1.6 +/- 0.2, is too simple to account for all observations. We combine 10 epochs (spanning a month) of HST/STIS ultraviolet through near-infrared spectroscopy with HST/WFC3, KAIT, FanCam, and Spitzer photometry from the optical to the infrared and 9 epochs of high-resolution TRES spectroscopy to investigate the sources of extinction and reddening for SN 2014J. We argue that the wide range of observed properties for SN 2014J are caused by a combination of dust reddening, likely originating in the interstellar medium of M82, and scattering off circumstellar material. For this model, roughly half of the extinction is caused by reddening from typical dust (E(B-V) = 0.45 mag a...

  8. Performance and Prospects of Khayyam, A Tunable Spatial Heterodyne Spectrometer (SHS) for High Spectral Resolving Power Observation of Extended Planetary Targets in Optical Wavelengths

    Science.gov (United States)

    Hosseini, S.; Harris, W.

    2014-12-01

    We present initial results, calibration and data reduction process from observations of wide-field targets using Khayyam at Mt. Hamilton, a new instrument based on a reflective spatial heterodyne spectrometer (SHS) at the focus of the Coudé Auxiliary Telescope (CAT). SHS instruments are common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~105), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. This report focuses on the tunable instrument at Mt Hamilton, The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2014 E2 (Jacques), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability.

  9. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; SUN Chaoyang; LIU Jiyuan; HE Jianfeng; KUANG Wenhui; TAO Fulu

    2011-01-01

    Since the implementation of the reform and opening up policy in China in the late 1970s,some meteorological stations 'entered' cities passively due to urban expansion.Changes in the surface and built environment around the stations have influenced observations of air temperature.When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset,they could lead to overestimation of regional air temperature and inaccurate assessment of warming.In this study,the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that 'entered' into cities.Then,after removing the observational data from these stations which have been influenced by urban expansion,a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations.The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated.The result shows that urban heat island effect does occur due to urban expansion,with a higher intensity in winter than in other seasons.Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations' and rural stations' observational data.Spatially,the overestimation is relatively higher in eastern China than in the central part of China; however,both areas exhibit a much higher effect than is observed in western China.We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃,of which about 0.01℃ was attributed to urban expansion,with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.

  10. Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

    CERN Document Server

    Demetroullas, Constantinos; Stamadianos, Dimitrios; Harper, Stuart; Cleary, Kieran; Jones, Mike; Pearson, Tim; Readhead, Anthony; Taylor, Angela

    2015-01-01

    Studies of the diffuse Galactic radio emission are interesting both for better understanding the physical conditions in our Galaxy and for minimising the contamination in cosmological measurements. Motivated by this we present Cosmic Background Imager 31 GHz observations of the Galactic regions NGC 6357, NGC 6334, W51 and W40 at $\\sim$4$'$.5 resolution and conduct an investigation of the spectral emission process in the regions at 4$'$.5 and 1$^{\\circ}$ resolution. We find that most of the emission in the regions is due to optically thin free-free. For 2 sub-regions of NGC 6334 and for a sub-region of W51 though, at 4$'$.5 resolution and at 31 GHz we detect less emission than expected from extrapolation of radio data at lower frequencies assuming a spectral index of $-$0.12 for optically thin free-free emission, at 3.3$\\sigma$, 3.7$\\sigma$ and 6.5$\\sigma$ respectively. We also detect excess emission in a sub-region of NCG 6334 at 6.4$\\sigma$, after ruling out any possible contribution from Ultra Compact HII (...

  11. Explosive events in active region observed by IRIS and SST/CRISP

    CERN Document Server

    Huang, Z; Scullion, E M; Xia, L -D; Doyle, J G; Ray, T

    2016-01-01

    Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km/s. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyze observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394\\AA\\ line and the slit-jaw (SJ) 1400\\AA\\ images, and the Swedish 1-m Solar Telescope (SST) in the H$\\alpha$ line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400\\AA\\ images. Only four events show a counterpart in the H$\\alpha$-35 km/s and H$\\alpha$+35 km/s images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the H$\\alpha$-35km/s and H$\\alpha$+35 km/s images. Sixte...

  12. Ultraviolet observations of the structure and dynamics of an active region at the limb

    Science.gov (United States)

    Korendyke, C. M.; Dere, K. P.; Socker, D. G.; Brueckner, G. E.; Schmieder, B.

    1995-04-01

    The structure and dynamics of active region NOAA 7260 at the limb have been studied using ultraviolet spectra and spectroheliograms obtained during the eighth rocket flight of the Naval Research Laboratory's High Resolution Telescope an Spectrograph (HRTS). The instrument configuration included a narrow-bandpass spectroheliograph to observe the Sun in the lines of C IV lambda 550 and a tandem-Wadsworth mount spectrograph to record the profiles of chromospheric transition region and coronal lines in the 1850-2670 A region. The combination of high spatial resolution and high spectral purity C IV slit jaw images with ultraviolet emission-line spectra corresponding allows examination of a variety of active region phenomena. A time series of spectroheliograms shows large-scale loop systems composed of fine-scale threads with some extending up to 100 Mm above the limb. The proper motion of several supersonic features, including a surge were measured. The accelerated plasmas appear in several different geometries and environments. Spectrograph exposures were taken with the slit positioned at a range of altitudes above the limb and provide a direct comparison between coronal, transition region and chromospheric emission line profiles. The spectral profiles of chromospheric and transition region emission lines show line-of-sight velocities up to 70 km/s. These lower temperature, emission-line spectra show small-scale spatial and velocity variations which are correlated with the threadlike structures seen in C IV. Coronal lines of Fe XII show much lower velocities and no fine structure.

  13. First E- and D-region incoherent scatter spectra observed over Jicamarca

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2006-07-01

    Full Text Available We present here the first Jicamarca observations of incoherent scatter radar (ISR spectra detected from E- and D-region altitudes. In the past such observations have not been possible at Jicamarca due a combined effect of strong equatorial electrojet (EEJ clutter and hardware limitations in the receiving system. The observations presented here were made during weak EEJ conditions (i.e., almost zero zonal electric field using an improved digital receiving system with a wide dynamic range and a high data throughput.

    The observed ISR spectra from E- and D-region altitudes are, as expected, narrow and get even narrower with decreasing altitude due to increasing ion-neutral collision frequencies. Therefore, it was possible to obtain accurate spectral measurements using a pulse-to-pulse data analysis. At lower altitudes in the D-region where signal correlation times are relatively long we used coherent integration to improve the signal-to-noise ratio of the collected data samples. The spectral estimates were fitted using a standard incoherent scatter (IS spectral model between 87 and 120 km, and a Lorentzian function below 110 km. Our preliminary estimates of temperature and ion-neutral collisions frequencies above 87 km are in good agreement with the MSISE-90 model. Below 87 km, the measured spectral widths are larger than expected, causing an overestimation of the temperatures, most likely due to spectral distortions caused by atmospheric turbulence.

  14. Observationally driven 3D MHD model of the solar corona above an active region

    CERN Document Server

    Bourdin, Ph -A; Peter, H

    2013-01-01

    Aims. The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods. Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results. In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This m...

  15. Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Hyung-Il; Laprise, Rene [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Gachon, Philippe [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Environment Canada, Adaptation and Impacts Research Section, Climate Research Division, Montreal, QC (Canada); Ouarda, Taha [University of Quebec, INRS-ETE (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement), Quebec, QC (Canada)

    2012-04-15

    This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23 years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates

  16. Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing

    Science.gov (United States)

    Zhao, Haitao; Major, Arkady

    2016-06-01

    Simultaneous dual-wavelength laser oscillation with orthogonal polarizations has been observed and analyzed in a continuous wave N g-cut Yb:KGW oscillator. Without inserting any optical elements for polarization control, the N m- and N p-polarized modes, each of which possessed a distinct wavelength, coexisted and switched twice in two power regimes as the pump power was varied. The two wavelengths and their separation slightly depended on output coupling level. The wavelength switching and coexistence was studied and explained by considering the thermal and spectral anisotropy of the Yb:KGW crystals, which led to polarization-dependent reabsorption loss in the unpumped regions of the crystal. The maximum average output power obtained in the dual-wavelength regime was 4.6 W.

  17. Discovery of VHE \\gamma-ray emission and multi-wavelength observations of the BL Lac object 1RXS J101015.9-311909

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; Becherini, Y; Becker, J; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Keogh, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006-10 with H.E.S.S. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1\\sigma. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of \\Gamma\\ = 3.08\\pm0.42_{stat}\\pm0.20_{sys}. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variabi...

  18. Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. II. Mixed Trends in VB10 and LSR1835+32 and the Possible Role of Rotation

    CERN Document Server

    Berger, E; Gizis, J E; Giampapa, M S; Rutledge, R E; Liebert, J; Martin, E; Fleming, T A; Johns-Krull, C M; Phan-Bao, N; Sherry, W H

    2007-01-01

    [Abridged] As part of our on-going investigation of magnetic activity in ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr. The detected UV flux is consistent with photospheric emission, and no X-ray emission is detected to a deep limit of L_X/L_bol2x10^4. Similarly, L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and eliminates coronal emission as the source of chromospheric heating. The lack of radio variability during four rotations of LSR1835+32 requires a uniform stellar-scale field of ~10 G, and indicates that the H-alpha variability is dominated by much smaller scales, 25 km/s.

  19. Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546

    CERN Document Server

    Berger, E; Giampapa, M S; Rutledge, R E; Liebert, J; Martin, E; Basri, G; Fleming, T A; Johns-Krull, C M; Phan-Bao, N; Sherry, W H

    2007-01-01

    [Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating ...

  20. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region

    Science.gov (United States)

    Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.

  1. Experimental and simulated neon spectra in the 10 nm wavelength region from the Tore Supra Tokamak and the reversed field pinch RFX

    Energy Technology Data Exchange (ETDEWEB)

    Mattioli, M.; DeMichelis, C.; Monier-Garbet, P. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Fournier, K.B. [Lawrence Livermore National Lab., CA (United States); Carraro, L.; Puiatti, M.E.; Sattin, F.; Scarin, P.; Valisa, M. [Conzorzio RFX, Padova (Italy)

    1999-07-01

    Experimental neon spectra (in the 10 nm region), from the tokamak Tore Supra and the reversed field pinch RFX, have been simulated. The spectra include lines from three neon ionization states, Ne{sup 7+}, Ne{sup 6+}, and Ne{sup 5+} ions. Collisional radiative models have been built for these three Ne ions, considering electron collisional excitation and radiative decay as populating processes of the excited states. These models give photon emission coefficients for the emitted lines at electron density and temperature values corresponding to the experimental situations. Impurity modelling is performed using a 1-D impurity transport code, calculating the steady state radial distribution of the Ne ions. The Ne line brightnesses are evaluated in a post-process subroutine and simulated spectra are obtained. The parts of the spectra corresponding to a single ionization state do not depend on the experimental conditions and show good agreement with the simulated single ionization state spectra. On the other hand, the superposition of the three spectra depends on the experimental conditions, as a consequence of the fact that the ion charge distribution depends not only on the radial profiles of the electron density and temperature, but also of the impurity transport coefficients. Simulations of the Ne spectra (including transport) give confidence in the atomic physics calculations; moreover, they allow the determination of the transport coefficients in the plasma region emitting the considered ionization states. (authors)

  2. Distinct characteristics of asymmetric magnetic reconnections: Observational results from the exhaust region at the dayside magnetopause

    Science.gov (United States)

    Zhang, Y. C.

    2016-01-01

    Magnetic reconnection plays a key role in the conversion of magnetic energy into the thermal and kinetic energy of plasma. On either side of the diffusion region in space plasma, the conditions for the occurrence of reconnections are usually not symmetric. Previous theoretical studies have predicted that reconnections under asymmetric conditions will bear different features compared with those of symmetric reconnections, and numerical simulations have verified these distinct features. However, to date, the features of asymmetric reconnections have not been thoroughly investigated using in situ observations; thus, some results from theoretical studies and simulations have not been tested with observations sufficiently well. Here, spacecraft observations are used in a statistical investigation of asymmetric magnetic reconnection exhaust at the dayside magnetopause. The resulting observational features are consistent with the theoretical predictions. The results presented here advance our understanding of the development of reconnections under asymmetric conditions. PMID:27270685

  3. Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations

    CERN Document Server

    Cheung, M C M; Tarbell, T D; Title, A M

    2008-01-01

    We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of 3D radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux undulates it to form serpentine field lines emerging into the photosphere. Observational characteristics including the pattern of emerging flux regions, the cancellation of surface flux and associated high speed downflows, the convective collapse of photospheric flux tubes, the appearance of anomalous darkenings, the formation of bright points and the possible existence of transient kilogauss horizontal fields are discussed in the context of new observations from t...

  4. Impact of East Asian summer monsoon circulation on the regional aerosol distribution in observations and models

    Science.gov (United States)

    Wang, Hongli; Xie, Xiaoning; Yan, Libin; Liu, Xiaodong

    2017-06-01

    The East Asian summer monsoon (EASM) can change the spatio-temporal distribution of aerosols by influencing the aerosol horizontal and vertical transports and the wet deposition of aerosols over East Asia. In this paper, we examined the aerosol optical depth (AOD) during summer together with the intensity of the EASM based on moderate-resolution imaging spectroradiometer products on board the Terra satellite and the modeling results from the NCAR Community Atmospheric Model 5.1 in the mid-latitude monsoonal East Asia (20-45° N, 105-130° E). Our results from both observations and simulations show positive correlations of AOD with the monsoon intensity over the Northeast Asia sub-region (32.5-45° N, 105-130° E), and negative correlations with that over the southeast Asia sub-region (20-32.5° N, 105-130° E). The observed and simulated AODs were much larger over the northern sub-region and much smaller over the southern sub-region in the strongest monsoon years compared with those in the weakest monsoon years. The model results suggest that the mechanism responsible for the north-south difference in the aerosol distribution was mainly caused by lower-tropospheric meridional wind anomalies related to EASM. Compared with the weakest monsoon years, the strongest monsoon years experienced southerly wind anomalies, which enabled more aerosols to be transported northward and resulted in a convergence of aerosols over the northern sub-region. In addition, the wet deposition of aerosols reduced (enhanced) the aerosol concentrations in the northern (southern) sub-region during the strongest monsoon years compared with the weakest monsoon years, which partly offset the impact of the lower southerly winds on the aerosol distribution over East Asia.

  5. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  6. Coordinated Observations of X-ray and High-Resolution EUV Active Region Dynamics

    Science.gov (United States)

    Savage, Sabrina; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Golub, Leon; Korreck, Kelly

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  7. Solar Surface Emerging Flux Regions: A Comparative Study of Radiative MHD Modeling and Hinode SOT Observations

    Science.gov (United States)

    Cheung, M.; Schüssler, M.; Tarbell, T. D.; Title, A. M.

    2009-12-01

    We present results from three-dimensional radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux tube undulates it to form serpentine field lines that emerge into the photosphere. Observational characteristics of the simulated emerging flux regions are discussed in the context of new observations from Hinode SOT.

  8. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Science.gov (United States)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  9. Observations of SNR CTA 1 and the Cyg OB1 region with VERITAS

    CERN Document Server

    Aliu, Ester

    2011-01-01

    The Cygnus region is a nearby very active star forming region, containing several OB associations, considered as tracers of young pulsars. Above 12 TeV, the Milagro Collaboration has reported the discovery of a very large source, MGRO J2019+37, lying towards the Cyg OB1 association, at the edge of the Cygnus region. The young and energetic pulsar PSR J2021+3651 has been proposed to power this emission. We present here the result of deep VERITAS observations of this region at energies above 650 GeV. These observations unveil extended and complex TeV emission compatible with MGRO J2019+37, likely made of multiple sources, and a clearly separated point source emission from the direction of CTB 87, a pulsar wind nebula candidate. We will also report on the detection of TeV emission from the young Galactic SNR CTA 1, likely powered by the first pulsar discovered through its gamma-ray radiation.

  10. New radio observations of anomalous microwave emission in the HII region RCW175

    CERN Document Server

    Battistelli, E S; Cruciani, A; de Bernardis, P; Genova-Santos, R; Masi, S; Naldi, A; Paladini, R; Piacentini, F; Tibbs, C T; Verstraete, L; Ysard, N

    2015-01-01

    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolutio...

  11. Interaction between an emerging flux region and a pre-existing fan-spine dome observed by \\emph{IRIS} and \\emph{SDO}

    CERN Document Server

    Jiang, Fayu; Yang, Shuhong

    2015-01-01

    We present multi-wavelength observations of a fan-spine dome in the active region NOAA 11996 with the \\textit{Interface Region Imaging Spectrograph} (\\emph{IRIS}) and the Atmospheric Imaging Assembly on board the \\textit{Solar Dynamics Observatory} (\\emph{SDO}) on March 9, 2014. The destruction of the fan-spine topology owing to the interaction between its magnetic fields and an nearby emerging flux region (EFR) is firstly observed. The line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the \\emph{SDO} reveal that the dome is located on the mixed magnetic fields, with its rim rooted in the redundant positive polarity surrounding the minority parasitic negative fields. The fan surface of the dome consists of a filament system and recurring jets are observed along its spine. The jet occurring around 13:54 UT is accompanied with a quasi-circular ribbon that brightens in the clockwise direction along the bottom rim of the dome, which may indicate an occurrence of slipping reconnection in...

  12. The impact of new ionizing fluxes on ISO observations of HII regions and starbursts

    CERN Document Server

    Schärer, D; Schaerer, Daniel; Stasinska, Grazyna

    1998-01-01

    Extensive grids of photoionization models have been calculated for single star HII regions and evolving starbursts. We illustrate the predictions for IR fine structure lines which are used to analyse the stellar content, and derive properties such as the age and IMF. The impact of recent ionizing fluxes on the IR lines are shown. First comparisons of our starburst models with IR-diagnostics and the ISO observations of Genzel et al. (1998) are also presented.

  13. Herschel/HIFI observations of Mars: first detection of O_2 at submillimetre wavelengths and upper limits on HCl and H_2O_2

    CERN Document Server

    Hartogh, P; Lellouch, E; de Val-Borro, M; Rengel, M; Moreno, R; Medvedev, A S; Sagawa, H; Swinyard, B M; Cavalié, T; Lis, D C; Błęcka, M I; Banaszkiewicz, M; Bockelée-Morvan, D; Crovisier, J; Encrenaz, T; Küppers, M; Lara, L -M; Szutowicz, S; Vandenbussche, B; Bensch, F; Bergin, E A; Billebaud, F; Biver, N; Blake, G A; Blommaert, J A D L; Cernicharo, J; Decin, L; Encrenaz, P; Feuchtgruber, H; Fulton, T; de Graauw, T; Jehin, E; Kidger, M; Lorente, R; Naylor, D A; Portyankina, G; Sánchez-Portal, M; Schieder, R; Sidher, S; Thomas, N; Verdugo, E; Waelkens, C; Whyborn, N; Teyssier, D; Helmich, F; Roelfsema, P; Stutzki, J; LeDuc, H G; Stern, J A

    2010-01-01

    We report on the initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H_2O_2) and molecular oxygen (O_2) in the martian atmosphere performed on 13 and 16 April 2010 (L_s ~ 77{\\deg}). We derived a constant volume mixing ratio of 1400 +/- 120 ppm for O_2 and determined upper limits of 200 ppt for HCl and 2 ppb for H_2O_2. Radiative transfer model calculations indicate that the vertical profile of O_2 may not be constant. Photochemical models find lowest values for H_2O_2 around L_s ~ 75{\\deg} but overestimate the volume mixing ratio compared to our measurements.

  14. Wind observations of low energy particles within a solar wind reconnection region

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2008-09-01

    Full Text Available We report characteristics of thermal particle observations during the encounter of the Wind satellite with the separatrix and the outflow domains of a reconnection event on 22 July 1999 in the solar wind. During the studied event the electrostatic analyzers on Wind were transmitting three-dimensional electron and proton distributions in a burst mode every 3 s, the spin period of the spacecraft. The event was associated with a magnetic shear angle of 114° and a large guide magnetic field. The observations suggest that Wind crossed the separatrix and outflow regions about a thousand of ion skin depths from the X-line. At the leading separator boundary, a strong proton beam was identified that originated from the direction of the X-line. In the separatrix and the outflow regions, the phase space distributions of thermal electrons displayed field aligned bidirectional anisotropy. During the crossings of the current sheets bounding the outflow region, we identified two adjacent layers in which the dominant thermal electron flows were towards the X-line at the inner edges of the current sheets and away from the X-line at the outer edges. Interestingly, simulation studies and observations in the Earth's magnetosphere have revealed that the electron flows are reversed, consistent with the Hall current system.

  15. Improve the Absolute Accuracy of Ozone Intensities in the 9-11 μm Region via Mw/ir Multi-Wavelength Spectroscopy

    Science.gov (United States)

    Yu, Shanshan; Drouin, Brian

    2016-06-01

    Ozone (O_3) is crucial for studies of air quality, human and crop health, and radiative forcing. Spectroscopic remote sensing techniques have been extensively employed to investigate ozone globally and regionally. Infrared intensities of ≤1% accuracy are desired by the remote sensing community. The accuracy of the current state-of-the-art infrared ozone intensities is on the order of 4-10%, resulting in ad hoc intensity scaling factors for consistent atmospheric retrievals. The large uncertainties on the infrared ozone intensities arise from the fact that pure ozone is very difficult to generate and sustain in the laboratory. Best estimates have employed IR/UV cross beam experiments to determine the accurate O_3 volume mixing ratio of the sample through its standard cross section value at 254 nm. This presentation reports our effort to improve the absolute accuracy of ozone intensities in the 9-11 μm region via a transfer of the precision of the rotational dipole moment onto the infrared measurement (MW/IR). Our approach was to use MW/IR cross beam experiments and determine the O_3 mixing ratio through alternately measuring pure rotation ozone lines from 692 to 779 GHz. The uncertainty of these pure rotation line intensities is better than 0.1%. The sample cell was a slow flow cross cell and the total pressure inside the sample cell was maintained constant through a proportional-integral-derivative (PID) flow control. Five infrared O_3 spectra were obtained, with a path length of 3.74 m, pressures ranging from 30 to 120 mTorr, and mixing ratio ranging from 0.5 to 0.9. A multi spectrum fitting technique was employed to fit all the FTS spectra simultaneously. The results show that we can determine intensities of the 9.6μm band with absolute accuracy better than 4%.

  16. Radio emission of the sun at millimeter wavelengths

    Science.gov (United States)

    Nagnibeda, V. G.; Piotrovich, V. V.

    This review article deals with the radio emission originating from different solar atmospheric regions - the quiet solar atmosphere, active regions and solar flares. All experimental data of the quiet Sun brightness temperature at the region of 0.1 - 20 mm wavelength are summarized. The quiet Sun brightness distributions across the disk and values of the solar radio radius are reviewed. The properties of the sources of sunspot-associated active region emission and radio brightness depression associated with Hα-filaments are considered in comparison with observations at centimetre and optical domains. The observational properties of millimetre wave bursts and their correlations with similar phenomena at other domains are reviewed. Special reference is devoted to nearly 100% correlation impulsive radio bursts with hard X-ray bursts. Existence of the fine temporal structure containing many spikes with time scales up to 10 ms as well as observations of quasi-periodic millisecond oscillations are discussed.

  17. Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar Flares with AIA/SDO: II. Hydrodynamic Scaling Laws and Thermal Energies

    CERN Document Server

    Aschwanden, Markus J

    2013-01-01

    In this study we measure physical parameters of the same set of 155 M and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a {\\sl differential emission measure (DEM)} analysis to determine the flare peak emission measure $EM_p$, peak temperature $T_p$, electron density $n_p$, and thermal energy $E_{th}$, in addition to the spatial scales $L$, areas $A$, and volumes $V$ measured in Paper I. The parameter ranges for M and X-class flares are: $\\log(EM_p)=47.0-50.5$, $T_p=5.0-17.8$ MK, $n_p=4 \\times 10^9-9 \\times 10^{11}$ cm$^{-3}$, and thermal energies of $E_{th}=1.6 \\times 10^{28}-1.1 \\times 10^{32}$ erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law $T_p^2 \\propto n_p L$ and $H \\propto T^{7/2} L^{-2}$ during the peak time $t_p$ of the flare density $n_p$, when energy balance between the heating rate $H$ and the conductive and radiative loss rates is achieved for a short instant, and thus enables the applicability of the RTV scaling law. The applic...

  18. Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multi-wavelength gas and dust observations

    CERN Document Server

    Carmona, A; Thi, W F; Benisty, M; Ménard, F; Grady, C; Kamp, I; Woitke, P; Olofsson, J; Roberge, A; Brittain, S; Dûchene, G; Meeus, G; Martin-Zaïdi, C; Dent, B; Bouquin, J B Le; Berger, J P

    2014-01-01

    HD 135344B is an accreting (pre-) transition disk which displays emission of warm CO extending tens of AU inside its 30 AU dust cavity. We employ the dust radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 micron, Herschel/PACS [O I] 63 micron, Spitzer-IRS, and JCMT 12CO J=3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. We found a disk model able to describe simultaneously the current observations. This disk has the following structure: (1) to reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 100 to account for the 870 micron continuum upper limit and the CO P(10) line flux; (5) the gas/dust ratio at 30

  19. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  20. Impact of various observing systems on weather analysis and forecast over the Indian region

    Science.gov (United States)

    Singh, Randhir; Ojha, Satya P.; Kishtawal, C. M.; Pal, P. K.

    2014-09-01

    To investigate the potential impact of various types of data on weather forecast over the Indian region, a set of data-denial experiments spanning the entire month of July 2012 is executed using the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system. The experiments are designed to allow the assessment of mass versus wind observations and terrestrial versus space-based instruments, to evaluate the relative importance of the classes of conventional instrument such as radiosonde, and finally to investigate the role of individual spaceborne instruments. The moist total energy norm is used for validation and forecast skill assessment. The results show that the contribution of wind observations toward error reduction is larger than mass observations in the short range (48 h) forecast. Terrestrial-based observations generally contribute more than space-based observations except for the moisture fields, where the role of the space-based instruments becomes more prevalent. Only about 50% of individual instruments are found to be beneficial in this experiment configuration, with the most important role played by radiosondes. Thereafter, Meteosat Atmospheric Motion Vectors (AMVs) (only for short range forecast) and Special Sensor Microwave Imager (SSM/I) are second and third, followed by surface observations, Sounder for Probing Vertical Profiles of Humidity (SAPHIR) radiances and pilot observations. Results of the additional experiments of comparative performance of SSM/I total precipitable water (TPW), Microwave Humidity Sounder (MHS), and SAPHIR radiances indicate that SSM/I is the most important instrument followed by SAPHIR and MHS for improving the quality of the forecast over the Indian region. Further, the impact of single SAPHIR instrument (onboard Megha-Tropiques) is significantly larger compared to three MHS instruments (onboard NOAA-18/19 and MetOp-A).

  1. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties near Source and Transport Regions

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Liu, Z.; Vaughan, M. A.; Trepte, C. R.; Winker, D. M.; Yu, H.

    2015-12-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol between 2006 and 2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on small-scale phenomena such as morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National d'Études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  2. E-region decameter-scale plasma waves observed by the dual TIGER HF radars

    Directory of Open Access Journals (Sweden)

    B. A. Carter

    2009-01-01

    Full Text Available The dual Tasman International Geospace Environment Radar (TIGER HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006 by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly

  3. VLA Observations of Solar Decimetric Spike Bursts: Direct Signature of Accelerated Electrons in Reconnection Outflow Region

    Science.gov (United States)

    Chen, B.; Bastian, T.; Gary, D. E.

    2014-12-01

    Solar decimetric spike bursts, which appear in a radio dynamic spectrum as a cluster of short-lived and narrowband brightenings, have been suggested as a possible signature of many, "elementary" particle accelerations at or near a magnetic reconnection site. Their dynamic spectral feature can be potentially used to diagnose important parameters of the reconnection site such as plasma density and spatial size of the fragmentation. Yet direct observational evidence supporting this scenario has been elusive mainly due to the lack of imaging observations. The upgraded Karl G. Jansky Very Large Array (VLA) provides the first opportunity of performing simultaneous radio imaging and dynamic spectroscopy, which allows radio sources to be imaged at every spatio-temporal pixel in the dynamic spectrum. Here we report Jansky VLA observations of decimetric spike bursts recorded during an eruptive solar limb flare. Combined with EUV and X-ray data from SDO and RHESSI, we show that the spike bursts coincide spatially with a loop-top hard X-ray source, which are located in a region where supra-arcade downflows meet the underlying hot, EUV/X-ray loops. We interpret the observed spike bursts as a direct signature of non-thermal electrons accelerated by turbulences and/or shocks in the reconnection outflow region.

  4. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Mikuła, K.; Heinzel, P.; Liu, W.; Berlicki, A.

    2017-08-01

    Flare loops were well observed with the Interface Region Imaging Spectrograph (IRIS) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg ii lines. Synthetic profiles of the Mg ii h line are computed using the classical cloud model and assuming a uniform background intensity. In this paper, we study novel IRIS NUV observations of such loops in Mg ii h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg ii spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg ii lines. Emission profiles of Mg ii were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.

  5. Satellite observations of seasonal and regional variability of particulate organic carbon concentration in the Barents Sea

    Science.gov (United States)

    Stramska, Malgorzata; Białogrodzka, Jagoda

    2016-04-01

    The Nordic and Barents Seas are of special interest for research on climate change, since they are located on the main pathway of the heat transported from low to high latitudes. Barents Sea is known to be an important area for formation of deep water and significant uptake from the atmosphere and sequestration of carbon dioxide (CO2). This region is characterized by supreme phytoplankton blooms and large amount of carbon is sequestered here due to biological processes. It is important to monitor the biological variability in this region in order to derive in depth understanding whether the size of carbon reservoirs and fluxes may vary as a result of climate change. In this presentation we analyze the 17 years (1998-2014) of particulate organic carbon (POC) concentration derived from remotely sensed ocean color. POC concentrations in the Barents Sea are among the highest observed in the global ocean with monthly mean concentrations in May exceeding 300 mg m-3. The seasonal amplitude of POC concentration in this region is larger when compared to other regions in the global ocean. Our results indicate that the seasonal increase in POC concentration is observed earlier in the year and higher concentrations are reached in the southeastern part of the Barents Sea in comparison to the southwestern part. Satellite data indicate that POC concentrations in the southern part of the Barents Sea tend to decrease in recent years, but longer time series of data are needed to confirm this observation. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  6. High-Frequency Oscillations in a Solar Active Region observed with the Rapid Dual Imager

    CERN Document Server

    Jess, D B; Mathioudakis, M; Bloomfield, D S; Keenan, F P

    2007-01-01

    High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system : the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-alpha blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-alpha oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km/s. The strong oscillatory power over H-alpha blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.

  7. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  8. Regional frequency analysis of observed sub-daily rainfall maxima over eastern China

    Science.gov (United States)

    Sun, Hemin; Wang, Guojie; Li, Xiucang; Chen, Jing; Su, Buda; Jiang, Tong

    2017-02-01

    Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (-10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.

  9. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Science.gov (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin

    2017-03-01

    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  10. Polar-Region Distributions of Poynting Flux: Global Models Compared With Observations

    Science.gov (United States)

    Melanson, P. D.; Lotko, W.; Murr, D.; Gagne, J. R.; Wiltberger, M.; Lyon, J. G.

    2007-12-01

    Low-altitude distributions of electric potential, field-aligned current and Poynting flux derived from the Lyon- Fedder-Mobarry global simulation model of the magnetosphere are compared with distributions derived from SuperDARN, the Iridium satellite constellation, and the Weimer 2005 empirical model for a one-hour interval (1400-1500 UT) on 23 November 1999 during which the interplanetary magnetic field was steady and southward. Synthetic measurements along a pseudo-satellite track are also obtained from each distribution and compared with measurements from the DMSP F13 satellite. Previous studies of the event are supplemented here with updated simulation results for the electric potential and field-aligned currents, new simulation diagnostics for the Poynting flux incident on the ionosphere, and comparisons of observational and simulation results with the Weimer empirical model. The location and extent of the simulated Poynting fluxes that occur in the afternoon sector, between the Region-1 and 2 currents, are consistent with the observed and empirically modeled locations, but the magnitudes exhibit significant differences (locally up to ~100% both higher and lower). Elsewhere, the distribution of simulated fluxes more closely resembles the empirically modeled values than the observed ones and in general is greater in magnitude by about 100%. Additionally, the fraction of simulated Poynting flux that flow into the polar cap region (above 75 deg) is about one third of the total flowing into the ionosphere above 60 deg; a similar value is found for both the observed and the empirically modeled fluxes. The effect of including the parallel potential drop in the self-consistent mapping of electric potential between the ionosphere and inner boundary of the simulation domain is also examined. Globally the effect is small (< 5%); however, in regions where the field-aligned potential drop is appreciable, local changes of 100% or more are found in the magnitude of the

  11. A THREE-DIMENSIONAL MODEL OF ACTIVE REGION 7986: COMPARISON OF SIMULATIONS WITH OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Yung [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Mikić, Zoran; Lionello, Roberto; Downs, Cooper; Linker, Jon A., E-mail: ymok@uci.edu [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2016-01-20

    In the present study, we use a forward modeling method to construct a 3D thermal structure encompassing active region 7986 of 1996 August. The extreme ultraviolet (EUV) emissions are then computed and compared with observations. The heating mechanism is inspired by a theory on Alfvén wave turbulence dissipation. The magnetic structure is built from a Solar and Heliospheric Observatory (SOHO)/MDI magnetogram and an estimated torsion parameter deduced from observations. We found that the solution to the equations in some locations is in a thermal nonequilibrium state. The time variation of the density and temperature profiles leads to time dependent emissions, which appear as thin, loop-like structures with uniform cross-section. Their timescale is consistent with the lifetime of observed coronal loops. The dynamic nature of the solution also leads to plasma flows that resemble observed coronal rain. The computed EUV emissions from the coronal part of the fan loops and the high loops compare favorably with SOHO/EIT observations in a quantitative comparison. However, the computed emission from the lower atmosphere is excessive compared to observations, a symptom common to many models. Some factors for this discrepancy are suggested, including the use of coronal abundances to compute the emissions and the neglect of atmospheric opacity effects.

  12. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  13. High-resolution Observation of Moving Magnetic Features in Active Regions

    Science.gov (United States)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  14. Neutral and Ionized Hydrides in Star-forming Regions -- Observations with Herschel/HIFI

    CERN Document Server

    Benz, Arnold O; van Dishoeck, Ewine F; Staeuber, Pascal; Wampfler, Susanne F

    2013-01-01

    The cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two prototypical high-mass regions, AFGL 2591 and W3 IRS5, and compare them to chemical calculations making assumptions on the high-energy irradiation. A model assuming no ionizing protostellar emission is compared with (i) a model assuming strong protostellar X-ray emission and (ii) a two-dimensional (2D) model including emission in the far UV (FUV, 6 -- 13.6 eV) irradiating the outflow walls that separate the outflowing gas an...

  15. An observational and numerical study of a flash flood event in Eastern Marmara Region.

    Science.gov (United States)

    Kahraman, A.

    2010-09-01

    Warm season cut-off cyclones over North-western Anatolia frequently triggers storms with heavy precipitation over Marmara and Western Black Sea Region. Since the area is highly urbanized with a deficiency in substructure, an important percentage of these storms result in flash floods, producing severe damage and fatalities. A heavy precipitation case from 5th to 9th of June, 2010 is studied. With the large scale circulation of the cut-off low, the storm system over Northern Anatolia moved Black Sea, and after getting richer in moisture, turned back to land over Eastern Marmara Region resulting more than 100 mm of precipitation in 24 hours. A peak of 77 mm in 6 hours is observed at Istanbul Sabiha Gokcen Airport on 7th of June, 2010. Damage in some buildings and one death occured related with the flash flood. In addition to synoptic charts, satellite data, surface and upper air observations, numerical simulation with WRF-ARW is used to make a mesoscale analysis of the meteorological conditions. Heavy rain ingredients such as conditionally unstability, low level jet and high moisture exist over the region according to the model output. Precipitable water and storm relative helicity values are mature and CAPE is moderate.

  16. HERSCHEL FAR-IR OBSERVATIONS OF THE GIANT H II REGION NGC 3603

    Energy Technology Dat