WorldWideScience

Sample records for wavelength electromagnetic modes

  1. Wavelength mismatch effect in electromagnetically induced absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Vineet [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Wasan, Ajay [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Natarajan, Vasant [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-07-15

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  2. Wavelength mismatch effect in electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  3. Electromagnetic Transport From Microtearing Mode Turbulence

    International Nuclear Information System (INIS)

    Guttenfelder, W.; Candy, J.; Kaye, S.M.; Nevins, W.M.; Wang, E.; Bell, R.E.; Hammett, G.W.; LeBlanc, B.P.; Mikkelsen, D.R.; Yuh, H.

    2011-01-01

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  4. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  5. Transmission of electromagnetic waves through sub-wavelength channels

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...... without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this subwavelength channel, which...

  6. Drift effects on electromagnetic geodesic acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Sgalla, R. J. F., E-mail: reneesgalla@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-900 (Brazil)

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  7. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  8. Material-independent modes for electromagnetic scattering

    Science.gov (United States)

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  9. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  10. Wavelength-independent all-fiber mode converters.

    Science.gov (United States)

    Lai, K; Leon-Saval, S G; Witkowska, A; Wadsworth, W J; Birks, T A

    2007-02-15

    We have used two different photonic crystal fiber (PCF) techniques to make all-fiber mode converters. An LP(01) to LP(11) mode converter was made by the ferrule technique on a drawing tower, and an LP(01) to LP(02) mode converter was made by controlled hole inflation of an existing PCF on a tapering rig. Both devices rely on adiabatic propagation rather than resonant coupling; so high extinction was achieved across a wide wavelength range.

  11. Stability of short wavelength tearing and twisting modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  12. Hot-plasma decoupling condition for long-wavelength modes

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Spong, D.

    1982-10-01

    The stability of layer modes is analyzed for z-pinch and bumpy cylinder models. These modes are long wavelength across the layer and flute-like along the field line. The stability condition can be expressed in terms of the ratio of hot to core plasma density. It is shown that to achieve conditions close to the Nelson, Lee-Van Dam core beta limit, one needs a considerably smaller hot to core plasma density than is required to achieve stability at zero core beta

  13. Tropospheric aerosol backscatter background mode at CO2 wavelengths

    Science.gov (United States)

    Rothermel, Jeffry; Bowdle, David A.; Menzies, Robert T.; Post, Madison J.; Vaughan, J. Michael

    1989-01-01

    A comparison is made between three climatologies of backscatter measurements in the troposphere and lower stratosphere at CO2 wavelengths. These were obtained from several locations using ground-based and airborne lidar systems. All three measurement sets show similar features, specifically, a high frequency of occurrence of low backscatter over a limited range of values in the middle and upper atmosphere (the 'background mode'). This background mode is important for the design and performance simulation of the prospective satellite sensors that rely on atmospheric aerosols as scattering targets.

  14. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  15. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    International Nuclear Information System (INIS)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders

    2014-01-01

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  16. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  17. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  18. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  19. Collective electromagnetic mode in layered conductors

    International Nuclear Information System (INIS)

    Gokhfel'd, V.M.; Peschanskij, V.G.

    1999-01-01

    In the frames of the Landau theory we consider the transverse zero-sound wave in a single-component charged Fermi-liquid with the quasi-two-dimensional electron energy spectrum. In such media, unlike conventional metals, the electromagnetic wave propagation along the weak conductivity direction is possible even at low intensity of the Fermi-liquid interaction. We find the field distribution in a sample, calculate the wave impedance and discuss the possibility of observation of the effect under the pulse condition

  20. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  1. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  3. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  4. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    Science.gov (United States)

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  5. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2014-01-01

    numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model...... is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken...

  6. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    Science.gov (United States)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  7. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  8. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  9. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    Science.gov (United States)

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  10. Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence

    International Nuclear Information System (INIS)

    Yagi, M.; Itoh, S.I.; Fukuyama, A.

    1998-01-01

    The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)

  11. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  12. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  13. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    Science.gov (United States)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' = 0.

  14. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  15. Electromagnetic controllable surfaces based on trapped-mode effect

    Directory of Open Access Journals (Sweden)

    V. Dmitriev

    2012-10-01

    Full Text Available In this paper we present some recent results of our theoretical investigations of electromagnetically controllable surfaces. These surfaces are designed on the basis of periodic arrays made of metallic inclusions of special form which are placed on a thin substrate of active material (magnetized ferrite or optically active semiconductor. The main peculiarity of the studied structures is their capability to support the trapped-mode resonance which is a result of the antiphase current oscillations in the elements of a periodic cell. Several effects, namely: tuning the position of passband and the linear and nonlinear (bistable transmission switching are considered when an external static magnetic field or optical excitation are applied. Our numerical calculations are fulfilled in both microwave and optical regions.

  16. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    Science.gov (United States)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  17. Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser

    International Nuclear Information System (INIS)

    Wu Yan-Hua; Jian Wu; Jin Peng; Wang Fei-Fei; Hu Fa-Jie; Wei Heng; Wang Zhan-Guo

    2015-01-01

    A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ. (paper)

  18. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  19. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  20. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Science.gov (United States)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  1. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  2. Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber

    Directory of Open Access Journals (Sweden)

    V. V. G. Krishna Inavalli

    2012-01-01

    Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.

  3. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  4. Research on cutoff wavelength of dominant mode and field patterns in trapezoidal microshield lines

    OpenAIRE

    SUN, Hai; WU, Yujiang

    2012-01-01

    The influence of the position of the metallic signal strip on the cutoff characteristic of the dominant mode and the field patterns in 3 types of trapezoidal microshield lines are calculated by the edge-based finite element method. These trapezoidal microshield lines include trapezoidal microshield lines with a single signal line, dual signal lines, and 3 signal lines. The cutoff wavelength of the dominant mode can be adjusted by changing the dimensions of metallic signal strips as w...

  5. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Science.gov (United States)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  6. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Schefffel, J.

    1987-01-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large βsub(perpendicular). (author)

  7. Stability of small axial wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.

    1987-03-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m>=1)modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also constant current density equilibria can be stabilized for P per >P par and large β per . (authors)

  8. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both...

  9. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)

    2016-07-15

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  10. Waveguide resonance mode response of stacked structures of metallic sub-wavelength slit arrays

    Science.gov (United States)

    Tokuda, Yasunori; Takano, Keisuke; Sakaguchi, Koichiro; Kato, Kosaku; Nakajima, Makoto; Akiyama, Koichi

    2018-05-01

    Detailed measurements of the optical properties of two-tier systems composed of metallic plates perforated with periodic sub-wavelength slit patterns were carried out using terahertz time-domain spectroscopy. We demonstrate that the transmission properties observed experimentally for various configurations can be reproduced successfully by simulations based on the finite-differential time-domain method. Fabry-Perot-like waveguide resonance mode behaviors specific to this quasi-dielectric system were then investigated. For structures with no lateral displacement between the slit-array plates, mode disappearance phenomena, which are caused by destructive interference between the odd-order mode and the blue- or red-shifted even-order modes, were observed experimentally. The uncommon behavior of the even-order modes was examined precisely to explain the slit-width dependence. For structures with half-pitched displacement between the plates, extraordinarily strong transmission was observed experimentally, even when the optical paths were shut off. This result was interpreted in terms of the propagation of surface plasmon polaritons through very thin and labyrinthine spacings that inevitably exist between the metallic plates. Furthermore, the optical mode disappearance phenomena are revealed to be characterized by anticrossing of the two mixing modes formed by even- and odd-order modes. These experimental observations that are supported theoretically are indispensable to the practical use of this type of artificial dielectric and are expected to encourage interest in optical mode behaviors that are not typically observed in conventional dielectric systems.

  11. Effect of pressure anisotropy on the m=1 small wavelength modes in Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M. (Royal Inst. of Tech., Stockholm, Sweden. Dept. of Plasma Physics and Fusion Research)

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (r{SIGMA}B{sup 2})' {le} 0, where {SIGMA} = 1 - (P{sub parallel} - P{sub perpendicular} {sub to})/B/sup 2/. It cannot be fulfilled without violation of the fire hose stability condition {SIGMA} {ge} 0.

  12. Effect of pressure anisotropy on the m=1 small wavelength modes in Z-pinches

    International Nuclear Information System (INIS)

    Faghihi, M.

    1987-01-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB 2 )' ≤ 0, where Σ = 1 - (P parallel - P perpendicular to )/B 2 . It cannot be fulfilled without violation of the fire hose stability condition Σ ≥ 0. (orig.)

  13. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.; Schefffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m greater than or equal to 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large ..beta..sub(perpendicular).

  14. Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths.

    Science.gov (United States)

    D'Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia; Schillaci, Alessandro

    2015-11-01

    The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer that measures the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embedded in a large common background. In this paper, we experimentally investigate the common-mode rejection achievable in the MPI at millimeter wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background anisotropy.

  15. Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder

    International Nuclear Information System (INIS)

    Milton, K.A.; Nesterenko, A.V.; Nesterenko, V.V.

    1999-01-01

    Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calculated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the dielectric and magnetic characteristics of the material which makes up the cylinder (var-epsilon 1 ,μ 1 ) and of that which makes up the surroundings (var-epsilon 2 ,μ 2 ) obey the relation var-epsilon 1 μ 1 =var-epsilon 2 μ 2 . With this assumption all the divergences cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are carried out for a dilute dielectric-diamagnetic cylinder and for a perfectly conducting cylindrical shell. The Casimir energy in the first case vanishes, and in the second is in a complete agreement with that obtained by DeRaad and Milton who employed a Green close-quote s function technique with an ultraviolet regulator. copyright 1999 The American Physical Society

  16. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength

    International Nuclear Information System (INIS)

    Kang, Z; Li, Q; Gao, X J; Jia, Z X; Qin, G S; Qin, W P; Zhang, L; Feng, Y

    2014-01-01

    Gold nanorods (GNRs) were used as a saturable absorber (SA) for passive mode-locking at 1 μm wavelength. The GNR-SA film was fabricated by mixing GNRs with sodium carboxymethylcellulose. The longitudinal surface plasmon resonance absorption of GNRs was used to induce mode-locking. By using the GNR-SA film, stable passive mode-locking at 1039 nm was experimentally demonstrated in an ytterbium-doped fiber laser cavity pumped by a 980 nm laser diode. The laser produced ∼440 ps pulses with a repetition rate of 36.6 MHz and an average output power of ∼1.25 mW for a pump power of ∼82 mW. (letter)

  17. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  18. Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, Andrey A.; Lavrinenko, Andrei

    2011-01-01

    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast...... group velocities but different phase velocities for frequencies close to the edge of the photonic band. We confirm the predicted properties of the modes by directly extracting their dispersion and group velocities from the near-field measurements using specialized Bloch-wave spectral analysis method....

  19. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  20. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  1. Relativistic kinematics of the electromagnetic fields of a guided mode

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    2000-01-01

    It is shown that during the observation of a wave in a waveguide from a comoving reference system travelling at a velocity equal to the group velocity of the wave, the wave propagation is halted and the electromagnetic energy contained in the waveguide proves to be stationary. The nonzero rest mass of the photons in the waveguide is equivalent to this rest energy and is identical with the rest mass measured in dynamic experiments. (laser applications and other topics in quantum electronics)

  2. Inhibited emission of electromagnetic modes confined in subwavelength cavities

    International Nuclear Information System (INIS)

    Le Thomas, N.; Houdre, R.

    2011-01-01

    We experimentally demonstrate the active inhibition of subwavelength confined cavity modes emission and quality factor enhancement by controlling the cavity optical surrounding. The intrinsic radiation angular spectrum of modes confined in planar photonics crystal cavities as well as its modifications depending on the environment are inferred via a transfer matrix modeling and k-space imaging.

  3. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  4. Resistive wall tearing mode generated finite net electromagnetic torque in a static plasma

    International Nuclear Information System (INIS)

    Hao, G. Z.; Wang, A. K.; Xu, M.; Qu, H. P.; Peng, X. D.; Wang, Z. H.; Xu, J. Q.; Qiu, X. M.; Liu, Y. Q.

    2014-01-01

    The MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000)] is applied to numerically investigate the effect of the plasma pressure on the tearing mode stability as well as the tearing mode-induced electromagnetic torque, in the presence of a resistive wall. The tearing mode with a complex eigenvalue, resulted from the favorable averaged curvature effect [A. H. Glasser et al., Phys. Fluids 18, 875 (1975)], leads to a re-distribution of the electromagnetic torque with multiple peaking in the immediate vicinity of the resistive layer. The multiple peaking is often caused by the sound wave resonances. In the presence of a resistive wall surrounding the plasma, a rotating tearing mode can generate a finite net electromagnetic torque acting on the static plasma column. Meanwhile, an equal but opposite torque is generated in the resistive wall, thus conserving the total momentum of the whole plasma-wall system. The direction of the net torque on the plasma is always opposite to the real frequency of the mode, agreeing with the analytic result by Pustovitov [Nucl. Fusion 47, 1583 (2007)]. When the wall time is close to the oscillating time of the tearing mode, the finite net torque reaches its maximum. Without wall or with an ideal wall, no net torque on the static plasma is generated by the tearing mode. However, re-distribution of the torque density in the resistive layer still occurs

  5. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  6. Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling.

    Science.gov (United States)

    Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2009-07-10

    In recent years, tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a promising technological platform for sensing applications such as the measurement of axial strain, bending, vibration, and refractive index. However, complex spectral measurements combined with the difficulty of using TFBGs in a quasi-distributed sensors network limit the practical exploitation of this assessed technology. To address this issue, we propose a hybrid configuration involving uniform and TFBGs working in reflection, which makes the demodulation technique easier and allows multipoint sensing. This configuration provides a narrowband reflection signal that is modulated by the wavelength selective losses associated with some TFBG's cladding-modes resonances. We report here the operating principle of the proposed device. An experimental validation is presented for refractive-index sensing purposes.

  7. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  8. High-altitude and high-latitude O+ and H+ outflows: the effect of finite electromagnetic turbulence wavelength

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2007-11-01

    Full Text Available The energization of ions, due to interaction with electromagnetic turbulence (i.e. wave-particle interactions, has an important influence on H+ and O+ ions outflows in the polar region. The effects of altitude and velocity dependent wave-particle interaction on H+ and O+ ions outflows in the auroral region were investigated by using Monte Carlo method. The Monte Carlo simulation included the effects of altitude and velocity dependent wave-particle interaction, gravity, polarization electrostatic field, and divergence of auroral geomagnetic field within the simulation tube (1.2–10 earth radii, RE. As the ions are heated due to wave-particle interactions (i.e. ion interactions with electromagnetic turbulence and move to higher altitudes, the ion gyroradius ρi may become comparable to the electromagnetic turbulence wavelength λ⊥ and consequently (k⊥ρi becomes larger than unity. This turns the heating rate to be negligible and the motion of the ions is described by using Liouville theorem. The main conclusions are as follows: (1 the formation of H+ and O+ conics at lower altitudes and for all values of λ⊥; (2 O+ toroids appear at 3.72 RE, 2.76 RE and 2 RE, for λ⊥=100, 10, and 1 km, respectively; however, H+ toroids appear at 6.6 RE, 4.4 RE and 3 RE, for λ⊥=100, 10, and 1 km, respectively; and H+ and O+ ion toroids did not appear for the case λ⊥ goes to infinity, i.e. when the effect of velocity dependent wave-particle interaction was not included; (3 As λ⊥ decreases, H+ and O+ ion drift velocity decreases, H+ and O+ ion density increases, H+ and O+ ion perpendicular temperature and H+ and O+ ion parallel temperature decrease; (4 Finally, including the effect of finite electromagnetic turbulence wavelength, i.e. the effect of velocity dependent diffusion coefficient and consequently, the velocity dependent wave-particle interactions produce realistic H+ and O+ ion temperatures and H+ and O+ toroids, and this is, qualitatively

  9. Influence of vegetable cover on propagation of electromagnetic waves with wavelength longer than 100 m

    Science.gov (United States)

    Egorov, V. A.; Makarov, G. I.

    2006-12-01

    [1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.

  10. Dispersion characteristics of electromagnetic waves in dipolar (m=±1) modes travelling along a magnetized plasma column

    International Nuclear Information System (INIS)

    Benova, E.; Ghanashev, I.; Zhelyazkov, I.

    1992-01-01

    The modelling of isotropic plasma columns sustained by travelling electromagnetic waves in the dipolar mode (angular dependence exp imφ, m=±1) shows that the m=±1 modes have identical dispersion characteristics. In the presence of an external static magnetic field, however, the modes behave rather differently. This observation arose in studying the axial structures of magnetized plasma columns surrounded by vacuum and produced by travelling electromagnetic waves in the dipolar modes. We examine the propagation of electromagnetic waves along a homogeneous cold plasma column of radius R and electron number density n immersed in an axial constant magnetic field. (author) 3 refs., 3 figs

  11. Theory of a beam-induced electromagnetic mode in a magnetized plasma

    International Nuclear Information System (INIS)

    Baumgaertel, K.; Sauer, K.

    1985-01-01

    The theory of a recently discovered plasma wave mode is presented. In a non-Maxwellian high-beta plasma a new electromagnetic mode was detected containing a group of energetic field-aligned electrons. The theory uses the standard method for derivation of the dispersion relation, allowing non-Maxwellian electron distributions and right-hand polarization. The theoretical dispersion relation is compared with the empirical data. This comparison confirmes the existence of a right-hand circularly polarized mode propagating parallel to the external magnetic field. (D.Gy.)

  12. Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation

    International Nuclear Information System (INIS)

    Ma, Jun; Wang, Ya; Wang, Chunni; Xu, Ying; Ren, Guodong

    2017-01-01

    Highlights: • Neuronal model under electromagnetic induction and radiation is set up; • The transition of electrical activities under electromagnetic radiation is discussed; • Dynamical response of encoding of neuron is discussed for possible mechanism of heart disease. - Abstract: Based on the Fitzhugh–Nagumo neuron model, the effect of electromagnetic induction is considered and external electromagnetic radiation is imposed to detect the mode transition of electrical activities in a myocardial cell. Appropriate dynamical and functional responses can be observed in the sampled series for membrane potentials by setting different feedback modulation on the membrane potential in presence of electromagnetic radiation. The electromagnetic radiation is described by a periodical forcing on the magnetic flux, and it is found that the response frequency can keep pace with the frequency of external forcing. However, mismatch of frequency occurs by further increasing the frequency of external forcing, it could account for the information encoding of neuron. The dynamical response could be associated with the magnetization and polarization of the media, thus the outputs of membrane potential can become quiescent and/or bursting as well.

  13. Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Seidl, Jakub; Krbec, Jaroslav; Hron, Martin; Adámek, Jiří; Hidalgo, C.; Markovič, Tomáš; Melnikov, A.V.; Stöckel, Jan; Weinzettl, Vladimír; Aftanas, Milan; Bílková, Petra; Bogár, Ondrej; Böhm, Petr; Eliseev, L.G.; Háček, Pavel; Havlíček, Josef; Horáček, Jan; Imríšek, Martin; Kovařík, Karel; Mitošinková, Klára; Pánek, Radomír; Tomeš, Matěj; Vondráček, Petr

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126048. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA16-25074S; GA ČR(CZ) GA14-35260S; GA AV ČR(CZ) GA16-24724S; GA ČR(CZ) GA15-10723S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : geodesic acoustic mode * tokamak * turbulence * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  14. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  15. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Christopher L., E-mail: holloway@boulder.nist.gov; Gordon, Joshua A. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, David A.; Miller, Stephanie A.; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-06-16

    We present a technique for measuring radio-frequency (RF) electric field strengths with sub-wavelength resolution. We use Rydberg states of rubidium atoms to probe the RF field. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect, and we detect the splitting via electromagnetically induced transparency (EIT). We use this technique to measure the electric field distribution inside a glass cylinder with applied RF fields at 17.04 GHz and 104.77 GHz. We achieve a spatial resolution of ≈100 μm, limited by the widths of the laser beams utilized for the EIT spectroscopy. We numerically simulate the fields in the glass cylinder and find good agreement with the measured fields. Our results suggest that this technique could be applied to image fields on a small spatial scale over a large range of frequencies, up into the sub-terahertz regime.

  16. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  17. Endoluminal laser delivery mode and wavelength effects on varicose veins in an ex vivo model.

    Science.gov (United States)

    Massaki, Ane B M N; Kiripolsky, Monika G; Detwiler, Susan P; Goldman, Mitchel P

    2013-02-01

    Endovenous laser ablation (EVLA) has been shown to be effective for the elimination of saphenous veins and associated reflux. Mechanism is known to be heat related, but precise way in which heat causes vein ablation is not completely known. This study aimed to determine the effects of various endovenous laser wavelengths and delivery modes on ex vivo human vein both macroscopically and microscopically. We also evaluated whether protected-tip fibers, consisting of prototype silica fibers with a metal tube over the distal end, reduced vein wall perforations compared with non-protected-tip fibers. An ex vivo EVLA model with human veins harvested during ambulatory phlebectomy procedures was used. Six laser fiber combinations were tested: 810 nm continuous wave (CW) diode laser with a flat tip fiber, 810 CW diode laser with a protected tip fiber, 1,320 nm pulsed Nd:YAG laser, 1,310 nm CW diode laser, 1,470 nm CW diode laser, and 2,100 nm pulsed Ho:YAG laser. Perforation or full thickness necrosis of a portion of the vein wall was observed in 5/11 (45%), 0/11 (0%), 3/22 (14%), 7/11 (64%), 4/6 (67%), and 5/10 (50%) of cross-sections of veins treated with the 810 nm CW diode laser with a flat tip fiber, the 810 CW diode laser with a protected tip fiber, the 1,320 nm pulsed Nd:YAG laser, the 1,310 nm CW diode laser, the 1,470 nm CW diode laser, and the 2,100 nm pulsed Ho:YAG laser, respectively. Our results have shown that the delivery mode, pulsed Nd:YAG versus CW, may be just as important as the wavelength. Therefore, the 1,310 nm CW laser may not be equivalent to the 1,320 nm pulsed laser. In addition, protected 810 nm fibers may be less likely to yield wall perforations than their non-protected counterparts. Copyright © 2012 Wiley Periodicals, Inc.

  18. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    Science.gov (United States)

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  19. Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether

    International Nuclear Information System (INIS)

    Alpin, Timur Yu.; Balakin, Alexander B.

    2017-01-01

    In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)

  20. Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether

    Energy Technology Data Exchange (ETDEWEB)

    Alpin, Timur Yu.; Balakin, Alexander B. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)

    2017-10-15

    In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)

  1. Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams

    International Nuclear Information System (INIS)

    Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel

    2002-01-01

    A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies

  2. Fluid analysis of electromagnetic ballooning modes in a fully toroidal description

    International Nuclear Information System (INIS)

    Andersson, P.; Weiland, J.

    1986-01-01

    A comparatively complete two fluid description of collisionless electromagnetic ballooning modes has been derived. Using an unexpanded ion density response it has been shown that a necessary and sufficient condition for an instability below the MHD/BETA/ limit is the presence of an ion temperature gradient exceeding a threshold. The cause of this instability has been identified and an analytical dispersion relation is given. (authors)

  3. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  4. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  5. Quasi-TEM electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field

    International Nuclear Information System (INIS)

    Kartashov, I. N.; Kuzelev, M. V.

    2014-01-01

    Electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrated. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM mode. The possibility of excitation of such modes by an electron beam in the regime of the anomalous Doppler effect is analyzed

  6. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  7. Tuneabilities of localized electromagnetic modes in random nanostructures for random lasing

    Science.gov (United States)

    Takeda, S.; Obara, M.

    2010-02-01

    The modal characteristics of localized electromagnetic waves inside random nanostructures are theoretically presented. It is crucial to know the tuneabilities of the localized modes systematically for demonstrating a specific random lasing application. By use of FDTD (Finite-Difference Time-Domain) method, we investigated the impulse response of two-dimensional random nanostructures consisting of closely packed cylindrical dielectric columns, and precisely analyzed the localized modes. We revealed the tuneability of the frequency of the localized modes by controlling the medium configurations: diameter, spatial density, and refractive index of the cylinders. Furthermore, it is found to be able to tune the Q (quality) factors of the localized modes dramatically by controlling simply the system size of the entire medium. The observed Q factors of approximately 1.6×104 were exhibited in our random disordered structures.

  8. Dual wavelength Mode-Locking of InAs/InP quantum dot laser diodes at 1.5µm

    NARCIS (Netherlands)

    Tahvili, M.S.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2011-01-01

    We report on stable dual-wavelength mode-locking of 3.1GHz and 10GHz two-section InAs/InP(100) quantum dot laser diodes. Evaluation of relative time delay between different spectral components indicates opposite sign of chirp over the two spectral lobes

  9. Characteristics of persistent-current mode of HTS coil on superconducting electromagnet

    International Nuclear Information System (INIS)

    Lee, C.Y.; Kim, J.; Han, Y.J.; Kang, B.; Chung, Y.D.; Yoon, Y.S.; Chu, S.Y.; Hwang, Y.J.; Jo, H.C.; Jang, J.Y.; Ko, T.K.

    2011-01-01

    The levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet. The presence of iron core provides a significant benefit in the PCM performance of SC coil. The increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM. This paper investigates the way in which the levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet (SC-EM) operated in persistence-current mode (PCM). Using inductance analyzed from the magnetic circuit of an EMS model, the current decay rate caused by the variation in the levitation gap was simulated. In order to experimentally verify the simulation results, we fabricated a small-scale EMS model with SC coil operated in PCM and measured the current decay rates at different levitation gaps. The result showed that the presence of iron core provides a significant benefit in the PCM performance of SC coil, but the benefit decreased as the levitation gap increases. This study revealed that the increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM.

  10. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    Science.gov (United States)

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  11. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity

    International Nuclear Information System (INIS)

    Leon M, E. Y.; Camacho L, M. A.; Herrera G, J. A.; Garcia G, O. A.; Villarreal B, J. E.

    2016-10-01

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  12. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    Science.gov (United States)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  13. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  14. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    Directory of Open Access Journals (Sweden)

    T. B. Leyser

    2018-02-01

    Full Text Available The response of ionospheric plasma to pumping by powerful HF (high frequency electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  15. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    Science.gov (United States)

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  17. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  18. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  19. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  20. Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs

    Directory of Open Access Journals (Sweden)

    Martin J. Süess

    2016-05-01

    Full Text Available In this article we present our latest work on the optimization of mid-infrared quantum cascade laser fabrication techniques. Our efforts are focused on low dissipation devices, broad-area high-power photonic crystal lasers, as well as multi-wavelength devices realized either as arrays or multi-section distributed feedback (DFB devices. We summarize our latest achievements and update them with our most recent results.

  1. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    Science.gov (United States)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  2. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  3. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  4. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes

    International Nuclear Information System (INIS)

    Agarwal, G S; Huang, Sumei

    2014-01-01

    We demonstrate the existence of the phenomenon of the inverse electromagnetically induced transparency (IEIT) in an opto mechanical system consisting of a nanomechanical mirror placed in an optical cavity. We show that two weak counter-propagating identical classical probe fields can be completely absorbed by the system in the presence of a strong coupling field so that the output probe fields are zero. The light is completely confined inside the cavity and the energy of the incoming probe fields is shared between the cavity field and creation of a coherent phonon and resides primarily in one of the polariton modes. The energy can be extracted by a perturbation of the external fields or by suddenly changing the Q of the cavity. (paper)

  5. Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity

    International Nuclear Information System (INIS)

    Drumond, R. C.; Souza, L. A. M.; Terra Cunha, M.

    2010-01-01

    We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with the transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.

  6. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  7. Effects of pressure anisotropy on the M=1 small wavelength modes in Z-pinches

    International Nuclear Information System (INIS)

    Faghihi, M.

    1986-05-01

    A new model is used to investigate the effect of the pressure anisotropy on the internal kink (m=1) mode instability in a Z-pinch. A normal mode analysis of perturbed motion of an incompressible, collision- less and cylindrical plasma is performed. A comparison of the derived stability criterion with that of ideal MHD is made. The conclusion is that the stability criterion (rSigmaB/sp2/) ' 0, where Sigma=1-(P/sb/(parall)-P/sb/(perpend)/ B/sp/2. (author)

  8. Three-dimensional ray tracing of electrostatic cyclotron harmonic waves and Z mode electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hashimoto, K.; Yamaashi, K.; Kimura, I.; Kyoto Univ., Japan)

    1987-01-01

    Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere. 20 references

  9. Low- and high-mode separation of short wavelength turbulence in dithering Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Saffman, M.

    2002-01-01

    In this article measurements of small scale electron density fluctuations in dithering high confinement (H)-mode plasmas obtained by collective scattering of infrared light are presented. A scan of the fluctuation wavenumber was made in a series of similar discharges in the Wendelstein 7-AS (W7-A...

  10. Multispectral Detection with Metal-Dielectric Filters: An Investigation in Several Wavelength Bands with Temporal Coupled-Mode Theory

    Science.gov (United States)

    Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo

    2016-09-01

    Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.

  11. Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser

    International Nuclear Information System (INIS)

    Zheng Yu; Tian Jin-Rong; Dong Zi-Kai; Xu Run-Qin; Li Ke-Xuan; Song Yan-Rong

    2017-01-01

    A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Er-doped fiber (EDF) laser with a fiber loop mirror (FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained. (paper)

  12. Completeness relations for the electromagnetic modes of a cylindrical fibre with a radially dependent dielectric and magnetic permittivity and conductivity

    NARCIS (Netherlands)

    Hoenders, B.J.

    1986-01-01

    We consider an infinitely long conducting cylinder whose dielectric and magnetic permittivity and conductivity are functions of the distance from a point inside the cylinder to its axis. It is shown that the r-dependent part of the set of electromagnetic modes associated with such a cylinder is

  13. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  14. Finite orbit analysis for long wavelength modes in a plasma with a hot component

    International Nuclear Information System (INIS)

    Hammer, J.H.; Berk, H.L.

    1985-01-01

    The z-pinch model is used to calculate finite Larmor radius effects of a plasma with a hot component plasma annulus. The equations are analyzed for layer modes and the finite Larmor radius stabilization condition is calculated. Stability requires k 2 rho/sub h/ 2 Rβ/sub h//Δ greater than or equal to 1, where k is the wavenumber in the z-direction, rho/sub h/ the hot species Larmor radius, β/sub h/ the hot particle beta and Δ the thickness of the pressure profile. In addition a new instability is found due to the interaction of the precessional modes associated with inner and outer edges of the hot particle pressure profile

  15. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  16. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  17. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  18. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

    NARCIS (Netherlands)

    Tahvili, M.S.; Du, L.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two

  19. Gap-mode-assisted light-induced switching of sub-wavelength magnetic domains

    Science.gov (United States)

    Scheunert, G.; McCarron, R.; Kullock, R.; Cohen, S. R.; Rechav, K.; Kaplan-Ashiri, I.; Bitton, O.; Hecht, B.; Oron, D.

    2018-04-01

    Creating sub-micron hotspots for applications such as heat-assisted magnetic recording (HAMR) is a challenging task. The most common approach relies on a surface-plasmon resonator (SPR), whose design dictates the size of the hotspot to always be larger than its critical dimension. Here, we present an approach which circumvents known geometrical restrictions by resorting to electric field confinement via excitation of a gap-mode (GM) between a comparatively large Gold (Au) nano-sphere (radius of 100 nm) and the magnetic medium in a grazing-incidence configuration. Operating a λ=785 nm laser, sub-200 nm hot spots have been generated and successfully used for GM-assisted magnetic switching on commercial CoCrPt perpendicular magnetic recording media at laser powers and pulse durations comparable to SPR-based HAMR. Lumerical electric field modelling confirmed that operating in the near-infrared regime presents a suitable working point where most of the light's energy is deposited in the magnetic layer, rather than in the nano-particle. Further, modelling is used for predicting the limits of our method which, in theory, can yield sub-30 nm hotspots for Au nano-sphere radii of 25-50 nm for efficient heating of FePt recording media with a gap of 5 nm.

  20. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression.

    Science.gov (United States)

    Port, M; Abend, M; Römer, B; Van Beuningen, D

    2003-09-01

    International thresholds for exposure to non-ionizing radiation leading to non-thermal effects were conservatively set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The aim of this study was to examine whether biological effects such as different modes of cell death and gene expression modifications related to tumorgenesis are detectable above the threshold defined. Human leukaemia cells (HL-60) grown in vitro were exposed to electromagnetic fields (EMF; t 1/2(r) about 1 ns; field strength about 25 times higher than the ICNIRP reference levels for occupational exposure) leading to non-thermal effects using a high-voltage-improved GTEM cell 5302 (EMCO) connected to a pulse generator NP20 (C = 1 nF, U(Load) = 20kV). HL-60 cells were harvested at 0, 24, 48 and 72 h after radiation exposure. Micronuclei, apoptosis and abnormal cells (e.g. necrosis) were determined using morphological criteria. In parallel, the expression of 1176 genes was measured using Atlas Human 1.2. Array. Based on high data reproducibility calculated from two independent experiments (> 99%), array analysis was performed. No significant change in apoptosis, micronucleation, abnormal cells and differential gene expression was found. Exposure of HL-60 cells to EMFs 25 times higher than the ICNIRP reference levels for occupational exposure failed to induce any changes in apoptosis, micronucleation, abnormal morphologies and gene expression. Further experiments using EMFs above the conservatively defined reference level set by the ICNIRP may be desirable.

  1. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    Science.gov (United States)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele

    2016-09-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.

  2. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Spencer, C

    2004-01-01

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs

  3. Histological Study of Induced Incisions on Rabbits’ Tongues with Three Diode Lasers with Different Wavelengths in Continuous Mode

    Directory of Open Access Journals (Sweden)

    Salwa Yammine

    2018-01-01

    Full Text Available Objective. Diode lasers have multiple indications in everyday dental practice. They allow carrying out incisions, coagulation of soft tissue, and Low-Level Laser Therapy. The goal of this study is to compare histologically the tissue interaction zones and edges of an induced laser incision on rabbits’ tongues with three different wavelengths of 810, 940, and 980 nm in continuous mode. Methods. Fourteen male rabbits were divided into six groups. Each animal underwent three incisions of 10 mm length on the right ventral face of the tongue, carried out in continuous mode with three diode lasers with different wavelengths of 810, 940, and 980 nm. Rabbits were sacrificed at 0, 1, 2, 6, and 15 hours and 14 days. Five rabbits were sacrificed at 0 hours and 2 hours and one rabbit was sacrificed at 1, 6, and 15 hours and at 14 days. The appearance of neutrophils marked the onset time of the inflammatory reaction. Histological study of the incisions was chosen to evaluate the edges and to measure the depth and width of carbonization and necrotic and inflammatory zones. Healing was evaluated at 14 days. Friedman test was used to assess statistical differences between groups. Results. In the experimental adopted conditions, the carbonization zone was marked by degradation of vacuoles and an elongation of nuclei and was observed on the edges of incisions. Carbonization and necrotic and inflammatory zones were measured for rabbits sacrificed at 0, 1, 2, 6, and 15 hours but the onset of inflammation zone marked by the infiltration of neutrophils did not appear before 6 hours. The neutrophils infiltration was higher at 15 hours than at 6 hours. Complete healing was shown at 14 days. According to the time for the regularity of the edges, the interpretation was qualitative without a statistical test. The statistical analysis of the three different diode lasers in this study showed nonsignificant difference between the different groups for the depth (p=0

  4. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  5. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  6. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  7. Stimulated scattering of electromagnetic waves by magnetosonic modes in a plasma

    International Nuclear Information System (INIS)

    Stenflo, L.

    1985-01-01

    The dispersion relation for magnetosonic waves in a dissipative plasma, which is penetrated by a high-frequency electromagnetic wave, is derived. Previous results are generalized and discussed. (author)

  8. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  9. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  10. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  11. Avoidance of Tearing Mode Locking and Disruption with Electro-Magnetic Torque Introduced by Feedback-based Mode Rotation Control in DIII-D and RFX-mod

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, M. [PPPL; Zanca, P. [Euratom-ENEA; Strait, E. J. [General Atomics

    2014-09-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a very promising scheme to avoid such disruptions by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque to the modes is created by a toroidal phase shift between the externally-applied field and the excited TM fields, compensating for the mode momentum loss due to the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two vastly different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high βN plasmas in a non-circular divertor tokamak. In RFX-mod, the plasma was ohmically-heated plasma with ultralow safety factor in a circular limiter discharge of active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited to this purpose.

  12. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  13. Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous γ spectroscopy

    International Nuclear Information System (INIS)

    Voinov, A.; Schiller, A.; Guttormsen, M.; Rekstad, J.; Siem, S.

    2003-01-01

    We show that the combined analysis of quasicontinuous γ spectra from the ( 3 He,α) and (n th ,2γ) reactions gives the possibility to measure the electromagnetic character of soft dipole resonances. Two-step γ-cascade spectra have been calculated, using level densities and radiative strength functions from the ( 3 He,αγ) reaction. The calculations show that the intensity of the two-step cascades depends on the electromagnetic character of the soft dipole resonance under study. The difference reaches 40-100% which can be measured experimentally

  14. Ultra-low-frequency dust-electromagnetic modes in self-gravitating

    Indian Academy of Sciences (India)

    gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfvén mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to ...

  15. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Budden, K.G.; Jones, D.

    1987-01-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft

  16. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Budden, K.G.; Jones, D.

    1987-02-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.

  17. Electromagnetic and mechanical design of a 56 mm aperture mode dipole for the LHC

    International Nuclear Information System (INIS)

    Ahlbaeck, J.; Ikaeheimo, J.; Jaervi, J.

    1994-01-01

    The Large Hadron Collider (LHC) project is proposed as the future extension of the CERN accelerator complex. The LHC requires twin aperture superconducting dipoles of highest possible field to guide the proton beams in the existing LEP tunnel of 26.7 km circumference. This paper describes the electromagnetic and mechanical design of a 56 mm aperture model dipole for the LHC

  18. A survey of mode-conversion transparency windows between external electromagnetic waves and electron Bernstein waves for various plasma slab boundaries

    International Nuclear Information System (INIS)

    Igami, H; Tanaka, H; Maekawa, T

    2006-01-01

    For the plasma slab boundary with monotonically increasing density profile along the x axis and the magnetic field along the z axis, both N z and N y components of the refractive index are parallel to the plasma slab and are conserved in the mode-conversion process between the vacuum transverse electromagnetic (TEM) waves and the electron Bernstein (B) waves. Information of N z and N y is sufficient to identify the waves uniquely both for TEM waves and B waves coupled by mode conversion. Furthermore, the wave differential equation which governs the mode-conversion process can be written in the normalized form with a few numbers of the normalized parameters and variables for the linear density profile. Thus, the mode-conversion transparency window, which is presented as a contour plot of the mode-conversion rate versus the N z -N y plane, can be categorized for the pair of parameters of the density scale length normalized to the wavelength in vacuum L n /λ 0 and the frequency to the cyclotron frequency ω/Ω. A survey of the transparency windows for various parameter ranges of L n /λ 0 and ω/Ω is presented. The windows are categorized into four types. The frosted type at the steepest density gradient region has a broad transparency profile but even the peak is not completely transparent. The perpendicular-X type at the next steep density gradient region also has a broad transparency profile with a completely transparent peak by the perpendicularly propagating extraordinary waves. The OXB type at the gentle density gradient region has a pair of completely transparent sharp peaks by the obliquely propagating ordinary waves at the optimal propagation angles with N z = ±N parallelopt and N y 0. The fourth is the g 1 type in the intermediate density gradient region between the above two cases, which has two completely transparent peaks in the window. Finally, a simulation to examine the applicability of the survey to experiments is made using a test density profile

  19. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  20. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    Science.gov (United States)

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  1. Electromagnetic waves in a topological insulator thin film stack: helicon-like wave mode and photonic band structure.

    Science.gov (United States)

    Inoue, Jun-ichi

    2013-09-09

    We theoretically explore the electromagnetic modes specific to a topological insulator superlattice in which topological and conventional insulator thin films are stacked periodically. In particular, we obtain analytic formulas for low energy mode that corresponds to a helicon wave, as well as those for photonic bands. We illustrate that the system can be modeled as a stack of quantum Hall layers whose conductivity tensors alternately change signs, and then we analyze the photonic band structures. This subject is a natural extension of a previous study by Tselis et al., which took into consideration a stack of identical quantum Hall layers but their discussion was limited into a low energy mode. Thus we provide analytic formulas for photonic bands and compare their features between the two systems. Our central findings in the topological insulator superlattice are that a low energy mode corresponding to a helicon wave has linear dispersion instead of the conventional quadratic form, and that a robust gapless photonic band appears although the system considered has spacial periodicity. In addition, we demonstrate that the photonic bands agree with the numerically calculated transmission spectra.

  2. Radiation condensation instability of compressional electromagnetic modes in magnetoplasmas containing charged dust impurities

    International Nuclear Information System (INIS)

    Shukla, P K; Eliasson, B; Kopp, A

    2006-01-01

    We report on an investigation into the radiation condensation (RC) instability of low-frequency (in comparison with the electron gyrofrequency) compressional electromagnetic waves in a magnetized plasma containing charged dust impurities. By using a two-fluid model, supplemented by the Faraday and Ampere laws, we derive a new dispersion relation. The latter is numerically analysed to examine the role of charged dust grains on the growth rate of the RC instability. The relevance of our investigation to density condensation in the next generation tokamak edges and on solar prominences is discussed

  3. A hybrid electromagnetism-like algorithm for a multi-mode resource-constrained project scheduling problem

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Sadeghi

    2013-08-01

    Full Text Available In this paper, two different sub-problems are considered to solve a resource constrained project scheduling problem (RCPSP, namely i assignment of modes to tasks and ii scheduling of these tasks in order to minimize the makespan of the project. The modified electromagnetism-like algorithm deals with the first problem to create an assignment of modes to activities. This list is used to generate a project schedule. When a new assignment is made, it is necessary to fix all mode dependent requirements of the project activities and to generate a random schedule with the serial SGS method. A local search will optimize the sequence of the activities. Also in this paper, a new penalty function has been proposed for solutions which are infeasible with respect to non-renewable resources. Performance of the proposed algorithm has been compared with the best algorithms published so far on the basis of CPU time and number of generated schedules stopping criteria. Reported results indicate excellent performance of the algorithm.

  4. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    Science.gov (United States)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  5. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths

    International Nuclear Information System (INIS)

    Jin-Hui, Yuan; Chong-Xiu, Yu; Xin-Zhu, Sang; Wen-Jing, Li; Gui-Yao, Zhou; Shu-Guang, Li; Lan-Tian, Hou

    2009-01-01

    Guided-mode characteristics of hollow-core photonic crystal fibre (HC-PCF) are experimentally and theoretically investigated. The transmission spectrum in the range from 755 to 845 nm is observed and the loss is measured to be 0.12 dB/m at 800 nm by cut-back method. Based on the full-vector beam propagation method and the full-vector plane-wave method, the characteristics of mode field over propagation distance 1 m are simulated, and the results show that the propagation efficiency can be above 80%. Compared with the fundamental guided mode well confined in air core within shorter propagation distance, the second-order guided mode leaks into the cladding region and gradually attenuates due to larger refractive index difference. The primary loss factors in HC-PCF and the corresponding solutions are elementarily discussed. (fundamental areas of phenomenology (including applications))

  6. Impact of one's own mobile phone in stand-by mode on personal radiofrequency electromagnetic field exposure.

    Science.gov (United States)

    Urbinello, Damiano; Röösli, Martin

    2013-01-01

    When moving around, mobile phones in stand-by mode periodically send data about their positions. The aim of this paper is to evaluate how personal radiofrequency electromagnetic field (RF-EMF) measurements are affected by such location updates. Exposure from a mobile phone handset (uplink) was measured during commuting by using a randomized cross-over study with three different scenarios: disabled mobile phone (reference), an activated dual-band phone and a quad-band phone. In the reference scenario, uplink exposure was highest during train rides (1.19 mW/m(2)) and lowest during car rides in rural areas (0.001 mW/m(2)). In public transports, the impact of one's own mobile phone on personal RF-EMF measurements was not observable because of high background uplink radiation from other people's mobile phone. In a car, uplink exposure with an activated phone was orders of magnitude higher compared with the reference scenario. This study demonstrates that personal RF-EMF exposure is affected by one's own mobile phone in stand-by mode because of its regular location update. Further dosimetric studies should quantify the contribution of location updates to the total RF-EMF exposure in order to clarify whether the duration of mobile phone use, the most common exposure surrogate in the epidemiological RF-EMF research, is actually an adequate exposure proxy.

  7. Helmholtz Natural Modes: the universal and discrete spatial fabric of electromagnetic wavefields

    International Nuclear Information System (INIS)

    El Gawhary, Omar

    2017-01-01

    The interaction of electromagnetic waves with matter is at the foundation of the way we perceive and explore the world around us. In fact, when a field interacts with an object, signatures on the object’s geometry and physical properties are recorded in the resulting scattered field and are transported away from the object, where they can eventually be detected and processed. An optical field can transport information through its spectral content, its polarization state, and its spatial distribution. Generally speaking, the field’s spatial structure is typically subjected to changes under free-space propagation and any information therein encoded gets reshuffled by the propagation process. We must ascribe to this fundamental reason the fact that spectroscopy was known to the ancient civilizations already, and founded as modern science in the middle of seventeenth century, while to date we do not have an established scientific of field of ‘spatial spectroscopy’ yet. In this work we tackle this issue and we show how any field, whose evolution is dictated by Helmholtz equation, contains a universal and invariant spatial structure. When expressed in the framework of this spatial fabric, the spatial information content carried by any field reveals its invariant nature. This opens the way to novel paradigms in optical digital communications, inverse scattering, materials inspection, nanometrology and quantum optics. (paper)

  8. Stabilization of long wavelength sausage and kink modes of a Z-pinch by nonlinear radial oscillations

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Karlson, E.T.; Liberman, M.A.

    1992-01-01

    A number of experiments with fiber-initiated dense Z-pinches, with compressional and gas-embedded Z-pinches, with imploding gas-puff Z-pinches and the straight Extrap configuration performed in the last decade demonstrated sufficiently improved stability of Z-pinch configurations. The striking stability with respect to the sausage modes can be explained, in principle, by ideal MHD theory as well as by finite plasma conductivity effects. The global kink mode can not be stabilized by the appropriate choice of the unperturbed profiles neither within the scope of the ideal MHD nor taking into account finite ion Larmor radius and viscous damping effects. In this report we shall demonstrate that stabilization of the global kink modes can be explained by the assumption that pinch is not in a stationary but in a dynamic equilibrium. (author) 12 refs., 2 figs

  9. Optimization of a dual mode Rowland mount spectrometer used in the 120-950 nm wavelength range

    Science.gov (United States)

    McDowell, M. W.; Bouwer, H. K.

    In a recent article, several configurations were described whereby a Rowland mount spectrometer could be modified to cover a wavelength range of 120-950 nm. In one of these configurations, large additional image aberration is introduced which severely limits the spectral resolving power. In the present article, the theoretical imaging properties of this configuration are considered and a simple method is proposed to reduce this aberration. The optimized system possesses an image quality similar to the conventional Rowland mount with the image surface slightly displaced from the Rowland circle but concentric to it.

  10. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  11. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  12. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    Science.gov (United States)

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  13. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide.

    Science.gov (United States)

    Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping

    2018-06-15

    We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.

  14. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    Science.gov (United States)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  15. Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Tsutaru, E-mail: kumagai.t.af@m.titech.ac.jp; Kishi, Tetsuo; Yano, Tetsuji [Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2015-03-21

    Bubble-containing Nd{sup 3+}-doped tellurite glass microspheres were fabricated by localized laser heating technique to investigate their optical properties for use as microresonators. Fluorescence and excitation spectra measurements were performed by pumping with a tunable CW-Ti:Sapphire laser. The excitation spectra manifested several sharp peaks due to the conventional whispering gallery mode (WGM) when the pumping laser was irradiated to the edge part of the microsphere. However, when the excitation light was irradiated on the bubble position inside the microsphere, “non-WGM excitation” was induced, giving rise to numerous peaks at a broad wavelength range in the excitation spectra. Thus, efficient excitation was achieved over a wide wavelength range. Lasing threshold excited at the bubble position was much lower than that for the excitation at the edges of the microsphere. The lowest value of the laser threshold was 34 μW for a 4 μm sphere containing a 0.5 μm bubble. Efficiency of the excitation at the bubble position with broadband light was calculated to be 5 times higher than that for the edge of the microsphere. The bubble-containing microsphere enables efficient utilization of broadband light excitation from light-emitting diodes and solar light.

  16. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  17. The training on propagation of guided electromagnetic waves from the point of view of LSM LSE modes; La ensenanza de las ondas electromagneticas guiadas desde el punto de vista de los modos LSM y LSE

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.

    1997-09-01

    In this work, LSM and LSE modes are proposed as a didactic alternative for modeling the propagation of guided electromagnetic waves. Our considerations can be applied to the most common electromagnetic waves guiding systems: empty metallic waveguides, metallic waveguides partially filled with dielectrics, dielectric sheet waveguides and 3-D dielectric waveguides. In all cases, our interest is focussed on modes with a defined polarization; therefore the teaching activity can be treated from the scalar wave approximation point of view. (Author)

  18. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  19. THE PROPERTIES OF GUIDED ELECTROMAGNETIC FIELD MODES ON THE GaAs-BASED FIBER GLASS AND LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1999-03-01

    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  20. Evidence of conversion from Z-mode waves to the electromagnetic L-O mode waves at the plasmapause detected by JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Oya, Hiroshi; Morioka, Akira

    1982-01-01

    JIKIKEN satellite that has the initial perigee and apogee of 250 km and 30,050 km, respectively, and has an inclination of -31 0 has passed through critical regions where the AKR spectra were carved out by the plasma surounding the satellite, at least five times during a period from January 31, 1979, to June 21, 1980. On all these occasions the usual type of AKR spectra are disclosed to show cutoff phenomena at the local Z-cutoff frequency indicating a continuation crossing over the local X-cutoff frequency from the high frequency side down to the Z mode wave frequency range rather than to be cut at the local X-cutoff frequency; i.e., the AKR waves consist of the spectra that continuously cover the frequency range corresponding to Z-mode and L-O mode waves when the observation is made near the source region. The most posible mechanism that can give cinsistent interpretations to this spectra characteristics is the mode conversion theory; i.e., the plasma waves generated in the form of the hybrid mode waves in the source regions is converted into the Z-mode wave which propagates towards dense plasma regions where the wave frequency coincides with the local plasma frequency and a part of the energy of Z-mode waves is transported to the L-O mode waves that can escape towards outer space. This conversion mechanism gives also a self-consistent interpretation of previously presented evidences reported as the cutoff phenomena of AKR near the local electron cyclotron frequency, using the mechanism of the propagation of the Z-mode waves. There is no confliction between the conversion mechanism of the AKR generation and the previous polarization observation carried out by the Voyager spacecrafts because there remains wide variety of the selection of the source region that are pertinent to give the possiblity of the LH polarization waves as the results of the conversion of the radiation waves from the Z-mode to the L-O mode in the northern polar regions. (author)

  1. Explosive electromagnetic radiation by the relaxation of a multimode magnon system.

    Science.gov (United States)

    Vasyuchka, V I; Serga, A A; Sandweg, C W; Slobodianiuk, D V; Melkov, G A; Hillebrands, B

    2013-11-01

    Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.

  2. Final Report, DOE Award Number DE-FG02-02ER45964, Electromagnetic Properties of Matter at X-ray Wavelengths

    International Nuclear Information System (INIS)

    Smith, David Y.

    2007-01-01

    We report results of a collaborative study of photon and charged-particle interactions with matter between the University of Vermont and Argonne and Brookhaven National Laboratories. A major goal was to extend the study of electromagnetic properties of selected materials to as wide a spectral range as possible. This broad approach discloses systematic trends not apparent in isolated measurements and exploits the power of dispersion analysis and sum-rule constraints. Emphasis was largely on UV and X-ray processes and capitalized on the wide range of photon energies available at NSLS. A key finding is that, under favorable circumstances, dispersion theory relates dispersive processes (e.g. refractive index, dielectric constant) to spectral moments of absorptive processes. This appears to be a new method in optics; it yields significant simplifications and provides a precise, model-independent characterization of optical materials. Problems addressed included (a) x-ray magnetooptics; (b) UV/soft-x-ray processes in insulators and their contribution to visible dispersion; (c) demonstration of moments/dispersion analysis in glasses and applications to fiber-optic systems; (d) the optical constants of silicon and their application to the stopping power of silicon for charged-particles. Results include: (1) Resolution of a long-standing conflict over the relation between x-ray Faraday rotation and x-ray magnetic circular dichroism. Specifically, the Kramers-Kronig relations must be generalized to account for the breaking of time-reversal symmetry by magnetic fields. Experimental reports to the contrary were shown to be inconclusive. Reanalysis of x-ray Faraday rotation data supports the generalization. (2) Demonstration that the optical properties of dielectrics in their region of transparency are determined by a series expansion in spectral moments of the dielectrics infrared and ultraviolet absorption spectra. Application of this to silicate glasses clarifies the role of

  3. Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (m=1 mode) in the presence of a constant axial magnetic field

    International Nuclear Information System (INIS)

    Benova, E.; Staikov, P.; Zhelyazkov, I.

    1992-01-01

    A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)

  4. Observations of the effects of magnetic topology on the SOL characteristics of an electromagnetic coherent mode in the first experimental campaign of W7-X

    Science.gov (United States)

    Liu, S. C.; Liang, Y.; Drews, P.; Krämer-Flecken, A.; Han, X.; Nicolai, D.; Satheeswaran, G.; Wang, N. C.; Cai, J. Q.; Charl, A.; Cosfeld, J.; Fuchert, G.; Gao, Y.; Geiger, J.; Grulke, O.; Henkel, M.; Hirsch, M.; Hoefel, U.; Hollfeld, K. P.; Höschen, D.; Killer, C.; Knieps, A.; König, R.; Neubauer, O.; Pasch, E.; Rahbarnia, K.; Rack, M.; Sandri, N.; Sereda, S.; Schweer, B.; Wang, E. H.; Wei, Y. L.; Weir, G.; Windisch, T.; W7-X Team

    2018-04-01

    Turbulence is considered to play an important role in the edge cross field heat and particle transport in fusion devices. Scrape-off layer (SOL) turbulence characteristics were measured by the combined probe mounted on the multi-purpose manipulator during the first experimental campaign of W7-X. An electromagnetic coherent mode (EMCM) at 7 kHz has been observed by multiple diagnostics in both the plasma core and the SOL and exhibits a strong dependence of the magnetic topology. As demonstrated by the measurements of the combined probe, the EMCM starts to appear at a radius of R  =  6.15 m along the path of probe measurement and this location is shifted inwards in higher iota configurations. It propagates along the direction of electron diamagnetic drift in the far SOL with a poloidal velocity about 0.6 km s-1 while it turns to the opposite direction gradually in the near SOL in the laboratory frame, but keeps a velocity of about 0.6-0.7 km s-1 along the direction of electron diamagnetic drift in the plasma frame. This mode can be induced by raising the ECRH heating power in similar discharge conditions, which is probably linked to the gradient of electron temperature and pressure. The EMCM is enhanced significantly in the edge magnetic island with long connection length where the EMCM can grow up due to the long particle confinement time.

  5. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  6. Development of Spectrometer Software for Electromagnetic Radiation Measurement and Analysis

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2013-01-01

    This software was under development using LabVIEW to be using with StellarNet Spectrometer system. StellarNet Spectrometer was supplied with SpectraWiz operating software that can measure spectral data for real-time spectroscopy. This LabVIEW software was used to access real-time data from SpectraWiz dynamic link library as hardware interfacing. This software will acquire amplitude of every electromagnetic wavelength at periodic time. In addition to hardware interfacing, the user interface capabilities of software include plotting of spectral data in various mode including scope, absorbance, transmission and irradiance mode. This software surely can be used for research and development in application, utilization and safety of electromagnetic radiation, especially solar, laser and ultra violet. Of-line capabilities of this software are almost unlimited due to availability of mathematical and signal processing function in the LabVIEW add on library. (author)

  7. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  8. Perturbation analysis of cyclotron resonance in the electromagnetic field of a TE{sub 011} mode; Analyse par perturbation de la resonance cyclotronique dans le champ electromagnetique en mode TE{sub 011} mode

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The motion of an electron orbiting under the combined action of a static magnetic field and the AC azimuthal electric field of a cylindrical TE{sub 011} mode is analyzed with help of a perturbation technique. The first and second order perturbation results indicate that at cyclotron resonance the electron's center of gyration oscillates slowly at right angles to the magnetic field between two turning points. We find that superimposed upon this nearly static Exb drift the electron cyclically undergoes the process of cyclotron absorption and induced emission. Our results indicate that it is possible to insure maser action (i.e. induced emission rather than absorption) without special preparation of the electron's velocity provided that the electron is introduced into the field in certain special regions of space pervaded by the TE mode. This is a case where over-population of the upper state is accomplished through 'pumping' in real space. The relation between an electron cyclotron resonance maser based upon this principle and one based upon the principle of velocity space pumping, due to Twiss, is examined. This treatment provides physical interpretations and verifies the numerical results found earlier by Le Gardeur. (author) [French] Le mouvement d'un electron soumis a l'action combinee d'un champ magnetique statique et d'un champ electrique haute frequence azimutal engendre dans une cavite cylindrique en mode TE{sub 011} est analyse a partir d'une methode de perturbation. Les resultats des perturbations au premier et deuxieme ordre indiquent qu'a la resonance cyclotronique, le centre de giration de l'electron oscille lentement dans le plan perpendiculaire au champ magnetique entre deux points de rebroussement. En plus de la derivee quasi-statique ExB, l'electron passe par des etats d'absorption et emission cyclotronique. Les resultats du calcul confirment la possibilite d'avoir une action maser (c'est-a-dire: emission au lieu d'absorption) sans que la vitesse des

  9. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  10. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  11. Best practices for ink jet decoration lines in ceramics. Electromagnetic radiation IR machine (wavelength technology); Mejoras practicas para lineas de decoracion Inkjet en ceramica. Maquina IR de radiaciones electromagneticas (tecnologia de longitud de onda)

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, J; Galvez, D

    2012-07-01

    SACMI IBERICA, S.A., has been awarded by the Spanish Society of Ceramics and Glass (SECV), with one GOLD ALFA, in its 2012 edition, during CEVISAMA for the presentation of the innovative IR Electromagnetic Radiation Machine, which improves the conditions and the production performance of digital decoration lines INKJET and other decorative applications ceramic tile. (Author)

  12. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  13. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...... radiation on the nanoscale. Here, we present the underlying physical principles of radiation nanofocusing in metallic nanostructures, overview recent progress and major developments, and consider future directions and potential applications of this subfield of nano-optics....

  14. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  15. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  16. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual-wavelength

  17. Exciplex ensemble modulated by excitation mode in intramolecular charge-transfer dyad: effects of temperature, solvent polarity, and wavelength on photochemistry and photophysics of tethered naphthalene-dicyanoethene system.

    Science.gov (United States)

    Aoki, Yoshiaki; Matsuki, Nobuo; Mori, Tadashi; Ikeda, Hiroshi; Inoue, Yoshihisa

    2014-09-19

    Solvent, temperature, and excitation wavelength significantly affected the photochemical outcomes of a naphthalene-dicyanoethene system tethered by different number (n) of methylene groups (1-3). The effect of irradiation wavelength was almost negligible for 2a but pronounced for 3a. The temperature dependence and theoretical calculations indicated the diversity of exciplex conformations, an ensemble of which can be effectively altered by changing excitation wavelength to eventually switch the regioselectivity of photoreactions.

  18. Experimental study of pulsed heating of electromagnetic cavities

    International Nuclear Information System (INIS)

    Pritzkau, D.P.; Menegat, A.; Siemann, R.H.

    1997-01-01

    An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE 011 mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 μs. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE 012 mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented

  19. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  20. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  1. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  2. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  3. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach.

    Science.gov (United States)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-14

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  4. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Science.gov (United States)

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  5. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zumin; Zhang, Jun, E-mail: zhangjun-nudt@126.com; Zhong, Huihuang; Zhu, Danni; Qiu, Yongfeng [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-01-15

    The triaxial klystron amplifier is an efficient high power relativistic klystron amplifier operating at high frequencies due to its coaxial structure with large radius. However, the coaxial structures result in coupling problems among the cavities as the TEM mode is not cut-off in the coaxial tube. Therefore, the suppression of the TEM mode leakage, especially the leakage from the buncher cavity to the input cavity, is crucial in the design of a triaxial klystron amplifier. In this paper, a non-uniform three-gap buncher cavity is proposed to suppress the TEM mode leakage. The cold cavity analysis shows that the non-uniform three-gap buncher cavity can significantly suppress the TEM mode generation compared to a uniform three-gap buncher cavity. Particle-in-cell simulation shows that the power leakage to the input cavity is less than 1.5‰ of the negative power in the buncher cavity and the buncher cavity can efficiently modulate an intense relativistic electron beam free of self-oscillations. A fundamental current modulation depth of 117% is achieved by employing the proposed non-uniform buncher cavity into an X-band triaxial amplifier, which results in the high efficiency generation of high power microwave.

  6. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity; Analisis de la dependencia de la respuesta de la pelicula radiocromica EBT3 con la energia, tasa de dosis, longitud de onda, modo de escaneo y con la humedad

    Energy Technology Data Exchange (ETDEWEB)

    Leon M, E. Y.; Camacho L, M. A. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Laboratorio de Fotomedicina, Biofotonica y Espectroscopia Laser de Pulsos Ultracortos, Jesus Carranza y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Herrera G, J. A.; Garcia G, O. A. [Instituto Nacional de Neurologia y Neurocirugia, Laboratorio de Fisica Medica y Unidad de Radiocirugia, 14269 Ciudad de Mexico (Mexico); Villarreal B, J. E., E-mail: yaz_3333@hotmail.com [University of Calgary, Department of Oncology, Tom Baker Cancer Centre, 1331 29th street NW Calgary, Alberta T2N 4N2 (Canada)

    2016-10-15

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  7. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  8. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  9. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  10. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  11. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  12. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  13. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    Science.gov (United States)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  15. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  16. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  17. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  18. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  19. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  20. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  1. Single photon SWAP gate using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Yavuz, D.D.

    2005-01-01

    We describe a scheme that performs a SWAP gate between two photons at different wavelengths with near 100% fidelity. The essential idea is the preparation of a near-maximal atomic coherence using electromagnetically induced transparency

  2. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  3. Investigating Equations Used to Design a Very Small Normal-Mode Helical Antenna in Free Space

    Directory of Open Access Journals (Sweden)

    Dang Tien Dung

    2018-01-01

    Full Text Available A normal-mode helical antenna (NMHA has been applied in some small devices such as tire pressure monitoring systems (TPMS and radio frequency identification (RFID tags. Previously, electrical characteristics of NMHA were obtained through electromagnetic simulations. In practical design of NMHA, equational expressions for the main electrical characteristics are more convenient. Electrical performances of NMHA can be expressed by a combination of a short dipole and small loops. Applicability of equations for a short dipole and a small loop to very small normal-mode helical antennas such as antennas around 1/100 wavelengths was not clear. In this paper, accuracies of equations for input resistances, antenna efficiency, and axial ratios are verified by comparisons with electromagnetic simulation results by FEKO software at 402 MHz. In addition, the structure of the antenna equal to 0.021 λ is fabricated, and measurements are performed to confirm the design accuracy.

  4. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  5. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  6. Electromagnetic radiation due to spacetime oscillations

    International Nuclear Information System (INIS)

    Chitre, D.M.; Price, R.H.; Sandberg, V.D.

    1975-01-01

    Wave equations are derived in the Newman-Penrose formalism for mixed electromagnetic and gravitational perturbations on both a flat spacetime background and a slightly charged (Q 2 very-much-less-than GM 2 ) Reissner-Nordstroem background. The physical meaning of these equations is discussed and analytical results are derived for nonrelativistic sources and for ultrarelativistic particle motions. The relationship between even-parity (TM) electromagnetic radiation multipoles in the long-wavelength approximation and static multipoles is shown to be the same as for classical radiation, suggesting a simple picture for electromagnetic radiation induced by gravitational perturbations

  7. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    International Nuclear Information System (INIS)

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  8. Kinetic analysis of MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties

  9. Small discussion of electromagnetic wave anomalies preceding earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Six brief pieces on various aspects of electromagnetic wave anomalies are presented. They cover: earthquake electromagnetic emanations; the use of magnetic induction information for earthquake forecasting; electromagnetic pulse emissions as pre-earthquake indicators; the use of magnetic sensors to determine medium-wavelength field strength for earthquake prediction purposes; magnetic deviation indicators inside reinforced-concrete buildings; and a discussion of the general physical principles involved.

  10. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  11. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  12. The electromagnetic dark sector

    International Nuclear Information System (INIS)

    Jimenez, Jose Beltran; Maroto, Antonio L.

    2010-01-01

    We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.

  13. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  14. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.

    Science.gov (United States)

    Dawson, P; Frey, D; Kalathingal, V; Mehfuz, R; Mitra, J

    2017-12-04

    Quantitative understanding of the electromagnetic component in enhanced Raman spectroscopy is often difficult to achieve on account of the complex substrate structures utilised. We therefore turn to two structurally simple systems amenable to detailed modelling. The first is tip-enhanced Raman scattering under electron scanning tunnelling microscopy control (STM-TERS) where, appealing to understanding developed in the context of photon emission from STM, it is argued that the localised surface plasmon modes driving the Raman enhancement exist in the visible and near-infrared regime only by virtue of significant modification to the optical properties of the tip and sample metals (gold here). This is due to the strong dc field-induced (∼10 9 V m -1 ) non-linear corrections to the dielectric function of gold via the third order susceptibility term in the polarisation. Also, sub-5 nm spatial resolution is shown in the modelling. Secondly, we suggest a novel deployment of hybrid plasmonic waveguide modes in surface enhanced Raman scattering (HPWG-SERS). This delivers strong confinement of electromagnetic energy in a ∼10 nm oxide 'gap' between a high-index dielectric material of nanoscale width (a GaAs nanorod and a 100 nm Si slab are considered here) and a metal, yielding a monotonic variation in the Raman enhancement factor as a function of wavelength with no long-wavelength cut-off, both features that contrast with STM-TERS.

  15. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  16. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  17. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  18. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  19. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  20. Detection of electromagnetic radiation using nonlinear materials

    Science.gov (United States)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  1. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  2. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  3. Short wavelength striations on expanding plasma clouds

    International Nuclear Information System (INIS)

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (< ion gyroradius) flute modes on a plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs

  4. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    International Nuclear Information System (INIS)

    Hughes, J.W.; Walk, J.R.; Davis, E.M.; LaBombard, B.; Baek, S.G.; Churchill, R.M.; Greenwald, M.; Hubbard, A.E.; Lipschultz, B.; Marmar, E.S.; Reinke, M.L.; Rice, J.E.; Theiler, C.; Terry, J.; White, A.E.; Whyte, D.G.; Snyder, P.B.; Groebner, R.J.; Osborne, T.; Diallo, A.

    2013-01-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling–ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of β pol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices. (paper)

  5. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  6. Systematic wavelength selection for improved multivariate spectral analysis

    Science.gov (United States)

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  7. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  8. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  9. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  10. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  11. MIT wavelength tables. Volume 2. Wavelengths by element

    International Nuclear Information System (INIS)

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  12. Electromagnetic launchers

    Science.gov (United States)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  13. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  14. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    Science.gov (United States)

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  15. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  16. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  17. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....

  18. Electromagnetic waves in dusty magnetoplasmas using two-potential theory

    International Nuclear Information System (INIS)

    Zubia, K.; Jamil, M.; Salimullah, M.

    2009-01-01

    The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.

  19. Magnetic correlates in electromagnetic consciousness.

    Science.gov (United States)

    Liboff, A R

    2016-01-01

    We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.

  20. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  1. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  2. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  3. Teaching Electromagnetic Waves in College Physics Laboratory

    Science.gov (United States)

    Kezerashvili, Roman Y.; Leng, L.

    2006-12-01

    One of the important educational advantages of the simultaneous study of the electromagnetic waves and light is to show that light and the electromagnetic radiation have the same properties so that the students can visualize the properties of the electromagnetic radiation through observation of light propagation. In our approach we are suggest to study the properties of a microwave radiation and light in parallel. The following experiments can be easily designed and they provide a methodical introduction to electromagnetic theory using the microwave radiation and light: the study of the inverse square law of the dependence of the intensity of radiation (microwave and light) on the distance, the law of reflection and refraction, investigation of the phenomenon of polarization and how a polarizer can be used to alter the polarization of microwave radiation and light, measuring the Brewster's angle, studying interference by performing double-slit experiment for microwave radiation and light. Finally students measure the wavelength of the laser light and microwave radiation using the corresponding versions the Michelson’s interferometer, and recognize that these two radiations only differ by the wavelength or frequency.

  4. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  5. Simple economical stabilizer for electromagnet field

    International Nuclear Information System (INIS)

    Vas'kov, O.S.; Domanevskij, D.S.; Zinkevich, Yu.V.; Soroka, E.V.; Shavel', N.N.

    1988-01-01

    Field stabilizer within high-power electromagnet gap at direct current up to 75 A and up to 100 V voltage in the winding is described. 15 parallel-connected KT 945A transistors, operation mode of which allows to do without radiators and forced cooling are used as controlling element of pulsed stabilizer

  6. Investigation of Near-Field Electromagnetic Source Imaging Using Inverse Green's Function Integrations

    National Research Council Canada - National Science Library

    Steenman, Daryl

    1999-01-01

    .... In the far-field of these tested objects, actual sources of high reflectivity or "Hot Spots" on the tested objects can be isolated to within only one half the wavelength of the electromagnetic wave used for testing...

  7. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  8. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  9. Normal modes of Bardeen discs

    International Nuclear Information System (INIS)

    Verdaguer, E.

    1983-01-01

    The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)

  10. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  11. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  12. Topology Optimized Components for Mode- and Wavelength Division Multiplexing

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor

    to remake the new designs and then increase complexity without much impact on the footprint. The benefit of inverse design tools, like topology optimization, is that they lead to structures without geometrical constraints and which are independent of the designer. This project has however shown...

  13. Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods

    CERN Document Server

    Eom, Hyo J

    2004-01-01

    Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.

  14. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  15. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    International Nuclear Information System (INIS)

    Villalon, E.

    1989-01-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency

  16. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  17. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  18. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.

    1993-01-01

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform

  19. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  20. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  1. Single-wavelength functional photoacoustic microscopy in biological tissue

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required ima...

  2. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  3. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  4. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  5. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  6. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  7. Left Handed Materials: A New Paradigm in Structured Electromagnetics

    International Nuclear Information System (INIS)

    Johri, Manoj; Paudyal, Harihar

    2010-05-01

    A new paradigm has emerged exhibiting reverse electromagnetic properties. Novel composite and micro-structured materials (metamaterials) have been designed to control electromagnetic radiation. Such substances have been called as Left Handed Material (LHM) with simultaneous negative permittivity and negative permeability and negative refractive index as well. Left handed materials are of importance because of their ability to influence the behavior of electromagnetic radiation and to display properties beyond those available in naturally occurring materials. Typically these are sub-wavelength artificial structures where the dimensions are very small compared to the working wavelength. These dimensions are normally of the order of λ/10 where λ is the wavelength of electromagnetic wave propagating in the material. Emergence of this new paradigm leads to some very interesting consequences, such as, to create lenses that are not diffraction limited, cloaking, sensors (chemical, biological and individual molecule), optical and radio communication. This new development in structured electromagnetic materials has had a dramatic impact on the physics, optics and engineering communities. (author)

  8. influence of electromagnetic waves produced by an amplitude

    African Journals Online (AJOL)

    PROF EKWUEME

    m. 10 . The magnetotransport and continuity equations of excess minority carriers are solved with boundary conditions and led to new analytical expressions of minority carrier's density, photocurrent density, photovoltage and electric power depending on electromagnetic field intensity and wavelength λ. The dependence of.

  9. Influence of electromagnetic waves produced by an amplitude ...

    African Journals Online (AJOL)

    The magnetotransport and continuity equations of excess minority carriers are solved with boundary conditions and led to new analytical expressions of minority carrier's density, photocurrent density, photovoltage and electric power depending on electromagnetic field intensity and wavelength λ. The dependence of the ...

  10. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  11. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  12. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  13. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  14. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  15. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  16. Theoretical study of electromagnetic transport in Lepidoptera Danaus plexippus wing scales

    Directory of Open Access Journals (Sweden)

    J. Sackey

    2018-01-01

    Full Text Available This paper examines the electromagnetic energies developed in the scales of the Lepidoptera Danaus plexippus. The Green tensor method was used to calculate and simulate the energies at specific wavelengths. Scattering of electromagnetic waves within the scales was simulated at different wavelengths (λ with the corresponding maximum energy occurred at λ = 0.45 μm. The study shows that the design of wing’s cross-ribs maximizes the eigenmode of electromagnetic energy. This shows promising applications in bio-sensors of Solar light and likewise in waveguide for photonic transmission.

  17. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  18. Using Whispering-Gallery-Mode Resonators for Refractometry

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  19. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  20. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  1. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  2. Comparison between electroglottography and electromagnetic glottography

    Energy Technology Data Exchange (ETDEWEB)

    Titze, Ingo R. [Department of Speech Pathology and Audiology and National Center for Voice and Speech, The University of Iowa and the Denver Center for the Performing Arts, Iowa City, Iowa 52242 (United States); Story, Brad H. [Department of Speech Pathology and Audiology and National Center for Voice and Speech, The University of Iowa and the Denver Center for the Performing Arts, Iowa City, Iowa 52242 (United States); Burnett, Gregory C. [Department of Applied Science, University of California at Davis, and Lawrence Livermore National Laboratory, Livermore, California 94557 (United States); Holzrichter, John F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ng, Lawrence C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Lea, Wayne A. [Speech Sciences Institute, Apple Valley, Minnesota 55124 (United States)

    2000-01-01

    Newly developed glottographic sensors, utilizing high-frequency propagating electromagnetic waves, were compared to a well-established electroglottographic device. The comparison was made on four male subjects under different phonation conditions, including three levels of vocal fold adduction (normal, breathy, and pressed), three different registers (falsetto, chest, and fry), and two different pitches. Agreement between the sensors was always found for the glottal closure event, but for the general wave shape the agreement was better for falsetto and breathy voice than for pressed voice and vocal fry. Differences are attributed to the field patterns of the devices. Whereas the electroglottographic device can operate only in a conduction mode, the electromagnetic device can operate in either the forward scattering (diffraction) mode or in the backward scattering (reflection) mode. Results of our tests favor the diffraction mode because a more favorable angle imposed on receiving the scattered (reflected) signal did not improve the signal strength. Several observations are made on the uses of the electromagnetic sensors for operation without skin contact and possibly in an array configuration for improved spatial resolution within the glottis. (c) 2000 Acoustical Society of America.

  3. Comparison between electroglottography and electromagnetic glottography

    International Nuclear Information System (INIS)

    Titze, Ingo R.; Story, Brad H.; Burnett, Gregory C.; Holzrichter, John F.; Ng, Lawrence C.; Lea, Wayne A.

    2000-01-01

    Newly developed glottographic sensors, utilizing high-frequency propagating electromagnetic waves, were compared to a well-established electroglottographic device. The comparison was made on four male subjects under different phonation conditions, including three levels of vocal fold adduction (normal, breathy, and pressed), three different registers (falsetto, chest, and fry), and two different pitches. Agreement between the sensors was always found for the glottal closure event, but for the general wave shape the agreement was better for falsetto and breathy voice than for pressed voice and vocal fry. Differences are attributed to the field patterns of the devices. Whereas the electroglottographic device can operate only in a conduction mode, the electromagnetic device can operate in either the forward scattering (diffraction) mode or in the backward scattering (reflection) mode. Results of our tests favor the diffraction mode because a more favorable angle imposed on receiving the scattered (reflected) signal did not improve the signal strength. Several observations are made on the uses of the electromagnetic sensors for operation without skin contact and possibly in an array configuration for improved spatial resolution within the glottis. (c) 2000 Acoustical Society of America

  4. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  5. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  6. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  7. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  8. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  9. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  10. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  11. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-01-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array

  12. Metasurface axicon lens design at visible wavelengths

    Science.gov (United States)

    Alyammahi, Saleimah; Zhan, Qiwen

    2017-08-01

    The emerging field of metasurfaces is promising to realize novel optical devices with miniaturized flat format and added functionalities. Metasurfaces have been demonstrated to exhibit full control of amplitude, phase and polarization of electromagnetic waves. Using the metasurface, the wavefront of light can be manipulated permitting new functionalities such as focusing and steering of the beams and imaging. One optical component which can be designed using metasurfaces is the axicon. Axicons are conical lenses used to convert Gaussian beams into nondiffraction Bessel beams. These unique devices are utilized in different applications ranging from optical trapping and manipulation, medical imaging, and surgery. In this work, we study axicon lens design comprising of planar metasurfaces which generate non-diffracting Bessel beams at visible wavelengths. Dielectric metasurfaces have been used to achieve high efficiency and low optical loss. We measured the spot size of the resulted beams at different planes to demonstrate the non-diffraction properties of the resulted beams. We also investigated how the spot size is influenced by the axicon aperture. Furthermore, we examined the achromatic properties of the designed axicon. Comparing with the conventional lens, the metasurface axicon lens design enables the creation of flat optical device with wide range of depth of focus along its optical axis.

  13. Wavelength dependence of interstellar polarization

    International Nuclear Information System (INIS)

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  14. Electromagnetic radiation absorbers and modulators comprising polyaniline

    Science.gov (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  15. Development of a laced electromagnetic wiggler

    International Nuclear Information System (INIS)

    Christensen, T.C.; Burns, M.J.; Deis, G.A.; Parkison, C.D.; Prosnitz, D.; Halbach, K.

    1987-01-01

    The laced electromagnetic wiggler is a new concept being developed to attain higher magnetic fields, shorter wavelengths, and larger gaps for the induction-linear accelerator, free-electron-laser (FEL) program. In the laced wiggler design, permanent magnets are located (''laced'') between the electromagnetic coils to increase the reverse-bias flux in the iron pole beyond that possible with only pole-edge (''side'') permanent magnets. This increase in reverse-bias flux allows wiggler operation at midplane magnetic field intensities comparable to those of a hybrid permanent magnet/steel wiggler, but with field adjustability over a specified range. The maximum field intensity and tuning range are selected, within limits, for specific design requirements. We have designed and tested a one-period prototype of this concept with promising results

  16. Single-wavelength functional photoacoustic microscopy in biological tissue.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  17. Wavelength tuning of porous silicon microcavities

    International Nuclear Information System (INIS)

    Mulders, J.; Reece, P.; Zheng, W.H.; Lerondel, G.; Sun, B.; Gal, M.

    2002-01-01

    Full text: In the last decade much attention has been given to porous silicon (PS) for optoelectronic applications, which include efficient room temperature light emission as well as microcavity formation. Due to the large specific surface area, the use of porous silicon microcavities (PSMs) has been proposed for chemical sensing. Large wavelength shifts have indicated that the optical properties of PSMs are indeed strongly dependent on the environment. In this paper, we report the shifting of the resonance frequency of high quality PSMs, with the aim of tuning a future PS device to a certain required wavelength. The PSM samples were prepared by anodically etching p + -doped (5mΩcm) bulk silicon wafer in a solution (25%) of aqueous HF and ethanol. The device structure consisted of a PS layer sandwiched between 2 stacks of thin PS layers with alternating high and low effective refractive indices (RI), i.e. distributed Bragg mirrors (DBM). The layer thickness depends on the etch time while the porosity and hence refractive index is determined by the current density as the Si is etched. The position and the width of the stop-band can be fully controlled by the design of the DBMs, with the microcavity resonance mode sitting within the stop-band. We achieved tuning of the microcavity resonance by a number of methods, including temperature dependent tuning. The temperature induced wavelength shift was found to be of the order of 10 -15 nm. Computer modeling of these changes in the reflectivity spectra allowed us to quantify the changes of the effective refractive index and the respective layer thicknesses

  18. Electric converters of electromagnetic strike machine with battery power

    Science.gov (United States)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  19. Electromagnetic microinstabilities in tokamak plasmas using a global spectral approach

    Energy Technology Data Exchange (ETDEWEB)

    Falchetto, G. L

    2002-03-01

    Electromagnetic microinstabilities in tokamak plasmas are studied by means of a linear global eigenvalue numerical code. The code is the electromagnetic extension of an existing electrostatic global gyrokinetic spectral toroidal code, called GLOGYSTO. Ion dynamics is described by the gyrokinetic equation, so that ion finite Larmor radius effects are taken into account to all orders. Non adiabatic electrons are included in the model, with passing particles described by the drift-kinetic equation and trapped particles through the bounce averaged drift-kinetic equation. A low frequency electromagnetic perturbation is applied to a low -but finite- {beta}plasma (where the parameter {beta} identifies the ratio of plasma pressure to magnetic pressure); thus, the parallel perturbations of the magnetic field are neglected. The system is closed by the quasi-neutrality equation and the parallel component of Ampere's law. The formulation is applied to a large aspect ratio toroidal configuration, with circular shifted surfaces. Such a simple configuration enables one to derive analytically the gyrocenter trajectories. The system is solved in Fourier space, taking advantage of a decomposition adapted to the toroidal geometry. The major contributions of this thesis are as follows. The electromagnetic effects on toroidal Ion Temperature Gradient driven (ITG) modes are studied. The stabilization of these modes with increasing {beta}, as predicted in previous work, is confirmed. The inclusion of trapped electron dynamics enables the study of its coupling to the ITG modes and of Trapped Electron Modes (TEM) .The effects of finite {beta} are considered together with those of different magnetic shear profiles and of the Shafranov shift. The threshold for the destabilization of an electromagnetic mode is identified. Moreover, the global formulation yields for the first time the radial structure of this so-called Alfvenic Ion Temperature Gradient (AITG) mode. The stability of the

  20. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  1. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  2. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  3. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  4. Near-Field Spectral Effects due to Electromagnetic Surface Excitations

    OpenAIRE

    Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques

    2000-01-01

    International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...

  5. Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation

    Energy Technology Data Exchange (ETDEWEB)

    Shahmansouri, M., E-mail: mshmansouri@gmail.com [Department of Physics, Faculty of Science, Arak University, Arak 38156-8 8349 (Iran, Islamic Republic of); Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)

    2016-07-15

    The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.

  6. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  7. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  8. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  9. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  10. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  11. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  12. Flipping the Electromagnetic Theory classroom

    Science.gov (United States)

    Berger, Andrew J.

    2017-08-01

    Electromagnetic Theory is a required junior-year course for Optics majors at the University of Rochester. This foundational course gives students their first rigorous exposure to electromagnetic vector fields, dipole radiation patterns, Fresnel reflection/transmission coefficients, waveguided modes, Jones vectors, waveplates, birefringence, and the Lorentz model of refractive index. To increase the percentage of class time devoted to student-centered conceptual reasoning and instructor feedback, this course was recently "flipped". Nearly all of the mathematically-intensive derivations were converted to narrated screencasts ("Khan Academy" style) and made available to students through the course's learning management system. On average, the students were assigned two 10-15 minute videos to watch in advance of each lecture. An electronic survey after each tutorial encouraged reflection and counted towards the student's participation grade. Over the past three years, students have consistently rated the videos as being highly valuable. This presentation will discuss the technical aspects of creating tutorial videos and the educational tradeoffs of flipping a mathematically-intensive upper-level course. The most important advantage is the instructor's increased ability to identify and respond to student confusion, via activities that would consume too much time in a lecture-centered course. Several examples of such activities will be given. Two pitfalls to avoid are the temptation for the instructor not to update the videos from year to year and the tendency of students not to take lecture notes while watching the videos.

  13. Remote sub-wavelength focusing of ultrasonically activated Lorentz current

    Science.gov (United States)

    Rekhi, Angad S.; Arbabian, Amin

    2017-04-01

    We propose the use of a combination of ultrasonic and magnetic fields in conductive media for the creation of RF electrical current via the Lorentz force, in order to achieve current generation with extreme sub-wavelength resolution at large depth. We demonstrate the modeling, generation, and measurement of Lorentz current in a conductive solution and show that this current can be localized at a distance of 13 cm from the ultrasonic source to a region about three orders of magnitude smaller than the corresponding wavelength of electromagnetic waves at the same operation frequency. Our results exhibit greater depth, tighter localization, and closer agreement with prediction than previous work on the measurement of Lorentz current in a solution of homogeneous conductivity. The proposed method of RF current excitation overcomes the trade-off between focusing and propagation that is fundamental in the use of RF electromagnetic excitation alone and has the potential to improve localization and depth of operation for RF current-based biomedical applications.

  14. Integrated Circuit Electromagnetic Immunity Handbook

    Science.gov (United States)

    Sketoe, J. G.

    2000-08-01

    This handbook presents the results of the Boeing Company effort for NASA under contract NAS8-98217. Immunity level data for certain integrated circuit parts are discussed herein, along with analytical techniques for applying the data to electronics systems. This handbook is built heavily on the one produced in the seventies by McDonnell Douglas Astronautics Company (MDAC, MDC Report E1929 of 1 August 1978, entitled Integrated Circuit Electromagnetic Susceptibility Handbook, known commonly as the ICES Handbook, which has served countless systems designers for over 20 years). Sections 2 and 3 supplement the device susceptibility data presented in section 4 by presenting information on related material required to use the IC susceptibility information. Section 2 concerns itself with electromagnetic susceptibility analysis and serves as a guide in using the information contained in the rest of the handbook. A suggested system hardening requirements is presented in this chapter. Section 3 briefly discusses coupling and shielding considerations. For conservatism and simplicity, a worst case approach is advocated to determine the maximum amount of RF power picked up from a given field. This handbook expands the scope of the immunity data in this Handbook is to of 10 MHz to 10 GHz. However, the analytical techniques provided are applicable to much higher frequencies as well. It is expected however, that the upper frequency limit of concern is near 10 GHz. This is due to two factors; the pickup of microwave energy on system cables and wiring falls off as the square of the wavelength, and component response falls off at a rapid rate due to the effects of parasitic shunt paths for the RF energy. It should be noted also that the pickup on wires and cables does not approach infinity as the frequency decreases (as would be expected by extrapolating the square law dependence of the high frequency roll-off to lower frequencies) but levels off due to mismatch effects.

  15. Storage and retrieval of electromagnetic waves with orbital angular momentum via plasmon-induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Xu, Datang; Huang, Guoxiang

    2017-01-23

    We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

  16. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    Science.gov (United States)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  17. A design of a mode converter for electron cyclotron heating by the method of normal mode expansion

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Kawashima, Hisato; Hata, Kenichiro; Yamamoto, Takumi

    1983-09-01

    Mode conversion of electromagnetic wave propagating in the over-size circular waveguide is attained by giving a periodical perturbation in the guide wall. Mode coupling equation is expressed by ''generalized telegraphist's equations'' which are derived from the Maxwell's equations using a normal mode expansion. A computer code to solve the coupling equations is developed and mode amplitude, conversion efficiency, etc. of a particular type of mode converter for the 60 GHz electron cyclotron heating are obtained. (author)

  18. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  19. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  20. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  1. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  2. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  3. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  4. Mathematics and electromagnetism

    International Nuclear Information System (INIS)

    Rodriguez Danta, M.

    2000-01-01

    Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)

  5. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  6. Electromagnetic Fields Exposure Limits

    Science.gov (United States)

    2018-01-01

    Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses

  7. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  8. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  9. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  10. Interfering Heralded Single Photons from Two Separate Silicon Nanowires Pumped at Different Wavelengths

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-08-01

    Full Text Available Practical quantum photonic applications require on-demand single photon sources. As one possible solution, active temporal and wavelength multiplexing has been proposed to build an on-demand single photon source. In this scheme, heralded single photons are generated from different pump wavelengths in many temporal modes. However, the indistinguishability of these heralded single photons has not yet been experimentally confirmed. In this work, we achieve 88% ± 8% Hong–Ou–Mandel quantum interference visibility from heralded single photons generated from two separate silicon nanowires pumped at different wavelengths. This demonstrates that active temporal and wavelength multiplexing could generate indistinguishable heralded single photons.

  11. Electromagnetic radiation screening of semiconductor devices for long life applications

    Science.gov (United States)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  12. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  13. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  14. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  15. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    Science.gov (United States)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  17. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  18. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  19. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  20. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  1. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  2. Electromagnetic radiation from beam-plasma instabilities

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Whelan, D.A.

    1982-01-01

    This chapter investigates the mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves. Electromagnetic radiation arises from both natural beam-plasma systems (e.g., type III solar bursts and kilometric radiation), and from man-made electron beams injected from rockets and spacecraft. A pulsed magnetized discharge plasma is produced with a 1 m diam. oxide-coated cathode and the discussed experiment is performed in the quiescent afterglow. The primary beam-plasma instability involves the excitation of electrostatic plasma waves. Electromagnetic radiation from the beam-plasma system is observed with microwave antennas outside the plasma (all probes removed) or with coax-fed dipoles which can be inserted radially and axially into the plasma. The physical process of mode coupling by which electromagnetic radiation is generated in an electrostatic beam-plasma instability is identified. The results are relevant to beam injection experiments from rockets or satellites into space plasmas. The limited penetration of the beam current into the plasma due to instabilities is demonstrated

  3. Broadband Control of Topological Nodes in Electromagnetic Fields

    Science.gov (United States)

    Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui

    2018-05-01

    We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.

  4. An instability due to the nonlinear coupling of p-modes to g-modes: Implications for coalescing neutron star binaries

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua

    2013-01-01

    A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω a excites a pair of secondary waves of frequency ω b + ω c ≅ ω a . Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω b + ω c >> ω a . We show that a p-mode can couple so strongly to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f gw ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f gw ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10 10 K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously

  5. Fabrication of sub-wavelength photonic structures by nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kontio, J.

    2013-11-01

    Nanoimprint lithography (NIL) is a novel but already a mature lithography technique. In this thesis it is applied to the fabrication of nanophotonic devices using its main advantage: the fast production of sub-micron features in high volume in a cost-effective way. In this thesis, fabrication methods for conical metal structures for plasmonic applications and sub-wavelength grating based broad-band mirrors are presented. Conical metal structures, nanocones, with plasmonic properties are interesting because they enable concentrating the energy of light in very tight spots resulting in very high local intensities of electromagnetic energy. The nanocone formation process is studied with several metals. Enhanced second harmonic generation using gold nanocones is presented. Bridged-nanocones are used to enhance Raman scattering from a dye solution. The sub-wavelength grating mirror is an interesting structure for photonics because it is very simple to fabricate and its reflectivity can be extended to the far infrared wavelength range. It also has polarization dependent properties which are used in this thesis to stabilize the output beam of infrared semiconductor disk laser. NIL is shown to be useful a technique in the fabrication of nanophotonic devices in the novel and rapidly growing field of plasmonics and also in more traditional, but still developing, semiconductor laser applications (orig.)

  6. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  7. Measurements of reactor-relevant electromagnetic effects with the FELIX facility

    International Nuclear Information System (INIS)

    Turner, L.R.; Hua, T.Q.; Knott, M.J.; Lee, S.Y.; McGhee, D.G.; Wehrle, R.B.

    1986-01-01

    Recent experiments with the FELIX (Fusion Electromagnetic Induction eXperiment) facility at Argonne National Laboratory (ANL) suggest that the expected electromagnetic forces and torques in a tokamak first wall, blanket, and shield (FWBS) system can be modelled by a single eddy current mode, with a simple characterization

  8. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  9. Structures, systems and methods for harvesting energy from electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  10. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    Science.gov (United States)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  11. Conversion of photons into spinless particles in periodic external electromagnetic field

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa

    1996-08-01

    The conversion of photons into axions and dilatons in a periodic external electromagnetic field, namely in the TE 10 mode, are considered in detail. The differential cross sections are given. (author). 16 refs

  12. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  13. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  14. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  15. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The theory of electromagnetism

    CERN Document Server

    Jones, D S

    1964-01-01

    The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The

  17. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  18. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  19. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  20. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  1. Making Displaced Holograms At Two Wavelengths

    Science.gov (United States)

    Witherow, William K.; Ecker, Andreas

    1989-01-01

    Two-wavelength holographic system augmented with pair of prisms to introduce small separation between holograms formed simultaneously at two wavelengths on holographic plate. Principal use in study of flows. Gradients in index of refraction of fluid caused by variations in temperature, concentration, or both. Holography at one wavelength cannot be used to distinguish between two types of variations. Difference between spacings of fringes in photographs reconstructed from holograms taken simultaneously at two different wavelengths manipulated mathematically to determine type of variation.

  2. Electromagnetic Fields in Reverberant Environments

    NARCIS (Netherlands)

    Vogt-Ardatjew, Robert Andrzej

    2017-01-01

    The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical

  3. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  4. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  5. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  6. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  7. Electromagnetic behaviour of the earth and planets

    International Nuclear Information System (INIS)

    McCarthy, A.J.

    2002-01-01

    Forecast problems of global warming, rising sea-levels, UV enhancement, and solar disruptions of power grids and satellite communications, have been widely discussed. Added to these calamities is the steady decay of the Earth's magnetic radiation shield against high energy particles. A system of solar-induced aperiodic electromagnetic resonances, referred to here as the Debye resonances, is resurrected as the preferred basis for describing the electromagnetic behaviour of the Earth and planets. Debye's two basic solutions to the spherical vector wave equation provide foundations for electromagnetic modes of the terrestrial and gaseous planets respectively in contrast with the separate electric and magnetic approaches usually taken. For those engaged in radiation protection issues, this paper provides the first published account of how the Sun apparently triggers an Earth magnetic shield against its own harmful radiation. Disturbances from the Sun - which are random in terms of polarity, polarisation, amplitude, and occurrence - are considered here to trigger the Debye modes and generate observed planetary electric and magnetic fields. Snapping or reconnection of solar or interplanetary field lines, acting together with the newly conceived magnetospheric transmission lines of recent literature, is suspected as the excitation mechanism. Virtual replacement of free space by plasma, places the electromagnetic behaviour of the Earth and planets under greatly enhanced control from the Sun. From a radiation protection viewpoint, modal theory based on solar-terrestrial coupling provides a new insight into the origin of the Earth's magnetic radiation shield, greater understanding of which is essential to development of global cosmic radiation protection strategies. Should man-made influences unduly increase conductivities of the Earth's magnetosphere, planet Earth could be left with no magnetic radiation shield whatsoever. Copyright (2002) Australasian Radiation Protection

  8. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  9. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  11. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  12. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  13. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  14. Pregnancy and electromagnetic fields

    International Nuclear Information System (INIS)

    Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.

    2011-07-01

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  15. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  16. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  17. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  18. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...... finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...

  19. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  20. Transformation optics and metamaterials at infrared wavelength: engineering of permittivity and permeability

    Science.gov (United States)

    Ghasemi, Rasta; Degiron, Aloyse; Leroux, Xavier; Lupu, Anatole; de Lustrac, André

    2013-05-01

    The transformation optics was introduced by J. Pendry and U. Leonhardt in 2006 [1,2]. In this method an initial space is transformed into a new space and this transformed space can be materialized by a material, which the electromagnetic parameters can be deduced from the metric of the transformed space. In the general case the electromagnetic parameters are anisotropic tensors. At microwave frequencies these materials can be realized using classical metamaterials like SRR form J. Pendry or ELC from D. Smith [3]. At infrared wavelengths this realization is a challenge because the dimensions of the metamaterials are much smaller than the wavelength and become nanometric. Then the design of these metamaterials must be simplified and original methods must be developed to allow the realization of these metamaterials with controlled electromagnetic properties. In this paper we describe the realization of a multilayer metamaterial working at infrared wavelength, which the permittivity and the permeability can be adjusted separately. We give some examples of realized multilayer materials operating around 150THz, with a comparison between the results of full wave simulations of these materials and their characterizations using a Fourier Transform Infrared Spectrometer.

  1. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  2. CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY

    International Nuclear Information System (INIS)

    Fayolle, Edith C.; Linnartz, Harold; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues; Oeberg, Karin I.

    2011-01-01

    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Lyα), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A 1 Π at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

  3. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  4. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  5. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  6. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  7. Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM)

    OpenAIRE

    Muliar, Olena; Usuga Castaneda, Mario A.; Rottwitt, Karsten; Lægsgaard, Jesper

    2015-01-01

    The rapid growth of global data traffic demands the continuous search for new technologies and systems that could increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore new degrees of freedom such as polarization, wavelength or optical modes. Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity increase, since it utilizes multiple spatial modes of an optical fiber as indi...

  8. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  9. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  10. Exact quasinormal modes for a special class of black holes

    International Nuclear Information System (INIS)

    Oliva, Julio; Troncoso, Ricardo

    2010-01-01

    Analytic exact expressions for the quasinormal modes of scalar and electromagnetic perturbations around a special class of black holes are found in d≥3 dimensions. It is shown that the size of the black hole provides a lower bound for the angular momentum of the perturbation. Quasinormal modes appear when this bound is fulfilled; otherwise the excitations become purely damped.

  11. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  12. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  13. Ducting of the Whistler-Mode Waves by Magnetic Field-Aligned Density Enhancements in the Radiation Belt

    Science.gov (United States)

    Streltsov, A. V.; Bengtson, M.; English, D.; Miller, M.; Turco, L.

    2017-12-01

    Whistler-mode waves (or whistlers) are the right-hand polarized electromagnetic waves with a frequency in the range above the lower hybrid frequency and below the electron cyclotron frequency. They can efficiently interact with energetic electrons in the equatorial magnetosphere and remediate them from the earth's radiation belt. These interactions are non-linear, they depend on the wave amplitude, and for them to be efficient the wave power needs to be delivered from the transmitter to the interaction region without significant losses. The main physical mechanism which can solve this problem is ducting/guiding of whistlers by magnetic field-aligned density inhomogeneities or ducts. We present results from a modeling of whistler-mode waves observed by the NASA Van Allen Probes satellites inside the ducts formed by density enhancements (also known as, high-density ducts or HDD). Our previous studies suggest that HDD can confine without leakage only waves with some particular parameters (frequency, perpendicular and parallel wavelength) connected with the parameters of the duct (like duct's "width" and "depth"). Our numerical results confirm that 1) the high-density ducts with amplitudes and perpendicular sizes observed by the RBSP satellites can indeed guide whistlers over significant distances along the ambient magnetic field with small leakage, and 2) the quality of the ducting indeed depends on the wave perpendicular and parallel wavelengths and, therefore, the fact that the wave is ducted by HDD can be used to determine parameters of the wave.

  14. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  16. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  17. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  18. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  19. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  20. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  1. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  2. Landau fluid equations for electromagnetic and electrostatic fluctuations

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.

    1992-01-01

    Closure relations are developed to allow approximate treatment of Landau damping and growth using fluid equations for both electrostatic and electromagnetic modes. The coefficients in these closure relations are related to approximations of the plasma dispersion function by ratios of polynomials. Thirteen different numerical sets of coefficients are given and explicitly related to previous fits to the plasma dispersion function. The application of the techniques presented in this paper is illustrated with the specific example of resistive g modes. Comparisons of full kinetic and approximate results are made for the solutions to the dispersion relation, radially resolved modes in sheared magnetic geometry, and the plasma dispersion function itself

  3. Electromagnetic radiation unmasked

    International Nuclear Information System (INIS)

    Hart, P.

    1996-01-01

    This article describes the nature of the electromagnetic waves, what they are and how do they affect us. Current concern is focused on exposure to low level power-frequency magnetic fields like microwave radiation from mobile phones and leaking microwave ovens; high power radiation from defence and airport radars; fields close to high voltage transmission lines; radio frequency fields from industrial welders and heaters and DC magnetic fields in aluminium smelters. These fields with frequency less than 300 GHz do not carry sufficient energy to break chemical bonds and it is assumed that they cannot damage cell DNA. The amount of radiation absorbed by a human exposed to far field electromagnetic radiation (EMR) depends on the orientation and size of the person. In the 30-300 MHz range it is possible to excite resonance in the whole or partial body such as the head. It is emphasised that since there are some evidence that electromagnetic fields do harm, a policy of prudent avoidance is recommended, especially for children. ills

  4. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  5. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  6. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  7. Evaluation of mode purity of ordinary and extraordinary modes by fixed elliptically polarized wave for ECH and ECCD

    International Nuclear Information System (INIS)

    Saigusa, Mikio

    1991-08-01

    Mode separation ratio from an arbitrary elliptically polarized electromagnetic wave to an ordinary and an extraordinary modes on a plasma surface for oblique launch is evaluated quantitatively for designing an electron cyclotron current drive (ECCD) antenna. An optimized elliptical polarization for the wide range of injection angles and magnetic fields is firstly investigated for ECCD and ECH experiments. (author)

  8. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  9. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  10. Local electromagnetic waves in layered superconductors

    International Nuclear Information System (INIS)

    Gvozdikov, V.M.; Vega-Monroy, R.

    1999-01-01

    A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)

  11. Tests of gas sampling electromagnetic shower calorimeter

    International Nuclear Information System (INIS)

    Barbaro-Galtieri, A.; Carithers, W.; Day, C.; Johnson, K.J.; Wenzel, W.A.; Videau, H.

    1983-01-01

    An electromagnetic shower gas-sampling calorimeter has been tested in both Geiger and proportional discharge modes for incident electron energies in the range 0.125-16 GeV. The 0.2 radiation length-thick layers were lead-fiberglass laminates with cathode strips normal to the sense wires. The 5x10 mm 2 Geiger cells were formed with uniformly spaced nylon fibers perpendicular to the wires. Proportional mode measurements were carried out in the pressure range 1-10 atm. A Monte Carlo simulation is in good agreement with measured shower characteristics and has been used to predict the behavior for oblique of incidence and for various Geiger cell dimensions. (orig.)

  12. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  13. Long-wavelength photonic integrated circuits and avalanche photodetectors

    Science.gov (United States)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  14. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  15. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    Science.gov (United States)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  16. Advances in 3D electromagnetic finite element modeling

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed

  17. Electromagnetic mode conversion: understanding waves that suddenly change their nature

    International Nuclear Information System (INIS)

    Batchelor, D B; Berry, L A; Bonoli, P T; Carter, M D; Choi, M; D'Azevedo, E; D'Ippolito, D A; Gorelenkov, N; Harvey, R W; Jaeger, E F; Myra, J R; Okuda, H; Phillips, C K; Smithe, D N; Wright, J C

    2005-01-01

    In a magnetized plasma, such as in fusion devices or the Earth's magnetosphere, several different kinds of waves can simultaneously exist, having very different physical properties. Under the right conditions one wave can quite suddenly convert to another type. Depending on the case, this can be either a great benefit or a problem for the use of waves to heat and control fusion plasmas. Understanding and accurately modeling such behavior is a major computational challenge

  18. Effective wavelength calibration for moire fringe projection

    International Nuclear Information System (INIS)

    Purcell, Daryl; Davies, Angela; Farahi, Faramarz

    2006-01-01

    The fringe patterns seen when using moire instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moire fringe projection, the spacing (the effective wavelength) may not be constant over the field of view and the spacing depends on the system geometry. In these cases, using a constant effective wavelength over the field of view causes inaccurate surface height measurements. We examine the calibration process of the moirefringe projection measurement, which takes this varying wavelength into account to produce a pixel-by-pixel wavelength map. The wavelength calibration procedure is to move the object in the out-of-plane direction a known distance until every pixel intensity value goes through at least one cycle. A sinusoidal function is then fit to the data to extract the effective wavelength pixel by pixel, yielding an effective wavelength map. A calibrated step height was used to validate the effective wavelength map with results within 1% of the nominal value of the step height. The error sources that contributed to the uncertainty in determining the height of the artifact are also investigated

  19. One-step sol-gel imprint lithography for guided-mode resonance structures.

    Science.gov (United States)

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  20. One-step sol–gel imprint lithography for guided-mode resonance structures

    International Nuclear Information System (INIS)

    Huang, Yin; Liu, Longju; Lu, Meng; Johnson, Michael; C Hillier, Andrew

    2016-01-01

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol–gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol–gel thin film in a single step. An organic–inorganic hybrid sol–gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol–gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol–gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol–gel thin film. (paper)

  1. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  2. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  3. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  4. Interaction of discrete and continuous boundary layer modes to cause transition

    International Nuclear Information System (INIS)

    Durbin, Paul A.; Zaki, Tamer A.; Liu Yang

    2009-01-01

    The interaction of discrete and continuous Orr-Sommerfeld modes in a boundary layer is studied by computer simulation. The discrete mode is an unstable Tollmien-Schlichting wave. The continuous modes generate jet-like disturbances inside the boundary layer. Either mode alone does not cause transition to turbulence; however, the interaction between them does. The continuous mode jets distort the discrete modes, producing Λ shaped vortices. Breakdown to turbulence is subsequent. The lateral spacing of the Λ's is sometimes the same as the wavelength of the continuous mode, sometimes it differs, depending on the ratio of wavelength to boundary layer thickness.

  5. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  6. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  7. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V. S.; Kapaev, V. V.

    2016-01-01

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  8. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  9. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  10. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  11. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  12. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  13. Wavelength scaling of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1983-01-01

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized

  14. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  15. Handbook of electromagnetic compatibility

    CERN Document Server

    1995-01-01

    This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E

  16. Introduction to electromagnetic engineering

    CERN Document Server

    Harrington, Roger E

    2003-01-01

    This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a pr

  17. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  18. Design of Metamaterials for control of electromagnetic waves

    Science.gov (United States)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  19. Linear response to long wavelength fluctuations using curvature simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  20. Complex analysis of electromagnetic machines for vibro-impact technologies

    Science.gov (United States)

    Neyman, L. A.; Neyman, V. Yu

    2017-10-01

    For the implementation of high-energy impulse technologies of mechanical shock methods of secondary rock destruction, electromagnetic machines of vibro-impact action are of particular interest. Linear synchronous electromagnetic impact machine designs as a part of progress trend are considered where the head reciprocal motion is synchronized with 50 Hz power source pulses frequency applied to a winding or a system of windings. On the basis of identified differences of the head forced mechanical oscillation processes, merits and demerits of the work cycles of single or two-winding synchronous machine design variants are analyzed. Synchronous electromagnetic machines of a new design and principles of their control in a work cycle are presented. The specific half-wave interleaving of voltages applied to the windings allows reducing current amplitude and the influence of the impact drive on the power grid. To improve forced oscillation mode stability and precision, the new engineering solutions improving machines performances and exploitation conditions are proposed.

  1. Coupled elasto-electromagnetic waves in bounded piezoelectric structures

    Energy Technology Data Exchange (ETDEWEB)

    Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Clezio, E Le [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)

    2007-12-15

    The work studies theoretically the effect of electromagnetic wave generation on the acoustic wave reflection/transmission in anisotropic materials possessing piezoelectric properties. We are concerned with quasi-normal incidence at angles {theta}{sub i} {>=} v{sub a}/v{sub el} {approx} 10{sup -3} to 10{sup -5}, where v{sub a} and v{sub el} are the typical velocities of the acoustic and electromagnetic waves. It is shown that electromagnetic and acoustic waves are able to interact strongly despite a huge difference in velocities so that the wave behavior of time-dependent electric fields can drastically change the coefficients of mode conversion. In particular, examples exist of the situations where the acoustic wave must be totally reflected but quasi-electrostatic calculations predict almost total transmission.

  2. Guided mode cutoff in rare-earth doped rod-type PCFs

    DEFF Research Database (Denmark)

    Poli, F.; Cucinotta, A.; Passaro, D.

    2008-01-01

    Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength.......Guided mode properties of rare-earth doped photonic crystal fibers are investigated as a function of the core refractive index, showing the possibility to obtain cutoff at low normalized wavelength....

  3. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  4. Metamaterials beyond electromagnetism

    International Nuclear Information System (INIS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-01-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. (review article)

  5. Metamaterials beyond electromagnetism

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  6. The basis of electromagnetism

    International Nuclear Information System (INIS)

    Waldron, R.A.

    1980-01-01

    Observations on fast mesons in cyclotrons have necessitated a revision of the earlier version of the ballistic theory. Insufficient information was available when the theory was first published to permit a unique choice of the velocity-dependent factors occurring in electromagnetic force formulas, and the forms chosen did not lead to an explanation of the decay times of fast mesons that were observed subsequently. These observations provide the information needed to permit a unique choice of the velocity-dependent factors. The new forms of the force formulae explain all observations, and lead to the conclusion that the velocities of mesons in cyclotrons are many times that of light. If these velocities could be directly measured, it would provide a method of discriminating between the Lorentz-Einstein and the ballistic theories, although it would not confirm the latter. In this revised form of the theory, magnetism appears as a residual effect of the velocity dependence of electric force laws, and the whole of electromagnetism then follows from a single basic equation, a modified form of Coulomb's law. (Auth.)

  7. Electro-magnetic flowmeters

    International Nuclear Information System (INIS)

    Dean, S.A.

    1980-01-01

    Full details of the invention are given. A sensing unit assembly for an electromagnetic flux distortion flowmeter for use in liquid metal coolant of a nuclear reactor is described. The assembly comprises coils of electrically insulated conductors each wound on an individual former. The formers and coils are mounted coaxially on a spine to form at least three spaced groups arranged end to end. Each group comprises two secondary coils and an intermediate primary coil. Leads extend along a duct formed in the spine, each lead terminating at a common end. Alternative versions of the assembly are also described. The primary coil leads are connected to an alternating power supply; those for the secondary coils connected to suitable display instrumentation. When liquid metal flows along the conductor the electromagnetic field is disturbed and the induced voltage in the secondary coils is disturbed-(set at zero for no flow); the distortion depends on the rate of flow. When the induced voltage differential of at least two of the groups falls or rises outside a pre-set level a trip signal is initiated to shut down the reactor. (UK)

  8. Mode-multiplexed transmission over conventional graded-index multimode fibers

    NARCIS (Netherlands)

    Ryf, R.; Fontaine, N.K.; Chen, H.; Guan, B.; Huang, B.; Esmaeelpour, M.; Gnauck, A.H.; Randel, S.; Yoo, S.J.B.; Koonen, A.M.J.; Shubochkin, R.; Sun, Yi; Lingle, R.

    2015-01-01

    We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to

  9. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  10. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique

    Science.gov (United States)

    Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua

    2018-05-01

    A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.

  11. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    International Nuclear Information System (INIS)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui

    2015-01-01

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities

  12. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui [Korea Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities.

  13. EFFECTS OF LIGHT WAVELENGTHS AND COHERENCE ON BASIDIOSPORES GERMINATION

    Directory of Open Access Journals (Sweden)

    Natalia Poyedinok

    2015-02-01

    Full Text Available The effects of light wavelengths and coherence on basidiospore germination of Agaricus bisporus, Flammulina velutipes, Ganoderma applanatum, Ganoderma lucidum, Hericium erinaceus, Lentinus edodes and Pleurotus ostreatus have been studied. Short-term low-intensity irradiation by coherent (laser light wavelength 488.0 nm and 632.8 nm at doses 45 and 230 mJ/cm2 has significantly increased the number of germinated basidiospores. It has established that there are differences in the photosensitivity not only between species but also between strains. Spores irradiation by 514.5 nm light has been either neutral or inhibitory. A comparative analysis of basidiospores sensitivity to laser and LED light has also been conducted. To stimulate germination of basidiospores and growth of monokaryons the most suitable solution was to use red coherent and incoherent light of 632.8 nm and 660,0 nm for A. bisporus, G. applanatum and P. ostreatus, red and blue coherent light of 632.8 nm and 488,0 nm for F. velutipes, and both red and blue laser and LED light G. lucidum and H. erinaceus and for L. edodes. No essential difference of a continuous wave mode and intermittent mode light effect at the same doses and wavelength on spore germination were revealed. Light influence has reduced germination time and formation of aerial mycelium on agar medium as compared to the original value and increased the growth rate of monosporous isolates. Characterization of basidiospores photosensitivity and development of environmentally friendly stimulating methods of their germination is important for creating highly effective technologies of mushrooms selection and cultivation.

  14. Radome electromagnetic theory and design

    CERN Document Server

    Shavit, Reuven

    2018-01-01

    Radome Electromagnetic Theory and Design explores the theoretical tools and methods required to design radomes that are fully transparent to the electromagnetic energy transmitted or received by the enclosed antenna. A radome is a weatherproof and camouflaged enclosure that protects the enclosed radar or communication antenna, and are typically used on a fixed or moving platform such as an aircraft, ship or missile.

  15. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  16. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  17. Electromagnetic direct implicit PIC simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1983-01-01

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes

  18. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  19. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  20. The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence

    International Nuclear Information System (INIS)

    Newman, D.E.

    1993-09-01

    Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics

  1. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    Science.gov (United States)

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  2. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  3. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  4. Broadband wavelength conversion in a silicon vertical-dual-slot waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Lin, Li; Christensen, Jesper Bjerge

    2017-01-01

    strips, and put forward a method to achieve spectrally-flattened near-zero anomalous group-velocity dispersion at telecom wavelengths. A proposed structure provides a group-velocity dispersion parameter β2 of −60 ps2/km with an e ective mode area Aeff of 0.075 µm2 at 1550 nm. This structure is predicted...

  5. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  6. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  7. Design and numerical optimization of a mode multiplexer based on few-mode fiber couplers

    International Nuclear Information System (INIS)

    Xie, Yiwei; Fu, Songnian; Liu, Hai; Zhang, Hailiang; Tang, Ming; Liu, Deming; Shum, P

    2013-01-01

    Mode division multiplexing (MDM) transmission based on few-mode fibers (FMFs) appears to be an alternative solution for overcoming the capacity limit of single-mode fibers (SMFs). A FMF coupler-based mode division multiplexer/demultiplexer (MMUX/DeMMUX) is proposed and theoretically investigated after the fabricated FMF is characterized. MMUXs/DeMMUXs with a mode contrast ratio (MCR) of more than 20 dB can be obtained for two-mode multiplexing and three-mode multiplexing over a wavelength span of 60 and 10 nm, respectively. We numerically verify the proposed MMUX/DeMMUX which has the advantages of high MCR, easy fabrication and maintenance, and low wavelength dependence. (paper)

  8. Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks.

    Science.gov (United States)

    Chen, Wei Ting; Wu, Pin Chieh; Chen, Chen Jung; Chung, Hung-Yi; Chau, Yuan-Fong; Kuan, Chieh-Hsiung; Tsai, Din Ping

    2010-09-13

    The Taiji symbol is a very old schematic representation of two opposing but complementary patterns in oriental civilization. Using electron beam lithography, we fabricated an array of 70 × 70 gold Taiji marks with 30 nm thickness and a total area of 50 × 50 µm(2) on a fused silica substrate. The diameter of each Taiji mark is 500 nm, while the period of the array is 700 nm. Here we present experimental as well as numerical simulation results pertaining to plasmonic resonances of several Taiji nano-structures under normal illumination. We have identified a Taiji structure with a particularly interesting vortex-like Poynting vector profile, which could be attributed to the special shape and dimensions of the Taiji symbol.

  9. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  10. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  11. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  12. Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.

    Science.gov (United States)

    Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G

    2014-10-15

    We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10  pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1  mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.

  13. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  14. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  15. Lagrange formalism for a system of several fluids interacting electromagnetically

    International Nuclear Information System (INIS)

    Vuillemin, M.

    1964-01-01

    After giving the Lagrange expression for a conducting fluid in an external electromagnetic field, the author shows that a Lagrange expression exists for describing the evolution of a system of interacting fluids obtained by adding the Lagrange expression of each fluid.to that of the electromagnetic field. By variation are obtained the fluid movement equation coupled to the Maxwell equations. It is shown that the study of small movements around a stationary state can be deduced from the Lagrange equation expanded to the second power order of the perturbation. It is then possible to deduce the normal mode equations and the study the stability by examining the modes which are marginally stable. (author) [fr

  16. Parametric excitation of electromagnetic waves by electron Bernstein waves

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1992-01-01

    A parametric instability involving the decay of a standing electron Bernstein pump into electromagnetic sidebands and lower-hybrid decay waves is studied. A general dispersion relation is derived and analyzed. Threshold fields and growth rates are obtained for the two cases that the electron Bernstein pump is introduced near the X-mode cutoff layer or introduced in the region between the upper-hybrid resonance layer and the O-mode cutoff layer. Applications of these results to the recent observation [P. Stubbe and H. Kopka, Phys. Rev. Lett. 65, 183 (1990)] of stimulated electromagnetic emission (SEE) with a broad symmetrical structure (BSS) in the ionospheric modifications by powerful high-frequency (HF) wave are discussed

  17. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  18. Microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  19. Interactions of electromagnetic radiations and reactive oxygen species on skin

    International Nuclear Information System (INIS)

    Ferramola de Sancovich, A.M.; Sancovich, H.A. . E- mail: ferramol@qb.fcen.uba.ar

    2006-01-01

    The energy of electromagnetic radiation is derived from the fusion in the sun of four hydrogen nuclei to form a helium nucleus. The sun radiates energy representing the entire electromagnetic spectrum. Light is a form of electromagnetic radiation: all electromagnetic radiation has wave characteristics and travels at the same speed (c: speed of light). But radiations differ in wavelength (λ). Light energy is transmitted not in a continuum stream but only in individual units or photons: E = h c / λ. Short wave light is more energetic than photons of light of longer wavelength. Ultraviolet radiations (UV) (λ s 200- 400 nm) can be classified in UV A (λ s 315 - 400 nm.); UV B (λ s 280 - 315 nm) and UV C (λ s 2 content in biological systems promotes ROS synthesis. If ROS are not controlled by endogenous antioxidants, cell redox status is affected and tissue damage is produced ('oxidative stress'). ROS induce lipid peroxidation, protein cross-linking, enzyme inhibition, loss of integrity and function of plasmatic and mitochondrial membranes conducing to inflammation, aging, carcinogenesis and cell death. While infra-red radiations lead to noticeable tissue temperature conducing to severe burns, UV A and UV B undercover react with skin chromophores producing photochemical alterations involved in cellular aging and cancer induction. As UV radiations can reach cellular nucleus, DNA can be damage. Human beings need protection from the damaging sunbeams. This is a very important concern of public health. While humans need to protect their skin with appropriate clothing and/or by use of skin sun blocks of broad spectrum, some bacteria that are extensively exposed to sunlight have developed genomic evolution (plasmid-encoded DNA repair system) which confers protection from the damaging effect of UV radiation. (author) [es

  20. Focusing of electromagnetic waves

    International Nuclear Information System (INIS)

    Dhayalan, V.

    1996-01-01

    The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs

  1. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  2. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  3. Electromagnetic form factors

    International Nuclear Information System (INIS)

    Desplanques, B.

    1987-01-01

    Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr

  4. Electromagnetic scattering theory

    Science.gov (United States)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  5. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  6. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  7. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  8. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  9. Electromagnetic properties of neutrinos

    International Nuclear Information System (INIS)

    Ould-Saada, F.

    1996-01-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, μ ν , of the order of 10 -11 μ B would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of ≅10 eV would give μ ν ≅10 -18 μ B , much smaller than the present experimental upper limit of 2x10 -10 μ B . Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of μ ν , larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, νe - scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the ν e , extending down to 2x10 -11 μ B . (author) 15 figs., 5 tabs., 96 refs

  10. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  11. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  12. Multiwire proportional counter (lecture by an electromagnetic delay line)

    International Nuclear Information System (INIS)

    Bruere-Dawson, R.

    1989-01-01

    For track localisation of ionizing particles with multiwire proportional chamber, an electronic chain including amplifying, shaping and memorizing circuits is required for each wire. In order to lower the cost of this type of detector, an electromagnetic delay line is proposed among various possibilities. In this paper, different coupling modes between chamber and delay line are studied with their respective advantages. The realization of one meter long delay line with a unit delay time of 15 ns per cm is also presented [fr

  13. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  14. Force-free electromagnetic pulses in a laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  15. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  16. Electromagnetic Near Field Measurements of Two Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  17. Multi-wavelength lasers using AWGs

    NARCIS (Netherlands)

    Besten, den J.H.

    2003-01-01

    Multiwavelength lasers using AWGs can be used as digitally tunable lasers with simple channel selection, and for generating multiple wavelengths simultanously. In this paper a number of different configurations is reviewed.

  18. Finite element analysis of the axisymmetric electromagnetic oscillations in the PHERMEX machine

    International Nuclear Information System (INIS)

    Fugelso, E.; Cook, W.A.

    1977-01-01

    The calculation of the electromagnetic field, characteristic frequency, and loss factors for the TM 010 mode of operation of the PHERMEX machine, a three-cavity, linear electron accelerator, were carried out using the finite element method. Perturbations from the simple, closed cylindrical shape cause changes in the electromagnetic field distribution and in the fundamental frequency, which will affect the electron-beam dynamics and the energy transfer to the beam. Cavity loss factors are essentially unaltered

  19. Influence of opalescence and fluorescence properties on the light transmittance of resin composite as a function of wavelength.

    Science.gov (United States)

    Lee, Yong-Keun; Powers, John M

    2006-10-01

    To determine the influence of opalescence and fluorescence properties on the light transmittance of resin composites as a function of wavelength (410-750 nm). Spectral distribution of seven resin composites of A2 shade was measured according to the CIELAB color scale relative to the standard illuminant D65 in the reflectance and transmittance modes. Opalescence spectrum (OPS) was calculated as the subtraction spectrum (i.e., the spectrum measured in the transmittance mode subtracted at each wavelength from the spectrum measured in the reflectance mode). UV component of the illuminant was included and excluded to calculate the fluorescence spectrum (FLR and FLT in the reflectance and transmittance mode, respectively). Contrast ratio (CR) was calculated as the ratio of reflectance over a black background and over a white background. The total transmittance spectral distribution (TSD) value was used as the parameter to indicate masking ability of the resin composites over background color. Multiple regression analyses were performed among TSD and other optical parameters at the significance level of 0.05. In all the resin composites and wavelength range, correlation between CR and TSD was very high (r = -0.99). Correlations between each parameters varied by the wavelength range of fluorescence (410-500 nm) and no-fluorescence (510-750 nm). Correlation between OPS and TSD varied by the wavelength range (r = -0.86 to -0.94, Popalescence and fluorescence of resin composite varied by the wavelength.

  20. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    precious materials. In particular, single-longitudinal mode dye lasers are useful ... to the longitudinal mode spacing of 10 GHz. Grating of 3300 .... the band of wavelength covering 3 pm and SLM operation was shown in the band of 0.5 pm.