WorldWideScience

Sample records for wavelength meter based

  1. Smart wavelength meter for integrated photonics

    NARCIS (Netherlands)

    Benelajla, Meryem; Taballione, Caterina; Boller, Klaus J.

    2017-01-01

    Thermally tunable SiN waveguide microring resonators in connection with neural network readout algorithms appear promising for use as integrated optical wavelength meters. So far, we have observed long-term reliability and a temperature immunity of the readout across several degrees of ambient

  2. Meter-wavelength VLBI. III. Pulsars

    International Nuclear Information System (INIS)

    Vandenberg, N.R.; Clark, T.A.; Clark, W.C.; Erickson, W.C.; Resch, G.M.; Broderick, J.J.

    1976-01-01

    The results and analysis of observations of pulsars, especially the Crab Nebula pulsar, taken during a series of meter-wavelength very long baseline interferometry (VLBI) experiments are discussed. Based on a crude 144 MHz visibility curve which is consistent with a Gaussian brightness distribution, the measured visibilities at 196, 111, and 74 MHz were interpreted to yield apparent angular diameters (at half-power) of 0 .03 +- 0 .01, 0 .07 +- 0 .01, and 0 .18 +- 0 .01, respectively. These sizes scale approximately as wavelength-squared, and the 74 MHz size agrees with recent observations using interplanetary scintillation techniques.The VLBI-measured total flux densities lie on the extrapolation from higher frequencies of the pulsing flux densities. Variations in the total flux density up to 25 percent were observed. A lack of fine structure other than the pulsar in the nebula is indicated by our simple visibility curves. The pulse shapes observed with the interferometer are similar to single-dish measurements at 196 MHz but reveal a steady, nonpulsing component at 111 MHz. The ratio of pulsing to total power was approximately equal to one-half but varied with time. No pulsing power was detected at 74 MHz. It was found that four strong, low-dispersion pulsars were only slightly resolved

  3. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  4. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  5. Advanced Metering Infrastructure based on Smart Meters

    Science.gov (United States)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  6. Josephson frequency meter for millimeter and submillimeter wavelengths

    International Nuclear Information System (INIS)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process

  7. Josephson frequency meter for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  8. Squid based beam current meter

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1983-01-01

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 μA, something that could be done using a second one in a less sensitive configuration

  9. Arduino based radiation survey meter

    International Nuclear Information System (INIS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee; Muzakkir, Amir

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr −1 ). Conversion factor (CF) value for conversion of CPM to μSvhr −1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  10. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  11. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  12. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Zevenbergen, M.A.G.; Toonder, den J.M.J.

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30–250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  13. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    Directory of Open Access Journals (Sweden)

    Guochao Wang

    2018-02-01

    Full Text Available We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  14. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    Science.gov (United States)

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  15. RFID-BASED Prepaid Power Meter

    OpenAIRE

    Teymourzadeh, Rozita

    2013-01-01

    An Electric power meter is an important component in electric energy service. In the past, many consumers have complained about reading inaccurate of the electric meter. This research presents the development of an electrical power meter equipped with RFID reader. The RFID reader reads a valid RFID card and activates the power meter so that it can supply electricity. When the credit is about low or before the electricity is auto cut off, an SMS message will be sent to the user’s handphone to ...

  16. A micro-controller based wide range survey meter

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2004-01-01

    Wide range survey meters (1μSv/h -10 Sv/h) with the detector(s) mounted at the end of a two-to-four meter-long extendable tube are widely used for radiation protection survey of difficult to reach locations and high dose rate areas, The commercially available survey meters of this type use two GM counters to cover a wide range of dose rate measurement. A new micro-controller based wide range survey meter using two Si diode detectors has been developed. The use of solid state detectors in the survey meter has a number of advantages like low power consumption, lighter battery powered detector probe, elimination of high voltage for the operation of the detectors, etc. The design uses infrared communication between the probe and the readout unit through a light-weight collapsible extension tube for high reliability. The design details and features are discussed in detail. (author)

  17. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  18. A Prediction-based Smart Meter Data Generator

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Nordbjerg, Finn Ebertsen

    2016-01-01

    With the prevalence of cloud computing and In-ternet of Things (IoT), smart meters have become one of the main components of smart city strategy. Smart meters generate large amounts of fine-grained data that is used to provide useful information to consumers and utility companies for decision......, mainly due to privacy issues. This paper proposes a smart meter data generator that can generate realistic energy consumption data by making use of a small real-world dataset as seed. The generator generates data using a prediction-based method that depends on historical energy consumption patterns along......-making. Now-a-days, smart meter analytics systems consist of analytical algorithms that process massive amounts of data. These analytics algorithms require ample amounts of realistic data for testing and verification purposes. However, it is usually difficult to obtain adequate amounts of realistic data...

  19. Development of PIC-based digital survey meter

    International Nuclear Information System (INIS)

    Nor Arymaswati Abdullah; Nur Aira Abdul Rahman; Mohd Ashhar Khalid; Taiman Kadni; Glam Hadzir Patai Mohamad; Abd Aziz Mhd Ramli; Chong Foh Yong

    2006-01-01

    The need of radiation monitoring and monitoring of radioactive contamination in the workplace is very important especially when x-ray machines, linear accelerators, electron beam machines and radioactive sources are present. The appropriate use of radiation detector is significant in order to maintain a radiation and contamination free workplace. This paper reports on the development of a prototype of PIC-based digital survey meter. This prototype of digital survey meter is a hand held instrument for general-purpose radiation monitoring and surface contamination meter. Generally, the device is able to detect some or all of the three major types of ionizing radiation, namely alpha, beta and gamma. It uses a Geiger-Muller tube as a radiation detector, which converts gamma radiation quanta to electric pulses and further processed by the electronic devices. The development involved the design of the controller, counter and high voltage circuit. All these circuit are assembled and enclosed in a plastic casing together with a GM detector and LCD display to form a prototype survey meter. The number of counts of the pulses detected by the survey meter varies due to the random nature of radioactivity. By averaging the reading over a time-period, more accurate and stable reading is achieved. To test the accuracy and the linearity of the design, the prototype was calibrated using standard procedure at the Secondary Standard Dosimetry Laboratory (SSDL) in MINT. (Author)

  20. A Study on Watt-hour Meter Data Acquisition Method Based on RFID Technology

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    Considering that traditional watt-hour meter data acquisition was subjected to the influence of distance and occlusion, a watt-hour meter data acquisition method based on RFID technology was proposed in this paper. In detail, RFID electronic tag was embedded in the watt-hour meter to identify the meter and record electric energy information, which made RFID based wireless data acquisition for watt-hour meter come true. Eventually, overall lifecycle management of watt-hour meter is realized.

  1. Intellectual Production Supervision Perform based on RFID Smart Electricity Meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.

  2. Data acquisition and meter unit based in wifi communication protocol

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez Ayala

    2012-05-01

    Full Text Available Without doubt, the competitive fast rhythm of the industries is one of the main causes helped bring to the accelerated growth of the electronic technology and the communication. The need to develop new products with a best quality, cheaper and faster as assure and increase the quality of the products in the international markets, requires of new technologies to the metering, monitoring and control of their production processes, of which finality is to improve the processes to guaranteed their products in the market in the less time possible, the best quality and low cost for the final consumer. This work is based in the design and implementation of a Wireless Data Acquisition Unit based in WiFi protocol, which is oriented to meter, monitoring and the control of processes in the industry, commercial and the home automation applications, using one of the wirelessprotocols with the biggest acceptance in the market, with the main objective of to take advantage of the installed physical infrastructure in the place of the application, like industry, company or house. The Unit is based in the RN-131G, a Roving Network company module, which is able to work in stand-alone mode with ultralow power consummation and supporting the IEEE 802.11b/g protocols, in which is possible to achieve transfer rates of up to 11 Mbps and 54 Mbps in /b & /g specifications respectively. Whit this unit is possible to meter up to 5 analogs signals with 14 bits precision and has include a temperature and relative humidity sensors. This unit can meter two digital signals and act mean two digitals outputs, and gas include an USB port for communication and programming tasks.

  3. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Science.gov (United States)

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  4. IMAGE TYPE WATER METER CHARACTER RECOGNITION BASED ON EMBEDDED DSP

    OpenAIRE

    LIU Ying; HAN Yan-bin; ZHANG Yu-lin

    2015-01-01

    In the paper, we combined DSP processor with image processing algorithm and studied the method of water meter character recognition. We collected water meter image through camera at a fixed angle, and the projection method is used to recognize those digital images. The experiment results show that the method can recognize the meter characters accurately and artificial meter reading is replaced by automatic digital recognition, which improves working efficiency.

  5. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    Science.gov (United States)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  6. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  7. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  8. Digital Survey Meter based on PIC16F628 Microcontroller

    International Nuclear Information System (INIS)

    Al-Mohamad, A.; Shliwitt, J.

    2010-01-01

    A Digital Survey Meter based on PIC16F628 Microcontroller was designed using simple Geiger-Muller Counter ZP1320 made by Centronic in the UK as detector. The sensitivity of this tube is about 9 counts/s at 10μGy/h. It is sensitive to gamma and beta particles over 0.25 MeV. It has a sensitive length of 28mm. Count rate versus dose rate is quite linear up to about 10 4 counts/s. Indication is given by a speaker which emits one click for each count. In addition to the acoustic alarm, the meter works according one of three different measurement modes selected using appropriate 3 states switch: 1- Measurement of Dose rate ( in μGy/h) and counting rate ( in CPS) , for High counting rates. 2- Measurement of Dose rate ( in μGy/h) and counting rate ( in CPM), for Low counting rates. 3- Accumulated Counting with continues display for No. of Counts and Counting Time with a period of 2 Sec. The results are Displayed on an Alphanumerical LCD Display, and the circuit will give many hours of operation from a single 9V PP3 battery. The design of the circuit combines between accuracy, simplicity and low power consumption. We built 2 Models of this design, the first only with an internal detector, and the second is equipped with an External Detector. (author)

  9. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    interchanging can be used to create a robust and nonblocking OXC. However, for an OXC with n fiber inlets each carrying m wavelengths the OXC requires n×m internal wavelengths, which constrains the size of the cross-connect. In this paper we therefore propose and demonstrate an architecture that uses a reduced......Optical transport layers need rearrangeable wavelength-division multiplexing optical cross-connects (OXCs) to increase the capacity and flexibility of the network. It has previously been shown that a cross-connect based on all-optical wavelength converters for routing as well as wavelength slot...... set of internal wavelengths without sacrificing cross-connecting capabilities. By inserting a partly equipped OXC with the new architecture in a 10-Gbit/s re-circulating loop setup we demonstrate the possibility of cascading up to ten OXCs. Furthermore, we investigate the regenerating effect...

  10. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  11. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  12. Topology-Based Estimation of Missing Smart Meter Readings

    Directory of Open Access Journals (Sweden)

    Daisuke Kodaira

    2018-01-01

    Full Text Available Smart meters often fail to measure or transmit the data they record when measuring energy consumption, known as meter readings, owing to faulty measuring equipment or unreliable communication modules. Existing studies do not address successive and non-periodical missing meter readings. This paper proposes a method whereby missing readings observed at a node are estimated by using circuit theory principles that leverage the voltage and current data from adjacent nodes. A case study is used to demonstrate the ability of the proposed method to successfully estimate the missing readings over an entire day during which outages and unpredictable perturbations occurred.

  13. A Surface Relief Meter Based on Trinocular Vision

    NARCIS (Netherlands)

    Ernst, V.G.S.; Sablik, P.W.; Balendonck, J.; Houkes, Z.; Regtien, Paulus P.L.

    1995-01-01

    The concept for the relief meter being developed, appears to function well, when used with the artificial images. The described matching criterion leads to high matching percentages, and accurate results. The percentage of mismatches is reduced to practically zero for the tested scenes. Future work

  14. Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland

    International Nuclear Information System (INIS)

    Kaufmann, Simon; Künzel, Karoline; Loock, Moritz

    2013-01-01

    Implementing smart metering is an important field for energy policy to successfully meet energy efficiency targets. From an integrated social acceptance and customer-perceived value theory perspective we model the importance of customer value of smart metering in this regard. We further shape the model on a choice-based conjoint experiment with Swiss private electricity customers. The study finds that overall customers perceive a positive value from smart metering and are willing to pay for it. Further, based on a cluster analysis of customers’ value perceptions, we identify four customer segments, each with a distinct value perception profile for smart metering. We find that energy policy and management should integrate a solid understanding of customer value for smart metering in their initiatives and consider different smart metering market segments within their measures. - Highlights: ► We model the importance of customer value of smart metering. ► We shape the model on a choice-based conjoint experiment. ► Overall customers perceive a positive value from smart metering. ► Customers are willing to pay for smart metering. ► There are four distinct customer segments with different value perceptions.

  15. Laser power meter based on the Peltier effect

    International Nuclear Information System (INIS)

    Goldschmid, H.J.; Miller, L.A.; Paul, G.L.

    1984-01-01

    An isothermal power meter, in which the incoming radiation is balanced by thermoelectric cooling, has two substantial advantages: there are no heat losses to the surroundings, and a short response time should result from the smallness of the temperature excursions before balance is achieved. Experiments on prototype devices consisting of thermoelectric modules, made from bismuth telluride alloys, with nominally black-body receivers are reported. Laser powers in the range 100 to 550 mW were measured. In the most favoured arrangement, multijunction modules were used both to provide cooling through the Peltier effect and to detect any temperature excursions through the Seebeck effect. The results justify further work on the system

  16. Study of Fourier transform spectrometer based on Michelson interferometer wave-meter

    Science.gov (United States)

    Peng, Yuexiang; Wang, Liqiang; Lin, Li

    2008-03-01

    A wave-meter based on Michelson interferometer consists of a reference and a measurement channel. The voice-coiled motor using PID means can realize to move in stable motion. The wavelength of a measurement laser can be obtained by counting interference fringes of reference and measurement laser. Reference laser with frequency stabilization creates a cosine interferogram signal whose frequency is proportional to velocity of the moving motor. The interferogram of the reference laser is converted to pulse signal, and it is subdivided into 16 times. In order to get optical spectrum, the analog signal of measurement channel should be collected. The Analog-to-Digital Converter (ADC) for measurement channel is triggered by the 16-times pulse signal of reference laser. So the sampling rate is constant only depending on frequency of reference laser and irrelative to the motor velocity. This means the sampling rate of measurement channel signals is on a uniform time-scale. The optical spectrum of measurement channel can be processed with Fast Fourier Transform (FFT) method by DSP and displayed on LCD.

  17. Cloud-Based Software Platform for Smart Meter Data Management

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    of the so-called big data possible. This can improve energy management, e.g., help utility companies to forecast energy loads and improve services, and help households to manage energy usage and save money. As this regard, the proposed paper focuses on building an innovative software platform for smart...... their knowledge; scalable data analytics platform for data mining over big data sets for energy demand forecasting and consumption discovering; data as the service for other applications using smart meter data; and a portal for visualizing data analytics results. The design will incorporate hybrid clouds......, including Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), which are suitable for on-demand provisioning, massive scaling, and manageability. Besides, the design will impose extensibility, eciency, and high availability on the system. The paper will evaluate the system comprehensively...

  18. Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

    Directory of Open Access Journals (Sweden)

    Imtiaz Parvez

    2016-08-01

    Full Text Available In smart cities, advanced metering infrastructure (AMI of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP. Localization of the meter is proposed by a method based on received signal strength (RSS using the maximum likelihood estimator (MLE. The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

  19. Development of dose equivalent meters based on microdosimetric principles

    International Nuclear Information System (INIS)

    Booz, J.

    1984-01-01

    In this paper, the employment of microdosimetric dose-equivalent meters in radiation protection is described considering the advantages of introducing microdosimetric methods into radiation protection, the technical suitability of such instruments for measuring dose equivalent, and finally technical requirements, constraints and solutions together with some examples of instruments and experimental results. The advantage of microdosimetric methods in radiation protection is illustrated with the evaluation of dose-mean quality factors in radiation fields of unknown composition and with the methods of evaluating neutron- and gamma-dose fractions. - It is shown that there is good correlation between dose-mean lineal energy, anti ysub(anti D), and the ICRP quality factor. - Neutron- and gamma-dose fractions of unknown radiation fields can be evaluated with microdosimetric proportional counters without recurrence to other instruments and methods. The problems of separation are discussed. The technical suitability of microdosimetric instruments for measuring dose equivalent is discussed considering the energy response to neutrons and photons and the sensitivity in terms of dose-equivalent rate. Then, considering technical requirements, constraints, and solutions, the problem of the large dynamic range in LET, the large dynamic range in pulse rate, geometry of sensitive volume and electrodes, evaluation of dose-mean quality factors, calibration methods, and uncertainties are discussed. (orig.)

  20. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    Science.gov (United States)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  1. The Design of a γ-dose rate monitoring meter Based on C8051F020

    International Nuclear Information System (INIS)

    Tan Wei; Liu Chong; Wu Longxiong; Yang Binhua

    2009-01-01

    This paper presents the design of γ-dose-rate monitoring meter based on C8051F020 single chip microcomputer (SCM), and also describes the solution of hardware and software. The peripheral circuit of USB is also included. This meter can rapidly measure γ-dose-rate and store more data in power failure. In addition, it is featured with low power, small size, strong anti-interference and accurate measurement. (authors)

  2. MEMS-based microspectrometer technologies for NIR and MIR wavelengths

    International Nuclear Information System (INIS)

    Schuler, Leo P; Milne, Jason S; Dell, John M; Faraone, Lorenzo

    2009-01-01

    Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain. Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices. In the first part of this paper we discuss the UWA MEMS-based Fabry-Perot spectrometer, its design and issues to be solved. MEMS-based Fabry-Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry-Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices. (topical review)

  3. Theoretical comparison of performance using transfer functions for reactivity meters based on inverse kinetic method and simple feedback method

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro; Tashiro, Shoichi; Tojo, Masayuki

    2017-01-01

    The performance of two digital reactivity meters, one based on the conventional inverse kinetic method and the other one based on simple feedback theory, are compared analytically using their respective transfer functions. The latter one is proposed by one of the authors. It has been shown that the performance of the two reactivity meters become almost identical when proper system parameters are selected for each reactivity meter. A new correlation between the system parameters of the two reactivity meters is found. With this correlation, filter designers can easily determine the system parameters for the respective reactivity meters to obtain identical performance. (author)

  4. IPv6-Based Smart Metering Network for Monitoring Building Electricity

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2013-01-01

    Full Text Available A smart electricity monitoring system of building is presented using ZigBee and internet to establish the network. This system consists of three hardware layers: the host PC, the router, and the sensor nodes. A hierarchical ant colony algorithm is developed for data transmission among the wireless sensor nodes. The wireless communication protocol is also designed based on IPv6 protocol on IEEE 802.15.4 wireless network. All-IP approach and peer-to-peer mode are integrated to optimize the network building. Each node measures the power, current, and voltage and transmits them to the host PC through the router. The host software is designed for building test characteristics, having a tree hierarchy and a friendly interface for the user. The reliability and accuracy of this monitoring system are verified in the experiment and application.

  5. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    International Nuclear Information System (INIS)

    Farooq, Hasan; Jung, Low Tang

    2013-01-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  6. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    International Nuclear Information System (INIS)

    Niu Bin; Zhou Daibing; Zhang Can; Liang Song; Lu Dan; Zhao Lingjuan; Wang Wei; Qiu Jifang; Wu Jian

    2014-01-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented. (semiconductor devices)

  7. Real Time Phase Noise Meter Based on a Digital Signal Processor

    Science.gov (United States)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  8. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach

    DEFF Research Database (Denmark)

    Chen, Xiaoshuang; Lin, Jin; Wan, Can

    2016-01-01

    State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...

  9. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  10. Implementation of Linus Programme Based on the Model of Van Meter and Van Horn

    Science.gov (United States)

    Sani, Nazariyah bt; Idris, Abdul Rahman

    2013-01-01

    The purpose of this study is to identify the understanding of school leaders on the implementation of LINUS programme that based on the features contained in the Implementation Model of Van Meter and Van Horn (1975). The study was carried out in the form of qualitative method and particularly, the multiple case studies that were conducted in four…

  11. TaS2 nanosheet-based room-temperature dosage meter for nitric oxide

    Directory of Open Access Journals (Sweden)

    Qiyuan He

    2014-09-01

    Full Text Available A miniature dosage meter for toxic gas is developed based on TaS2 nanosheets, which is capable of indicating the toxic dosage of trace level NO at room temperature. The TaS2 film-based chemiresistor shows an irreversible current response against the exposure of NO. The unique non-recovery characteristic makes the TaS2 film-based device an ideal indicator of total dosage of chronicle exposure.

  12. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  13. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantum metropolitan optical network based on wavelength division multiplexing.

    Science.gov (United States)

    Ciurana, A; Martínez-Mateo, J; Peev, M; Poppe, A; Walenta, N; Zbinden, H; Martín, V

    2014-01-27

    Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

  15. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  16. Smart controller based scaler rate-meter for gamma column scanning application

    International Nuclear Information System (INIS)

    Narender Reddy, J.; Dhanajay Reddy, Y.; Dheeraj Reddy, J.

    2001-01-01

    A smart, controller based Scaler Rate-meter with scintillation probe for Gamma column scanning has been developed and made available. Designed to have advanced features with state-of-art electronic devices, hardware features include built-in adj. HV, amplifier- SCA, controller based data acquisition card, LCD display module for visualization of, HV set, preset and elapsed times, counts/count rate, column height and other programmable parameters. User interface is through a built-in programmable key pad, for instrument control, data acquisition, storage. Powerful embedded software provides all the above functions. Unit has capability to store up to 5000 readings. Data readings stored can be downloaded into a PC/lap top to generate a plot of count rate Vs column height, which is a signature for the column under study. Scintillation Probe design facilitates connection to the main unit through a single cable, permitting lengths up to 30 meters from the main unit. (author)

  17. Fabrication of a cantilever-based microfluidic flow meter with nL min(-1) resolution

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    A microfluidic flow meter based on cantilever deflection is developed, showing a resolution down to 3 nL min(-1) for flows in the microliter range. The cantilevers are fabricated in SU-8 and have integrated holes with dimensions from 5 x 5 to20x 20 mu m(2). The holes make it possible to measure i......, hole-to-hole distance, amount of holes, etc) the sensitivity of the sensor can be changed....

  18. Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids

    Directory of Open Access Journals (Sweden)

    Alberto Sendin

    2015-11-01

    Full Text Available Powerline communications (PLC-based smart meter deployments are now a reality in many regions of the world. Although PLC elements are generally incorporated in smart meters and data concentrators, the underlying PLC network allows the integration of other smart grid services directly over it. The remote control capabilities that automation programs need and are today deployed over their medium voltage (MV grid, can be extended to the low voltage (LV grid through these existing PLC networks. This paper demonstrates the capabilities of narrowband high data rate (NB HDR PLC technologies deployed over LV grids for smart metering purposes to support internet protocol internet protocol (IP communications in the LV grid. The paper demonstrates these possibilities with the presentation of the simulation and laboratory results of IP communications over international telecommunication union: ITU-T G.9904 PLC technology, and the definition of a PLC Network Management System based on a simple network management protocol (SNMP management information base (MIB definition and applicable use cases.

  19. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  20. Novel Magnetic Field Meter Based on Giant Magneto-impedance (GMI Effect

    Directory of Open Access Journals (Sweden)

    K. Nesteruk

    2006-03-01

    Full Text Available A novel magnetic field GMI-sensor/meter has been invented and designed. Its laboratory model was constructed and tested, demonstrating the sensitivity of 1.10–8 T (100 mGs. The principle of operation of this meter is based on changes of the quality factor of the resonance circuit a part of which is a magnetic GMI sensing element.These changes are due to variations in the real component of the impedance of this element caused by an external DC-field. The sensing element is in the form of a piece of the “non-magnetostrictive” amorphous ribbon. Magnetic field modulation of an acoustic frequency and feedback circuit (compensating field applied to the device, significantly increases stability and linearity of the measuring system.

  1. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  2. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    Science.gov (United States)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  3. A Density-Based Ramp Metering Model Considering Multilane Context in Urban Expressways

    Directory of Open Access Journals (Sweden)

    Li Tang

    2017-01-01

    Full Text Available As one of the most effective intelligent transportation strategies, ramp metering is regularly discussed and applied all over the world. The classic ramp metering algorithm ALINEA dominates in practical applications due to its advantages in stabilizing traffic flow at a high throughput level. Although ALINEA chooses the traffic occupancy as the optimization parameter, the classic traffic flow variables (density, traffic volume, and travel speed may be easier obtained and understood by operators in practice. This paper presents a density-based ramp metering model for multilane context (MDB-RM on urban expressways. The field data of traffic flow parameters is collected in Chengdu, China. A dynamic density model for multilane condition is developed. An error function represented by multilane dynamic density is introduced to adjust the different usage between lanes. By minimizing the error function, the density of mainstream traffic can stabilize at the set value, while realizing the maximum decrease of on-ramp queues. Also, VISSIM Component Object Model of Application Programming Interface is used for comparison of the MDB-RM model with a noncontrol, ALINEA, and density-based model, respectively. The simulation results indicate that the MDB-RM model is capable of achieving a comprehensive optimal result from both sides of the mainstream and on-ramp.

  4. Development of the Calibrator of Reactivity Meter Using PC-Based DAQ System

    International Nuclear Information System (INIS)

    Edison; Mariatmo, A.; Sujarwono

    2007-01-01

    The reactivity meter calibrator has been developed by applying the PC-Based DAQ System programmed using LabVIEW. The Output of the calibrator is voltage proportional to neutron density n(t) corresponding to the step reactivity change ρ 0 . The “Kalibrator meter reactivitas.vi” program calculates seven roots and coefficients of solution n(t) of Reactor Kinetic equation using the in-hour equation. Based on data of dt = t k+1 - t k and t 0 = 0 input by user, the program approximates n(t) for each time interval t k ≤ t k+1 , where k = 0, 1, 2, 3, .... by a step function n(t) = n 0 ∑ j=1 7 A j e ω j t k . Then the program commands the DAQ device to output voltage V(t) = n(t) Volt at time t. The measurement of standard reactivity with the meter reactivity showed that the maximum deviation of measured reactivity from its standard were less than 1 %. (author)

  5. Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements....

  6. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    Science.gov (United States)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  7. Experimental characterization of a new multicasting node architecture based on space splitters and wavelength converters

    Science.gov (United States)

    He, Hao; Su, Yikai; Hu, Peigang; Hu, Weisheng

    2005-11-01

    IPTV-based broadband services such as interactive multimedia and video conferencing are considered as promising revenue-adding services, and multicast is proven to be a good supplier to support these applications for its reduced consumption of network bandwidth. Generally there are two approaches to implement optical layer multicast. One is space-domain multicast using space-splitter which is low cost but has wavelength continuity constraint, the other is frequency-domain multicast using wavelength converter which resolves the wavelength continuity but with high costs. A new multicasting node which adopts both space-domain multicast and frequency-domain multicast is recently discussed. In this paper we present an experimental demonstration of the new multicasting node architecture based on space splitters and wavelength converters, measurements to characterize such a node are provided.

  8. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    Science.gov (United States)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  9. Dense Wavelength Division (De Multiplexers Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    S. BENAMEUR

    2014-05-01

    Full Text Available This study is to measure the impact of demultiplexers based on Fiber Bragg Grating (FBG filter on performance of DWDM system for optical access network. An optical transmission link has been established in which we have inserted a demultiplexer based on four different FBG filters. The first step will be the characterization of FBG’s filters (i.e. uniform FBG, Gaussian apodized Grating, chirped FBG to explain their behavior in the optical link. The simulations were conducted for different fiber’s lengths, filter bandwidth and different received power to get the best system performance. This helped to assess their impact on the link performance in terms of Bit Error Rate (BER.

  10. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique

    Science.gov (United States)

    Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua

    2018-05-01

    A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.

  11. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  12. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  13. Design and Implementation of Pointer-Type Multi Meters Intelligent Recognition Device Based on ARM Platform

    Science.gov (United States)

    Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu

    2018-01-01

    This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.

  14. API testing program - calibration of microprocessor based flowmeters for integrated metering systems

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Kenneth D. [Omni Flow Computers, Inc., Stafford, TX (United States)

    2005-07-01

    Microprocessor based flowmeter technologies for liquids, such as Coriolis mass meters, and Ultrasonic flowmeters hold great promise. These technologies offer many advantages, such as no rotating parts, self-diagnostic checks, which can help anticipate and warn of impending failures before they have a major impact on the measurement. These meters are substantially different though than other primary devices due to their heavy reliance on the accompanying secondary electronics. One method to prove that they are accurate would be proving the flowmeter, using a pipe prover or small volume prover (SVP), but these proving methods are designed to count 'real time' pulses from a turbine or PD meter between a known volume, they are not designed to count 'time delayed' 'manufactured pulses' from a microprocessor. There are limitations of the manufactured pulse train and it affects the ability of the flowmeter to be proved using current proving technology. The author of this paper, a chairman of an American Petroleum Institute working group, investigated how the 'microprocessor generated pulses' produced by these types of flowmeters, interacted with the existing measurement technologies in use today. Several microprocessor based flowmeter technologies have been tested, including; Ultrasonic, Coriolis, and Helical Turbine with pulse multiplying preamplifier. Wherever possible, flowmeters of various sizes, and from several vendors have been tested. A significant amount of data has been collected which sheds light into why these types of flowmeters are sometimes difficult to prove. This paper describes the API testing program, and the methodology behind it. It presents results and findings, and offers specific recommendations that may eventually be incorporated into API documents and/or standards in the future. (author)

  15. Non-intrusive appliance load monitoring system based on a modern kWh-meter

    Energy Technology Data Exchange (ETDEWEB)

    Pihala, H. [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-01

    Non-intrusive appliance load monitoring (NIALM) is a fairly new method to estimate load profiles of individual electric appliances in a small building, like a household, by monitoring the whole load at a single point with one recording device without sub-meters. Appliances have special electrical characteristics, the positive and negative active and reactive power changes during the time they are switched on or off. These changes are called events and are detected with a monitoring device called an event recorder. Different NIALM-concepts developed in Europe and in the United States are generally discussed. The NIALM-concept developed in this study is based on a 3-phase, power quality monitoring kWh-meter and unique load identification algorithms. This modern kWh-meter with a serial data bus to a laptop personal computer is used as die event recorder. The NIALM-concept of this presentation shows for the first time how a kWh-meter can be used at the same time for billing, power quality and appliance end-use monitoring. An essential part of the developed NIALM-system prototype is the software of load identification algorithms which runs in an off-line personal computer. These algorithms are able to identify, with a certain accuracy, both two-state and multi-state appliances. This prototype requires manual-setup in which the naming of appliances is performed. The results of the prototype NIALMS were verified in a large, single family detached house and they were compared to the results of other prototypes in France and the United States, although this comparison is difficult because of different supply systems, appliance stock and number of tested sites. Different applications of NIALM are discussed. Gathering of load research data, verification of DSM-programs, home automation, failure analysis of appliances and security surveillance of buildings are interesting areas of NIALM. Both utilities and customers can benefit from these applications. It is possible to

  16. Design of Remote Heat-Meter System Based on Trusted Technology

    Science.gov (United States)

    Yu, Changgeng; Lai, Liping

    2018-03-01

    This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.

  17. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Chabowski Konrad

    2015-03-01

    Full Text Available As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.

  18. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  19. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  20. The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm-Particle Swarm Optimization

    Science.gov (United States)

    Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng

    2018-03-01

    To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

  1. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  2. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  3. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  4. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  5. Realization of OSW/AWG-based bipolar wavelength time optical CDMA for wired wireless transmissions

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa

    2009-01-01

    This study proposes a novel radio-over-fiber (RoF) system using two-dimensional (2-D) optical code-division multiple-access (OCDMA) scheme using pseudorandom (PN) codes for the time-spreading and wavelength-hopping ( t-spreading/ λ-hopping) codes. The 2-D system is implemented using optical switches (OSWs) and arrayed-waveguide grating (AWG) routers. By constructing 2-D codes using bipolar PN codes rather than unipolar codes provides a significant increase in the maximum permissible number of active radio base stations (RBSs). In general, the phase-induced intensity noise (PIIN) generated at high optical intensities significantly degrades the performance of a conventional multi-wavelength scheme. However, the OSW-based time-spreading method employed in the current 2-D OCDMA scheme effectively suppresses the PIIN effect. Additionally, multiple-access interference (MAI) is suppressed by the use of a wavelength/time balanced detector structure in the network receivers. The numerical evaluation results demonstrate that under PIIN- and MAI-limited conditions, the proposed system outperforms a conventional multi-wavelength OCDMA scheme by using the spectral spreading scheme to suppress beating noise. Especially, the t-spreading encoder/decoder (codec) groups share the same wavelength codec and the overall complexity is reduced and system network becomes more compact.

  6. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  7. Voltage Harmonics Monitoring in a Microgrid Based on Advanced Metering Infrastructure (AMI)

    DEFF Research Database (Denmark)

    Firoozabadi, Mehdi Savaghebi; Guan, Yajuan; Quintero, Juan Carlos Vasquez

    2015-01-01

    Smart meters are the main part of Advanced Metering Infrastructure (AMI) and are usually able to provide detailed information on customers’ energy consumptions, voltage variations and interruptions. In addition, these meters are potentially able to provide more information about power quality (PQ......) disturbances. This paper will address the monitoring of voltage harmonics utilizing the features of smart meters and AMI system. To do this, the first step is to select proper indices to quantify the distortion. An important point which should be considered in this regard is the limited processing power...

  8. Analysis of a wavelength selectable cascaded DFB laser based on the transfer matrix method

    International Nuclear Information System (INIS)

    Xie Hongyun; Chen Liang; Shen Pei; Sun Botao; Wang Renqing; Xiao Ying; You Yunxia; Zhang Wanrong

    2010-01-01

    A novel cascaded DFB laser, which consists of two serial gratings to provide selectable wavelengths, is presented and analyzed by the transfer matrix method. In this method, efficient facet reflectivity is derived from the transfer matrix built for each serial section and is then used to simulate the performance of the novel cascaded DFB laser through self-consistently solving the gain equation, the coupled wave equation and the current continuity equations. The simulations prove the feasibility of this kind of wavelength selectable laser and a corresponding designed device with two selectable wavelengths of 1.51 μm and 1.53 μm is realized by experiments on InP-based multiple quantum well structure. (semiconductor devices)

  9. Efficient IP Traffic over Optical Network Based on Wavelength Translation Switching

    DEFF Research Database (Denmark)

    Jha, Vikas; Kalia, Kartik; Chowdhary, Bhawani Shankar

    2016-01-01

    With the advent of TCP/IP protocol suite the overall era of communication technologies had been redefined. Now, we can’t ignore the presence of huge amount of IP traffic; data, voice or video increasing day by day creating more pressure on existing communicating media and supporting back bone....... With the humongous popularity of Internet the overall traffic on Internet has the same story. Focusing on transmission of IP traffic in an optical network with signals remaining in their optical nature generated at particular wavelength, proposed is the switching of optically generated IP packets through optical...... cross connects based on translation of wavelength when an IP packet is crossing the optical cross connect. Adding the concepts of layer 3 routing protocols along with the wavelength translation scheme, will help in spanning the overall optical network for a larger area....

  10. Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes

    Science.gov (United States)

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan

    2015-01-01

    This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777

  11. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  12. High-reflectance La/B-based multilayer mirror for 6.x  nm wavelength

    NARCIS (Netherlands)

    Kuznetsov, Dmitry; Yakshin, Andrey; Sturm, Jacobus Marinus; van de Kruijs, Robbert Wilhelmus Elisabeth; Louis, Eric; Bijkerk, Frederik

    2015-01-01

    We report a hybrid thin-film deposition procedure to significantly enhance the reflectivity of La/B-based multilayer structures. This is of relevance for applications of multilayer optics at 6.7-nm wavelength and beyond. Such multilayers showed a reflectance of 64.1% at 6.65 nm measured at

  13. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both...

  14. Prediction based active ramp metering control strategy with mobility and safety assessment

    Science.gov (United States)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  15. The design and application of virtual ion meter based on LABVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiangyuan; Tang, Yonghuai

    2009-08-01

    The virtual ion meter is developed based on LABVIEW 8.0 by homemade adjusting circuit, data acquisition (DAQ) board, and computer. This note provides details of the structure of testing system and flow chart of DAQ program. This virtual instrument system is applied to multitask testing such as determining rate constant of second-order reaction by pX, pX potentiometric titration, determining oscillating reaction by potential, etc. The result of application indicates that this test system not only has function of real-time data acquiring, displaying, storage, but also realizes remote monitoring and controlling test-control spots through internet, automatic analyzing and processing of data, reporting of result according to the different testing task; moreover, the veracity and repeatability of data processing result are higher than the results of manual data processing.

  16. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    International Nuclear Information System (INIS)

    Zhang, Zhu; Li, Hongbin; Hu, Chen; Jiao, Yang; Tang, Dengping

    2017-01-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer. (paper)

  17. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    Science.gov (United States)

    Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang

    2017-10-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.

  18. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  19. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  20. A genetic algorithm-based framework for wavelength selection on sample categorization.

    Science.gov (United States)

    Anzanello, Michel J; Yamashita, Gabrielli; Marcelo, Marcelo; Fogliatto, Flávio S; Ortiz, Rafael S; Mariotti, Kristiane; Ferrão, Marco F

    2017-08-01

    In forensic and pharmaceutical scenarios, the application of chemometrics and optimization techniques has unveiled common and peculiar features of seized medicine and drug samples, helping investigative forces to track illegal operations. This paper proposes a novel framework aimed at identifying relevant subsets of attenuated total reflectance Fourier transform infrared (ATR-FTIR) wavelengths for classifying samples into two classes, for example authentic or forged categories in case of medicines, or salt or base form in cocaine analysis. In the first step of the framework, the ATR-FTIR spectra were partitioned into equidistant intervals and the k-nearest neighbour (KNN) classification technique was applied to each interval to insert samples into proper classes. In the next step, selected intervals were refined through the genetic algorithm (GA) by identifying a limited number of wavelengths from the intervals previously selected aimed at maximizing classification accuracy. When applied to Cialis®, Viagra®, and cocaine ATR-FTIR datasets, the proposed method substantially decreased the number of wavelengths needed to categorize, and increased the classification accuracy. From a practical perspective, the proposed method provides investigative forces with valuable information towards monitoring illegal production of drugs and medicines. In addition, focusing on a reduced subset of wavelengths allows the development of portable devices capable of testing the authenticity of samples during police checking events, avoiding the need for later laboratorial analyses and reducing equipment expenses. Theoretically, the proposed GA-based approach yields more refined solutions than the current methods relying on interval approaches, which tend to insert irrelevant wavelengths in the retained intervals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    Science.gov (United States)

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  2. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    International Nuclear Information System (INIS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-01-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)

  3. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  4. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  5. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    Science.gov (United States)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  6. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  7. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  8. Compact mass flow meter based on a micro Coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Katerberg, M.R.; Lammerink, Theodorus S.J.; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2012-01-01

    In this paper we present a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 2 g/h (for water at a pressure drop of 2 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading. The temperature drift between 10 and 50 ºC is below 1 mg/h/ºC. The meter is robust,

  9. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    OpenAIRE

    Woong Go; Jin Kawk

    2014-01-01

    A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI) is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted in...

  10. Silicon based mechanic-photonic wavelength converter for infrared photo-detection

    Science.gov (United States)

    Rudnitsky, Arkady; Agdarov, Sergey; Gulitsky, Konstantin; Zalevsky, Zeev

    2017-06-01

    In this paper we present a new concept to realize a mechanic-photonic wavelength converter in silicon chip by construction of nanorods and by modulating the input illumination at temporal frequency matched to the mechanic resonance of the nanorods. The use case is to realize an infrared photo detector in silicon which is not based on absorption but rather on the mechanical interaction of the nanorods with the incoming illumination.

  11. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  12. Investigation on IMCP based clustering in LTE-M communication for smart metering applications

    Directory of Open Access Journals (Sweden)

    Kartik Vishal Deshpande

    2017-06-01

    Full Text Available Machine to Machine (M2M is foreseen as an emerging technology for smart metering applications where devices communicate seamlessly for information transfer. The M2M communication makes use of long term evolution (LTE as its backbone network and it results in long-term evolution for machine type communication (LTE-M network. As huge number of M2M devices is to be handled by single eNB (evolved Node B, clustering is exploited for efficient processing of the network. This paper investigates the proposed Improved M2M Clustering Process (IMCP based clustering technique and it is compared with two well-known clustering algorithms, namely, Low Energy Adaptive Clustering Hierarchical (LEACH and Energy Aware Multihop Multipath Hierarchical (EAMMH techniques. Further, the IMCP algorithm is analyzed with two-tier and three-tier M2M systems for various mobility conditions. The proposed IMCP algorithm improves the last node death by 63.15% and 51.61% as compared to LEACH and EAMMH, respectively. Further, the average energy of each node in IMCP is increased by 89.85% and 81.15%, as compared to LEACH and EAMMH, respectively.

  13. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum

    Directory of Open Access Journals (Sweden)

    M. BHAMBI

    2006-05-01

    Full Text Available A method is described for preparation of a dissolved oxygen meter (make Aqualytic, Germany based triglyceride biosensor employing a polyvinyl chloride (PVC membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase The biosensor measures dissolved O2 utilized in the oxidation of triglyceride (TG by membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase (GPO, which is directly proportional to (TG concentration. The biosensor showed optimum response within 10-15 sec at pH 7.5 and 39.5 ºC. A linear relationship was obtained between the (TG concentration from 5mM to 20mM and oxygen consumed (mg/L. The biosensor was employed for determination of triglyceride in serum. The within and between batch coefficient of variation (CV were < 2.18 % and < 1.7% respectively. The minimum detection limit of the biosensor was 0.35 mM. A study of interference revealed that ascorbic acid, cholesterol and bilirubin caused 13%, 15%, and 12% interference, respectively.The biosensor is portable and can be used outside the laboratory.

  14. Quasidistributed temperature sensor based on dense wavelength-division multiplexing optical fiber delay

    Science.gov (United States)

    Su, Jun; Yang, Ning; Fan, Zhiqiang; Qiu, Qi

    2017-10-01

    We report on a fiber-optic delay-based quasidistributed temperature sensor with high precision. The device works by detecting the delay induced by the temperature instead of the spectrum. To analyze the working principle of this sensor, the thermal dependence of the fiber-optic delay was theoretically investigated and the delay-temperature coefficient was measured to be 42.2 ps/km°C. In this sensor, quasidistributed measurement of temperature could be easily realized by dense wavelength-division multiplexing and wavelength addressing. We built and tested a prototype quasidistributed temperature sensor with eight testing points equally distributed along a 32.61-km-long fiber. The experimental results demonstrate an average error of economic temperature measurements.

  15. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  16. MULTICHANNEL DISTRIBUTION METER: A VERITABLE ...

    African Journals Online (AJOL)

    eobe

    Usually, commercial home owners preferred the installation of one or few .... communication (GSM) based solution were presented. The authors ... meters. The proposed meters in their work uses .... The most probable data entry component to ...

  17. Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft

    Energy Technology Data Exchange (ETDEWEB)

    Depuru, Soma Shekara Sreenadh Reddy, E-mail: sdepuru@rockets.utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States); Wang Lingfeng, E-mail: Lingfeng.Wang@utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States); Devabhaktuni, Vijay, E-mail: Vijay.Devabhaktuni@utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States)

    2011-02-15

    Non-technical loss (NTL) during transmission of electrical energy is a major problem in developing countries and it has been very difficult for the utility companies to detect and fight the people responsible for theft. Electricity theft forms a major chunk of NTL. These losses affect quality of supply, increase load on the generating station, and affect tariff imposed on genuine customers. This paper discusses the factors that influence the consumers to steal electricity. In view of these ill effects, various methods for detection and estimation of the theft are discussed. This paper proposes an architectural design of smart meter, external control station, harmonic generator, and filter circuit. Motivation of this work is to deject illegal consumers, and conserve and effectively utilize energy. As well, smart meters are designed to provide data of various parameters related to instantaneous power consumption. NTL in the distribution feeder is computed by external control station from the sending end information of the distribution feeder. If a considerable amount of NTL is detected, harmonic generator is operated at that feeder for introducing additional harmonic component for destroying appliances of the illegal consumers. For illustration, cost-benefit analysis for implementation of the proposed system in India is presented. - Research Highlights: {yields} Discusses several cases, issues and setbacks in the design of smart meters. {yields} Evaluates socio-economic, infrastructural, political and power quality issues. {yields} Proposes a smart meter that overcame several setbacks in implementation. {yields} Proposes a smart meter that chastises appliances of illegal consumers.

  18. Rigorous Progress on Algorithms Based Routing and Wavelength Assignment in Trans-Egypt Network (TEGYNET) Management

    OpenAIRE

    Abd El–Naser A. Mohammed; Ahmed Nabih Zaki Rashed; Osama S. Fragallah; Mohamed G. El-Abyad

    2013-01-01

    In simple wavelength-division multiplexed (WDM) networks, a connection must be established along a route using a common wavelength on all of the links along the route. The introduction of wavelength converters into WDM cross connects increases the hardware cost and complexity. Given a set of connection requests, the routing and wavelength assignment problem involves finding a route (routing) and assigning a wavelength to each request. This paper has presented the WDM technology is being exten...

  19. StakeMeter: value-based stakeholder identification and quantification framework for value-based software systems.

    Science.gov (United States)

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N A; Bin Zaheer, Kashif

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called 'StakeMeter'. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error.

  20. StakeMeter: value-based stakeholder identification and quantification framework for value-based software systems.

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Babar

    Full Text Available Value-based requirements engineering plays a vital role in the development of value-based software (VBS. Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called 'StakeMeter'. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error.

  1. Data Mining Techniques for Detecting Household Characteristics Based on Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2015-07-01

    Full Text Available The main goal of this research is to discover the structure of home appliances usage patterns, hence providing more intelligence in smart metering systems by taking into account the usage of selected home appliances and the time of their usage. In particular, we present and apply a set of unsupervised machine learning techniques to reveal specific usage patterns observed at an individual household. The work delivers the solutions applicable in smart metering systems that might: (1 contribute to higher energy awareness; (2 support accurate usage forecasting; and (3 provide the input for demand response systems in homes with timely energy saving recommendations for users. The results provided in this paper show that determining household characteristics from smart meter data is feasible and allows for quickly grasping general trends in data.

  2. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  3. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  4. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  5. An agent-based model of electricity consumer : Smart metering policy implications in Europe

    NARCIS (Netherlands)

    Vasiljevska, J.; Douw, J.V.; Mengolini, A.; Nikolic, I.

    2017-01-01

    EU Regulation 2009/72/EC concerning common rules for internal market in electricity calls upon 80% of EU electricity consumers to be equipped with smart metering systems by 2020, provided that a positive economic assessment of all long-term costs and benefits to the market and the individual

  6. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    Directory of Open Access Journals (Sweden)

    Mahin K. Atiq

    2013-09-01

    Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

  7. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    Science.gov (United States)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  8. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  9. Good standards for smart meters

    NARCIS (Netherlands)

    Hoenkamp, R.A.; Huitema, G.B.

    2012-01-01

    This paper examines what lessons can be learned from the rollout of smart meters in the Netherlands to improve the European smart meter standardization. This study is based on the case of the Dutch meter rollout which preparations started in 2005 but finally was delayed until 2011 by governmental

  10. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Zhang, Lin; Ko, Young-Chai

    2017-01-01

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity

  11. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  12. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  13. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    International Nuclear Information System (INIS)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  14. Compact mass flow meter based on a micro coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; van de Geest, Jan; Katerberg, Marcel; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Lötters, Joost Conrad

    2013-01-01

    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1

  15. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    Science.gov (United States)

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  16. Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements....

  17. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    Science.gov (United States)

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  18. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  19. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual-wavelength

  20. Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI.

    Science.gov (United States)

    Lipka, Timo; Moldenhauer, Lennart; Müller, Jörg; Trieu, Hoc Khiem

    2015-07-27

    Large-scale integrated silicon photonic circuits suffer from two inevitable issues that boost the overall power consumption. First, fabrication imperfections even on sub-nm scale result in spectral device non-uniformity that require fine-tuning during device operation. Second, the photonic devices need to be actively corrected to compensate thermal drifts. As a result significant amount of power is wasted if no athermal and wavelength-trimmable solutions are utilized. Consequently, in order to minimize the total power requirement of photonic circuits in a passive way, trimming methods are required to correct the device inhomogeneities from manufacturing and athermal solutions are essential to oppose temperature fluctuations of the passive/active components during run-time. We present an approach to fabricate CMOS backend-compatible and athermal passive photonic filters that can be corrected for fabrication inhomogeneities by UV-trimming based on low-loss amorphous-SOI waveguides with TiO2 cladding. The trimming of highly confined 10 μm ring resonators is proven over a free spectral range retaining athermal operation. The athermal functionality of 2nd-order 5 μm add/drop microrings is demonstrated over 40°C covering a broad wavelength interval of 60 nm.

  1. Terahertz-wave differential detection based on simultaneous dual-wavelength up-conversion

    Directory of Open Access Journals (Sweden)

    Yuma Takida

    2017-03-01

    Full Text Available We report a terahertz (THz-wave differential detection based on simultaneous dual-wavelength up-conversion in a nonlinear optical MgO:LiNbO3 crystal with optical and electronic THz-wave sources. The broadband parametric gain and noncollinear phase-matching of MgO:LiNbO3 provide efficient conversion from superposed THz waves to spatially distributed near-infrared (NIR beams to function as a dispersive THz-wave spectrometer without any additional dispersive element. We show that the μW-level THz waves from two independent sources, a 0.78-THz injection-seeded THz-wave parametric generator (is-TPG and a 1.14-THz resonant tunneling diode (RTD, are simultaneously up-converted to two NIR waves and then detected with two NIR photodetectors. By applying a balanced detection scheme to this dual-frequency detection, we demonstrate THz-wave differential imaging of maltose and polyethylene pellets in the transmission geometry. This dual-wavelength detection is applicable to more than three frequencies and broadband THz-wave radiation for real-time THz-wave spectroscopic detection and imaging.

  2. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    Science.gov (United States)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  3. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    International Nuclear Information System (INIS)

    Pardo, D; Grajal, J

    2015-01-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology. (paper)

  4. Experimental verification of preset time count rate meters based on adaptive digital signal processing algorithms

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar D.

    2005-01-01

    Full Text Available Experimental verifications of two optimized adaptive digital signal processing algorithms implemented in two pre set time count rate meters were per formed ac cording to appropriate standards. The random pulse generator realized using a personal computer, was used as an artificial radiation source for preliminary system tests and performance evaluations of the pro posed algorithms. Then measurement results for background radiation levels were obtained. Finally, measurements with a natural radiation source radioisotope 90Sr-90Y, were carried out. Measurement results, con ducted without and with radio isotopes for the specified errors of 10% and 5% showed to agree well with theoretical predictions.

  5. StakeMeter: Value-Based Stakeholder Identification and Quantification Framework for Value-Based Software Systems

    Science.gov (United States)

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N. A.; Zaheer, Kashif Bin

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called ‘StakeMeter’. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error. PMID:25799490

  6. Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon

    Science.gov (United States)

    Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili

    2017-09-01

    The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.

  7. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    Science.gov (United States)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  8. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    Science.gov (United States)

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  9. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  10. Wavelengths and energy levels of Xe V and Xe VI obtained by collision-based spectroscopy

    International Nuclear Information System (INIS)

    Larsson, M.O.; Gonzalez, A.M.; Hallin, R.; Heijkenskjoeld, F.; Nystroem, B.; O'Sullivan, G.; Weber, C.; Waennstroem, A.

    1996-01-01

    We have utilized collision-based spectroscopy to investigate the spectra of Xe V and Xe VI. The radiation emitted following electron capture by 50 keV Xe 5+ and 60 keV Xe 6+ ions impinging on a He (Ar) gas target has been recorded in the 350-6000 (1200-2500) A wavelength region. A number of new energy levels of Xe V and Xe VI have been established from lines identified by us. In particular, we have observed and identified transitions from the 5s 2 5p4f (5s 2 4f) configuration of Xe V (Xe VI). The analysis was supported by Hartree-Fock calculations. (orig.)

  11. User's guide for survey-meter- and film-badge-dosimetry data bases

    International Nuclear Information System (INIS)

    Phillips, W.G.; Sherman, S.; Young, R.

    1981-05-01

    This manual describes the data storage and retrieval system designed by Environmental Monitoring Systems Laboratory Las Vegas (EMSL-LV) for radiation exposure data recorded in offsite areas during and after nuclear weapons tests conducted at the Nevada Test Site in the 1950's and early 1960's. Referred to hereinafter as the EMSL-LV system, this system contains two distinct subsets of offsite radiological measurements collected during early nuclear atmospheric tests at the Nevada Test Site. The purpose of the manual is to present the methods for using the EMSL-LV system to examine all or any portion of either data subset. The two distinct subsets which comprise the EMSL-LV system are survey meter data and film badge dosimetry data. The survey meter data consist of readings obtained from portable radiation monitoring instruments used around the Nevada Test Site during the 1950's and early 1960's to measure radiation exposure rates resulting from the nuclear testing program. The dosimetry data consist of measurements of integrated radiation exposure made with film badge type dosimeters in areas surrounding the Nevada Test Site

  12. Electricity theft. Overview, issues, prevention and a smart meter based approach to control theft

    International Nuclear Information System (INIS)

    Depuru, Soma Shekara Sreenadh Reddy; Wang, Lingfeng; Devabhaktuni, Vijay

    2011-01-01

    Non-technical loss (NTL) during transmission of electrical energy is a major problem in developing countries and it has been very difficult for the utility companies to detect and fight the people responsible for theft. Electricity theft forms a major chunk of NTL. These losses affect quality of supply, increase load on the generating station, and affect tariff imposed on genuine customers. This paper discusses the factors that influence the consumers to steal electricity. In view of these ill effects, various methods for detection and estimation of the theft are discussed. This paper proposes an architectural design of smart meter, external control station, harmonic generator, and filter circuit. Motivation of this work is to deject illegal consumers, and conserve and effectively utilize energy. As well, smart meters are designed to provide data of various parameters related to instantaneous power consumption. NTL in the distribution feeder is computed by external control station from the sending end information of the distribution feeder. If a considerable amount of NTL is detected, harmonic generator is operated at that feeder for introducing additional harmonic component for destroying appliances of the illegal consumers. For illustration, cost-benefit analysis for implementation of the proposed system in India is presented. (author)

  13. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    Directory of Open Access Journals (Sweden)

    Woong Go

    2014-01-01

    Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.

  14. Electricity theft. Overview, issues, prevention and a smart meter based approach to control theft

    Energy Technology Data Exchange (ETDEWEB)

    Depuru, Soma Shekara Sreenadh Reddy; Wang, Lingfeng; Devabhaktuni, Vijay [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States)

    2011-02-15

    Non-technical loss (NTL) during transmission of electrical energy is a major problem in developing countries and it has been very difficult for the utility companies to detect and fight the people responsible for theft. Electricity theft forms a major chunk of NTL. These losses affect quality of supply, increase load on the generating station, and affect tariff imposed on genuine customers. This paper discusses the factors that influence the consumers to steal electricity. In view of these ill effects, various methods for detection and estimation of the theft are discussed. This paper proposes an architectural design of smart meter, external control station, harmonic generator, and filter circuit. Motivation of this work is to deject illegal consumers, and conserve and effectively utilize energy. As well, smart meters are designed to provide data of various parameters related to instantaneous power consumption. NTL in the distribution feeder is computed by external control station from the sending end information of the distribution feeder. If a considerable amount of NTL is detected, harmonic generator is operated at that feeder for introducing additional harmonic component for destroying appliances of the illegal consumers. For illustration, cost-benefit analysis for implementation of the proposed system in India is presented. (author)

  15. AlGaN-based laser diodes for the short-wavelength ultraviolet region

    International Nuclear Information System (INIS)

    Yoshida, Harumasa; Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Uchiyama, Kazuya; Kan, Hirofumi

    2009-01-01

    We have demonstrated the room-temperature operation of GaN/AlGaN and indium-free AlGaN multiple-quantum-well (MQW) laser diodes under the pulsed-current mode. We have successfully grown low-dislocation-density AlGaN films with AlN mole fractions of 20 and 30% on sapphire substrates using the hetero-facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method. GaN/AlGaN and AlGaN MQW laser diodes have been fabricated on the low-dislocation-density Al 0.2 Ga 0.8 N and Al 0.3 Ga 0.7 N films, respectively. The GaN/AlGaN MQW laser diodes lased at a peak wavelength ranging between 359.6 and 354.4 nm. A threshold current density of 8 kA cm -2 , an output power as high as 80 mW and a differential external quantum efficiency (DEQE) of 17.4% have been achieved. The AlGaN MQW laser diodes lased at a peak wavelength down to 336.0 nm far beyond the GaN band gap. For the GaN/AlGaN MQW laser diodes, the modal gain coefficient and the optical internal loss are estimated to be 4.7±0.6 cm kA -1 and 10.6±2.7 cm -1 , respectively. We have observed that the characteristic temperature T 0 ranges from 132 to 89 K and DEQE shows an almost stable tendency with increase of temperature. A temperature coefficient of 0.049 nm K -1 is also found for the GaN/AlGaN MQW laser diode. The results for the AlGaN-based laser diodes grown on high-quality AlGaN films presented here will be essential for the future development of laser diodes emitting much shorter wavelengths.

  16. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    Science.gov (United States)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  17. Phased-array-based photonic integrated circuits for wavelength division multiplexing applications

    NARCIS (Netherlands)

    Staring, A.A.M.; Smit, M.K.

    1997-01-01

    Wavelength division multiplexing (WDM) technology provides many options to the design of flexible all-optical networks. In order to exploit these options to their full potential, photonic integrated circuits (PICs) for wavelength routing and switching will be indispensable. One of the basic building

  18. Design of multi-wavelength tunable filter based on Lithium Niobate

    Science.gov (United States)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  19. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  20. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  1. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-01-01

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  2. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  3. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    Science.gov (United States)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  4. Hydrogenation of Very Long Wavelength Infrared Focal Plane Arrays Based on Type II Superlattices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to advance the Ga-free InAs/InAsSb type II superlattice (T2SL) materials technology for very long wavelength infrared (VLWIR) focal plane arrays (FPAs) by...

  5. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ronald E., E-mail: rbell@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A high-throughput spectrometer for the 400–820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup −1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  6. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Rasoulzadeh Zali, Aref; Chung, Il-Sug

    2017-01-01

    We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelen......We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered...

  7. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    Science.gov (United States)

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  8. Sensitive Wavelengths Selection in Identification of Ophiopogon japonicus Based on Near-Infrared Hyperspectral Imaging Technology

    Directory of Open Access Journals (Sweden)

    Zhengyan Xia

    2017-01-01

    Full Text Available Hyperspectral imaging (HSI technology has increasingly been applied as an analytical tool in fields of agricultural, food, and Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables that contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy. In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA, loading weights (LW, regression coefficients (RC, uninformative variable elimination (UVE, UVE-SPA, competitive adaptive reweighted sampling (CARS, interval partial least squares regression (iPLS, backward iPLS (BiPLS, forward iPLS (FiPLS, and genetic algorithms (GA-PLS. One linear technique (partial least squares-discriminant analysis was established for the evaluation of identification. And a nonlinear calibration model, support vector machine (SVM, was also provided for comparison. The results indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles in the multivariate analysis, which can be used for subsequent modeling analysis.

  9. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    Science.gov (United States)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  10. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  11. Soliton-based ultrafast multi-wavelength nonlinear switching in dual-core photonic crystal fibre

    International Nuclear Information System (INIS)

    Stajanca, P; Pysz, D; Michalka, M; Bugar, I; Andriukaitis, G; Balciunas, T; Fan, G; Baltuska, A

    2014-01-01

    Systematic experimental study of ultrafast multi-wavelength all-optical switching performance in a dual-core photonic crystal fibre is presented. The focus is on nonlinearly induced switching between the two output ports at non-excitation wavelengths, which are generated during nonlinear propagation of femtosecond pulses in the anomalous dispersion region of a dual-core photonic crystal fibre made of multicomponent glass. Spatial and spectral characteristics of the fibre output radiation were measured separately for both fibre cores under various polarization and intensity conditions upon selective, individual excitation of each fibre core. Polarization-controlled nonlinear switching performance at multiple non-excitation wavelengths was demonstrated in the long-wavelength optical communication bands and beyond. Depending on the input pulse polarization, narrowband switching operation at 1560 nm and 1730 nm takes place with double core extinction ratio contrasts of 9 dB and 14.5 dB, respectively. Moreover, our approach allows switching with simultaneous wavelength shift from 1650 to 1775 nm with extinction ratio contrast larger than 18 dB. In addition, non-reciprocal behaviour of the soliton fission process under different fibre core excitations was observed and its effect on the multi-wavelength nonlinear switching performance was explained, taking into account the slight dual-core structure asymmetry. The obtained results represent ultrafast all-optical switching with an extended dimension of wavelength shift, controllable with both the input radiation intensity and the polarization by simple propagation along a 14 mm long fibre. (paper)

  12. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    Science.gov (United States)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  13. Implementing Child-focused Activity Meter Utilization into the Elementary School Classroom Setting Using a Collaborative Community-based Approach.

    Science.gov (United States)

    Lynch, B A; Jones, A; Biggs, B K; Kaufman, T; Cristiani, V; Kumar, S; Quigg, S; Maxson, J; Swenson, L; Jacobson, N

    2015-12-01

    The prevalence of pediatric obesity has increased over the past 3 decades and is a pressing public health program. New technology advancements that can encourage more physical in children are needed. The Zamzee program is an activity meter linked to a motivational website designed for children 8-14 years of age. The objective of the study was to use a collaborative approach between a medical center, the private sector and local school staff to assess the feasibility of using the Zamzee Program in the school-based setting to improve physical activity levels in children. This was a pilot 8-week observational study offered to all children in one fifth grade classroom. Body mass index (BMI), the amount of physical activity by 3-day recall survey, and satisfaction with usability of the Zamzee Program were measured pre- and post-study. Out of 11 children who enrolled in the study, 7 completed all study activities. In those who completed the study, the median (interquartile range) total activity time by survey increased by 17 (1042) minutes and the BMI percentile change was 0 (8). Both children and their caregivers found the Zamzee Activity Meter (6/7) and website (6/7) "very easy" or "easy" to use. The Zamzee Program was found to be usable but did not significantly improve physical activity levels or BMI. Collaborative obesity intervention projects involving medical centers, the private sector and local schools are feasible but the effectiveness needs to be evaluated in larger-scale studies.

  14. A Mobile-based Platform for Big Load Profiles Data Analytics in Non-Advanced Metering Infrastructures

    Directory of Open Access Journals (Sweden)

    Moussa Sherin

    2016-01-01

    Full Text Available With the rapidly increase of electricity demand around the world due to industrialization and urbanization, this turns the availability of precise knowledge about the consumption patterns of consumers to a valuable asset for electricity providers, given the current competitive electricity market. This would allow them to provide satisfactory services in time of load peaks and to control fraud and abuse cases. Despite of this crucial necessity, this is currently very hard to achieve in many developing countries since smart meters or advanced metering infrastructures (AMIs are not yet settled there to monitor and report energy usages. Whereas the communication and information technologies have widely emerged in such nations, allowing the enormous spread of smart devices among population. In this paper, we present mobile-based BLPDA, a novel platform for big data analytics of consumerss’ load profiles (LPs in the absence of AMIs’ establishment. The proposed platform utilizes mobile computing in order to collect the consumptions of consumers, build their LPs, and analyze the aggregated usages data. Thus, allowing electricity providers to have better vision for an enhanced decision making process. The experimental results emphasize the effectiveness of our platform as an adequate alternative for AMIs in developing countries with minimal cost.

  15. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    Directory of Open Access Journals (Sweden)

    Hyeong Jin Chun

    2018-03-01

    Full Text Available To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we

  16. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    Science.gov (United States)

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  17. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  18. WAVELENGTH SELECTION OF HYPERSPECTRAL LIDAR BASED ON FEATURE WEIGHTING FOR ESTIMATION OF LEAF NITROGEN CONTENT IN RICE

    Directory of Open Access Journals (Sweden)

    L. Du

    2016-06-01

    Full Text Available Hyperspectral LiDAR (HSL is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS and support vector machines (SVMs based on calibration and validation datasets respectively. The results indicate that I wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II The chosen wavelength has a high correlation with rice LNC

  19. Simulation based decision support for strategic communication and marketing management concerning the consumer introduction of smart energy meters

    Directory of Open Access Journals (Sweden)

    Jeroen STRAGIER

    2013-07-01

    Full Text Available Communication and marketing professionals make strategic decisions in highly complex and dynamic contexts. These decisions are highly uncertain on the outcome and process level when, for example, consumer behaviour is at stake. Decision support systems can provide insights in these levels of uncertainty and the professional process of decision making. However, literature describing decision support tools for strategic communication and marketing management that provide clear insights in uncertainty levels is lacking. This study therefore aims at developing a consumer behaviour simulation module as an important element of such a future decision support tool. The consumer behaviour simulation we propose in this paper is based on data collected from a survey among 386 households with which a behavioural change model was calibrated. We show how various decision scenarios for strategic communication and marketing challenges can be explored and how such a simulation based decision support system can facilitate strategic communication and marketing management concerning the introduction of a smart energy meter.

  20. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.

    Science.gov (United States)

    Kim, Kyung-Jo; Seo, Jun-Kyu; Oh, Min-Cheol

    2008-02-04

    A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 muepsilon, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

  1. Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM

    DEFF Research Database (Denmark)

    Kwok, C.H.; Lee, S.H.; Chow, K.K.

    2005-01-01

    A widely tunable wavelength conversion scheme has been demonstrated using a 64-m-long dispersion-flattened high-nonlinearity photonic crystal fiber in a nonlinear optical loop mirror. Wavelength conversion range of over 60 nm with a 10-Gb/s return-to-zero signal was obtained with the output...... extinction ratio (ER) maintained above 13 dB. The proposed scheme can also improve the output ER and remove the bit-error-rate floor if a degraded signal is used....

  2. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  3. Fluorescence-based calculus detection using a 405-nm excitation wavelength

    Science.gov (United States)

    Brede, O.; Schelle, F.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the difference of fluorescence signals of cement and calculus using a 405 nm excitation wavelength. A total number of 20 freshly extracted teeth was used. The light source used for this study was a blue LED with a wavelength of 405nm. For each tooth the spectra of calculus and cementum were measured separately. Fluorescence light was collimated into an optical fibre and spectrally analyzed using an echelle spectrometer (aryelle 200, Lasertechnik Berlin, Germany) with an additionally bandpass (fgb 67, Edmund Industrial Optics, Karlsruhe, Germany). From these 40 measurements the median values were calculated over the whole spectrum, leading to two different median spectra, one for calculus and one for cementum. For further statistical analysis we defined 8 areas of interest (AOI) in wavelength regions, showing remarkable differences in signal strength. In 7 AOIs the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p calculus and cement between 600nm and 700nm. Thus, we can conclude that fluorescence of calculus shows a significant difference to the fluorescence of cement. A differentiation over the intensity is possible as well as over the spectrum. Using a wavelength of 405nm, it is possible to distinguish between calculus and cement. These results could be used for further devices to develop a method for feedback controlled calculus removal.

  4. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel

    2010-01-01

    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  5. Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: a population-based survey with personal meter

    OpenAIRE

    VIEL, JF; CLERC, S; BARRERA, C; RYMZHANOVA, R; MOISSONNIER, M; HOURS, M; CARDIS, E

    2009-01-01

    Objectives: Both the public perceptions, and most published epidemiologic studies, rely on the assumption that the distance of a particular residence from a base station or a broadcast transmitter is an appropriate surrogate for exposure to radiofrequency fields, although complex propagation characteristics affect the beams from antennas. The main goal of this study was to characterise the distribution of residential exposure from antennas using personal exposure meters.Results: Much of the t...

  6. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    Science.gov (United States)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  7. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    International Nuclear Information System (INIS)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-01-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  8. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    Science.gov (United States)

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  9. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    Directory of Open Access Journals (Sweden)

    Alireza Taghizadeh

    2017-09-01

    Full Text Available We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelength grating structure topped with a silicide layer of nanometers thickness as an absorbing material. It is shown that a nearly-perfect light absorption is possible for the thin silicide layer by its integration to the grating resonator. The absorption is shown to be maximized when the critical coupling condition is satisfied. Simulations show that the external quantum efficiency of the proposed photodetector with a 2-nm-thick PtSi absorbing layer at the center wavelength of 1550 nm can reach up to ∼60%.

  10. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    Science.gov (United States)

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  11. A Routing Algorithm for WiFi-Based Wireless Sensor Network and the Application in Automatic Meter Reading

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The Automatic Meter Reading (AMR network for the next generation Smart Grid is required to possess many essential functions, such as data reading and writing, intelligent power transmission, and line damage detection. However, the traditional AMR network cannot meet the previous requirement. With the development of the WiFi sensor node in the low power cost, a new kind of wireless sensor network based on the WiFi technology can be used in application. In this paper, we have designed a new architecture of WiFi-based wireless sensor network, which is suitable for the next generation AMR system. We have also proposed a new routing algorithm called Energy Saving-Based Hybrid Wireless Mesh Protocol (E-HWMP on the premise of current algorithm, which can improve the energy saving of the HWMP and be suitable for the WiFi-based wireless sensor network. The simulation results show that the life cycle of network is extended.

  12. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    Science.gov (United States)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  13. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    Science.gov (United States)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  14. A prototype of on-line digital flow rate meter based on cross-correlation principle

    International Nuclear Information System (INIS)

    Sun Xiaodong; Dai Zhenxi; Xu Jijun

    1997-01-01

    An on-line, digital prototype of flow rate measurement system based on cross-correlation principle is developed. Laboratory measurements using the prototype show that sufficiently large temperature fluctuations exist naturally and that measurements are possible. Temperature fluctuations are detected by two identical thermocouples spaced along the flow direction and are pre-processed by a thermocouple signal amplifier. The pre-processed temperature fluctuations are analyzed by a cross-correlator which measures the transit time of temperature fluctuations between two thermocouples directly. Thus, the so-called correlation velocity can be determined by a chip microprocessor 8031. Experimental results with single-phase under steady conditions also show that the distance between two thermocouples and the Reynolds number of fluid are the most important parameters to the measurement

  15. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    OpenAIRE

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-01-01

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the ...

  16. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  17. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  18. Three-channel phase meters based on the AD8302 and field programmable gate arrays for heterodyne millimeter wave interferometer

    Czech Academy of Sciences Publication Activity Database

    Varavin, A.V.; Ermak, G.P.; Vasiliev, A.S.; Fateev, A.V.; Varavin, Mykyta; Žáček, František; Zajac, Jaromír

    2016-01-01

    Roč. 75, č. 11 (2016), s. 1009-1025 ISSN 0040-2508 Institutional support: RVO:61389021 Keywords : AD8302 * Interferometer * Millimeter wave * Phase meter * Programmable gate array * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Beyond revenue metering -- a new age for automatic meter reading

    Energy Technology Data Exchange (ETDEWEB)

    Chebra, R. J. [RJC Consulting L.L.C., PQ (Canada)

    2002-10-01

    Advanced metering, data management, and communications possibilities of automated meter reading are explored. Applications in the area of demand side management, including load reduction, peak shaving and load shifting, new tariff structures based on the 'time of use incentive/penalty' approach, and information grade metering are emphasized. Based on trends and expectations, it is predicted that AMR will continue to experience rapid growth and deployment as new services are made available to the mass market. For example, technological advances will enable the industry to make 'time of use metering ' more attractive and beneficial to residential consumers, and embedded intelligence will make it possible to achieve more holistic energy environments.

  20. Simultaneous wavelength and format conversion in SDN/NFV for flexible optical network based on FWM in SOA

    Science.gov (United States)

    Zhan, Yueying; Wang, Danshi; Zhang, Min

    2018-04-01

    We propose an all-optical wavelength and format conversion model (CM) for a dynamic data center interconnect node and coherent passive optical network (PON) optical network unit (ONU) in software-defined networking and network function virtualization system based on four-wave mixing in a semiconductor optical amplifier. Five wavelength converted DQPSK signals and two format converted DPSK signals are generated; the performances of the generated signals for two strategies of setting CM in the data center interconnect node and coherent PON ONU, which are over 10 km fiber transmission, have been verified. All of the converted signals are with a power penalty less than 2.2 dB at FEC threshold of 3.8 × 10 - 3, and the optimum bias current of SOA is 300 mA.

  1. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jingtao; Zhou Sika; Li Haochuan; Huang Qiushi; Wang Zhanshan; Le Guen, Karine; Hu, Min-Hui; Andre, Jean-Michel; Jonnard, Philippe

    2010-07-10

    Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.

  2. Long-wavelength stimulated emission and carrier lifetimes in HgCdTe-based waveguide structures with quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rumyantsev, V. V., E-mail: rumyantsev@ipm.sci-nnov.ru; Fadeev, M. A.; Morozov, S. V.; Dubinov, A. A.; Kudryavtsev, K. E.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Tuzov, I. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Dvoretskii, S. A.; Mikhailov, N. N. [Russian Academy of Sciences, Institute for Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Novosibirsk State University (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2016-12-15

    The interband photoconductivity and photoluminescence in narrow-gap HgCdTe-based waveguide structures with quantum wells (QWs) (designed for long-wavelength stimulated emission under optical pumping) are investigated. The photoconductivity relaxation times in n-type structures reach several microseconds, due to which stimulated emission at a wavelength of 10.2 μm occurs at a low threshold pump intensity (~100 W/cm{sup 2}) at 20 K. In the p-type structures obtained by annealing (to increase the mercury vacancy concentration), even spontaneous emission from the QWs is not detected because of a dramatic decrease in the carrier lifetime with respect to Shockley–Read–Hall nonradiative recombination.

  3. Control over the resonance wavelength of fibre Bragg gratings using resistive coatings based on single-wall carbon nanotubes

    Science.gov (United States)

    Gladush, Yu. G.; Medvedkov, O. I.; Vasil'ev, S. A.; Kopylova, D. S.; Yakovlev, V. Ya.; Nasibulin, A. G.

    2016-10-01

    We demonstrate that a thin resistive coating based on single-wall carbon nanotubes applied to the lateral surface of an optical fibre allows it to be uniformly heated up to a temperature of ∼ 400 \\circ{\\text{C}} without damage to the coating. Using a fibre Bragg grating (FBG) as an example, we assess the efficiency of resonance wavelength thermal tuning and examine frequency characteristics that can be achieved using such coating. In particular, we show that the resonance wavelength of the FBG can be tuned over 3.2 {\\text{nm}} with an efficiency of 8.7 {\\text{nm}} {\\text{W}}-1 and time constant of ∼ 0.4 {\\text{s}}.

  4. (LBA-and-WRM)-based DBA scheme for multi-wavelength upstream transmission supporting 10 Gbps and 1 Gbps in MAN

    Science.gov (United States)

    Zhang, Yuchao; Gan, Chaoqin; Gou, Kaiyu; Xu, Anni; Ma, Jiamin

    2018-01-01

    DBA scheme based on Load balance algorithm (LBA) and wavelength recycle mechanism (WRM) for multi-wavelength upstream transmission is proposed in this paper. According to 1 Gbps and 10 Gbps line rates, ONUs are grouped into different VPONs. To facilitate wavelength management, resource pool is proposed to record wavelength state. To realize quantitative analysis, a mathematical model describing metro-access network (MAN) environment is presented. To 10G-EPON upstream, load balance algorithm is designed to ensure load distribution fairness for 10G-OLTs. To 1G-EPON upstream, wavelength recycle mechanism is designed to share remained wavelengths. Finally, the effectiveness of the proposed scheme is demonstrated by simulation and analysis.

  5. Intelligent Metering for Urban Water: A Review

    OpenAIRE

    Rodney Stewart; Stuart White; Candice Moy; Ariane Liu; Pierre Mukheibir; Damien Giurco; Thomas Boyle

    2013-01-01

    This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering) has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been ...

  6. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  7. Optimization of measurement methods for a multi-frequency electromagnetic field from mobile phone base station using broadband EMF meter

    Directory of Open Access Journals (Sweden)

    Paweł Bieńkowski

    2015-10-01

    Full Text Available Background: This paper presents the characteristics of the mobile phone base station (BS as an electromagnetic field (EMF source. The most common system configurations with their construction are described. The parameters of radiated EMF in the context of the access to methods and other parameters of the radio transmission are discussed. Attention was also paid to antennas that are used in this technology. Material and Methods: The influence of individual components of a multi-frequency EMF, most commonly found in the BS surroundings, on the resultant EMF strength value indicated by popular broadband EMF meters was analyzed. The examples of metrological characteristics of the most common EMF probes and 2 measurement scenarios of the multisystem base station, with and without microwave relays, are shown. Results: The presented method for measuring the multi-frequency EMF using 2 broadband probes allows for the significant minimization of measurement uncertainty. Equations and formulas that can be used to calculate the actual EMF intensity from multi-frequency sources are shown. They have been verified in the laboratory conditions on a specific standard setup as well as in real conditions in a survey of the existing base station with microwave relays. Conclusions: Presented measurement methodology of multi-frequency EMF from BS with microwave relays, validated both in laboratory and real conditions. It has been proven that the described measurement methodology is the optimal approach to the evaluation of EMF exposure in BS surrounding. Alternative approaches with much greater uncertainty (precaution method or more complex measuring procedure (sources exclusion method are also presented. Med Pr 2015;66(5:701–712

  8. [Optimization of measurement methods for a multi-frequency electromagnetic field from mobile phone base station using broadband EMF meter].

    Science.gov (United States)

    Bieńkowski, Paweł; Cała, Paweł; Zubrzak, Bartłomiej

    2015-01-01

    This paper presents the characteristics of the mobile phone base station (BS) as an electromagnetic field (EMF) source. The most common system configurations with their construction are described. The parameters of radiated EMF in the context of the access to methods and other parameters of the radio transmission are discussed. Attention was also paid to antennas that are used in this technology. The influence of individual components of a multi-frequency EMF, most commonly found in the BS surroundings, on the resultant EMF strength value indicated by popular broadband EMF meters was analyzed. The examples of metrological characteristics of the most common EMF probes and 2 measurement scenarios of the multisystem base station, with and without microwave relays, are shown. The presented method for measuring the multi-frequency EMF using 2 broadband probes allows for the significant minimization of measurement uncertainty. Equations and formulas that can be used to calculate the actual EMF intensity from multi-frequency sources are shown. They have been verified in the laboratory conditions on a specific standard setup as well as in real conditions in a survey of the existing base station with microwave relays. Presented measurement methodology of multi-frequency EMF from BS with microwave relays, validated both in laboratory and real conditions. It has been proven that the described measurement methodology is the optimal approach to the evaluation of EMF exposure in BS surrounding. Alternative approaches with much greater uncertainty (precaution method) or more complex measuring procedure (sources exclusion method) are also presented). This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    Science.gov (United States)

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  10. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.

    Science.gov (United States)

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  11. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    Science.gov (United States)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  12. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe

    Science.gov (United States)

    Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni

    2017-09-01

    We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.

  13. Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling.

    Science.gov (United States)

    Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2009-07-10

    In recent years, tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a promising technological platform for sensing applications such as the measurement of axial strain, bending, vibration, and refractive index. However, complex spectral measurements combined with the difficulty of using TFBGs in a quasi-distributed sensors network limit the practical exploitation of this assessed technology. To address this issue, we propose a hybrid configuration involving uniform and TFBGs working in reflection, which makes the demodulation technique easier and allows multipoint sensing. This configuration provides a narrowband reflection signal that is modulated by the wavelength selective losses associated with some TFBG's cladding-modes resonances. We report here the operating principle of the proposed device. An experimental validation is presented for refractive-index sensing purposes.

  14. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  15. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  16. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    International Nuclear Information System (INIS)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun

    2010-01-01

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  17. CENTRAL WAVELENGTH ADJUSTMENT OF LIGHT EMITTING SOURCE IN INTERFEROMETRIC SENSORS BASED ON FIBER-OPTIC BRAGG GRATINGS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2015-09-01

    Full Text Available The paper is focused on the investigation of fiber-optic interferometric sensor based on the array of fiber Bragg gratings. Reflection spectra displacement mechanism of the fiber Bragg gratings under the external temperature effects and the static pressure is described. The experiment has shown that reflection spectra displacement of Bragg gratings reduces the visibility of the interference pattern. A method of center wavelength adjustment is proposed for the optical radiation source in accord ance with the current Bragg gratings reflection spectra based on the impulse relative modulation of control signal for the Peltier element controller. The semiconductor vertical-cavity surface-emitting laser controlled by a pump driver is used as a light source. The method is implemented by the Peltier element controller regulating and stabilizing the light source temperature, and a programmable logic-integrated circuit monitoring the Peltier element controller. The experiment has proved that the proposed method rendered possible to regulate the light source temperature at a pitch of 0.05 K and adjust the optical radiation source center wavelength at a pitch of 0.05 nm. Experimental results have revealed that the central wavelength of the radiation adjustment at a pitch of 0.005 nm gives the possibility for the capacity of the array consisting of four opticalfiber sensors based on the fiber Bragg gratings. They are formed in one optical fiber under the Bragg grating temperature change from 0° C to 300° C and by the optical fiber mechanical stretching by the force up to 2 N.

  18. A Low Cost C8051F006 SoC-Based Quasi-Static C-V Meter for Characterizing Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Khairurrijal Khairurrijal

    2012-12-01

    Full Text Available Based on a C8051F006 SoC (system on-a-chip, a simple and low cost quasi-static capacitance-voltage (C-V meter was designed and developed to obtain C-V characteristics of semiconductor devices. The developed C-V meter consists of a capacitance meter, a programmable voltage source, a C8051F006 SoC-based slave controller, and a personal computer (PC as a master controller. The communication between the master and slave controllers is facilitated by the RS 232 serial communication. The accuracy of the C-V meter was guaranteed by the calibration functions, which are employed by the program in the PC and obtained through the calibration processes of analog to digital converter (ADC, digital to analog converters (DACs of the C8051F006 SoC, and the programmable voltage source. Examining 33-pF and 1000-pF capacitors as well three different p-n junction diodes, it was found that the capacitances of common capacitors are in the range of specified values and typical C-V curves of p-n junction diodes are achieved.

  19. Low-latency optical parallel adder based on a binary decision diagram with wavelength division multiplexing scheme

    Science.gov (United States)

    Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.

    2018-02-01

    We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.

  20. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  1. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  2. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian

    2018-03-20

    The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.

  3. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    International Nuclear Information System (INIS)

    MacLachlan, J. M.; Wood, K.; Matthews, L. D.; Gallagher, J. S.

    2011-01-01

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for three low-mass, edge-on LSB galaxies (V rot = 88-105 km s -1 ). We use Monte Carlo radiation transfer codes that include the effects of transiently heated small grains and polycyclic aromatic hydrocarbon molecules to model and interpret the data. We find that, unlike the high surface brightness galaxies previously modeled, the dust disks appear to have scale heights equal to or exceeding their stellar scale heights. This result supports the findings of previous studies that low-mass disk galaxies have dust scale heights comparable to their stellar scale heights and suggests that the cold ISM of low-mass, LSB disk galaxies may be stable against fragmentation and gravitational collapse. This may help to explain the lack of observed dust lanes in edge-on LSB galaxies and their low current star formation rates. Dust masses are found in the range (1.16-2.38) x 10 6 M sun , corresponding to face-on (edge-on), V-band, optical depths 0.034 ∼ face ∼ eq ∼< 1.99).

  4. Millimetre and sub-mm wavelength radiation sources based on discrete Josephson junction arrays

    International Nuclear Information System (INIS)

    Darula, M.; Beuven, S.; Doderer, T.

    1999-01-01

    This paper reviews the present status and future perspectives of discrete Josephson junction arrays for applications as sub-mm wavelength radiation sources. It is intended to cover the whole field, i.e. theory, fabrication and experimental results. The theoretical part reviews the fundamental aspects of Josephson junctions for oscillator applications and introduces the different possible array types. The recent results of analytical as well as numerical investigations are discussed. After the description of the fabrication of both low-T c as well as high-T c superconductor Josephson junctions and arrays, methods to investigate the array dynamics experimentally are mentioned. Finally, the recent experimental results are reviewed. This topic is divided into two parts, the first dealing with low-T c arrays, the second with high-T c arrays. The different possibilities to design arrays and to include them in practical applications are discussed and compared, with special emphasis on those experiments where radiation was generated successfully. The article is completed with a discussion of the most important experimental results. (author)

  5. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors

    Science.gov (United States)

    Huang, Min; Chen, Jianxin; Xu, Jiajia; Wang, Fangfang; Xu, Zhicheng; He, Li

    2018-05-01

    In this work, we study and report the dry etching processes for InAs-based InAs/GaAsSb strain-free superlattice long wavelength infrared (LWIR) detectors. The proper etching parameters were first obtained through the parametric studies of Inductively Coupled Plasma (ICP) etching of both InAs and GaSb bulk materials in Cl2/N2 plasmas. Then an InAs-based InAs/GaAsSb superlattice LWIR detector with PπN structure was fabricated by using the optimized etching parameters. At 80 K, the detector exhibits a 100% cut-off wavelength of 12 μm and a responsivity of 1.5 A/W. Moreover, the dark current density of the device under a bias of -200 mV reaches 5.5 × 10-4 A/cm2, and the R0A is 15 Ω cm2. Our results pave the way towards InAs-based superlattice LWIR detectors with better performances.

  6. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    Science.gov (United States)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  7. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides

    Science.gov (United States)

    Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen

    2005-09-01

    All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

  8. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    Science.gov (United States)

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.

  9. Smart meter status report from Toronto

    International Nuclear Information System (INIS)

    O'Brien, D.

    2006-01-01

    An update of Toronto Hydro's smart metering program was presented. Electricity demand is expected to keep increasing, and there is presently insufficient generation to match supply needs in Ontario. The smart metering program was introduced to aid in the Ontario government's energy conservation strategy, as well as to address peak supply problems that have led to power outages. It is expected that the smart metering program will reduce provincial peak supply by 5 per cent, as the meters support both time-of-use rates and critical peak pricing. Over 800,000 smart meters will be supplied to customers by 2007, and all 4.3 million homes in Toronto will have a smart meter by 2010. In order to meet targets for 2010, the utility will continue to install more 15,000 meters each month for the next 4 years. While the Ontario government has planned and coordinated the rollout and developed smart metering specifications and standards, Toronto Hydro is responsible for the purchase, installation, operation and maintenance of the meters. Advance testing of each meter is needed to ensure billing accuracy, and customer education on meter use is also. The complexity of the metering program has led the utility to establish a rigid project management process. Customer education pilot program are currently being conducted. Experience gained during the earlier phases of the program have enabled the utility to select appropriate metering systems based on density, topography and physical conditions. Project expenditures have been within budget due to improved project estimating and planning. The metering program has been conducted in tandem with the utility's peakSAVER program, a residential and small commercial load control program that has been successful in reducing summer peak demand by cycling air conditioners without causing discomfort. It was concluded that the utility will continue with its mass deployment of smart meters, and is currently preparing its call center to handled

  10. Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: a population-based survey with personal meter.

    Science.gov (United States)

    Viel, J F; Clerc, S; Barrera, C; Rymzhanova, R; Moissonnier, M; Hours, M; Cardis, E

    2009-08-01

    Both the public perceptions, and most published epidemiologic studies, rely on the assumption that the distance of a particular residence from a base station or a broadcast transmitter is an appropriate surrogate for exposure to radiofrequency fields, although complex propagation characteristics affect the beams from antennas. The main goal of this study was to characterise the distribution of residential exposure from antennas using personal exposure meters. A total of 200 randomly selected people were enrolled. Each participant was supplied with a personal exposure meter for 24 h measurements, and kept a time-location-activity diary. Two exposure metrics for each radiofrequency were then calculated: the proportion of measurements above the detection limit (0.05 V/m), and the maximum electric field strength. Residential address was geocoded, and distance from each antenna was calculated. Much of the time, the recorded field strength was below the detection level (0.05 V/m), the FM band standing apart with a proportion above the detection threshold of 12.3%. The maximum electric field strength was always lower than 1.5 V/m. Exposure to GSM and DCS waves peaked around 280 m and 1000 m from the antennas. A downward trend was found within a 10 km range for FM. Conversely, UMTS, TV 3, and TV 4&5 signals did not vary with distance. Despite numerous limiting factors entailing a high variability in radiofrequency exposure assessment, but owing to a sound statistical technique, we found that exposures from GSM and DCS base stations increase with distance in the near source zone, to a maximum where the main beam intersects the ground. We believe these results will contribute to the ongoing public debate over the location of base stations and their associated emissions.

  11. Study on a New Type of Electric-controlled Engine Fuel Consumption Meter Based on Volume Method

    Directory of Open Access Journals (Sweden)

    Qing-Yong Zhang

    2014-04-01

    Full Text Available At present study on the testing methods and instruments for vehicles’ fuel consumption is still not perfect. It still can’t provide a rapid and accurate measuring method and instrument. A new type of fuel consumption meter structure is developed which used two small containers to relay to supply the engine and realizes oil consumption measuring by detecting the real- time liquid level in the containers. Photoelectric sensors and a chip microcomputer are used to realize transient detection. Its structure and principle are analyzed. The system of its hardware and software of the electric-controlling system are designed. Some key components are selected and the process of exhausting, starting and measuring are designed. Precision test of the system is performed, and the result shows the accuracy of the meter in the range of 800 ml is 0.1 %, which meets the requirements and the feasibility of the structure is verified. Finally the main influencing factors are analyzed.

  12. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb Type-II superlattice

    Science.gov (United States)

    Han, Xi; Jiang, Dongwei; Wang, Guowei; Hao, Hongyue; Sun, Yaoyao; Jiang, Zhi; Lv, Yuexi; Guo, Chunyan; Xu, Yingqiang; Niu, Zhichuan

    2018-03-01

    The paper reports a 640 × 512 long wavelength infrared focal plane arrays (FPAs) with 15 × 15 μm2 pixels pitch based on the type II InAs/GaSb superlattice. Material grown on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 10.2 μm across the entire wafer. The peak quantum efficiency of the detector reaches 28% at 9.1 μm without anti-reflecting coating. Maximal resistance-area products of 8.95 Ω·cm2 at 77 K and 24.4 Ω·cm2 at 45 K are achieved in a single element device indicating that the generation-recombination and tunneling mechanisms dominate the device dark current, respectively. The peak Johnson Detectivity reaches 9.66 × 1011 cm Hz1/2/W at 9.1 μm with the bias voltage of 80 mV. In the whole zone, the operability and non-uniformity for the responsivity are 97.74% and 6.41% respectively. The average noise equivalent temperature difference of 31.9 mK at 77 K is achieved with an integration time of 0.5 ms, a 300 K background and f/2 optics.

  13. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.

    Science.gov (United States)

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-03-03

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  14. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    Directory of Open Access Journals (Sweden)

    Jiangmin Xu

    2017-03-01

    Full Text Available Based on PVDF (piezoelectric sensing techniques, this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  15. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    Science.gov (United States)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l by the antigen-antibody reaction was spectroscopically measured on the fabricated optical interferometer, and the deflection amount of the movable membrane after 10 min treatment was 2.4 times larger than that of nonspecific adsorption with the avidin molecules. This result indicated that the proposed sensor can be used for selective detection of low-concentration target antigen molecules.

  16. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Science.gov (United States)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  17. Multitasking metering enhances generation, transmission operations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E.

    2008-11-15

    The Dairyland Power Cooperative (DPC) which operates from La Crosse, Wisconsin has the capacity to generate and transmit 1000 MW of power to 25 member cooperatives and 20 municipalities who serve over 500,000 customers. When DPC was experiencing diminished service within its analog cellular-based data communications system, it was presented with an opportunity to install a new automated telecommunications system that would provide secure collection of meter readings from all of its substations. DPC decided to evaluate an advanced multifunctional digital meter from Schweitzer Engineering Laboratories (SEL). The SEL-734 Revenue Metering System offers complete instantaneous metering functions, including voltages, currents, power, energy and power factor. Other capabilities include predictive demand, time-of-use metering, automatic voltage monitoring, harmonics metering and synchrophasor measurement. From a metering perspective, DPC wanted to perform daily load profiles and interval-by-interval metering of their delivery points for billing purposes. They also wanted to provide real-time monitoring of electricity being delivered for both generation and transmission purposes and to make that information available to a distribution SCADA system for their members. The SEL-734 Revenue Meter was well suited to those needs. The SEL-734 provides very high-accuracy energy metering, load profile data collection, instantaneous power measurements, power quality monitoring, and communicates simultaneously over a modem, serial ports, and wide area networks (WAN). The meter is backed with a ten-year warranty as well as field support engineers. 5 figs.

  18. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  19. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    OpenAIRE

    Youngchul Bae

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the stre...

  20. Impact on Diabetes Self-Management and Glycemic Control of a New Color-Based SMBG Meter.

    Science.gov (United States)

    Schnell, Oliver; Klausmann, Gerd; Gutschek, Bettina; Garcia-Verdugo, Rosa Maria; Hummel, Michael

    2017-11-01

    Self-monitoring of blood glucose (SMBG) is a key pillar of personal diabetes management. The objective of this observational study was to analyze diabetes self-management (DSM) and glycemic outcomes before and during system implementation in real-life settings of a blood glucose meter system with a color-coded display of glucose levels, which helps identify out-of-range levels. A total of 193 insulin-treated diabetes patients (11% T1DM; 55% male, age 60 ± 4 years, mean diabetes duration 14 ± 9 years, HbA1c 8.68 ± 1.2%) were enrolled into the study. Both the Diabetes Self-Management Questionnaire (DSMQ) and glycemic control were analyzed at baseline and 3 and 6 months after study initiation. DSMQ general perception improved significantly by the end of the study period ("Sum Scale," P meter resulted in improved glycemic control, as shown by mean HbA1c levels, which decreased from 8.68 ± 1.2% at baseline to 8.13 ± 1.02% after 3 months ( P meter not only leads to an improvement in metabolic control, but also is associated with a significant improvement in diabetes management.

  1. Possible mechanism of solar noise storm generation in meter wavelength

    International Nuclear Information System (INIS)

    Genkin, L.G.; Erukhimov, L.M.; Levin, B.N.

    1989-01-01

    Fluctuation plasma mechanism of noise storm generation is proposed. The sporadic formation of density irregularities in plasma (Langmuir) turbulence region is shown to be the result of thermal stratification of plasma. The noise storm type 1 bursts in their typical parameters are like radio emission due to plasma turbulence conversion on this structures

  2. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-05

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  3. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.

    Science.gov (United States)

    Tehranchi, Amirhossein; Kashyap, Raman

    2009-10-12

    A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

  4. Digital acquisition and wavelength control of seed laser for space-based Lidar applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposes to establish the feasibility of using a space qualifiable Field Programmable Gate Array (FPGA) based digital controller to autonomously...

  5. Performance of strip-based glucose meters and cassette-based blood gas analyzer for monitoring glucose levels in a surgical intensive care setting.

    Science.gov (United States)

    Claerhout, Helena; De Prins, Martine; Mesotten, Dieter; Van den Berghe, Greet; Mathieu, Chantal; Van Eldere, Johan; Vanstapel, Florent

    2016-01-01

    We verified the analytical performance of strip-based handheld glucose meters (GM) for prescription use, in a comparative split-sample protocol using blood gas samples from a surgical intensive care unit (ICU). Freestyle Precision Pro (Abbott), StatStrip Connectivity Meter (Nova), ACCU-CHEK Inform II (Roche) were evaluated for recovery/linearity, imprecision/repeatability. The GMs and the ABL90 (Radiometer) blood gas analyzer (BGA) were tested for relative accuracy vs. the comparator hexokinase glucose-6-phosphate-dehydrogenase (HK/G6PDH) assay on a Cobas c702 analyzer (Roche). Recovery of spiked glucose was linear up to 19.3 mmol/L (347 mg/dL) with a slope of 0.91-0.94 for all GMs. Repeatability estimated by pooling duplicate measurements on samples below (n=9), in (n=51) or above (n=80) the 4.2-5.9 mM (74-106 mg/dL) range were for Freestyle Precision Pro: 4.2%, 4.0%, 3.6%; StatStrip Connectivity Meter: 4.0%, 4.3%, 4.5%; and ACCU-CHEK Inform II: 1.4%, 2.5%, 3.5%. GMs were in agreement with the comparator method. The BGA outperformed the GMs, with a MARD of 3.9% compared to 6.5%, 5.8% and 4.4% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. Zero % of the BGA results deviated more than the FDA 10% criterion as compared to 9.4%, 3.7% and 2.2% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. For all GMs, icodextrin did not interfere. Variation in the putative influence factors hematocrit and O2 tension could not explain observed differences with the comparator method. GMs quantified blood glucose in whole blood at about the 10% total error criterion, proposed by the FDA for prescription use.

  6. Ultra-Broadband Silicon-Wire Polarization Beam Combiner/Splitter Based on a Wavelength Insensitive Coupler With a Point-Symmetrical Configuration

    OpenAIRE

    Uematsu, Takui; Kitayama, Tetsuya; Ishizaka, Yuhei; Saitoh, Kunimasa

    2014-01-01

    An ultrabroadband silicon wire polarization beam combiner/splitter (PBCS) based on a wavelength-insensitive coupler is proposed. The proposed PBCS consists of three identical directional couplers and two identical delay lines. We design the PBCS using the 3-D finite element method. Numerical simulations show that the proposed PBCS can achieve the transmittance of more than 90% over a wide wavelength range from 1450 to 1650 nm for both TE and TM polarized modes.

  7. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  8. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  9. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik

    2017-11-13

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.

  10. A wavelength-dependent visible and infrared spectrophotometric function for the Moon based on ROLO data

    Science.gov (United States)

    Buratti, B.J.; Hicks, M.D.; Nettles, J.; Staid, M.; Pieters, C.M.; Sunshine, J.; Boardman, J.; Stone, T.C.

    2011-01-01

    The USGS's Robotic Lunar Observatory (ROLO) dedicated ground-based lunar calibration project obtained photometric observations of the Moon over the spectral range attainable from Earth (0.347-2.39 ??m) and over solar phase angles of 1.55??-97??. From these observations, we derived empirical lunar surface solar phase functions for both the highlands and maria that can be used for a wide range of applications. The functions can be used to correct for the effects of viewing geometry to produce lunar mosaics, spectra, and quick-look products for future lunar missions and ground-based observations. Our methodology can be used for a wide range of objects for which multiply scattered radiation is not significant, including all but the very brightest asteroids and moons. Copyright 2011 by the American Geophysical Union.

  11. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    Science.gov (United States)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  12. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    International Nuclear Information System (INIS)

    Wang, Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2013-01-01

    The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moiré fringe analysis. The interferometer has demonstrated a high sensitivity with sub-microradian accuracy. Some of the advantages, disadvantages and limitations for the two approaches will also be presented.

  13. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2013-03-01

    The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moiré fringe analysis. The interferometer has demonstrated a high sensitivity with sub-microradian accuracy. Some of the advantages, disadvantages and limitations for the two approaches will also be presented.

  14. Low cost, microcontroller based heating device for multi-wavelength differential scanning fluorimetry.

    Science.gov (United States)

    Hoeser, Jo; Gnandt, Emmanuel; Friedrich, Thorsten

    2018-01-23

    Differential scanning fluorimetry is a popular method to estimate the stability of a protein in distinct buffer conditions by determining its 'melting point'. The method requires a temperature controlled fluorescence spectrometer or a RT-PCR machine. Here, we introduce a low-budget version of a microcontroller based heating device implemented into a 96-well plate reader that is connected to a standard fluorescence spectrometer. We demonstrate its potential to determine the 'melting point' of soluble and membranous proteins at various buffer conditions.

  15. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  16. Digital temperature meter

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S

    1982-01-01

    Digital temperature meter for precise temperature measurements is presented. Its parts such as thermostat, voltage-frequency converter and digital frequency meter are described. Its technical parameters such as temperature range 50degC-700degC, measurement precision 1degC, measurement error +-1degC are given. (A.S.).

  17. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured t...

  18. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  19. A flight management algorithm and guidance for fuel-conservative descents in a time-based metered air traffic environment: Development and flight test results

    Science.gov (United States)

    Knox, C. E.

    1984-01-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  20. Competitiveness Level of Photovoltaic Solar Systems in Ouagadougou (Burkina Faso: Study Based on the Domestic Electric Meters Calibration

    Directory of Open Access Journals (Sweden)

    Konan Lambert Amani

    2016-01-01

    Full Text Available The mean cost price of electricity in Burkina Faso at the end of the last quarter of 2012 was 158 FCFA/kWh for a country where more than 46% of the population lives below the national poverty threshold. To look for solution to that problem, the resort to photovoltaic solar energy is justified for that country. The purpose of this study is to promote the integration of both technical and economical surveys in solar energy preliminary projects in Ouagadougou. To reach that, investigations were carried out in some households and attention was paid from the calibration of the domestic electric meters. Energy demands collected within each household allow us to design a corresponding solar kit through optimization rules. An estimate was edited and financial viability study for each household was also carried out thereafter. In this study, only households using the national electricity network calibration meter on their disadvantage favorably answered to all financial indicators and appear as the only one that could profit from such project. This work is helpful to note that photovoltaic solar energy still stays at a primitive level of competitiveness compared to conventional energy resources for small systems in Ouagadougou.

  1. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  2. Oral cancer detection based on fluorescence polarization of blood plasma at excitation wavelength 405 nm

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Manoharan, Yuvaraj; Dornadula, Koteeswaran; Singaravelu, Ganesan

    2017-02-01

    During metabolism the metabolites such as hormones, proteins and enzymes were released in to the blood stream by the cells. These metabolites reflect any change that occurs due to any disturbances in normal metabolic function of the human system. This was well observed with the altered spectral signatures observed with fluorescence spectroscopic technique. Previously many have reported on the significance of native fluorescence spectroscopic method in the diagnosis of cancer. As fluorescence spectroscopy is sensitive and simple, it has complementary techniques such as excitation-emission matrix, synchronous and polarization. The fluorescence polarization measurement provides details about any association or binding reactions and denaturing effects that occurs due to change in the micro environment of cells and tissues. In this study, we have made an attempt in the diagnosis of oral cancer at 405 nm excitation using fluorescence polarization measurement. The fluorescence anisotropic values calculated from polarized fluorescence spectral data of normal and oral cancer subjects yielded a good accuracy when analyzed with linear discriminant analysis based artificial neural network. The results will be discussed in detail.

  3. Arrival metering fuel consumption analysis

    Science.gov (United States)

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  4. Cancer-meter: measure and cure.

    Science.gov (United States)

    Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh

    2017-05-01

    This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.

  5. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  6. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  7. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  8. Your Glucose Meter

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...

  9. An amplified coarse wavelength division multiplexing self-referencing sensor network based on phase-shifted FBGs in transmissive configuration

    International Nuclear Information System (INIS)

    Elosua, C; Perez-Herrera, R A; Lopez-Amo, M; Bariain, C; Garcia-Olcina, R; Sales, S; Capmany, J

    2009-01-01

    A new amplified CWDM (coarse wavelength division multiplexing) self-referencing sensor network using phase-shifted fibre Bragg gratings (PS-FBGs) is experimentally demonstrated in this work. The network uses the PS-FBGs to address intensity sensors in a transmissive configuration, obtaining simultaneously in reflection a wavelength encoded reference signal. In order to enable the remote operation of the sensors, we have introduced optical amplification at the interrogation header of the network, using highly doped erbium fibre

  10. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  11. A restructuring agenda for developing competitive retail electric markets that is based on a low-cost, real-time, smart-kilowatt-hour meter adapter

    International Nuclear Information System (INIS)

    Chasek, N.E.

    1997-01-01

    This paper proposes six agenda items that should expedite a politically smooth transition into a most efficient economically viable market-driven public power system. The agenda would introduce: the virtual marketplace for retail electric power, smart meters, smart meter readers, near-real-time load balancing and load apportionment, advanced supply and demand or commodity-style pricing, and reliability metering

  12. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L [Powtel Monitoring Systems, Inc., Ajax, ON (Canada)

    1996-12-31

    Portable meters were discussed as alternatives to standard billing meters for temporary installations. Current, voltage and power factor at a distribution station were measured to calculate kW and kVAR, using an easy to install product that communicates live readings directly to the existing billing system. A background of situations where temporary metering is a possible alternative to regular meters was presented. Use of electronic, clamp on Electronic Recording Ammeters (ERA) and their drawbacks were discussed. An improved temporary metering solution using FM radio transmission to deliver live data to a receiving device, the Eagle Series 3500, was introduced. Improvements over previous ERA systems were discussed, including accuracy, lack of batteries, immediate confirmation of functionality, current, voltage and power factor monitoring, direct feed to billing system, line crew savings, need for only a single unit at any given site, bi-directional power flow metering, independent report storage media, and a portable voltage and P.F. diagnostic tool. Details of trial applications at the Utopia distribution station west of Barrie, ON were presented. This technology was said to be still in the testing stage, but its flexibility and economy were sonsidered to be very promising for future application.

  13. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  14. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    Science.gov (United States)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  15. Compact 35μm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA mini-bars

    Science.gov (United States)

    Witte, U.; Traub, M.; Di Meo, A.; Hamann, M.; Rubel, D.; Hengesbach, S.; Hoffmann, D.

    2016-03-01

    We present a compact, modular and cross talk free approach for dense wavelength division multiplexing of high power diode lasers based on ultra-steep dielectric filters. The mini bars consist of 5 narrow stripe broad area emitters with a beam parameter product in the range of 2 mm mrad and a wavelength spacing of 2.5 nm between 2 adjacent emitters. Experimental results for fiber coupling (35 μm core diameter, NA < 0.2) of internally and externally stabilized diode lasers are presented. Optical losses are analyzed and alternative optical designs to overcome the current limitations of the setup are discussed.

  16. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  17. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    Science.gov (United States)

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  18. All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lefrancois, S.; Lillieholm, Mads

    2014-01-01

    We demonstrate an AO-OFDM system with a WSS-based transmitter and time-lens based receiver for spectral magnification, achieving BER~10-9 for a 28×10 Gbit/s DPSK AO-OFDM signal. Furthermore, the receiver performance for DPSK and DQPSK is investigated using Monte Carlo simulations....

  19. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Science.gov (United States)

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  20. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  1. Detection of glutathione based on MnO2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter.

    Science.gov (United States)

    Tan, Qingqing; Zhang, Ruirui; Kong, Rongmei; Kong, Weisu; Zhao, Wenzhi; Qu, Fengli

    2017-12-08

    The authors describe a novel method for the determination of glutathione (GSH). Detection is based on target induced release of glucose from MnO 2 nanosheet-gated aminated mesoporous silica nanoparticles (MSNs). In detail, glucose is loaded into the pores of MSNs. Negatively charged MnO 2 nanosheets are assembled on the MSNs through electrostatic interactions. The nanosheets are reduced by GSH, and this results in the release of glucose which is quantified by using a commercial electrochemical glucose meter. GSH can be quantified by this method in the 100 nM to 10 μM concentration range, with a 34 nM limit of detection. Graphical abstract Glucose is loaded into the pores of mesoporous silica nanoparticles (MSNs). MnO 2 nanosheets are assembled on MSNs through electrostatic interactions. Glutathione (GSH) can reduce the nanosheets, and this results in the release of glucose which is quantified by using a commercial glucose meter.

  2. Analysis of physical layer performance of data center with optical wavelength switches based on advanced modulation formats

    Science.gov (United States)

    Ahmad, Iftikhar; Chughtai, Mohsan Niaz

    2018-05-01

    In this paper the IRIS (Integrated Router Interconnected spectrally), an optical domain architecture for datacenter network is analyzed. The IRIS integrated with advanced modulation formats (M-QAM) and coherent optical receiver is analyzed. The channel impairments are compensated using the DSP algorithms following the coherent receiver. The proposed scheme allows N2 multiplexed wavelengths for N×N size. The performance of the N×N-IRIS switch with and without wavelength conversion is analyzed for different Baud rates over M-QAM modulation formats. The performance of the system is analyzed in terms of bit error rate (BER) vs OSNR curves.

  3. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  4. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  5. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2016-12-01

    Full Text Available Using mobile smart devices to provide urban location-based services (LBS with sub-meter-level accuracy (around 0.5 m is a major application field for future global navigation satellite system (GNSS development. Real-time kinematic (RTK positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS were better than 0.15 m (horizontal and 0.25 m (vertical for the static test, and 0.30 m (horizontal and 0.45 m (vertical for the kinematic test.

  6. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    Science.gov (United States)

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  7. [Application of wavelength selection algorithm to measure the effective component of Chinese medicine based on near-infrared spectroscopy].

    Science.gov (United States)

    Gu, Xiao-Yu; Xu, Ke-Xin; Wang, Yan

    2006-09-01

    Near infrared (NIR) spectroscopy has raised a lot of interest in the pharmaceutical industry because it is a rapid and cost-effective analytical type of spectroscopy with no need for extensive sample preparation, and with the easy-realizable ability of on-line application. The NIR technology can increase the quality control standard of the Chinese medicine and accelerate the entry into the international market. In the present paper, two methods for wavelength selection are applied to the measurement of borneol, one of which is the multiple-chain stepwise, which tends to select many variables in the same area containing valuable information, and the other is the mixture genetic algorithm, which incorporates simulated annealing so as to improve the local searching ability while maintaining the global searching ability. The results present that the number of wavelength is reduced to 16% compared with the original number of wavelength, and the prediction accuracy has increased 47.6%. Therefore, the method of wavelength selection is a good way to enhance the prediction accuracy and simplify the model in NIR region.

  8. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    NARCIS (Netherlands)

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.

    2011-01-01

    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  9. Multi-wavelength laser based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper, a multi-wavelength laser monolithically integrated on InP is presented. A linear laser cavity is built between two integrated Sagnac loop reflectors, with an Arrayed Waveguide Grating (AWG) as frequency selective device, and Semiconductor Optical Amplifiers (SOA) as gain sections. The

  10. Ensemble EMD-based automatic extraction of the catenary structure wavelength from the pantograph-catenary contact corce

    NARCIS (Netherlands)

    Liu, Zhigang; Wang, H.; Dollevoet, R.P.B.J.; Yang, S.; Nunez Vicencio, Alfredo; Zhang, J.

    2016-01-01

    This paper explores the use of pantograph-catenary contact force (PCCF) for monitoring of the current collection quality and detection of anomalies in the interaction between pantograph and catenary. The concept of catenary structure wavelength (CSW) is proposed as the dominant component of PCCF. It

  11. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  12. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  13. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  14. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  15. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  16. High efficiency AlGaInN-based light emitting diode in the 360-380 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hisao; Wang, Hong-Xing; Sato, Daisuke; Takaki, Ryohei; Wada, Naoki; Tanahashi, Tetsuya; Yamashita, Kenji; Kawano, Shunsuke; Mizobuchi, Takashi; Dempo, Akihiko; Morioka, Kenji; Kimura, Masahiro; Nohda, Suguru [Nitride Semiconductors Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan); Sugahara, Tomoya [Satellite Venture Business Laboratory, The University of Tokushima (Japan); Sakai, Shiro [Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2003-11-01

    High performance LEDs emitting in the wavelength range 360-380 nm, are fabricated on sapphire substrates by one-time metalorganic chemical vapor deposition (MOCVD) without using epitaxial lateral overgrowth (ELO) or similar techniques. By improving layer structures and growth conditions, the output power of the LEDs was much improved. The light output power of the LEDs at an injection current of 20 mA is 3.2 mW, 2.5 mW and 1 mW at wavelengths of 378 nm, 373 nm and 363 nm, which correspond to an external quantum efficiency of 4.8%, 3.8% and 1.4%, respectively. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Two-Dimensional Optical CDMA System Parameters Limitations for Wavelength Hopping/Time-Spreading Scheme based on Simulation Experiment

    Science.gov (United States)

    Kandouci, Chahinaz; Djebbari, Ali

    2018-04-01

    A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.

  18. Multi-wavelength conversion at 10 Gb/s and 40 GHZ based on nonlinear effects in HNLF

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Honzátko, Pavel; Vojtěch, J.; Radil, J.

    2007-01-01

    Roč. 62, 7/8 (2007), s. 925-937 ISSN 0003-4347 R&D Projects: GA ČR GA102/05/0995; GA MŠk 1P05OC001 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical communication * optical fibres * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.206, year: 2007

  19. EMMNet: Sensor Networking for Electricity Meter Monitoring

    Directory of Open Access Journals (Sweden)

    Zhi-Ting Lin

    2010-06-01

    Full Text Available Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  20. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  1. Gamma absorption meter

    International Nuclear Information System (INIS)

    Dincklage, R.D. von.

    1984-01-01

    The absorption meter consists of a radiation source, a trough for the absorbing liquid and a detector. It is characterized by the fact that there is a foil between the detector and the trough, made of a material whose binding energy of the K electrons is a little greater than the energy of the photons emitted by the radiation source. The source of radiation and foil are replaceable. (orig./HP) [de

  2. Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam.

    Science.gov (United States)

    Urbinello, Damiano; Huss, Anke; Beekhuizen, Johan; Vermeulen, Roel; Röösli, Martin

    2014-01-15

    Radiofrequency electromagnetic fields (RF-EMF) are highly variable and differ considerably within as well as between areas. Exposure assessment studies characterizing spatial and temporal variation are limited so far. Our objective was to evaluate sources of data variability and the repeatability of daily measurements using portable exposure meters (PEMs). Data were collected at 12 days between November 2010 and January 2011 with PEMs in four different types of urban areas in the cities of Basel (BSL) and Amsterdam (AMS). Exposure from mobile phone base stations ranged from 0.30 to 0.53 V/m in downtown and business areas and in residential areas from 0.09 to 0.41 V/m. Analysis of variance (ANOVA) demonstrated that measurements from various days were highly reproducible (measurement duration of approximately 30 min) with only 0.6% of the variance of all measurements from mobile phone base station radiation being explained by the measurement day and only 0.2% by the measurement time (morning, noon, afternoon), whereas type of area (30%) and city (50%) explained most of the data variability. We conclude that mobile monitoring of exposure from mobile phone base station radiation with PEMs is useful due to the high repeatability of mobile phone base station exposure levels, despite the high spatial variation. © 2013.

  3. Flattening the Energy Response of a Scintillator Based Gamma Dose Rate Meter Coupled to SiPM

    International Nuclear Information System (INIS)

    Knafo, Y.; Manor, A.; Ginzburg, D.; Ellenbogen, M.; Osovizky, A.; Wengrowicz, U.; Ghelman, M.; Seif, R.; Mazor, T.; Kadmon, Y.; Cohen, Y.

    2014-01-01

    Among the newest emerging technologies that are used in the design of personal gamma radiation detection instruments, the silicon photomultiplier (SiPM) light sensor is playing an important role. This type of photo sensor is characterized by low power consumption, small dimensions and high gain. These special characteristics present applicable alternatives for the replacement of traditional gamma sensors based on scintillator coupled to Photomultiplier tubes (PMT) or on Geiger-Muller(G.M.) sensors. For health physics applications, flat energy response is required for a wide range of radio-nuclides emitting gamma rays of different energies. Scintillation based radiation instrumentation provides count rate and amplitude of the measured pulses. These pulses can be split in different bins corresponding to the energy of the measured isotopes and their intensity. The count rate and the energy of the measured events are related to the dose rate. The conversion algorithm applys a different calibration factor for each energy bin in order to provide an accurate dose rate response for a wide range of gamma energies. This work describes the utilization of an innovative approach for dose rate conversion by using the abilities of newest 32-bit microcontroller based ARM core architecture

  4. Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer

    OpenAIRE

    Doménech Gómez, José David; Sanchez Fandiño, Javier Antonio; Gargallo Jaquotot, Bernardo Andrés; Baños Lopez, Rocio; Muñoz Muñoz, Pascual

    2014-01-01

    In this paper we report on the experimental demonstration of a Silicon-on-Insulator opto-electronic wavelength tracker for the optical telecommunication C-band. The device consist of a 2x3 Mach-Zehnder Interferometer (MZI) with 10 pm resolution and photo-detectors integrated on the same chip. The MZI is built interconnecting two Multimode Interference (MMI) couplers with two waveguides whose length difference is 56 mm. The first MMI has a coupling ratio of 95:05 to com...

  5. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Science.gov (United States)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  6. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  7. Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E.

    2016-07-27

    The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that we make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering goals, but

  8. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  9. Background–limited long wavelength infrared InAs/InAs1− xSbx type-II superlattice-based photodetectors operating at 110 K

    Directory of Open Access Journals (Sweden)

    Abbas Haddadi

    2017-03-01

    Full Text Available We report the demonstration of high-performance long-wavelength infrared (LWIR nBn photodetectors based on InAs/InAs1− xSbx type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μ m at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω · cm 2 and a dark current density of 8 × 10−5 A/cm2, under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 cm· Hz / W and a background–limited operating temperature of 110 K.

  10. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection.

    Science.gov (United States)

    Liu, Jie; Zeng, Duoduo; Guo, Changjian; Xu, Lei; He, Sailing

    2010-10-25

    We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry-Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

  11. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Directory of Open Access Journals (Sweden)

    A. Castellano

    2017-06-01

    Full Text Available We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001 substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm−2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  12. Streamlining Smart Meter Data Analytics

    OpenAIRE

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, ...

  13. A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system

    Science.gov (United States)

    Tao, Jiangchuan; Zhao, Chunsheng; Kuang, Ye; Zhao, Gang; Shen, Chuanyang; Yu, Yingli; Bian, Yuxuan; Xu, Wanyun

    2018-02-01

    The number concentration of cloud condensation nuclei (CCN) plays a fundamental role in cloud physics. Instrumentations of direct measurements of CCN number concentration (NCCN) based on chamber technology are complex and costly; thus a simple way for measuring NCCN is needed. In this study, a new method for NCCN calculation based on measurements of a three-wavelength humidified nephelometer system is proposed. A three-wavelength humidified nephelometer system can measure the aerosol light-scattering coefficient (σsp) at three wavelengths and the light-scattering enhancement factor (fRH). The Ångström exponent (Å) inferred from σsp at three wavelengths provides information on mean predominate aerosol size, and hygroscopicity parameter (κ) can be calculated from the combination of fRH and Å. Given this, a lookup table that includes σsp, κ and Å is established to predict NCCN. Due to the precondition for the application, this new method is not suitable for externally mixed particles, large particles (e.g., dust and sea salt) or fresh aerosol particles. This method is validated with direct measurements of NCCN using a CCN counter on the North China Plain. Results show that relative deviations between calculated NCCN and measured NCCN are within 30 % and confirm the robustness of this method. This method enables simplerNCCN measurements because the humidified nephelometer system is easily operated and stable. Compared with the method using a CCN counter, another advantage of this newly proposed method is that it can obtain NCCN at lower supersaturations in the ambient atmosphere.

  14. Smart meter incorporating UWB technology

    NARCIS (Netherlands)

    Khan, T.A.; Khan, A.B.; Babar, M.; Taj, T.A.

    2014-01-01

    Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional

  15. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P

    2013-01-01

    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  16. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  17. A radon meter chamber

    International Nuclear Information System (INIS)

    Carlsson, R.

    1990-01-01

    The meter consists of a cylindrical house with two openings, at the ends, one of which is equipped with an alpha particle detector and the other covered with a metal net. The house is manufactured in an isolating material e.g. plastic, with a metallic layer applied to all internal surfaces. The metallic layer and net are kept at a positive electric potential, compared to the alpha detector, in order to attract the radon daughters to the detector and achieve a high efficiency. (L.E.)

  18. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    Science.gov (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  19. A tunable dual-wavelength pump source based on simulated polariton scattering for terahertz-wave generation

    International Nuclear Information System (INIS)

    Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang

    2013-01-01

    We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO 3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG. (paper)

  20. 10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber

    DEFF Research Database (Denmark)

    Clausen, A. T.; Oxenlowe, L.; Peucheret, Christophe

    2001-01-01

    In this letter, a novel scheme for a wavelength-tunable pulse source (WTPS) is proposed and characterized. It is based on four-wave mixing (FWM) in a newly developed highly nonlinear fiber between a return-to-zero (RZ) pulsed signal at a fixed wavelength and a continuous wave probe tunable...

  1. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  2. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Directory of Open Access Journals (Sweden)

    Youngchul Bae

    2016-05-01

    Full Text Available An optical sensor such as a laser range finder (LRF or laser displacement meter (LDM uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  3. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    Science.gov (United States)

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  4. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers.

    Science.gov (United States)

    Zhu, Bing; Traini, Daniela; Chan, Hak-Kim; Young, Paul M

    2013-11-01

    The aerosol performance of budesonide solution-based pressurized metered-dose inhalers (HFA 134a), with various amounts of ethanol (5-30%, w/w) as co-solvents, was evaluated using impaction and laser diffraction techniques. With the increase of ethanol concentration in a formulation, the mass median aerodynamic diameter was increased and the fine particle fraction showed a significant decline. Although data obtained from laser diffraction oversized that of the impaction measurements, good correlations were established between the two sets of data. Particles emitted from all the five formulations in this study were amorphous, with two different types of morphology - the majority had a smooth surface with a solid core and the others were internally porous with coral-like surface morphology. The addition of ethanol in the formulation decreased the percentage of such irregular-shape particles from 52% to 2.5% approximately, when the ethanol concentration was increased from 5% to 30%, respectively. A hypothesis regarding the possible particle formation mechanisms was also established. Due to the difference of droplet composition from the designed formulation during the atomization process, the two types of particle may have gone through distinct drying processes: both droplets will have a very short period of co-evaporation, droplets with less ethanol may be dried during such period; while the droplets containing more ethanol will undergo an extra condensation stage before the final particle formation.

  5. Theory of errors in Coriolis flowmeter readings due to compressibility of the fluid being metered

    OpenAIRE

    Kutin, Jože; Hemp, John

    2015-01-01

    The compressibility of fluids in a Coriolis mass flowmeter can cause errors in the meter's measurements of density and mass flow rate. These errors may be better described as errors due to the finite speed of sound in the fluid being metered, or due to the finite wavelength of sound at the operating frequency of the meter. In this paper, they are investigated theoretically and calculated to a first approximation (small degree of compressibility). The investigation is limited to straight beam-...

  6. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  7. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L

    1996-12-31

    Electric utilities often face situations where conventional distribution station billing meters have been removed from service. This paper presents an innovative alternative to traditional solutions to the temporary billing situation such as the use of clamp-on devices called electronic recording ammeters. It examines how Ontario Hydro is measuring current, voltage, and power factor at a distribution station to calculate kilowatts and kVAR using an easy-to-install product that communicates its live readings directly to an existing billing system. The devices used for the measurements can be easily attached to a power line with a hotstick and contain a special core which senses current flow and powers appropriate electronics, which digitizes voltage and current data and transmits it via low-power FM radio for subsequent data storage and processing. The paper includes results of field trials and outlines the advantages of using the device.

  8. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  9. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  10. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  11. A Novel Dynamic Wavelength Cross-connect Based on Mach-Zehnder Interferometer Optical ad/drop Multiplexer and Optical Space Switch

    DEFF Research Database (Denmark)

    Xueyan, Zheng; Liu, Fenghai

    1999-01-01

    We have proposed a novel dynamic WXC based on MZI-OADM. The advantages of this dynamic WXC are very low differential insertion loss, using less exchanging units than reported structures, and the ability to be integrated. In experiment, the three channels from the path with maximum OADMs in a 2×2 ......×2 dynamic WXC capable of exchanging five wavelengths show negligible power penalty at BER of 10-9. The above advantages make this kind of dynamic WXC very promising for future WDM networks...

  12. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  13. At-wavelength metrology using the moiré fringe analysis method based on a two dimensional grating interferometer

    International Nuclear Information System (INIS)

    Wang, Hongchang; Berujon, Sebastien; Pape, Ian; Rutishauser, Simon; David, Christian; Sawhney, Kawal

    2013-01-01

    A two-dimensional (2D) grating interferometer was used to perform at-wavelength metrology. A Fast Fourier Transform (FFT) of the interferograms recovers the differential X-ray beam phase in two orthogonal directions simultaneously. As an example, the X-ray wavefronts downstream from a Fresnel Zone plate were measured using the moiré fringe analysis method, which requires only a single image. The rotating shearing interferometer technique for moiré fringe analysis was extended from one dimension to two dimensions to carry out absolute wavefront metrology. In addition, the 2D moiré fringes were extrapolated using Gerchberg's method to reduce the boundary artifacts. The advantages and limitations of the phase-stepping method and the moiré fringe analysis method are also discussed. -- Highlights: ► A rapid and sensitive strip test for CPPU (forchlorfenuron) detection is reported. ► Carbon nanoparticles were used for antibody labelling. ► A common flatbed scanner was employed to the quantitate strip spots. ► The new method was successfully applied to the analysis of the field samples

  14. Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Gibb, E. L. [Department of Physics and Astronomy, University of Missouri, St. Louis, MO (United States)

    2017-02-20

    We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H{sub 2}O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H{sub 2}O and HDO, yielding production rates of 5.9 ± 0.13 × 10{sup 29} and 3.6 ± 1.0 × 10{sup 26} molecules s{sup −1}, respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water of 3.02 ± 0.87 × 10{sup −4}, i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H{sub 2}O.

  15. Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths

    International Nuclear Information System (INIS)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; Gibb, E. L.

    2017-01-01

    We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H 2 O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H 2 O and HDO, yielding production rates of 5.9 ± 0.13 × 10 29 and 3.6 ± 1.0 × 10 26 molecules s −1 , respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water of 3.02 ± 0.87 × 10 −4 , i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H 2 O.

  16. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Energy Technology Data Exchange (ETDEWEB)

    Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi, E-mail: takikawa@ee.tut.ac.jp [Toyohashi University of Technology, 1-1 Habarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Tanoue, Hideto [Kitakyushu National College of Technology, 5-20-1, Kokuraminami, Kitakyushu, Fukuoka 802-0985 (Japan)

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  17. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Science.gov (United States)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  18. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    International Nuclear Information System (INIS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-01-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD

  19. How to use your peak flow meter

    Science.gov (United States)

    ... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  20. Assessment of the implementation regulations for smart meters; Beoordeling uitvoeringsregelingen Slimme Meter

    Energy Technology Data Exchange (ETDEWEB)

    Boekema, J.

    2011-03-15

    TNO (Netherlands) assessed whether the smart meter is reliable and future proof. By request of the Dutch Ministry of Economic Affairs, Agriculture and Innovation (ELI) an assessment was conducted of the requirements for smart meters and, as formulated in the Order in Council 'Decree on remotely readable metering devices', based on 48 tests regarding security, privacy and future stability. Taking into account a number of described recommendations, TNO deems the legislation and implementation schemes sufficient to allow for safe, reliable and future proof implementation of smart meters in the Netherlands. [Dutch] TNO heeft beoordeeld of de slimme meter betrouwbaar en toekomstvast is. Ten behoeve van het ministerie van Economische Zaken, Landbouw en Innovatie (ELI) zijn de eisen die aan slimme meters worden gesteld, en zoals verwoord in de AmvB 'Besluit op afstand uitleesbare meetinrichtingen', beoordeeld aan de hand van 48 toetsen over zekerheid (security), persoonlijke levenssfeer (privacy) en toekomstvastheid. Met inachtneming van een aantal omschreven aanbevelingen, vindt TNO wetgeving en uitvoeringsregelingen zodanig dat daarmee een veilige, betrouwbare en toekomstvaste slimme meter geimplementeerd kan worden in Nederland.

  1. Micro-gen metering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elland, J.; Dickson, J.; Cranfield, P.

    2003-07-01

    This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.

  2. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... conformance test requirements for the firmware upgradeability process for the Advanced Metering Infrastructure...

  3. Two laboratory methods for the calibration of GPS speed meters

    International Nuclear Information System (INIS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40–180 km h −1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology. (paper)

  4. A Probabilistic Model of Meter Perception: Simulating Enculturation

    Directory of Open Access Journals (Sweden)

    Bastiaan van der Weij

    2017-05-01

    Full Text Available Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  5. Metering apparatus and tariffs for electricity supply

    International Nuclear Information System (INIS)

    1990-01-01

    Conference papers presented cover system economies and tariff structure with papers on pricing of electricity and new metering technologies. Other topics reviewed include metering apparatus design, electronic metering apparatus and solid phase metering technology. Meter data retrieval, bulk supply metering, test equipment and maintenance, and legal requirements and standards are discussed. (author)

  6. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  7. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  8. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    Science.gov (United States)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  9. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  10. Research on Operation Assessment Method for Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  11. A Method of Evaluating Operation of Electric Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin

    2018-05-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  12. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  13. Radiofrequency energy exposure from the Trilliant smart meter.

    Science.gov (United States)

    Foster, Kenneth R; Tell, Richard A

    2013-08-01

    This paper reviews radiofrequency (RF) field levels produced by electric utility meters equipped with RF transceivers (so-called Smart Meters), focusing on meters from one manufacturer (Trilliant, Redwood City, CA, USA, and Granby, QC, Canada). The RF transmission levels are summarized based on publicly available data submitted to the U.S. Federal Communications Commission supplemented by limited independent measurements. As with other Smart Meters, this meter incorporates a low powered radiofrequency transceiver used for a neighborhood mesh network, in the present case using ZigBee-compliant physical and medium access layers, operating in the 2.45 GHz unlicensed band but with a proprietary network architecture. Simple calculations based on a free space propagation model indicate that peak RF field intensities are in the range of 10 mW m or less at a distance of more than 1-2 m from the meters. However, the duty cycle of transmission from the meters is very low (meter that were consistent with data reported by the vendor to the U.S. Federal Communications Commission. Limited measurements conducted in two houses with the meters were unable to clearly distinguish emissions from the meters from the considerable electromagnetic clutter in the same frequency range from other sources, including Wi-Fi routers and, when it was activated, a microwave oven. These preliminary measurements disclosed the difficulties that would be encountered in characterizing the RF exposures from these meters in homes in the face of background signals from other household devices in the same frequency range. An appendix provides an introduction to Smart Meter technology. The RF transmitters in wireless-equipped Smart Meters operate at similar power levels and in similar frequency ranges as many other digital communications devices in common use, and their exposure levels are very far below U.S. and international exposure limits.

  14. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  15. Development of a hand-held fast neutron survey meter

    International Nuclear Information System (INIS)

    Yoshida, T.; Tsujimura, N.; Yamano, T.

    2011-01-01

    A neutron survey meter with a ZnS(Ag) scintillator to measure recoil protons was built. The detection probe weighs ∼2 kg, therefore providing us with true portability. Performance tests exhibited satisfactory neutron dosimetry characteristics in unmoderated or lightly moderated fission neutron fields and in particular work environments at a mixed oxide fuel facility. This new survey meter will augment a routine of neutron monitoring that is inconveniently being carried out by moderator-based neutron survey meters. (authors)

  16. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    Science.gov (United States)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  17. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    Science.gov (United States)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  18. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  19. Proceedings of the 2006 smart metering conference and expo

    International Nuclear Information System (INIS)

    2006-01-01

    Ontario's smart metering program was launched as part of a general demand response management strategy to improve energy conservation in the province. Smart metering will help consumers to control their electricity bills through conservation and demand response, and will allow consumers to better manage their energy consumption and use it more effectively during cheaper, off-peak times of day. Smart metering systems measure how much electricity a customer uses on an hourly basis, and data is transferred daily to local electricity distributors. Toronto Hydro will have close to 200,000 smart meters installed by the end of 2006. By 2010, Toronto will be North America's largest urban centre to have made the full transition to smart metering technology across its entire base. This conference provided an update of Toronto Hydro's smart metering project, as well as details of their demand response program. Presentations were given by a variety of experts in information technology as well as electric power industry leaders North American demand and response metering strategies were reviewed, as well as various initiatives in advanced metering infrastructure (AMI). Security risks associated with smart metering environments were reviewed. An evaluation of the current regulatory environment was presented along with a discussion of smart metering standards and compatibility issues. New metering technologies were presented as well as various associated demand side management tools. Smart metering pilot programs and initiatives were discussed, and best practices in smart metering were evaluated. Twenty-nine presentations were given at the conference, 13 of which have been indexed separately for inclusion in this database. refs., tabs., figs

  20. Advanced Metering Installations – A Perspective from Federal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Earni, Shankar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-02

    This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized. This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.

  1. De Minimis Thresholds for Federal Building Metering Appropriateness

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  2. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  3. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture...

  4. All-Optical 40 Gbit/s Regenerative Wavelength Conversion Based on Cross-Phase Modulation in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Hu, Hao; Ji, Hua

    2013-01-01

    We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration.......We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration....

  5. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  6. Smart metering - energy data management at every meter point; Smart Metering - Energiedatenmanagement an jedem Zaehlpunkt

    Energy Technology Data Exchange (ETDEWEB)

    Keller-Giessbach, D.; Kiel, E. [LogicaCMG, Muenchen (Germany)

    2007-09-15

    The demise of monopolistic structures in the German energy market has also led to a change of perspective on metering. New requirements have to be met. Even in mass processing jobs such as meter reading it is no longer sufficient to simply read consumption data off a technically reliable meter or have customers do this themselves in preparation of billing. Currently used meters were not designed with a mind to demand management, environmental protection through energy conservation, changes in consumer behaviour or new service offers. This has been recognised in many European countries since the beginning of the present decade. The traditional task of metering is developing into a more comprehensive energy data management that takes account of the needs of customers, energy suppliers and regulatory requirements.

  7. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  8. Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fibers readout

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Balagurov, A.M.; Bokuchava, G.D.; Zhuk, V.V.; Kudryashev, V.A.; Bulkin, A.P.; Trunov, V.A.

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal stresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/ 6 LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of the tested modules in comparison with a detector of the previous generation are presented and advantages of the new detector design for high-resolution diffractometry are discussed

  9. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    Science.gov (United States)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  10. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    Science.gov (United States)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  11. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    Science.gov (United States)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  12. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    Science.gov (United States)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  13. Development of a novel vortex flow meter for downhole use

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.

    2008-01-01

    Due to the increasing complexity of oil and gas wells, the demand for instrumentation to measure conditions inside well tubing below the surface is growing rapidly. A robust meter was designed to measure liquid flows at downhole conditions. The meter is based on a specially-designed bluff body to

  14. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  15. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    Science.gov (United States)

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.

  16. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  17. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    Science.gov (United States)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  18. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method.

    Science.gov (United States)

    Capiau, Sara; Wilk, Leah S; De Kesel, Pieter M M; Aalders, Maurice C G; Stove, Christophe P

    2018-02-06

    The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBS's reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The

  19. Check and evaluation system on heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of china based on multi-index comprehensive evaluation method

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    Heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China is organized and implemented in a large scale by local government in 15 provinces of North China with the unified guidance and control of central government. Firstly, this paper introduced the target of energy-saving reformation of existing residential buildings in North China and the importance of check and evaluation on this target, then pointed out the necessity of building up an evaluation system for energy-saving retrofit. According to the analytical hierarchy process (AHP), three-grade evaluation system was built up for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China. Also, based on multi-index comprehensive evaluation method combined with life cycle assessment (LCA) theory, post-evaluation thought and successful degree evaluation method, a mathematical model was established. Finally, a set of scientific method for evaluating heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China systematically, scientifically, comprehensively and objectively was created.

  20. Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Peilong; Guo, Yajuan; Wang, Lixu; Luo, Fang; Qiu, Bin; Guo, Longhua; Su, Xiaoou; Lin, Zhenyu; Chen, Guonan

    2018-01-01

    Aflatoxin B 1 (AFB 1 ) can cause great threat to human health, so the development of convenient and portable device for sensitive detection of AFB 1 is highly desired. The portable pH meter has the characters of facile operation, low cost, and easy availability. Therefore, in this study, we investigate the applicability of utilizing a pH meter as the readout to develop a portable sensor for AFB 1 . The specific detection of AFB 1 is realized via the combination of AFB 1 -responsive aptamer-cross-linked hydrogel. Upon the addition of AFB 1 , AFB 1 binds to its aptamer with high affinity in lieu of aptamer/DNA complex, causing the collapse of hydrogel network and results in the releasing of urease into the solution. The released urease can catalyse the hydrolysis of urea and result in the rise of pH value. The change of pH value has a direct relationship to the concentration of AFB 1 in the range of 0.2-20µM with a detection limit of 0.1µM (S/N = 3). The proposed portable device is successfully applied to assay AFB 1 in the food samples with satisfied results. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Pirat, P.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  2. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  3. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  4. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  5. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Sun, G C; Li, Y D; Zhao, M; Chen, X Y; Wang, J B; Chen, G B

    2013-01-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm. (paper)

  6. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  7. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  8. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  9. Rational Molecular Engineering of Indoline-Based D-A-π-A Organic Sensitizers for Long-Wavelength-Responsive Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Zhang, Weiwei; Wu, Yongzhen; Zhu, Haibo; Chai, Qipeng; Liu, Jingchuan; Li, Hui; Song, Xiongrong; Zhu, Wei-Hong

    2015-12-09

    Indoline-based D-A-π-A organic sensitizers are promising candidates for highly efficient and long-term stable dye-sensitized solar cells (DSSCs). In order to further broaden the spectral response of the known indoline dye WS-2, we rationally engineer the molecular structure through enhancing the electron donor and extending the π-bridge, resulting in two novel indoline-based D-A-π-A organic sensitizers WS-92 and WS-95. By replacing the 4-methylphenyl group on the indoline donor of WS-2 with a more electron-rich carbazole unit, the intramolecular charge transfer (ICT) absorption band of dye WS-92 is slightly red-shifted from 550 nm (WS-2) to 554 nm (WS-92). In comparison, the incorporation of a larger π-bridge of cyclopentadithiophene (CPDT) unit in dye WS-95 not only greatly bathochromatically tunes the absorption band to 574 nm but also largely enhances the molar extinction coefficients (ε), thus dramatically improving the light-harvesting capability. Under the standard global AM 1.5 solar light condition, the photovoltaic performances of both organic dyes have been evaluated in DSSCs on the basis of the iodide/triiodide electrolyte without any coadsorbent or cosensitizer. The DSSCs based on WS-95 display better device performance with power conversion efficiency (η) of 7.69%. The additional coadsorbent in the dye bath of WS-95 does not improve the photovoltaic performance, indicative of its negligible dye aggregation, which can be rationalized by the grafted dioctyl chains on the CPDT unit. The cosensitization of WS-95 with a short absorption wavelength dye S2 enhances the IPCE and improves the η to 9.18%. Our results indicate that extending the π-spacer is more rational than enhancing the electron donor in terms of broadening the spectral response of indoline-based D-A-π-A organic sensitizers.

  10. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    suppliers, but they can also play a big role in the control of the Microgrid since the recorded power and energy profiles can be integrated in energy management systems (EMS). In addition, basic power quality (PQ) disturbance can de detected and reported by some advanced metering systems. Thus, this paper...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  11. Metering in the gas supply sector; Metering in der Gasversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wernekinck, U. [RWE Westfalen-Weser-Ems, Recklinghausen (Germany)

    2007-10-15

    The new conditions of competition in the gas supply sector have strongly increased the requirements on gas grid operators. Mainly an exact gas metering and -accouting will become more and more important. The systems and procedures are presented in detail in this contribution. (GL)

  12. Microprocessor controlled digital period meter

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.; Rusch, G.K.

    1980-01-01

    A microprocessor controlled digital period meter has been developed and tested operationally on a reactor at Argonne National Laboratory. The principle of operation is the mathematical relationship between asymptotic periods and pulse counting circuitry. This relationship is used to calculate and display the reactor periods over a range of /plus or minus/1 second to /plus or minus/999 seconds. The time interval required to update each measurement automatically varies from 8 seconds at the lowest counting rates to 2 seconds at higher counting rates. The paper will describe hardware and software design details and show the advantages of this type of Period Meter over the conventional circuits. 1 ref

  13. A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-07-20

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  14. Genetic algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: Application on sulfamethoxazole and trimethoprim mixture in bovine milk

    Directory of Open Access Journals (Sweden)

    Givianrad Hadi Mohammad

    2013-01-01

    Full Text Available The simultaneous determination of sulfamethoxazole (SMX and trimethoprim (TMP mixtures in bovine milk by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By means of multivariate calibration methods, such as partial least square (PLS regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Genetic algorithm (GA is a suitable method for selecting wavelengths for PLS calibration of mixtures with almost identical spectra without loss of prediction capacity using the spectrophotometric method. In this study, the calibration model based on absorption spectra in the 200-400 nm range for 25 different mixtures of SMX and TMP Calibration matrices were formed form samples containing 0.25-20 and 0.3-21 μg mL-1 for SMX and TMP, at pH=10, respectively. The root mean squared error of deviation (RMSED for SMX and TMP with PLS and genetic algorithm partial least square (GAPLS were 0.242, 0.066 μgmL-1 and 0.074, 0.027 μg mL-1, respectively. This procedure was allowed the simultaneous determination of SMX and TMP in synthetic and real samples and good reliability of the determination was proved.

  15. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    Science.gov (United States)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  16. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne

    1997-09-01

    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  17. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  18. Development of a contour meter

    International Nuclear Information System (INIS)

    Andrada C, F.A.; Sanz, D.E.

    2006-01-01

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  19. Analysis Balance Parameter of Optimal Ramp metering

    Science.gov (United States)

    Li, Y.; Duan, N.; Yang, X.

    2018-05-01

    Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.

  20. MIT wavelength tables. Volume 2. Wavelengths by element

    International Nuclear Information System (INIS)

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  1. Route Optimization for Offloading Congested Meter Fixes

    Science.gov (United States)

    Xue, Min; Zelinski, Shannon

    2016-01-01

    The Optimized Route Capability (ORC) concept proposed by the FAA facilitates traffic managers to identify and resolve arrival flight delays caused by bottlenecks formed at arrival meter fixes when there exists imbalance between arrival fixes and runways. ORC makes use of the prediction capability of existing automation tools, monitors the traffic delays based on these predictions, and searches the best reroutes upstream of the meter fixes based on the predictions and estimated arrival schedules when delays are over a predefined threshold. Initial implementation and evaluation of the ORC concept considered only reroutes available at the time arrival congestion was first predicted. This work extends previous work by introducing an additional dimension in reroute options such that ORC can find the best time to reroute and overcome the 'firstcome- first-reroute' phenomenon. To deal with the enlarged reroute solution space, a genetic algorithm was developed to solve this problem. Experiments were conducted using the same traffic scenario used in previous work, when an arrival rush was created for one of the four arrival meter fixes at George Bush Intercontinental Houston Airport. Results showed the new approach further improved delay savings. The suggested route changes from the new approach were on average 30 minutes later than those using other approaches, and fewer numbers of reroutes were required. Fewer numbers of reroutes reduce operational complexity and later reroutes help decision makers deal with uncertain situations.

  2. The Thirty-Meter Telescope

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the planets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful ...

  3. Rate meter design and construction

    International Nuclear Information System (INIS)

    Peon Aguirre, R.; Fonseca Araujo, W.H.

    1989-01-01

    An electric diagram is proposed to build a geiger detector Rate Meter, to count gamma radiation and X ray. This idea was made up with the prototype construction which has a five scales analogue display (100, 300, 1000, 3000 and 10000 c/s). (Author)

  4. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  5. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator.

    Science.gov (United States)

    Xu, Huifeng; Kou, Fangxia; Ye, Hongzhi; Wang, Zongwen; Huang, Suixin; Liu, Xianxiang; Zhu, Xi; Lin, Zhenyu; Chen, Guonan

    2017-12-01

    Vascular endothelial growth factor (VEGF) is a crucial signaling protein for the tumor growth and metastasis, which is also acted as the biomarkers for various diseases. In this research, we fabricate an aptamer-antibody sensor for point-of-care test of VEGF. Firstly, target VEGF is captured by antibody immobilized on the microplate, and then binds with aptamer to form the sandwich structure. Next, with the assist of glucose oxidase (GOx)-functionalized ssDNAs, hybridization chain reaction occurs using the aptamer as the primer. Thus, GOx are greatly gathered on the microplate, which catalyzes the oxidization of glucose, leading to the pH change. As a result, the detect limit at a signal-to-noise was estimated to be 0.5pg/mL of target by pH meter, and 1.6pg/mL of VEGF was able to be distinguished by naked eyes. Meanwhile, this method has been used assay VEGF in the serum with the satisfactory results. Copyright © 2017. Published by Elsevier B.V.

  6. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

  7. Advanced digital counting rate meter for gamma ray logging

    International Nuclear Information System (INIS)

    Kannan, S.; Meenakshi Sundari, A.; Rai, A.K.

    2013-01-01

    A compact, hand held controller based Advanced Digital Count Rate Meter (ADCRM) as a replacement of bulky Count Rate (analog) Meters (SBL-2A) was designed, developed and fabricated to carry out Gamma-Ray borehole logging with Geiger Muller (GM) tubes and Scintillation (SC) detectors. In the hardware the functionality of analog meter simulation, digital counting of gamma events and auto reference adjustment to use different length of armour cable winches were implemented. The in-built software evaluates grade in ppm and at the end of logging, the reports are prepared automatically. ADCRM was developed in-house to assist the uranium mineral exploration in AMD. (author)

  8. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  9. Development of Hydrogenated Microcrystalline Silicon-Germanium Alloys for Improving Long-Wavelength Absorption in Si-Based Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2014-01-01

    Full Text Available Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H alloys were developed for application in Si-based thin-film solar cells. The effects of the germane concentration (RGeH4 and the hydrogen ratio (RH2 on the μc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H and μc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed in μc-Si1-xGex:H. Moreover, a higher RH2 significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected by RH2 in μc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasing RGeH4, the accompanied increase in Ge content of μc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization of RH2 and RGeH4, the single-junction μc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared to μc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.

  10. Characterization and optimization of a high-efficiency AlGaAs-On-Insulator-based wavelength converter for 64- and 256-QAM signals

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Yankov, Metodi Plamenov; Porto da Silva, Edson

    2017-01-01

    of the wavelength converter is reported, including the optimization of the AlGaAsOI nano-waveguide in terms of conversion efficiency and associated bandwidth and the analysis of the impact of the converter pump quality and power as well as the signal input power. The optimized converter enables generating idlers......In this paper, we demonstrate wavelength conversion of advanced modulation formats such as 10-GBd 64-QAM and 256-QAM with high conversion efficiency over a 29-nm spectral window by using four-wave mixing in an AlGaAs-On-Insulator (AlGaAsOI) nano-waveguide. A thorough characterization...

  11. Metering: EU policy and implications for fuel poor households

    International Nuclear Information System (INIS)

    Darby, Sarah J.

    2012-01-01

    Fuel poverty is a function of household energy consumption, income, and the cost of delivered energy. The paper discusses ways in which current EU policy on the development of ‘smart’ metering could affect fuel poor households. The main focus is on developments in electricity metering and the development of ‘active demand’ and smart grids, so that demand can be matched closely with available supply. Advances in metering and related technologies open the way to time-of-use charging, easier switching between suppliers and between credit payment and prepayment, direct load control of some end-uses by the utility, greater scope for microgeneration, and improved consumption feedback for customers. These options open up both uncertainties and risks. The paper offers definitions and discussion of various functions of smart metering, summarizes the EU policy background, and considers some possible equity implications of rolling out a new generation of meters. There follows an assessment of potential implications to the fuel poor of changes to metering, based on a review of the literature on energy feedback, tariffing, and supplier–customer relationships. Much of the discussion is based on the UK experience, with examples from other EU member states and, where appropriate, from other parts of the world. - Highlights: ► Smart meters are part of general upgrading of electricity and gas networks. ► EU policy is to roll out the meters to 80%+ of the population by 2020. ► Improved feedback and prepayment metering may benefit the fuel poor. ► Remote disconnection and data privacy are issues for all consumers. ► We need careful assessment of potential gains and losses to the fuel poor.

  12. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay.

    Science.gov (United States)

    Huang, Haoran; Zhao, Guangying; Dou, Wenchao

    2018-06-01

    Here we innovate a portable and quantitative immunochromatographic assay (ICA) with a personal glucose meter (PGM) as readout for the detection of Escherichia coli O157:H7 (E. coli O157:H7). The carboxyl group coated Fe 3 O 4 nanoparticles (MNPs) were synthesized by a one pot method and used as carriers of invertase and monoclonal antibody against E. coli O157:H7. Initially, the invertase and antibody double functionalized MNPs (Invertase-MNPs-IgG) conjugates were prepared and used as label probe in this assay system. Before laminating onto the baking card, the absorbent pad was soaked in sucrose solution and desiccated. MNPs produced brown band at the detection zone of the ICA when acting as direct labels. As they were also coupled with invertase, the invertase catalyzed the hydrolysis of sucrose on the absorbent pad into glucose, which was detected by the PGM. To increase the sensitivity, antibody functionalized MNPs were used to enrich E. coli O157:H7 from sample solution. The innovative aspect of this approach lies in the visualization and quantification of E. coli O157:H7 through Invertase-MNPs-IgG and the detection of glucose concentration using PGM. Although the feasibility is demonstrated using E. coli O157:H7 as a model analyte, this approach can be easily developed to be a universal analysis system and applied to detection of a wide variety of foodborne pathogens and protein biomarkers. This study proposed a qualitative and quantitative analysis device for the clinic diagnostics and food safety analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Characterization of a Wavelength Converter for 256-QAM Signals Based on an AlGaAs-On-Insulator Nano-waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Yankov, Metodi Plamenov; Porto da Silva, Edson

    2016-01-01

    High efficiency and broadband wavelength conversion in a 9-mm AlGaAs-On-Insulator waveguide is shown to provide high-quality (OSNR > 30 dB) idler generation over a 28-nm bandwidth enabling error-free conversion of 10-GBd 256-QAM with OSNR penalty below 2.5 dB....

  14. Solid state semiconductor detectorized survey meter

    International Nuclear Information System (INIS)

    Okamoto, Eisuke; Nagase, Yoshiyuki; Furuhashi, Masato

    1987-01-01

    Survey meters are used for measurement of gamma ray dose rate of the space and the surface contamination dencity that the atomic energy plant and the radiation facility etc. We have recently developed semiconductor type survey meter (Commercial name: Compact Survey Meter). This survey meter is a small-sized dose rate meter with excellent function. The special features are using semiconductor type detector which we have developed by our own technique, stablar wide range than the old type, long life, and easy to carry. Now we introduce the efficiency and the function of the survey meter. (author)

  15. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  16. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  17. Analysis of subsystems in wavelength-division-multiplexing networks

    DEFF Research Database (Denmark)

    Liu, Fenghai

    2001-01-01

    Wavelength division multiplexing (WDM) technology together with optical amplification has created a new era for optical communication. Transmission capacity is greatly increased by adding more and more wavelength channels into a single fiber, as well as by increasing the line rate of each channel...... in semiconductor optical amplifiers (SOAs), and dispersion managed fiber sections. New subsystems are also proposed in the thesis: a modular 2×2 multiwavelength cross-connect using wavelength switching blocks, a wavelength converter based on cross phase modulation in a semiconductor modulator, a wavelength...

  18. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  19. Cross-cultural differences in meter perception.

    Science.gov (United States)

    Kalender, Beste; Trehub, Sandra E; Schellenberg, E Glenn

    2013-03-01

    We examined the influence of incidental exposure to varied metrical patterns from different musical cultures on the perception of complex metrical structures from an unfamiliar musical culture. Adults who were familiar with Western music only (i.e., simple meters) and those who also had limited familiarity with non-Western music were tested on their perception of metrical organization in unfamiliar (Turkish) music with simple and complex meters. Adults who were familiar with Western music detected meter-violating changes in Turkish music with simple meter but not in Turkish music with complex meter. Adults with some exposure to non-Western music that was unmetered or metrically complex detected meter-violating changes in Turkish music with both simple and complex meters, but they performed better on patterns with a simple meter. The implication is that familiarity with varied metrical structures, including those with a non-isochronous tactus, enhances sensitivity to the metrical organization of unfamiliar music.

  20. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  1. Versatile operation meter for nuclear information

    International Nuclear Information System (INIS)

    Huang Yong; Xiao Yabin; Wang Shuyuan; Shu Jingfang; Di Shaoliang; Wu Hongbin

    1995-01-01

    This paper states a low-cost, small-volume, multi-function, reproducible and new model intelligent nuclear electronic meter. It's hardware and Software were detailed and the 137 Cs spectrum with this meter was presented

  2. Calibration of dose meters used in radiotherapy

    International Nuclear Information System (INIS)

    1979-01-01

    This manual is a practical guide, not a comprehensive textbook, to the instrumentation and procedures necessary to calibrate a radiation dose meter used in clinical practice against a secondary standard dose meter

  3. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  4. Solutions For Smart Metering Under Harsh Environmental Condicions

    Directory of Open Access Journals (Sweden)

    Kunicina N.

    2015-02-01

    Full Text Available The described case study concerns application of wireless sensor networks to the smart control of power supply substations. The solution proposed for metering is based on the modular principle and has been tested in the intersystem communication paradigm using selectable interface modules (IEEE 802.3, ISM radio interface, GSM/GPRS. The solution modularity gives 7 % savings of maintenance costs. The developed solution can be applied to the control of different critical infrastructure networks using adapted modules. The proposed smart metering is suitable for outdoor installation, indoor industrial installations, operation under electromagnetic pollution, temperature and humidity impact. The results of tests have shown a good electromagnetic compatibility of the prototype meter with other electronic devices. The metering procedure is exemplified by operation of a testing company's workers under harsh environmental conditions.

  5. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  6. Hardware Design of a Smart Meter

    OpenAIRE

    Ganiyu A. Ajenikoko; Anthony A. Olaomi

    2014-01-01

    Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and elimina...

  7. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  8. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Ahmad, H; Hassan, N A; Jemangin, M H; Harun, S W

    2011-01-01

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  9. Smart Metering. Technological, economic and legal aspects. 2. ed.; Smart Metering. Technologische, wirtschaftliche und juristische Aspekte des Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Koehler-Schute, Christiana (ed.)

    2010-07-01

    Smart metering comprises more than just meter technology, and the use of information and communication technologies is indispensable. Processes, roles and business models must be reconsidered as further challenges arise in the context of smart metering. For one, there is the operator of the metering points. Secondly, there is the end user who is in the role of an active market partner. Further, there is smart metering as a basic technology, e.g. for smart grids and smart homes. In spite of the need for action, many utilities are reluctant to introduce smart metering. Reasons for this are the cost, a lack of defined standards, and an unclear legal situation. On the other hand, smart metering offers potential for grids and distribution that should be made use of. The authors discuss all aspects of the subject. The point out the chances and limitations of smart metering and present their own experience. [German] Smart Metering geht weit ueber die Zaehlertechnologie hinaus und der Einsatz von Informations- und Kommunikationstechnologien ist unabdingbar. Damit einhergehend muessen Prozesse, Rollen und auch Geschaeftsmodelle neu durchdacht werden. Denn weitere Herausforderungen stehen im direkten Zusammenhang mit Smart Metering. Das ist zum einen die Rolle des Messstellenbetreibers / Messdienstleisters. Das ist zum anderen der Endnutzer, dem die Rolle des aktiven Marktpartners zugedacht wird. Das ist des Weiteren das Smart Metering als Basistechnologie beispielsweise fuer Smart Grid und Smart Home. Trotz des Handlungsdrucks stehen viele Unternehmen der Energiewirtschaft dem Smart Metering zurueckhaltend gegenueber. Drei gewichtige Gruende werden ins Feld gefuehrt: die Kostenfrage, nicht definierte Standards und die in vielen Bereichen ungeklaerte Gesetzeslage. Demgegenueber bietet das Smart Metering Potenziale fuer Netz und Vertrieb, die es zu nutzen gilt. Die Autoren setzen sich in ihren Beitraegen mit diesen Themen auseinander, zeigen Chancen, aber auch Grenzen des

  10. Fundamental principles of rotary displacement meters

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J. [Schlumberger Industries, Owenton, KY (United States)

    1995-12-01

    The gas meter exists to continually and accurately measure the volume of gas supplied over the complete flow range of the load. In effect the gas meter serves as the {open_quotes}cash register{close_quotes} of the gas industry; its accurate and dependable performance ensures fair dealings for both the supplier and the user. An investment both in and of itself, the gas meter should be chosen as a function of its usefullness both over the short term and the long term. Thus in addition to initial cost, one must take into account various associated factors, costs and benefits, including the following: Design Characteristics Application, suitability, Meter features and options, Operation constraints, Installation, Service and maintenance, Repair and replacement, Life expectancy, Compatibility with complimentary products, Correcting devices, Remote reading capabilities, Data generation and gathering, Upgradeabilty. This paper will look at one positive displacement meter, the Rotary meter, and address the fundamentals principals of the technology as well as looking at some of the benefits derived from its application. Rotary positive displacement meters were introduced at the end of last century. Used primarily for metering transmission sized loads, the meters` measuring capabilities have extended to cover nearly all areas of distribution with exception of domestic applications. Rotary meters are available in rated capacities from 800 cfh to 102,000 cfh and operating pressures from 175 PSIG to 1440 PSIG. The use of rotary meters on load ranges in the 800 to 10,000 cfh category has increased and is replacing the use of diaphragm meters because of the smaller relative size of rotaries, and improvements in rangeabilities in the last few years. Turbine meters are usually the meter of choice on loads over 16,000 cfh unless a meter with high rangeability is required because of varying load characteristics, in which case a large foot mounted rotary might still be selected.

  11. Water Quality Monitoring of an Urban Estuary and a Coastal Aquifer Using Field Kits and Meters: A Community-Based Environmental Research Project

    Science.gov (United States)

    Jung, Hun Bok; Zamora, Felix; Duzgoren-Aydin, Nurdan S.

    2017-01-01

    Water quality is an important interdisciplinary environmental topic for project-based learning. An undergraduate summer research internship program at a public minority serving institution engaged environmental science majors in community-based research experiences. The research focused on the field monitoring of water quality for surface water…

  12. Smart meter data: Balancing consumer privacy concerns with legitimate applications

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Richardson, Ian; Thomson, Murray

    2012-01-01

    Smart meters are being rolled out in large numbers throughout the world, with proponents claiming they are a critical step in the transition to a low-carbon economy. Yet there are significant unresolved negative reactions to smart meters, principally based on the concern that smart meters might be used to infer the private activities that occur within a dwelling. Though smart meter data is classified as personal data, and as such protected under existing data protection frameworks in the EU, there are relevant exceptions, notably where the data is required for legitimate applications associated with the performance of 'regulated duties'. This paper contributes to this debate by examining the data requirements for some of the proposed applications of smart meter data within the electricity supply industry, and investigates whether the use of personal data can be minimized or even avoided. The discussion includes system balancing, demand reduction, demand response and distribution network operation and planning, and indicates that, for most of these applications, the requirements for personal data can indeed be minimized. 'Privacy friendly' alternatives are discussed. - Highlights: ▶ Current smart meter systems provide a strong indication of occupancy. ▶ This will have important implications for external and internal home privacy. ▶ Personal data requirements within legitimate applications are discussed. ▶ 'Privacy friendly' techniques are suggested that minimize the use of personal data. ▶ Distribution network operator has strongest claim for data from each household.

  13. How today's USM diagnostics solve metering problems[Ultrasonic meters

    Energy Technology Data Exchange (ETDEWEB)

    Lansing, John

    2005-07-01

    This paper discusses both basic and advanced diagnostic features of gas ultrasonic meters (USM), and how capabilities built into today's electronics can identify problems that often may not have been identified in the past. It primarily discusses fiscal-quality, multi-path USMs and does not cover issues that may be different with non-fiscal meters. Although USMs basically work the same, the diagnostics for each manufacturer does vary. All brands provide basic features as discussed in AGA 9. However, some provide advanced features that can be used to help identify issues such as blocked flow conditioners and gas compositional errors. This paper is based upon the Daniel USM design and the information presented here may or may not be applicable to other manufacturers. (author) (tk)

  14. Effect of Smart Meter Measurements Data On Distribution State Estimation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements in the phy......Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements...... in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...

  15. The 59 meter dash - automatic rapid meter reading in Ronneby

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Hans [Enersearch (Sweden); Selander, Lars [Linkoeping Univ. (Sweden); Bergstroem, Ulrika [Sydkraft (Sweden)

    1999-02-01

    As a result of deregulation of the telecommunications and energy markets, the utilities in Sweden see opportunities to use power lines for additional profitable applications such as transmission of data; the technology is called Power Line Telecommunications (PLT). The potential advantages are said to be 'massive'. The potential applications include remote security, automatic meter reading, load management and 'smart' home automation. A small scale feasibility study has been carried out in Ronneby in Sweden where it was shown that load management and efficiency improvements can reduce the costs of supplying the town with heat and electricity by about 3%. The Ronneby trial is described in detail. Since Scandinavia makes use of weather-dependent renewables for much of its power generation, load management is an attractive potential application of PLT. (UK)

  16. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  17. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional...

  18. Meter-wavelength observations of pulsars using very long baseline interferometry

    International Nuclear Information System (INIS)

    Vandenberg, N.R.

    1974-07-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to approximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured. (U.S.)

  19. Too cheap to meter what?

    International Nuclear Information System (INIS)

    Wedekind, Lothar

    2004-01-01

    Full text: 50 years ago, at 17:30 hours, 26 June 1954, in the town of Obninsk, near Moscow, the first nuclear power plant sent electricity to residences and businesses. Atomic energy had crossed the divide from military uses to peaceful ones, demonstrating the potential to fuel civilian electric power plants. The milestone is being marked this year at an IAEA international nuclear power conference in Obninsk. Past experience will be reviewed, but the focus is on meeting future challenges. Though it has come a long way in 50 years, nuclear energy today finds itself in a struggle of the fittest to carve a niche over the next fifty - in the marketplace and in the public eye. Cliches and sound bites tell part of the nuclear story. Visionary talk by nuclear proponents in 1954 was about future energy sources that would be 'too cheap to meter', a phrase critics pounced upon. Today in 2004 the 'too cheap to meter' phrase occasionally haunts the atom, but pops up more often than not in promotional ads for anything from wind power to web sites. Talk of nuclear energy now is of a 'renaissance' and 'second wind.' New nuclear plants are most attractive where energy demand is growing and resources are scarce, and where energy security, air pollution and greenhouse gases are priorities, IAEA Director General Mohamed ElBaradei points out. In cities, towns, and villages, reality is different, or too much the same, depending how you see and live it. Cheap or not, nuclear energy today supplies one-sixth of the world's electricity in some 30 countries. Still, it does not produce enough power. Neither does any other energy source. More than 1.5 billion people have no electricity to meter whatsoever - not from renewables, solar, nuclear, biomass, wind, coal, oil, gas, firewood, or hydrogen, the publicized promise of tomorrow. So what will it take? Maybe bigger blackouts or hotter days than the world has seen. Certainly needed are more attention, action, and money. In dollar terms

  20. Understanding pressurized metered dose inhaler performance.

    Science.gov (United States)

    Ivey, James W; Vehring, Reinhard; Finlay, Warren H

    2015-06-01

    Deepening the current understanding of the factors governing the performance of the pressurized metered dose inhaler (pMDI) has the potential to benefit patients by providing improved drugs for current indications as well as by enabling new areas of therapy. Although a great deal of work has been conducted to this end, our knowledge of the physical mechanisms that drive pMDI performance remains incomplete. This review focuses on research into the influence of device and formulation variables on pMDI performance metrics. Literature in the areas of dose metering, atomization and aerosol evolution and deposition is covered, with an emphasis on studies of a more fundamental nature. Simple models which may be of use to those developing pMDI products are summarized. Although researchers have had good success utilizing an empirically developed knowledge base to predict pMDI performance, such knowledge may not be applicable when pursuing innovations in device or formulation technology. Developing a better understanding of the underlying mechanisms is a worthwhile investment for those working to enable the next generation of pMDI products.

  1. Wavelength encoding technique for particle analyses in hematology analyzer

    Science.gov (United States)

    Rongeat, Nelly; Brunel, Patrick; Gineys, Jean-Philippe; Cremien, Didier; Couderc, Vincent; Nérin, Philippe

    2011-07-01

    The aim of this study is to combine multiple excitation wavelengths in order to improve accuracy of fluorescence characterization of labeled cells. The experimental demonstration is realized with a hematology analyzer based on flow cytometry and a CW laser source emitting two visible wavelengths. A given optical encoding associated to each wavelength allows fluorescence identification coming from specific fluorochromes and avoiding the use of noisy compensation method.

  2. ATD-2 Surface Scheduling and Metering Concept

    Science.gov (United States)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  3. Analysing Smart Metering Systems from a Consumer Perspective

    Science.gov (United States)

    Yesudas, Rani

    to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.

  4. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  5. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  6. Design and construction of the prototype of a digital meter of single phase electric energy based in a microcontroller; Diseno y construccion del prototipo de un medidor digital de energia electrica monofasico basado en un microcontrolador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Alonso, Ruben

    2003-10-15

    This research work presents the design and construction of a single-phase microcontroller-based digital electric energy meter. The digital instrument displays the energy demand (kw-h) based on up-to-date tariff provided by the Mexican national utility Comision Federal de Electricidad (CFE). The meter digitally processes voltage and current line waveform samples taken at its input, displaying, in real time, the number of electrical parameters calculated. For a better instrument performance a PIC16F874 microcontroller from microchip has been used as computational core. The parameters of interest are visualized in a liquid crystal display of 2 X 16 characters. The user interface includes a menu where some of the parameters can be selected by the operator. In the event of an electric power supply disruption the meter keeps to the energy consumption in memory. The voltage and current measured levels ranges from 1 to 255 Vrms and 0.1 to 25.5 Arms, respectively. The power is displayed in 5 digits ranging from 0 to 6502.5 watts and the energy is displayed with 5 whole digits and 5 decimals ranging, from 0 kWh up to 99999.99999 kWh. These values are refreshed every one second together with the actual electrical consumption cost which ranges from 0 up to 9999.9 pesos. The digital measuring instrument has been built based on four main inter-connected modules named, data acquisition; signal conditioning; signal processing; and display. A set of efficient assembly code routines has been developed in order to calculate the number of electrical parameter previously described. After a debugging process, the optimised code has been assembled for the PIC16F874. [Spanish] El trabajo presenta el diseno y construccion de un medidor digital de energia electrica basado en un microcontrolador, el cual visualiza la demanda por el consumo de kWh, basandose en una tarifa escalonada de tipo domestico de CFE. Tambien el aparato visualiza voltaje, corriente, potencia y el tiempo de medicion

  7. Optical position meters analyzed in the noninertial reference frames

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Seleznyov, Alexander A.

    2008-01-01

    In the framework of general relativity we develop a method for the analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are noninertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.

  8. New Compensation Technique for Fiber Impairments in Ultra High Capacity Super channel Based on (QDPASK Dense wavelength division multiplex (DWDM systems

    Directory of Open Access Journals (Sweden)

    Ibrahim A.Murdas

    2017-07-01

    Full Text Available In this paper we want to increase the data rate and to get larger transmission distance, therefore we use the Advanced modulation technique QDPASK in DWDM system with low channels space. In case of long transmission distance and multi channels system both giving rise to inter channel crosstalk induced by fiber nonlinearities as a result the use of advanced modulation technique becomes difficult. In this paper Quaternary differential phase amplitude shift keying (QDPASK is designed for 32 dense wavelength division multiplexing (DWDM channels, therefore we proposed a new cascade compensation system consist of optical and digital back propagation techniques (ODBP for compensate the linear and nonlinear effects . A performance of the system was reported using QDPASK DWDM fiber-optic system for various system parameters. The research is tested in VPI maker environment.

  9. High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3D surface-shape measurement.

    Science.gov (United States)

    Liu, Xinran; Kofman, Jonathan

    2017-07-10

    A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.

  10. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection

    Science.gov (United States)

    Riad, Safaa M.; El-Rahman, Mohamed K. Abd; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-06-01

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  11. Metering revisited - innovative concepts for electrical monitoring and reporting systems

    International Nuclear Information System (INIS)

    Stebbins, W.L.

    1993-01-01

    For the first three-quarters of this century, the monitoring of electrical power and energy has been dominated by conventional electromechanical voltmeters, ammeters, and watthour meters. Only in the last decade have solid state microprocessor-based distal devices become available for application in the commercial and industrial marketplace. These new devices perform the tasks of up to 24 conventional indicating meters for about the price of three. Communication via a RS-485 data link to a PC allows monitoring of up to 70 values including times and dates, min/max history, temperature indications, and energy management alarms. Complex waveform analysis can also be carried out for harmonic problems typically associated with adjustable speed drives that have been installed on fans and pumps for energy management savings. Since metering systems are absolutely essential to a successful Energy Management Process, consideration should be given to applying the latest in metering technology. It should be noted that meters by themselves do not save money, they only cost money to install and maintain. Proper monitoring, recording, and analysis lead to corrective actions which produce the desired result of reducing energy per unit of production or per service performed. Experience has shown that a 1 to 2% reduction can be achieved after meters are installed just by letting the users know that they are being monitored. Up to a 5% reduction can occur when the users then become proactive toward better managing of their energy. Ultimately up to 10% reduction can be achieved when metering is tied directly to the process through a PLC or DCS, in a closed loop automated process control arrangement

  12. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    Science.gov (United States)

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  13. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  14. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  15. Performance evaluation of distributed wavelength assignment in WDM optical networks

    Science.gov (United States)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  16. Aperture meter for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mueller, G.J.; Fuchsberger, K.; Redaelli, S.

    2012-01-01

    The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a good modeling of the machine and monitoring of various machine parameters. During operation it is crucial to ensure a minimal distance between the beam edge and the aperture of sensitive equipment, e.g. the superconducting magnets, which in all cases must be in the shadow of the collimator's that protect the machine. Possible dangerous situations must be detected as soon as possible. In order to provide the operator with information about the current machine bottlenecks an aperture meter application was developed based on the LHC online modeling tool-chain. The calculation of available free aperture takes into account the best available optics and aperture model as well as the relevant beam measurements. This paper describes the design and integration of this application into the control environment and presents results of the usage in daily operation and from validation measurements. (authors)

  17. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    Bjerke, H.; Sigurdsson, T.; Meier Pedersen, K.; Grindborg, J.-E.; Persson, L.; Siiskonen, T.; Hakanen, A.; Kosunen, A.

    2012-01-01

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  18. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  19. Optimal wavelength band clustering for multispectral iris recognition.

    Science.gov (United States)

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  20. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  1. Emission wavelength of multilayer distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron L. C.; Brøkner Christiansen, Mads

    2012-01-01

    Precise emission wavelength modeling is essential for understanding and optimization of distributed feedback (DFB) lasers. An analytical approach for determining the emission wavelength based on setting the propagation constant of the Bragg condition and solving for the resulting slab waveguide m...

  2. Strategies for Power Line Communications Smart Metering Network Deployment

    Directory of Open Access Journals (Sweden)

    Alberto Sendin

    2014-04-01

    Full Text Available Smart Grids are becoming a reality all over the world. Nowadays, the research efforts for the introduction and deployment of these grids are mainly focused on the development of the field of Smart Metering. This emerging application requires the use of technologies to access the significant number of points of supply (PoS existing in the grid, covering the Low Voltage (LV segment with the lowest possible costs. Power Line Communications (PLC have been extensively used in electricity grids for a variety of purposes and, of late, have been the focus of renewed interest. PLC are really well suited for quick and inexpensive pervasive deployments. However, no LV grid is the same in any electricity company (utility, and the particularities of each grid evolution, architecture, circumstances and materials, makes it a challenge to deploy Smart Metering networks with PLC technologies, with the Smart Grid as an ultimate goal. This paper covers the evolution of Smart Metering networks, together with the evolution of PLC technologies until both worlds have converged to project PLC-enabled Smart Metering networks towards Smart Grid. This paper develops guidelines over a set of strategic aspects of PLC Smart Metering network deployment based on the knowledge gathered on real field; and introduces the future challenges of these networks in their evolution towards the Smart Grid.

  3. Wavelength variation of a standing wave along a vertical spring

    Science.gov (United States)

    Welsch, Dylan; Baker, Blane

    2018-03-01

    Hand-driven resonance can be observed readily in a number of mechanical systems including thin boards, rods, strings, and springs. In order to show such behavior in the vertical spring pictured in Fig. 1, a section of spring is grasped at a location about one meter from its free end and driven by small, circular motions of the hand. At driving frequencies of a few hertz, a dramatic standing wave is generated. One of the fascinating features of this particular standing wave is that its wavelength varies along the length of the spring.

  4. Evaluation of methods to calibrate radiation survey meters

    International Nuclear Information System (INIS)

    Robinson, R.C.; Arbeau, N.D.

    1987-04-01

    Calibration requirements for radiation survey meters used in industrial radiography have been reviewed. Information obtained from a literature search, discussions with CSLD inspectors and firms performing calibrations has been considered. Based on this review a set of minimum calibration requirements was generated which, when met, will determine that the survey meter is suited for measurements described in the current AEC Regulations that apply to industrial radiography equipment. These requirements are presented in this report and may be used as guidelines for evaluating calibration methods proposed or in use in industry. 39 refs

  5. Application research of improved 235U enrichment meter

    International Nuclear Information System (INIS)

    Liu Daming; Wu Xin; Lu Zhao; Tang Peijia; Lu Feng; Wang Yunmei

    1998-01-01

    A prototype 235 U enrichment meter based on NaI(Tl) γ spectroscopy is improved and it works under the principle of that the enrichment of 235 U is proportional to the radioactivity of 185 keV γ-ray when the sample is thick infinitely. The data of radioactivity from 235 U can be collected by a notebook computer and the interface control software is written using C++ language. The meter was tested and calibrated using standard fuel rods in fuel fabrication plant. For single fuel rod, the measured value of 235 U enrichment is agreeable with declared value within-1.0%-2.8%

  6. BH3105 type neutron dose equivalent meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Enshan; Yang Jianfeng; Zhang Hong; Huang Jiling

    1995-10-01

    It is noted that to design a neutron dose meter of high sensitivity is almost impossible in the frame of traditional designing principle--'absorption net principle'. Based on a newly proposed principle of obtaining neutron dose equi-biological effect adjustment--' absorption stick principle', a brand-new neutron dose-equivalent meter with high neutron sensitivity BH3105 has been developed. Its sensitivity reaches 10 cps/(μSv·h -1 ), which is 18∼40 times higher than one of foreign products of the same kind and is 10 4 times higher than that of domestic FJ342 neutron rem-meter. BH3105 has a measurement range from 0.1μSv/h to 1 Sv/h which is 1 or 2 orders wider than that of the other's. It has the advanced properties of gamma-resistance, energy response, orientation, etc. (6 tabs., 5 figs.)

  7. Advanced Metering Implementations - A Perspective from Federal Sector

    Energy Technology Data Exchange (ETDEWEB)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  8. Digital reactivity meter construction based on PC

    International Nuclear Information System (INIS)

    Yusi-Eko-Yulianto; Kristedjo-Kurnianto

    2003-01-01

    The reactivitymeter is a core reactivity measuring equipment, which inform the reactor operator the neutron flux development in the core. This digital reactivitymeter is needed to replace analog reactivitymeter, whenever it fails in the future. The replacement of thus reactivitymeter can keep the continuation of reactor operation. The digital reactivitymeter is constructed by using the digital signal processing and computer. Thus real time signal processing is displayed on the monitor graphically. This reactivitymeter has been tested in RSG-GAS and perform a good work. This performance is worthy to use this digital reactivitymeter for RSG-GAS operation

  9. FLOW METERS WITH VERY GOOD PERFORMANCES

    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU

    2011-11-01

    Full Text Available We present the theoretical calculus of a patented flow meter, concerning such the thermodynamic and aerodynamic calculus, as well as the offered precision to measure the flow of the air in any meteorological conditions. In the same time we remark that the proposed flow meter, by its positioning, has not loss of head.

  10. ORNL Pocket Meter Program: internal operating procedures

    International Nuclear Information System (INIS)

    Berger, C.D.; Miller, J.H.; Dunsmore, M.R.

    1984-12-01

    The ORNL Pocket Meter Program is designed for auditing the approximate photon radiation exposure of Oak Ridge National Laboratory (ORNL) radiation workers. Although pocket meters are considered to be a secondary personnel dosimetry system at ORNL, they are valuable indicators of unplanned exposures if proper procedures are followed for testing, calibrating, deploying, wearing, processing, and recording data. 4 figures, 1 table

  11. Adjustment equipment for reactor radioactivity meter

    International Nuclear Information System (INIS)

    Denisov, V.P.; Malishev, A.N.; Shebanova, L.E.; Kirilyuk, N.A.; Maksimov, Yu.N.; Bessalov, G.G.; Vikhorev, Yu.V.; Lukyanov, M.A.

    1978-01-01

    An activity meter is described movably located in a channel placed in the peripheral biological shielding of a nuclear reactor. It is connected to a weight moving in a second channel by means of a pulley. This arrangement allows locating the radioactivity meter drive on the outer side of the biological shield and vacating space above the reactor body. (Ha)

  12. 10 CFR 451.7 - Metering requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements. The net electric energy generated and sold (kilowatt-hours) by the owner or operator of a qualified...

  13. Some problems in calibrating surface contamination meters

    International Nuclear Information System (INIS)

    Chen Zigen; LI Xingyuan; Shuai Xiaoping.

    1984-01-01

    It is necessary that instruments are calibrated accurately in order to obtain reliable survey data of surface contamination. Some problems in calibrating surface contamination meters are expounded in this paper. Measurement comparison for beta surface contamination meters is organized within limited scope, thus survey quality is understood, questions are discovered, significance of calibration is expounded further. (Author)

  14. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    Science.gov (United States)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  15. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang

    2011-01-01

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We report on the fabrication and optical properties of quasi-two-dimensional photonic crystals with triangular lattice of dielectric rods in air. Rod-type photonic crystal structures were fabricated in silicon by electron beam lithography and dry-etching techniques. Wavelength division multiplexing splitters were fabricated from two-dimensional photonic crystal directional waveguide couplers. Transmission spectra were measured and device operation was shown to be in agreement with theoretical calculations. The splitters can be used in visible light region. Such an approach to photonic element systems should enable new applications for designing components in photonic integrated circuits. -- Highlights: → We report the fabrication and optical properties of rod-type photonic crystal. → The splitter was fabricated by electron beam lithography and dry-etching techniques. → The splitter was composed of directional waveguide couplers. → Measured transmission spectra are in agreement with theoretical calculations. → The splitters can be used in visible light region.

  16. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths.

    Directory of Open Access Journals (Sweden)

    Thomson M Paris

    Full Text Available The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB, the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available.

  17. Wavelength dependence of interstellar polarization

    International Nuclear Information System (INIS)

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  18. Optimal water meter selection system | Johnson | Water SA

    African Journals Online (AJOL)

    Economic/financial analysis based on an income statement together with capital budgeting techniques assist with the determination of the financial suitability of investing in a new replacement water meter. This financial analysis includes various potential income and expenditure components that will result from the ...

  19. Vibration isolation for Coriolis Mass-Flow meters

    NARCIS (Netherlands)

    van de Ridder, Bert

    2015-01-01

    A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, with high accuracy, range-ability and repeatability. The working principle of a CMFM is as follows: a fluid conveying tube is actuated to oscillate at a low amplitude. A

  20. Completely contained and remotely operated digital density meter

    International Nuclear Information System (INIS)

    Goergen, C.R.

    1979-10-01

    A completely contained and remotely operated density determination system having unique features was designed, fabricated, and installed at the Savannah River Plant. The system, based on a Mettler calculating digital density meter, provides more precise and accurate results than the falling drop technique for measuring densities. The system is fast, simple, easy to operate, and has demonstrated both reliability and durability

  1. Ambiguity effects of rhyme and meter.

    Science.gov (United States)

    Wallot, Sebastian; Menninghaus, Winfried

    2018-04-23

    Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Hydro Ottawa achieves Smart Meter milestone

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    As Ontario's second largest municipal electricity company, Hydro Ottawa serves more than 285,000 residential and business customers in the city of Ottawa and the village of Casselman. Since 2006, the utility has installed more than 230,000 Smart Meters throughout its service territory in an effort to provide better services to its customers. This initiative represents the largest operational advanced metering infrastructure network in Canada. This move was necessary before time-of-use rates can be implemented in Ottawa. The Smart Meters deliver data wirelessly to Hydro Ottawa's Customer Information System for billing and eliminating manual readings. The Smart Meters are designed to promote more efficient use of electricity. The Government of Ontario has passed legislation requiring the installation of Smart Meters throughout the province by the end of 2010

  3. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  4. Long-wavelength Radar Studies of the Lunar Maria

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Thompson, Thomas W.

    1995-01-01

    Radar measurements at 70 cm and 7.5 m wavelengths provide insight into the structure and chemical properties of the upper 5-100 m of the lunar regolith and crust. Past work has identified a number of anomalous regions and changes in echo strength, some attributed to differences in titanium content. There has been little opportunity, however, to compare calibrated long-wavelength backscatter among different units or to theoretical model results. We combine recent high-resolution (3-5 km) 70-cm radar data for the nearside with earlier calibrated full-disk observations to provide a reasonable estimate of the true lunar backscatter coefficient. These data are tested against models for quasi-specular scattering from the surface, echoes from a buried substrate, and Mie scattering from surface and buried rocks. We find that 70 cm echoes likely arise from Mie scattering by distributed rocks within the soil, consistent with earlier hypotheses. Returns from a buried substrate would provide a plausible fit to the observations only if the regolith depth were 3 m or less and varied little across the maria. Depolarized echoes are due to some combination of single and multiple scattering events, but it appears that single scattering alone could account for the observed echo power, based on comparisons with terrestrial rocky surfaces. Backscatter strength from the regolith is most strongly affected by the loss tangent, whose variation with mineral content is still poorly defined. We compared the backscatter values for the mare deposits to the oxide contents inferred from spectral ratio methods, and found that in general the unit boundaries evident in radar images closely follow those seen in color difference images. The 70-cm data are not well correlated with TiO2 values found using the Charette relationship nor with Fe abundances derived from Clementine observations. The lack of a relationship between radar echo and Fe content is reasonable given the distribution of iron among

  5. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance.

    Science.gov (United States)

    Proença, Hugo; Filipe, Sílvio; Santos, Ricardo; Oliveira, João; Alexandre, Luís A

    2010-08-01

    The iris is regarded as one of the most useful traits for biometric recognition and the dissemination of nationwide iris-based recognition systems is imminent. However, currently deployed systems rely on heavy imaging constraints to capture near infrared images with enough quality. Also, all of the publicly available iris image databases contain data correspondent to such imaging constraints and therefore are exclusively suitable to evaluate methods thought to operate on these type of environments. The main purpose of this paper is to announce the availability of the UBIRIS.v2 database, a multisession iris images database which singularly contains data captured in the visible wavelength, at-a-distance (between four and eight meters) and on on-the-move. This database is freely available for researchers concerned about visible wavelength iris recognition and will be useful in accessing the feasibility and specifying the constraints of this type of biometric recognition.

  6. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  7. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  8. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  9. Investigation and Comparison of Separate Meter-In Separate Meter-Out Control Strategies

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Skoubo, Tobias

    2014-01-01

    In the later years, there has been an increased focus on new valve types, which yield the possibility to do Separate Meter-In Separate Meter-Out (SMISMO) control. This includes both digital valves, but proportional valves with separate metering spools and build in pressure sensors are also emerging....... The possibility to independently control the meter-in and meter-out side not only increase the functionality of the system, but also opens up for better performance and/or lowered energy consumption. The focus of the current paper is therefore on investigation and comparison of what may be obtained using...

  10. Alteration in Business Models of Electricity Distribution Companies - A Case of Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Trygg, P.

    2013-09-01

    Smart metering is currently implemented in many countries. The change from traditional metering is significant and impacts many of the Distribution system operator's (DSO's) activities. This dissertation aims to provide a structured model for analysing the impacts of Smart metering on a DSO's business. Research was conducted by gathering a theoretical framework for understanding how the business operates. The concept of business model has been presented. It is used as a framework of metering business. Detailed studies on specific parts of the business model have been carried out. These concentrate on finding a theoretical background of what Smart metering can provide. Cost analyses were conducted to better understand resources required by Smart metering. Problems related to ICT resources have also been studied based on the DSO's experiences. Partner network was studied based on DSO's experiences related to service purchasing and finally experiences in working with IT services provided to the DSOs has been presented. This dissertation presents a development trend that has taken place regarding Smart metering in implementation and operation. Results are presented in a business model framework to provide a more structured view on issues related to Smart metering. Also non-technical issues should be analysed to fully understand the extent of the changes taking place when implementing Smart metering. The information presented can be utilized when significant change factors to the DSO's business models can be recognized. (orig.)

  11. Sector smart meter audit review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-31

    This paper presented the results of an electricity distributor sector smart meter audit review conducted by the Ontario Energy Board (OEB) for the period of January 1, 2006 to September 30, 2009. The review summarized the results of a questionnaire related to distributors' smart meter regulatory accounting treatment. Seventy-eight distributors responded to the survey. The review included details of: (1) total investments in smart metering initiative for capital expenditures (CAPEX) and operating maintenance and administrative expenses (OM and A), (2) funding dollars received by the distributors, (3) board-approved recoveries for CAPEX and OM and A, (4) recorded stranded meter costs, and (5) number of smart meters installed in the review period. The audit review demonstrated that some distributors incorrectly recorded carrying charges related to smart meter OM and A expenses, and that some smart meter transactions were recorded in accounts other than OEB established accounts in the general ledger. Results of the audit will be used to provide further accounting assistance to electricity distributors. 7 tabs.

  12. Water metering in England and Wales

    Directory of Open Access Journals (Sweden)

    David Zetland

    2016-02-01

    Full Text Available The transformation of water services that began with the privatisation of water companies in 1989 extended to households with the implementation of water metering. Meters 'privatised' water and the cost of provision by allocating to individual households costs that had previously been shared within the community. This (ongoing conversion of common pool to private good has mostly improved economic, environmental and social impacts, but the potential burden of metering on poorer households has slowed the transition. Stronger anti-poverty programmes would be better at addressing this poverty barrier than existing coping mechanisms reliant on subsidies from other water consumers.

  13. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  14. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  15. Performance evaluation of cognitive radio in advanced metering infrastructure communication

    Science.gov (United States)

    Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md

    2016-03-01

    Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.

  16. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  17. Systematic wavelength selection for improved multivariate spectral analysis

    Science.gov (United States)

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  18. Artificial Intelligence Techniques and the Smart Grid: Towards Smart Meter Convenience While Maintaining Privacy

    NARCIS (Netherlands)

    Lodder, A.R.; Wisman, T.H.A.

    2015-01-01

    Smart meters are physically within the private sphere of the home. These meters are smart in that consumers can moderate their energy consumption based on generated electricity information. This information can be very detailed, both in terms of time intervals and the number of measuring points. As

  19. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  20. USGS Digital Orthophoto Quad (DOQ) - 3 meter

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data files are a collection of the USGS standard DOQs that have been resampled to a 3-meter cell resolution and mosaiced into quad format vs quarter quad...