WorldWideScience

Sample records for wavelength conversion based

  1. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  2. Photonic digital-to-analog conversion based on wavelength multiplexing

    Science.gov (United States)

    Yang, Shuna; Hu, Miao; Chi, Hao; Li, Qiliang

    2017-10-01

    A novel photonic digital-to-analog conversion (PDAC) scheme, which is based on optical intensity weighting and multiplexing/summing of different wavelengths, is proposed. The employment of wavelength multiplexing in the system, which conducts the function of modulated light intensity summation, greatly simplifies the system complexity and improves the conversion speed/accuracy limited by large-area photo-detectors and associated electronics. A 4-bit PDAC with a conversion speed of 10 GS/s demonstrates the feasibility of the proposed scheme. In addition, the performance degradation induced by the limited extinction ratios of the applied electro-optic modulators, the synchronization errors among different wavelength channels, and the bit resolutions of the built system is also discussed.

  3. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both......We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...... modes....

  4. Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements....

  5. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  6. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...... power penalties for the conversion of both modes....

  7. Fast Reconfigurable SOA-Based Wavelength Conversion of Advanced Modulation Format Data

    Directory of Open Access Journals (Sweden)

    Yi Lin

    2017-10-01

    Full Text Available We theoretically analyze the phase noise transfer issue between the pump and the wavelength-converted idler for a nondegenerate four-wave mixing (FWM scheme, as well as study the vector theory in nonlinear semiconductor optical amplifiers (SOAs, in order to design a polarization-insensitive wavelength conversion system employing dual co-polarized pumps. A tunable sampled grating distributed Bragg reflector (SG-DBR pump laser has been utilized to enable fast wavelength conversion in the sub-microsecond timescale. By using the detailed characterization of the SGDBR laser, we discuss the phase noise performance of the SGDBR laser. Finally, we present a reconfigurable SOA-based all-optical wavelength converter using the fast switching SGDBR tunable laser as one of the pump sources and experimentally study the wavelength conversion of the single polarization quadrature phase shift keying (QPSK and polarization multiplexed (Pol-Mux QPSK signals at 12.5-Gbaud. A wide tuning range (>10 nm and less than 50 ns and 160 ns reconfiguration time have been achieved for the wavelength conversion system for QPSK and PM-QPSK signals, respectively. The performance under the switching environment after the required reconfiguration time is the same as the static case when the wavelengths are fixed.

  8. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke

    1996-01-01

    wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  9. The Wavelength Conversion in WDM Networks

    Directory of Open Access Journals (Sweden)

    Miroslav Bahleda

    2004-01-01

    Full Text Available In this article we deal with a problem of wavelength conversion in WDM networks and with the wavelength conversion impact on throughput of network. The throughput of networks is determined in terms of blocking probability. The optical networks can be built without wavelength conversion or with full or limited wavelength conversion. Different traffic models are designed for different types of wavelength conversions, which describe performance of wavelength conversion. I describe some results of these models.

  10. Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements....

  11. Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM

    DEFF Research Database (Denmark)

    Kwok, C.H.; Lee, S.H.; Chow, K.K.

    2005-01-01

    A widely tunable wavelength conversion scheme has been demonstrated using a 64-m-long dispersion-flattened high-nonlinearity photonic crystal fiber in a nonlinear optical loop mirror. Wavelength conversion range of over 60 nm with a 10-Gb/s return-to-zero signal was obtained with the output extin...... extinction ratio (ER) maintained above 13 dB. The proposed scheme can also improve the output ER and remove the bit-error-rate floor if a degraded signal is used....

  12. Forward error correction supported 150 Gbit/s error-free wavelength conversion based on cross phase modulation in silicon

    DEFF Research Database (Denmark)

    Hu, Hao; Andersen, Jakob Dahl; Rasmussen, Anders

    2013-01-01

    We build a forward error correction (FEC) module and implement it in an optical signal processing experiment. The experiment consists of two cascaded nonlinear optical signal processes, 160 Gbit/s all optical wavelength conversion based on the cross phase modulation (XPM) in a silicon nanowire...

  13. Multifunctional switching unit for add/drop, wavelength conversion, format conversion, and WDM multicast based on bidirectional LCoS and SOA-loop architecture.

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo

    2014-09-08

    We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.

  14. Wavelength Conversion by using Multiple Fibres

    DEFF Research Database (Denmark)

    Fenger, Christian; Iversen, Villy Bæk

    2002-01-01

    We explain how wavelength conversion can be achieved by using multiple fibres, and show that multiple fibres reduce blocking probability in dynamic all-optical networks, whereby the need for conversion in all-optical networks will be limited......We explain how wavelength conversion can be achieved by using multiple fibres, and show that multiple fibres reduce blocking probability in dynamic all-optical networks, whereby the need for conversion in all-optical networks will be limited...

  15. A telecom-wavelength conversion from near-infrared light based on a cold Rubidium atomic ensemble

    Science.gov (United States)

    Chang, Wei; Pu, Yunfei; Jiang, Nan; Li, Chang; Zhang, Sheng; Duan, Luming; Center for Quantum Information Lab4, IIIS, Tsinghua University Team

    2017-04-01

    Exponential photon transmission losses in fiber is a severe limitation to realize long-distance quantum communication. It's helpful to use telecom-wavelength photon transmission to mitigate these absorption losses. However, typical atomic electronic transition from ground-level is in visible wavelengths or near-infrared wavelengths, such as transitions based on Rubidium. Here we report our progress in telecom-wavelength conversion from 780nm to 1475nm and from 795nm to 1530nm in a cold optically thick gas of Rubidium. Both these two conversions are using a diamond configuration transition that we use 5S1/2-5P3/2-4D3/2 cascade transition for the 780nm to 1475nm route and 5S1/2-5P1/2-4D3/2 cascade transition for the 795nm to 1530nm route. This work was supported by the National Basic Research Program of China and the quantum information project from the Ministry of Education of China. LMD acknowledges in addition support from the IARPA MUSIQC program, the AFOSR and the ARO MURI program.

  16. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...

  17. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  18. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings.

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Sima, Chaotan

    2015-04-20

    We experimentally demonstrate mode conversion by exploiting optical reflection of tilted few-mode fiber Bragg grating (FM-FBG). Mode conversions from LP(01) mode to higher symmetric and asymmetric modes are achieved, and more than 99.5% conversion efficiency from LP(01) to LP(11) mode is obtained using a 1.6°-tilted FM-FBG. Influences of the weakly tilted FM-FBG parameters on the property of mode conversion is analyzed and discussed. A simultaneous mode conversion and demultiplexing scheme for 4-mode × 3-wavelength multiplexing transmission is proposed and the modal crosstalk is analyzed based on the transmission spectra of the tilted FM-FBGs. The proposed approach shows potential applications in mode and wavelength division multiplexing communication systems.

  19. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    Science.gov (United States)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  20. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where fun...

  1. 40 Gbit/s all-optical wavelength conversion in an SOA-based all-active Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Wolfson, David; Hansen, Peter Bukhave; Fjelde, Tina

    1999-01-01

    40 Gbit/s all-optical wavelength conversion is demonstarted in an all-active Mach-Zehnder interferometer Conversion is achieved with an optical-signsl-to noise ratio of 40 db and a record high input power dynamic range og 5.5 db....

  2. Optical wavelength conversion via optomechanical coupling in a silica resonator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunhua; Fiore, Victor; Kuzyk, Mark C.; Wang, Hailin [Department of Physics, University of Oregon, Eugene, OR (United States); Tian, Lin [University of California, Merced, CA (United States)

    2015-01-01

    In an optomechanical resonator, an optically active mechanical mode can couple to any of the optical resonances via radiation pressure. This unique property can enable a remarkable phenomenon: conversion of optical fields via optomechanical coupling between vastly different wavelengths. Here we expand an earlier experimental study [Science 338, 1609 (2012)] on classical wavelength conversion of coherent optical fields by coupling two optical modes to a mechanical breathing mode in a silica resonator. Heterodyne detection of the converted optical fields shows that the wavelength conversion process is coherent and bidirectional. The conversion efficiency obtained features a distinct saturation behavior that arises from optomechanical impedance matching. A measurement of the coherent mechanical excitation involved in the wavelength conversion process also provides additional insight on the underlying optomechanical interactions. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Wavelength Preserving Optical Serial-to-Parallel Conversion

    DEFF Research Database (Denmark)

    Galili, Michael; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    We demonstrate optical wavelength preserving serial-to-parallel conversion. 9-of-16 OTDM channels are simultaneously mapped from a 160 Gbit/s signal to a 100 GHz WDM grid by wavelength preserving FWM idler generation, with BER<1E-9 performance....

  4. Wavelength conversion in optical packet switching

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Stubkjær, Kristian

    1998-01-01

    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch...... blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add-drop switches has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate...... the packet switch block asynchronously, i.e. without packet alignment at the input...

  5. 15-THz Tunable Wavelength Conversion of Picosecond Pulses in a Silicon Waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Galili, Michael

    2011-01-01

    We demonstrate all-optical ultra-broadband tunable wavelength conversion of 1-ps pulses based on four-wave mixing in a 3-mm-long dispersion engineered silicon waveguide. In the waveguide, an input pulse with center wavelength at 1600 nm is down-converted by 135 nm (17.3 THz) to 1465 nm. A tuning...

  6. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ding, Yunhong; Ou, Haiyan

    2016-01-01

    Wavelength conversion based on degenerate four-wave mixing (FWM) was demonstrated and compared between silicon nanowire and microring resonator (MRR). 15 dB enhancement of conversion efficiency (CE) with relatively low input pump power (5 mW) was achieved experimentally in an MRR. The impacts of ...

  7. Characterisation of Systems for Raman-Assisted High-Speed Wavelength Conversion

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Zibar, Darko

    2005-01-01

    Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation......Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation...

  8. 40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Wolfson, David; Kloch, Allan; Fjelde, Tina

    2000-01-01

    All-optical 2R and 3R regeneration techniques are investigated at 40 Gb/s, It is shown that an all-active SOA-based Mach-Zehnder device, employed as a,wavelength converter, is capable of improving the OSNR by more than 20 dB at this bit rate, thereby resulting in penalty reduction. Furthermore...

  9. Simultaneous realization wavelength conversion and signal regeneration using a nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Yu, Jianjun; Xueyan, Zheng; Liu, Fenghai

    2000-01-01

    Wavelength conversion and signal regeneration are realized simultaneously employing nonlinear optical loop mirror(NOLM). The experiments demonstrate that NOLM has strong regenerative capability when it is used as wavelength conversion media. Proper choice of initial state of polarization controller...

  10. Demonstration of Broadcast Transmission, and Wavelength Conversion Functionalities Using Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Zsigri, Beata; Peucheret, Christophe; Nielsen, Martin Dybendal

    2006-01-01

    Broadcasting functionality using cross-phase modulation in a nonlinear optical loop mirror utilizing 100-m highly nonlinear (HNL) photonic crystal fiber (PCF) as nonlinear element is demonstrated. This work presents entirely PCF-based network functionalities including broadcasting, transmission......, and wavelength conversion. Broadcasting on four channels, transmission of one selected channel through one partially dispersion compensated 10.4-km PCF transmission link and wavelength conversion using four-wave mixing in a 50-m HNL-PCF at the ingress of the target subnetwork have been successfully demonstrated....

  11. 20 Gbit/s optical wavelength conversion in all-active Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Fjelde, Tina; Wolfson, David; Hansen, Peter Bukhave

    1999-01-01

    All-optical wavelength conversion at 20 Gbit/s has been experimentally demonstrated in a monolithically integrated all-active SOA-based Mach-Zehnder interferometer optimised for high-speed operation. Excellent BER performance with a penalty of

  12. Low Noise Quantum Frequency Conversion from Rb Wavelengths to Telecom O-band

    Science.gov (United States)

    Li, Xiao; Solmeyer, Neal; Stack, Daniel; Quraishi, Qudsia

    2015-05-01

    Ideal quantum repeaters would be composed of long-lived quantum memories entangled with flying qubits. They are becoming essential elements to achieve quantum communication over long distances in a quantum network. However, quantum memories based on neutral atoms operate at wavelengths in the near infrared, unsuitable for long distance communication. The ability to coherently convert photons entangled with quantum memories into telecom wavelengths reduces the transmission loss in optical fibers and therefore dramatically improves the range of a quantum repeater. Furthermore, quantum frequency conversion (QFC) can enable entanglement and communication between different types of quantum memories, thus creating a versatile hybrid quantum network. A recent experiment has shown the conversion of heralded photons from Rb-based memories to the telecom C-band. We implement a setup using a nonlinear PPLN waveguide for the QFC into a wavelength region where the noise-floor would be limited by dark counts rather than pump photons. Our approach uses a pump laser at a much longer wavelength. It has the advantage that the strong pump itself and the broad background in the PPLN can be nearly completely filtered from the converted signal. Such low background level allows for the conversion to be done on the heralding photon, which enables the generated entanglement to be used in a scalable way to multiple nodes remotely situated and to subsequent protocols.

  13. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN.

    Science.gov (United States)

    Zhang, Junfeng; Chen, Yuping; Lu, Feng; Chen, Xianfeng

    2008-05-12

    In this paper, we experimentally demonstrate flexible wavelength conversion, in which the input signals can be freely converted to output wavelengths through widely and arbitrarily tuning the pump wavelength within a broad second harmonic (SH) bandwidth up to 25 nm. The scheme is based on the cascaded chi (2) process in a 20-mm periodically poled MgO-doped LiNbO(3) (PPMgLN). Also, wavelength broadcasting can be performed by simultaneous use of multiple pumps with wavelengths located in the broad SH bandwidth.

  14. Wavelength Conversion of DP-QPSK Signals in a Silicon Polarization Diversity Circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2015-01-01

    Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance is inves......Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance...

  15. All-Optical Wavelength Conversion by Picosecond Burst Absorption in Colloidal PbS Quantum Dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Van Thourhout, Dries; Hens, Zeger

    2016-01-26

    All-optical approaches to change the wavelength of a data signal are considered more energy- and cost-effective than current wavelength conversion schemes that rely on back and forth switching between the electrical and optical domains. However, the lack of cost-effective materials with sufficiently adequate optoelectronic properties hampers the development of this so-called all-optical wavelength conversion. Here, we show that the interplay between intraband and band gap absorption in colloidal quantum dots leads to a very strong and ultrafast modulation of the light absorption after photoexcitation in which slow components linked to exciton recombination are eliminated. This approach enables all-optical wavelength conversion at rates matching state-of-the-art convertors in speed, yet with cost-effective solution-processable materials. Moreover, the stronger light-matter interaction allows for implementation in small-footprint devices with low switching energies. Being a generic property, the demonstrated effect opens a pathway toward low-power integrated photonics based on colloidal quantum dots as the enabling material.

  16. 160 Gb/s Raman-assisted notch-filtered XPM wavelength conversion and transmission

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2007-01-01

    In-line wavelength conversion of 160 Gb/s data by Raman-assisted notch-filtered XPM is demonstrated for 130 km total transmission. The improvement in system performance from applying Raman gain during conversion is shown.......In-line wavelength conversion of 160 Gb/s data by Raman-assisted notch-filtered XPM is demonstrated for 130 km total transmission. The improvement in system performance from applying Raman gain during conversion is shown....

  17. Ultra-high-speed wavelength conversion in a silicon photonic chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    with high data integrity and indicate that high-speed operation can be obtained at moderate power levels where nonlinear absorption due to TPA and free-carrier absorption (FCA) is not detrimental. This demonstration can potentially enable highspeed optical networks on a silicon photonic chip.......We have successfully demonstrated all-optical wavelength conversion of a 640-Gbit/s line-rate return-to-zero differential phase-shift keying (RZ-DPSK) signal based on low-power four wave mixing (FWM) in a silicon photonic chip with a switching energy of only ~110 fJ/bit. The waveguide dispersion...... of the silicon nanowire is nano-engineered to optimize phase matching for FWM and the switching power used for the signal processing is low enough to reduce nonlinear absorption from twophoton- absorption (TPA). These results demonstrate that high-speed wavelength conversion is achievable in silicon chips...

  18. Phase engineered wavelength conversion of ultra-short optical pulses in TI:PPLN waveguides

    Science.gov (United States)

    Babazadeh, Amin; Nouroozi, Rahman; Sohler, Wolfgang

    2016-02-01

    A phase engineered all-optical wavelength converter for ultra-short pulses (down to 140 fs) in a Ti-diffused, periodically poled lithium niobate (Ti:PPLN) waveguide is proposed. The phase engineering, due to the phase conjugation between signal and idler (converted signal) pulses which takes place in the cascaded second harmonic generation and difference frequency generation (cSHG/DFG) based wavelength conversion, already leads to shorter idler pulses. The proposed device consists of an unpoled (passive) waveguide section beside of the PPLN waveguide section in order to compensate pulse broadening and phase distortion of the idler pulses induced by the wavelength conversion (in the PPLN section). For example numerical analysis shows that a 140 fs input signal pulse is only broadened by 1.6% in a device with a combination of 20 mm and 6 mm long periodically poled and unpoled waveguide sections. Thus, cSHG/DFG based wavelength converters of a bandwidth of several Tbits/s can be designed.

  19. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  20. Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide.

    Science.gov (United States)

    Wu, Xiaoxia; Peng, Wei-Ren; Arbab, Vahid; Wang, Jian; Willner, Alan

    2009-05-25

    We experimentally demonstrate tunable optical wavelength conversion of a 10-Gb/s radio frequency (RF)-tone assisted orthogonal-frequency-division-multiplexing (OFDM) signal with approximately-5 dB (approximately 30%) efficiency over approximately 30 nm bandwidth using a periodically-poled lithium-niobate (PPLN) waveguide. A penalty of < 3 dB is obtained after wavelength conversion. Quadrature amplitude modulation (QAM) size and subcarrier number are varied to further evaluate the performance of the wavelength converter.

  1. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  2. Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Durhuus, Terji

    1996-01-01

    Semiconductor optical amplifiers have been monolithic integrated in a passive symmetric Mach-Zehnder interferometer to form a compact polarization insensitive all-optical wavelength converter operating at up to 10 Gb/s. A simple method for reducing the impact of input power variations is proposed...

  3. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  4. Broadband wavelength conversion in a silicon vertical-dual-slot waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Lin, Li; Christensen, Jesper Bjerge

    2017-01-01

    We propose a silicon waveguide structure employing silica-filled vertical-dual slots for broadband wavelength conversion, which can be fabricated using simple silicon-on-insulator technology. We demonstrate group-velocity dispersion tailoring by varying the width of the core, the slots and the si...... to significantly broaden the bandwidth of wavelength conversion via four-wave mixing, which is validated with experimentally measured 3 dB bandwidth of 76 nm....

  5. Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Ding, Yunhong; Hu, Hao

    2014-01-01

    Polarization insensitive wavelength conversion of a 40 Gb/s non-return-to-zero (NRZ) differential phase-shift keying (DPSK) data signal is demonstrated using four-wave mixing (FWM) in a silicon nanowire circuit. Polarization independence is achieved using a diversity circuit based on polarization...... rotators and splitters, which is fabricated by a simple process on the silicon-on-insulator (SOI) platform. Error-free performance is achieved with only 0.5 dB of power penalty compared to the wavelength conversion of a signal with well optimized input polarization. Additionally, data transmission over 161...

  6. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Porto da Silva, Edson; Zibar, Darko

    2017-01-01

    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient...

  7. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration

    DEFF Research Database (Denmark)

    Durhuus, T.; Jørgensen, C.; Mikkelsen, Benny

    1994-01-01

    Penalty free wavelength conversion is demonstrated at 2.5 Gbit/s over a wavelength span of 12 nm by the use of semiconductor optical amplifier (SOA)'s in a Mach-Zehnder configuration. An increase in the extinction ratio is measured for the converted signal compared to the input signal implying...

  8. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clo...

  9. All-optical wavelength conversion by picosecond burst absorption in colloidal PbS quantum dots

    NARCIS (Netherlands)

    Geiregat, P.A.; Houtepen, A.J.; Van Thourhout, Dries; Hens, Zeger

    2016-01-01

    All-optical approaches to change the wavelength of a data signal are considered more energy-and cost-effective than current wavelength conversion schemes that rely on back and forth switching between the electrical and optical domains. However, the lack of cost-effective materials with

  10. Modeling the DBR laser used as wavelength conversion device

    DEFF Research Database (Denmark)

    Braagaard, Carsten; Mikkelsen, Benny; Durhuus, Terji

    1994-01-01

    In this paper, a novel and efficient way to model the dynamic field in optical DBR-type semiconductor devices is presented. The model accounts for the longitudinal carrier, photon, and refractive index distribution. Furthermore, the model handles both active and passive sections that may include...... gratings. Thus, simulations of components containing, e.g., gain sections, absorptive sections, phase sections, and gratings, placed arbitrarily along the longitudinal direction of the cavity, are possible. Here, the model has been used for studying the DBR laser as a wavelength converter. Particularly...

  11. 320 Gbit/s DQPSK all-optical wavelength conversion using four wave mixing

    DEFF Research Database (Denmark)

    Galili, Michael; Huettl, B.; Schmidt-Langhorst, C.

    2007-01-01

    In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK...

  12. Wavelength conversion of 80 Gbit/s optical DQPSK using FWM in a highly non-linear fibre

    DEFF Research Database (Denmark)

    Tokle, Torger; Geng, Yan; Peucheret, Christophe

    We present, for the first time, wavelength conversion of 80 Gbit/s optical DQPSK. The wavelength conversion is achieved using FWM in a highly non-linear fibre. We demonstrate a conversion power penalty as low as 2.8 dB.......We present, for the first time, wavelength conversion of 80 Gbit/s optical DQPSK. The wavelength conversion is achieved using FWM in a highly non-linear fibre. We demonstrate a conversion power penalty as low as 2.8 dB....

  13. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  14. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  15. Simultaneous Realization of Wavelength Conversion, 2R Regeneration, and All-Optical Multiple Logic Gates with OR, NOR, XOR, and XNOR Functions Based on Self-Polarization Rotation in a Single SOA: An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Youssef Said

    2012-01-01

    Full Text Available We highlight the feasibility of experimental implementation of both inverted and noninverted wavelength conversion, 2R regeneration, and all-optical logic functions, such as OR, NOR, XOR, and XNOR optical gates by exploiting the self-polarization rotation in a semiconductor optical amplifier (SOA device without changing the setup configuration. Switching between each optical function is done by only adjusting the input optical power level. In order to allow optimum control and preserve the polarization state of the injected and collected signals, the polarimetric measures have been carried out in free space.

  16. Frequency conversion between UV and telecom wavelengths in a lithium niobate waveguide for quantum communication with Yb+ trapped ions

    CERN Document Server

    Kasture, Sachin; Haylock, Ben; Boes, Andreas; Mitchell, Arnan; Streed, Erik W; Lobino, Mirko

    2016-01-01

    We study and demonstrate the frequency conversion of UV radiation, resonant with 369.5 nm transition in Yb+ ions to the C-band wavelength 1580.3 nm and vice-versa using a reverse proton-exchanged waveguide in periodically poled lithium niobate. Our integrated device can interface trapped Yb+ ions with telecom infrastructure for the realization of an Yb+ based quantum repeater protocol and to efficiently distribute entanglement over long distances. We analyse the single photon frequency conversion efficiency from the 369.525 nm to the telecom wavelength and its dependence on pump power, device length and temperature. The single-photon noise generated by spontaneous Raman scattering of the pump is also measured. From this analysis we estimate a single photon conversion efficiency of 9% is achievable with our technology with almost complete suppression of the Raman noise.

  17. Phase Noise Tolerant QPSK Receiver Using Phase Sensitive Wavelength Conversion

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Xu, Jing; Lei, Lei

    2013-01-01

    A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated.......A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated....

  18. Heterodyne detection of CPFSK signals with and without wavelength conversion up to 5 Gb/s

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Ebskamp, F.; Mikkelsen, Benny

    1993-01-01

    Detection of wavelength converted signals by a coherent continuous-phase frequency-shift-keying receiver is reported. The signals are wavelength converted over 35 nm, and record receiver sensitivities of -38.7 dBm at 4.0Gb/s and -35.6 dBm at 4.8Gb/s are obtained. Comparison between results...... with and without wavelength conversion, relative to theory, shows a small penalty of less than 1.5dB...

  19. Progress Towards a Quantum Memory with Telecom-Wavelength Conversion

    Science.gov (United States)

    Stack, Daniel; Quraishi, Qudsia; Lee, Patricia; Grissom, Ian; Meyers, Ronald; Deacon, Keith; Tunick, Arnold

    2013-05-01

    Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. However, atom-based quantum memories typically involve interactions with light fields outside the telecom window needed to minimize absorption in transmission by optical fibers. We report on progress towards a quantum memory based on the generation of 780 nm spontaneously emitted single photons by a write-laser beam interacting with a cold 87Rb ensemble. The single photons are then frequency-converted into (via four-wave mixing in a cold Rb sample) and out of (via sum frequency generation in a PPLN crystal) the telecomm band. Finally, the atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network. Duan et al., Nature 414, 413-418 (2001).

  20. Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation

    DEFF Research Database (Denmark)

    Chi, Nan; Zhang, Jianfeng; Holm-Nielsen, Pablo Villanueva

    2003-01-01

    We report an experimental investigation of transmission and transparent wavelength conversion properties of a two-level optically labeled signal using amplitude-shift-keying/differential-phase-shift-keying orthogonal modulation. Error-free transmission of a 10-Gb/s payload and 2.5-Gb/s label over...

  1. Simultaneous QPSK-to-2 × BPSK wavelength and Modulation Format Conversion in PPLN

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Dalgaard, Kjeld; Fukuchi, Yutaka

    2014-01-01

    Phase-sensitive cascaded second-harmonic generation and difference-frequency generation in a periodically poled lithium niobate waveguide allow converting two orthogonal quadratures of an optical field to different wavelengths, thus enabling simultaneous quadrature phase-shift keying-to- \\(2\\times...... \\) binary phase-shift keying modulation format and wavelength conversions. Static phase-sensitive extinction ratios above 20 dB are obtained for both quadratures, resulting in error-free dynamic operation with low penalty (BER (10-9) ) at 10 Gbaud....

  2. Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2008-01-01

    In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown...

  3. Phase control of double-pass cascaded SHG/DFG wavelength conversion in Ti:PPLN channel waveguides.

    Science.gov (United States)

    Nouroozi, Rahman; Suche, Hubertus; Hellwig, Ansgar; Ricken, Raimund; Quiring, Viktor; Sohler, Wolfgang

    2010-06-21

    The efficiency of wavelength conversion by cascaded second harmonic generation / difference frequency generation (cSHG/DFG) in Ti:PPLN waveguides can be considerably improved by using a double-pass configuration. However, due to the wavelength dependent phase change by the dielectric folding mirror phase compensation is required to maintain an optimum power transfer. We experimentally investigated three different approaches and improved the wavelength conversion efficiency up to 9 dB in comparison with the single-pass configuration.

  4. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    Science.gov (United States)

    Da Ros, Francesco; Porto da Silva, Edson; Zibar, Darko; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Galili, Michael; Moss, David J.; Oxenløwe, Leif K.

    2017-04-01

    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient to achieve a BER performance below the hard decision forward error correction threshold BER performance (<3.8 × 103), with an optical signal-to-noise ratio penalty of less than 0.3 dB compared to the original signal. Our results confirm that this is a promising platform for nonlinear optical signal processing, as a result of both very low linear propagation loss (<0.07 dB/cm) and a large material bandgap, which in turn ensures negligible nonlinear loss at telecom wavelengths.

  5. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    Directory of Open Access Journals (Sweden)

    Francesco Da Ros

    2017-04-01

    Full Text Available We demonstrate wavelength conversion of quadrature amplitude modulation (QAM signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient to achieve a BER performance below the hard decision forward error correction threshold BER performance (<3.8 × 103, with an optical signal-to-noise ratio penalty of less than 0.3 dB compared to the original signal. Our results confirm that this is a promising platform for nonlinear optical signal processing, as a result of both very low linear propagation loss (<0.07 dB/cm and a large material bandgap, which in turn ensures negligible nonlinear loss at telecom wavelengths.

  6. Integrated wavelength conversion for adaptively modulated WDM-OFDM signals in a silicon waveguide.

    Science.gov (United States)

    Wang, Xiaoyan; Feng, Xianglian; Hunag, Lingchen; Guo, Changjian; Hong, Xuezhi; Gao, Shiming

    2017-12-11

    All-optical wavelength conversion for 2×11.64 GBaud adaptively-modulated orthogonal frequency division multiplexing (AM-OFDM) signals with QPSK/16QAM formats is experimentally demonstrated in a silicon waveguide. The AM-OFDM signal with partly higher- (and lower-) order formats on lower- (and higher-) frequency subcarriers has better overall conversion performance in receiving optical signal-to-noise ratio and power penalty. In comparison with the OFDM-QPSK signal, at the BER of 3.8×10-3, the bit rate increases 11.64 Gbit/s per channel almost without conversion power penalty increased by replacing the QPSK sequence with the 16QAM sequence on half subcarriers.

  7. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien

    2012-11-19

    We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

  8. Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.

    Science.gov (United States)

    Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman

    2013-11-18

    We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.

  9. Wavelength conversion of a 128 Gbit/s DP-QPSK signal in a silicon polarization diversity circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2014-01-01

    Wavelength conversion of a 128 Gbit/s DP-QPSK signal is demonstrated using FWM in a polarization diversity circuit with silicon nanowires as nonlinear elements. Error-free performances are achieved with a negligible power penalty....

  10. AlGaAs-On-Insulator Nanowire with 750 nm FWM Bandwidth, -9 dB CW Conversion Efficiency, and Ultrafast Operation Enabling Record Tbaud Wavelength Conversion

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency/length/pump-power, ultra-broadband fourwave mixing, and first-ever wavelength conversion of 1.28-Tbaud serial data signals in a 3-mm long dispersion-engineered AlGaAs...

  11. Superresolving Phase Measurement with Short-Wavelength NOON States by Quantum Frequency Up-Conversion

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Ding, Dong-Sheng; Guo, Guang-Can; Shi, Bao-Sen

    2017-06-01

    Precise measurements are the key to advances in all fields of science. Quantum entanglement shows higher sensitivity than that which is achievable by classical methods. Most physical quantities including position, displacement, distance, angle, and optical path length can be obtained by optical phase measurements. Reducing the photon wavelength of the interferometry can further enhance the optical-path-length sensitivity and imaging resolution. By quantum frequency up-conversion, we realize a short-wavelength two-photon number entangled state. Nearly perfect Hong-Ou-Mandel interference is achieved after both 1547-nm photons are up-converted to 525 nm. Optical phase measurement of the two-photon entanglement state yields a visibility greater than the threshold to surpass the standard quantum limit. A spectra change of the photon pair after being up-converted is observed and well explained. These results offer alternative ways for high-precision quantum metrology using a short-wavelength quantum entanglement number state and offer a potential all-optical spectra engineering technique for the photon pair source.

  12. Long-Wavelength Limit of Photochemical Energy Conversion in Photosystem I

    Science.gov (United States)

    2014-01-01

    In Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700+• was followed by the absorbance increase at 826 nm. At low temperatures (T absorbance difference spectrum in the QY region. P700 oxidation was observed upon selective excitation at 754, 785, and 808 nm, using monomeric and trimeric PS I core complexes of Thermosynechococcus elongatus and Arthrospira platensis, which differ in the amount of LWC. The results show that the LWC cannot be responsible for the long-wavelength excitation-induced charge separation at low temperatures, where thermal uphill energy transfer is frozen out. Direct energy conversion of the excitation energy from the LWC to the primary radical pair, e.g., via a superexchange mechanism, is excluded, because no dependence on the content of LWC was observed. Therefore, it is concluded that electron transfer through PS I is induced by direct excitation of a proposed charge transfer (CT) state in the reaction center. A direct signature of this CT state is seen in absorbance spectra of concentrated PS I samples, which reveal a weak and featureless absorbance band extending beyond 800 nm, in addition to the well-known bands of LWC (C708, C719 and C740) in the range between 700 and 750 nm. The present findings suggest that nature can exploit CT states for extending the long wavelength limit in PSI even beyond that of LWC. Similar mechanisms may work in other photosynthetic systems and in chemical systems capable of photoinduced electron transfer processes in general. PMID:24517238

  13. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    Science.gov (United States)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  14. On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide.

    Science.gov (United States)

    Li, Chao; Gui, Chengcheng; Xiao, Xi; Yang, Qi; Yu, Shaohua; Wang, Jian

    2014-08-01

    We report on-chip all-optical wavelength conversion of multicarrier multilevel modulation signals in a silicon waveguide. Using orthogonal frequency-division multiplexing (OFDM) combined with advanced multilevel quadrature amplitude modulation (QAM) signals (i.e., OFDM m-QAM), we experimentally demonstrate all-optical wavelength conversions of 3.2 Gbaud/s OFDM 16/32/64/128-QAM signals based on the degenerate four-wave mixing (FWM) nonlinear effect in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼3  dB for OFDM 16-QAM and ∼4  dB for OFDM 32-QAM at 7% forward error correction (FEC) threshold and ∼3.5  dB for OFDM 64-QAM and ∼4.5  dB for OFDM 128-QAM at 20% FEC threshold. The observed clear constellations of converted idlers imply favorable performance obtained for silicon-waveguide-based OFDM 16/32/64/128-QAM wavelength conversions.

  15. All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN.

    Science.gov (United States)

    Gong, Mingjun; Chen, Yuping; Lu, Feng; Chen, Xianfeng

    2010-08-15

    We experimentally demonstrate wavelength broadcast based on simultaneous Type I quasi-phase-matched (QPM) broadband sum-frequency generation (SFG) and second-harmonic generation (SHG) in 5 mol.% MgO-doped periodically poled lithium niobate (MgO:PPLN). One signal has been synchronously converted into seven different wavelengths using two pumps at a 1.5 microm band via quadratic cascaded nonlinear wavelength conversion. By selecting different pump regions, i.e., selecting different cascaded chi((2)):chi((2)) interactions, the flexible wavelength conversions with shifting from one signal to single, double, and triple channels were also demonstrated.

  16. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops.

    Science.gov (United States)

    Xu, Enming; Zhang, Xinliang; Zhou, Lina; Zhang, Yu; Yu, Yuan; Li, Xiang; Huang, Dexiu

    2010-04-15

    A new cascaded microwave photonic filter that can realize a high Q value is presented. It consists of two infinite impulse response filters based on two active loops. Owing to wavelength conversion employing cross-gain modulation of the amplified spontaneous emission spectrum of the semiconductor optical amplifier in one loop, the interference between the modulated optical signals of different taps from two loops can be avoided, and stable transmission characteristics of the filter can then be achieved. Using this cascaded structure, the free spectral range and Q value can be increased significantly, and tunability can also be realized. Measured results of a high Q of 3338 and a rejection ratio of about 40 dB are achieved.

  17. Design and analysis of VCSEL based twodimension wavelength converter.

    Science.gov (United States)

    Liu, H; Shum, P; Kao, M

    2003-07-14

    A novel two-dimensional vertical cavity surface emission laser (VCSEL) based wavelength converter is proposed. We developed a twodimensional transmission line laser model (TLLM) to analyze the proposed wavelength converter. This model takes into account Bragg reflectors by using the modified connecting matrix. Therefore, accurate and efficient modeling of the VCSEL structure is achieved. Extinction ratio of the output signal is investigated by considering input signal power, wavelength, facet reflectivity and cavity diameter.

  18. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  19. 40 Gb/s Wavelength Conversion in a Cascade of an SOA and a NOLM and Demonstration of Extinction Ratio Improvement

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2000-01-01

    We demonstrate that ER can be improved when a NOLM is used as a wavelength conversion media. At 40 Gb/s, and ER of 7 dB for a converted signal generated by XGM in an SOA is improved to an ER of 10 dB after wavelength conversion in a NOLM.......We demonstrate that ER can be improved when a NOLM is used as a wavelength conversion media. At 40 Gb/s, and ER of 7 dB for a converted signal generated by XGM in an SOA is improved to an ER of 10 dB after wavelength conversion in a NOLM....

  20. Wavelength conversion of 80 Gb/s RZ-DPSK Pol-MUX signals in a silicon nanowire

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Peucheret, Christophe; Oxenløwe, Leif Katsuo

    2014-01-01

    All-optical wavelength conversion of 80 Gb/s RZ-DPSK polarization multiplexed signals is demonstrated in a silicon nanowire using an angled-pump scheme. The quality of the converted signal is characterized through BER measurements for the first time....

  1. All-Optical 9.35 Gb/s Wavelength Conversion in an InP Photonic Crystal Nanocavity

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Yu, Yi; Heuck, Mikkel

    2013-01-01

    Wavelength conversion of a 9.35 Gb/s RZ signal is demonstrated using an InP photonic crystal H0 nanocavity. A clear eye is observed for the converted signal showing a pre-FEC bit error ratio down to 10-3....

  2. Orthogonal Phase Quadratures Conversion to Different Wavelengths Through Phase-Sensitive Four Wave Mixing in an Highly Nonlinear Fiber

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Marco Calabrese, Pachito; Kang, Ning

    2013-01-01

    Phase-sensitive processes exploiting FWM in an HNLF allow simultaneously converting two orthogonal quadratures of an optical signal to different wavelengths. Conversion efficiencies to two 90°-phase-shifted idlers exceeding 10dB of phase-sensitive extinction ratio are obtained experimentally....

  3. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation...

  4. Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (> 100 nm) all-optical wavelength conversion of 10 Gbit/s nonreturn-to-zero signals

    DEFF Research Database (Denmark)

    Kwok, C.H.; Chow, C.W.; Tsang, H.K.

    2006-01-01

    We study the conversion bandwidth of the cross-polarization-modulation (YPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show...

  5. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Directory of Open Access Journals (Sweden)

    Kyung Hyun Park

    2013-07-01

    Full Text Available We report a high-speed (~2 kHz dynamic multiplexed fiber Bragg grating (FBG sensor interrogation using a wavelength-swept laser (WSL with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  6. Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter.

    Science.gov (United States)

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-07-29

    We report a high-speed (~2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  7. An 8-channel wavelength demultiplexer based on photonic crystal fiber

    Science.gov (United States)

    Malka, Dror

    2017-05-01

    We propose a novel 8-channel wavelength demultiplexer based on photonic crystal fiber (PCF) structures that operate at 1530nm, 1535nm, 1540nm, 1545nm, 1550nm, 1555nm, 1560nm and 1565nm wavelengths. The new design is based on replacing some air-holes zones with silicon nitride and lithium niobate materials along the PCF axis with optimization of the PCF size. The reason of using these materials is because that each wavelength has a different value of coupling length. Numerical investigations were carried out on the geometrical parameters by using a beam propagation method (BPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565nm) with low crosstalk ((-16.88)-(-15.93) dB) and bandwidth (4.02-4.69nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  8. Parametric amplification and wavelength conversion of a 2.048-Tbit/s WDM PDM 16-QAM signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2014-01-01

    We demonstrate polarisation-insensitive parametric amplification in highly nonlinear fibre of a 2.048-Tbit/s dense WDM PDM 16-QAM signal with ∼10 dB on-off gain and simultaneous wavelength conversion and phase conjugation, with mean Q2 penalties of only 0.6 dB and 0.4 dB.......We demonstrate polarisation-insensitive parametric amplification in highly nonlinear fibre of a 2.048-Tbit/s dense WDM PDM 16-QAM signal with ∼10 dB on-off gain and simultaneous wavelength conversion and phase conjugation, with mean Q2 penalties of only 0.6 dB and 0.4 dB....

  9. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  10. Nonstandard FDTD Simulation-Based Design of CROW Wavelength Splitters

    Directory of Open Access Journals (Sweden)

    Naoki Okada

    2011-01-01

    Full Text Available The finite-difference time-domain (FDTD algorithm has been used in simulation-based designs of many optical devices, but it fails to reproduce high-Q whispering gallery modes (WGMs. On the other hand, the nonstandard (NS FDTD algorithm can accurately compute WGMs and can be used to make simulation-based designs of WGM devices. Wavelength splitters using the coupled resonator optical waveguides (CROWs based on WGM couplings have recently attracted attention because they are potentially ultracompact. In this paper, we design a CROW wavelength splitter using NS FDTD simulations and demonstrate high interchannel extinction ratios of over 20 dB.

  11. Comparison of noise redistribution in an SOA in pass-through and wavelength conversion mode

    DEFF Research Database (Denmark)

    Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper

    2004-01-01

    We use numerical simulations to investigate the redistribution of noise in a saturated SOA. A comparison of cross-gain modulation and self-modulation pass-through mode shows fundamental differences relevant to all-optical wavelength converters and regenerators.......We use numerical simulations to investigate the redistribution of noise in a saturated SOA. A comparison of cross-gain modulation and self-modulation pass-through mode shows fundamental differences relevant to all-optical wavelength converters and regenerators....

  12. High Efficiency Wavelength Conversion of 40 Gbps Signals at 1550 nm in SOI Nano-Rib Waveguides Using p-i-n Diodes

    DEFF Research Database (Denmark)

    Gajda, Andrzej; Da Ros, Francesco; Vukovic, Dragana

    2013-01-01

    We demonstrate enhancement of FWM wavelength conversion of a 40 Gbps signal in a reverse-biased p-i-n junction silicon waveguide. A conversion efficiency of −4.6 dB enables a conversion power penalty as low as 0.2 dB....

  13. Particle image velocimetry based on wavelength division multiplexing

    Science.gov (United States)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  14. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    Science.gov (United States)

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  15. Analog-to-digital optical waveguide conversion at sampling periods greater than the free-space wavelength.

    Science.gov (United States)

    Ramadan, Tarek A

    2014-01-01

    Nyquist sampling theorem reveals the possibility of sampling the continuous refractive index profiles of optical waveguides at periods greater than the free-space wavelength, λ(o). Binary encoding of these analog waveguides is investigated using the zero-order effective medium theory, while conserving the quantization of the modal spectrum implied by their boundary conditions. Both analytical and numerical approaches are developed for this analog-to-digital (A-to-D) conversion. An example is presented for the A-to-D conversion of a graded index waveguide with a hyperbolic secant profile at a sample period of 1.3λ(o). The results are confirmed using a beam propagation method.

  16. Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    CERN Document Server

    Lake, David P; Jayakumar, Harishankar; Santos, Laís Fujii dos; Curic, Davor; Barclay, Paul E

    2015-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency $> 4.4\\times10^{-4}\\, \\text{mW}^{-1}$ is demonstrated in a gallium phosphide microdisk cavity supporting high-$Q$ modes at visible ($Q \\sim 10^4$) and infrared ($Q \\sim 10^5$) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using $\\sim 360\\,\\mu$W of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.

  17. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces.

    Science.gov (United States)

    Verre, R; Maccaferri, N; Fleischer, K; Svedendahl, M; Odebo Länk, N; Dmitriev, A; Vavassori, P; Shvets, I V; Käll, M

    2016-05-19

    Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm(-2). We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed.

  18. A novel wavelength availability advertisement based ASON routing protocol implementation

    Science.gov (United States)

    Li, Jian; Liu, Juan; Zhang, Jie; Gu, Wanyi

    2005-11-01

    A novel wavelength availability advertisement based ASON routing protocol implementation is proposed in this paper which is derived from Open Shortest Path First protocol (OSPF) version 2. It can be applied to ASON network with a single control domain and can be easily extended to support routing in the multi-domain scenarios. Two new types of link state advertisement (LSA) are suggested for disseminating wavelength availability and network topology information. The OSPF mechanisms are inherited to ensure that the routing messages are delivered more reliably and converged more quickly while with fewer overheads. The topology auto discovery is realized through LSA flooding interacting with auto neighbor discovery using Link Management Protocol. The new LSA formats are given and how the link state database (LSD) is comprised is described. The new data structures proposed include topology resource list, adjacency list and route table. Then we analyze the differences of ASON in link state exchange, routing information flooding procedure, flushing procedure and new resources participating, i.e. new links or nodes join in an existing ASON. The link or node failure and recovery effect and how to deal with them are settled as well. In order to adopt different Routing and Wavelength Assignment (RWA) algorithms, a standard and efficient interface is designed. After extensive simulation we give the numerical analysis and come to the following conclusions: wavelength availability information flooding Convergence Time is about 30 milliseconds and it is not affected by RWA algorithms and the call traffic load; routing Protocol Average Overhead rises linearly with the increase of traffic load; Average Connection Setup Time decreases with the increase of traffic load because of the decrease of Average Routing Distance of the successfully lightpaths; Wavelength availability advertisement can greatly promote the blocking performance of ASON in relatively low traffic load; ASON

  19. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection

    Science.gov (United States)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang

    2015-11-01

    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  20. Converse PUF-based authentication

    NARCIS (Netherlands)

    Kocabas, U.; Peter, Andreas; Katzenbeisser, S.; Sadeghi, A.

    Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich

  1. Ammonia sensing system based on wavelength modulation spectroscopy

    Science.gov (United States)

    Viveiros, Duarte; Ferreira, João; Silva, Susana O.; Ribeiro, Joana; Flores, Deolinda; Santos, José L.; Frazão, Orlando; Baptista, José M.

    2015-06-01

    A sensing system in the near infrared region has been developed for ammonia sensing based on the wavelength modulation spectroscopy (WMS) principle. The WMS is a rather sensitive technique for detecting atomic/molecular species, presenting the advantage that it can be used in the near-infrared region by using the optical telecommunications technology. In this technique, the laser wavelength and intensity were modulated by applying a sine wave signal through the injection current, which allowed the shift of the detection bandwidth to higher frequencies where laser intensity noise was typically lower. Two multi-pass cells based on free space light propagation with 160 cm and 16 cm of optical path length were used, allowing the redundancy operation and technology validation. This system used a diode laser with an emission wavelength at 1512.21 nm, where NH3 has a strong absorption line. The control of the NH3 gas sensing system, as well as acquisition, processing and data presentation was performed.

  2. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.

    Science.gov (United States)

    Su, Jue; Xie, Ruxin; Johnson, Carey K; Hui, Rongqing

    2013-06-01

    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

  3. Wavelength-stabilization-based photoacoustic spectroscopy for methane detection

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Ren, Wei

    2017-06-01

    A compact and portable photoacoustic gas sensor was developed for sensitive methane (CH4) detection at 1.6 µm using a software-based wavelength stabilization scheme. A transmission-type photoacoustic cell was connected in series with a reference gas cell to measure the photoacoustic signal and the reference gas absorption for wavelength stabilization simultaneously. The central wavelength of the diode laser was locked to the target CH4 line with a fluctuation of less than 10.6 MHz using a digital proportional-integral-derivative controller. The CH4 sensor was designed to be insensitive to the incoherent external acoustic noise by the cumulative average of the demodulated photoacoustic signal by a digital lock-in amplifier. With an incident laser power of 6 mW, our CH4 sensor achieved a minimum detection limit of 11.5 ppm at 10 s response time and an excellent linearity (R 2  =  0.9999) in the concentration range of 400-6300 ppm.

  4. Experimental demonstration of wavelength domain rogue-free ONU based on wavelength-pairing for TDM/WDM optical access networks.

    Science.gov (United States)

    Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok

    2015-11-30

    In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.

  5. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    , improve the mechanical stabilization of assay compartment by exploring the side excitation and side coupling method, ease of manufacturing and feasibility of Polymer Fiber Bragg gratings as filters. During the project, fibers will be drawn and fiber bragg gratings will be inscribed at DTU Fotonik...... AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  6. Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring.

    Science.gov (United States)

    Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya

    2014-01-13

    All-optical wavelength conversion (AOWC) plays an important role in the future transparent optical networks, in order to enhance the re-configurability and non-blocking capacity. On the other hand, high-order quadrature amplitude modulations (QAMs) have been extensively studied for achieving the high-speed and high-spectral-efficiency optical transmission. Since high-order QAMs are more sensitive to phase and amplitude noise, to implement an AOWC sub-system suitable for high-order QAM signals with minimized power penalty, it is important to optimize the operation conditions in order to avoid extra nonlinear distortions co-existed in the AOWC process. Our experimental results show that, constellation monitoring provides a more intuitive and accurate approach to monitor the converted high-order QAM signals, especially in presence of nonlinear phase noise such as self-phase modulation (SPM). We experimentally demonstrate an AOWC of 64QAM signal through four-wave mixing (FWM) in highly-nonlinear (HNLF). The performance of the AOWC is optimized through the constellation monitoring of the converted signal, achieving a negligible power penalty (<0.3 dB at BER of 10(-3)) for 60-Gbps 64QAM after conversion.

  7. Galactic coordinate system based on multi-wavelength catalogs

    Science.gov (United States)

    Ding, Ping-Jie; Zhu, Zi; Liu, Jia-Cheng

    2015-07-01

    The currently used Galactic coordinate system (GalCS) is based on the FK5 system at J2000.0, which was transformed from the FK4 system at B1950.0. The limitations and misunderstandings related to this transformed GalCS can be avoided by defining a new GalCS that is directly connected to the International Celestial Reference System (ICRS). With more data at various wavelengths released by large survey programs, a more appropriate GalCS consistent with features associated with the Milky Way can be established. We try to find the best orientation of the GalCS using data from two all-sky surveys, AKARI and WISE, at six wavelengths between 3.4 μm and 90 μm, and synthesize results obtained at various wavelengths to define an improved GalCS in the framework of the ICRS. The revised GalCS parameters for defining the new GalCS in the ICRS are summarized as: αp = 192.777°, δp = 26.9298°, for the equatorial coordinates of the north Galactic pole and θ = 122.95017° for the position angle of the Galactic center. As one of the Galactic substructures, the Galactic warp exhibits different forms in different GalCSs that are constructed with various data and methods, which shows the importance of re-defining the GalCS by the relative commission of the International Astronomical Union that can lead to a better understanding of Galactic structure and kinematics. Supported by the National Natural Science Foundation of China.

  8. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    Science.gov (United States)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  9. 40Gb/s wavelength conversion in a cascade of an SOA and a NOLM and demonstration of extinction ratio improvement

    DEFF Research Database (Denmark)

    Yu, Jianjun; Clausen, Anders; Poulsen, Henrik Nørskov

    2000-01-01

    The authors demonstrate that the extinction ratio (ER) can be improved when a nonlinear optical loop mirror (NOLM) is used as a wavelength conversion medium. At 40 Gbit/s, an ER of 7 dB for a converted signal generated by cross-gain modulation in a semiconductor optical amplifier is improved to a...

  10. QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei

    2013-01-01

    A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium...

  11. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    Science.gov (United States)

    Paskin, Taylor R; Jellies, John; Bacher, Jessica; Beane, Wendy S

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  12. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    Directory of Open Access Journals (Sweden)

    Taylor R Paskin

    Full Text Available Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli, planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green, as well as ultraviolet (UV and infrared (IR which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV causing the most intense photophobic responses while longer wavelengths produce no effect (red or an apparent attraction (IR. In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  13. RF up/down-conversion based on optically injection-locked VCSEL.

    Science.gov (United States)

    Guo, Peng; Zhang, Cheng; Xu, Anshi; Chen, Zhangyuan

    2013-03-25

    All-optical radio frequency conversion is proposed by directly modulated optically injection-locked vertical-cavity surface-emitting lasers. The enhancement effect of second order products of RF signals by OIL technique is analyzed based on reflection-mode OIL model. Simulation results show that high injection ratio and large wavelength detuning of OIL condition lead to a high RF conversion gain. Compared with free running condition, more than 20 dB RF conversion gain enhancement is achieved in the simulation. The experimental results of the RF conversion gain improvement (+ 18 dB) by OIL show excellent agreement with our simulation results. The spurious free dynamic range improvement (+ 15 dB) of conversion signals by OIL is also experimentally demonstrated.

  14. All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide.

    Science.gov (United States)

    Lee, Yeung Lak; Yu, Bong-Ahn; Jung, Changsoo; Noh, Young-Chul; Lee, Jongmin; Ko, Do-Kyeong

    2005-04-18

    All-optical single and multiple wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) have been demonstrated in a temperature gradient controlled periodically poled Ti:LiNbO3 (Ti:PPLN) channel waveguide. Up to 4 channels of wavelength division multiplexed (WDM) signals which have 100 GHz channel spacing were simultaneously wavelength converted at a 16.8 degrees C temperature difference between both end faces in a Ti:PPLN waveguide. The 3 dB signal conversion bandwidth was measured to be as broad as 48 nm at single channel conversion. The maximum wavelength conversion efficiency and optical signal to noise ratio of wavelength converted channel were approximately -16 dB and -20 dB at a total pump power level of 810 mW.

  15. Conversation for Textual Case-Based Reasoning

    Science.gov (United States)

    2007-01-01

    structures (e.g., Gupta et al., 2002; Gu & Aamodt , 2005). These organized feature vocabularies make existing conversation approaches...e.g., Brüninghaus & Ashley, 2005; Gupta et al., 2002; Gu & Aamodt , 2005). Attribute organization has usually been performed...measured conversation performance, it has done so only as part of system evaluation within a limited framework (e.g., Gupta & Aha, 2003; Gu & Aamodt , 2006

  16. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  17. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  18. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  19. Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, R.; Ludwig, R.

    2010-01-01

    Polarization-insensitive wavelength conversion of a single channel 320 Gb/s RZ-DQPSK data signal using a Ti:PPLN waveguide in a bi-directional loop configuration with less than 0.5 dB polarization sensitivity is reported. The conversion efficiency with polarization scrambling of the signal was -21...... dB, which includes 9.2 dB of passive losses in the whole Ti:PPLN subsystem. In BER measurements error-free operation with 2 dB OSNR penalty for the converted signal was achieved. Theoretical and experimental investigations of the temporal shape and chirp of the converted data pulses show only very...

  20. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths

    National Research Council Canada - National Science Library

    Wei, Zhongchao; Li, Xianping; Yin, Jianjun; Huang, Rong; Liu, Yuebo; Wang, Wei; Liu, Hongzhan; Meng, Hongyun; Liang, Ruisheng

    2016-01-01

    Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method...

  1. Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture

    Science.gov (United States)

    2015-01-20

    AFRL-AFOSR-UK-TR-2015-0004 Wavelength-scale Microlasers based on VCSEL -Photonic Crystal Architecture Pablo Postigo...scale Microlasers based on VCSEL -Photonic Crystal Architecture 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8655-12-1-2125 5c. PROGRAM ELEMENT...photonic crystal‐ VCSEL with a total footprint around the wavelength of emission (1550 nm) and operating under electrical injection. We have

  2. Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band

    Science.gov (United States)

    Krutyanskiy, V.; Meraner, M.; Schupp, J.; Lanyon, B. P.

    2017-09-01

    We demonstrate polarisation-preserving frequency conversion of single-photon-level light at 854 nm, resonant with a trapped-ion transition and qubit, to the 1550-nm telecom C band. A total photon in / fiber-coupled photon out efficiency of ˜30% is achieved, for a free-running photon noise rate of ˜60 Hz. This performance would enable telecom conversion of 854 nm polarisation qubits, produced in existing trapped-ion systems, with a signal-to-noise ratio greater than 1. In combination with near-future trapped-ion systems, our converter would enable the observation of entanglement between an ion and a photon that has travelled more than 100 km in optical fiber: three orders of magnitude further than the state-of-the-art.

  3. Sparsity-based single-shot sub-wavelength coherent diffractive imaging

    CERN Document Server

    Szameit, A; Osherovich, E; Bullkich, E; Sidorenko, P; Dana, H; Steiner, S; Kley, E B; Gazit, S; Cohen-Hyams, T; Shoham, S; Zibulevsky, M; Yavneh, I; Eldar, Y C; Cohen, O; Segev, M

    2011-01-01

    We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and ordered arrangements of 100 nm features with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our algorithmic technique relies on minimizing the number of degrees of freedom; it works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.

  4. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    set of internal wavelengths without sacrificing cross-connecting capabilities. By inserting a partly equipped OXC with the new architecture in a 10-Gbit/s re-circulating loop setup we demonstrate the possibility of cascading up to ten OXCs. Furthermore, we investigate the regenerating effect...

  5. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    Science.gov (United States)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  6. Conversational Awareness in Text-Based Computer Mediated Communication

    Science.gov (United States)

    Tran, Minh Hong; Yang, Yun; Raikundalia, Gitesh K.

    Text-based computer-mediated communication (TxtCMC) supports an instant exchange of messages among geographically distributed people. TxtCMC, such as Instant Messaging and chat tools, has increasingly become widespread and popular at home and at work. Supporting conversational awareness is an important aspect of TxtCMC. Conversational awareness provides a user with information about the presence and activity of others, and therefore helps to establish a context for the user’s own activity. Unfortunately, current interface design of TxtCMC provides inadequate support for conversational awareness, especially in support for awareness of turn-taking, conversational context and multiple concurrent conversations. This research aims to address these three issues by (1) conducting an empirical study to identify the user need for conversational awareness and (2) designing an interface to support this type of awareness. This chapter presents two innovative prototypes, namely Relaxed Instant Messenger (RIM) and Conversational Dock (ConDock). RIM integrates a sequential interface with an adaptive threaded interface to support awareness of turn-taking and conversational context. ConDock adopts a focus + context visualisation technique to support awareness of multiple conversations. The evaluations of the two prototypes show that they meet their design objectives and were found useful in enhancing group communication.

  7. A 1550-nm all-optical VCSEL-to-VCSEL wavelength conversion of a 8.5-Gb/s data signal and transmission over a 24.7-km fibre

    Science.gov (United States)

    Boiyo, D. Kiboi; Isoe, G. M.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2016-02-01

    For the first time, we demonstrate, VCSEL-to-VCSEL wavelength conversion within the low attenuation 1550 nm window, including transmission over fibre and bit error rate (BER) performance characterization. We experimentally demonstrate a low injection power optical wavelength conversion by injecting an optical beam from a signal carrier master vertical cavity surface-emitting laser (VCSEL) into the side-mode of the slave VCSEL. This technique solves the challenge of wavelength collisions and also provides wavelength re-use in typical wavelength division multiplexed (WDM) systems. This paper, for the first time, uses two 1550 nm VCSELs with tunability range of 3 nm for a 5-9.8 mA bias current. The master VCSEL is modulated with a non-return-to-zero (NRZ) pseudo-random binary sequence (PRBS_27-1) 8.5 Gb/s data. A data conversion penalty of 1.1 dB is realized when a 15 dBm injection beam is used. The transmission performance of the converted wavelength from the slave VCSEL is evaluated using BER measurement at a 10-9 threshold. A 0.5 dB transmission penalty of the converted wavelength data is realized in an 8.5 Gb/s transmission over 24.7 km. This work is vital for optical fibre systems that may require wavelength switching for transmission of data signals.

  8. Dense Wavelength Division (De Multiplexers Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    S. BENAMEUR

    2014-05-01

    Full Text Available This study is to measure the impact of demultiplexers based on Fiber Bragg Grating (FBG filter on performance of DWDM system for optical access network. An optical transmission link has been established in which we have inserted a demultiplexer based on four different FBG filters. The first step will be the characterization of FBG’s filters (i.e. uniform FBG, Gaussian apodized Grating, chirped FBG to explain their behavior in the optical link. The simulations were conducted for different fiber’s lengths, filter bandwidth and different received power to get the best system performance. This helped to assess their impact on the link performance in terms of Bit Error Rate (BER.

  9. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  10. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  11. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation

    DEFF Research Database (Denmark)

    Zhou, Enbo; Öhman, Filip; Cheng, Cheng

    2008-01-01

    A scheme for mitigating patterning effects in wavelength conversion by using a concatenated semiconductor optical amplifier (SOA) and electroabsorption modulator (EAM) is proposed. The optimization of the parameters of the semiconductor devices and receiver electronics is theoretically investigated....... The bit error ration (BER) of the output signals in both the co-propagating and the counter-propagating configurations is quantitatively evaluated. The simulation results indicate that the patterning effect in wavelength conversion due to the slow recovery of the carrier density in the SOA can be well...

  12. Real-time wavelength and bandwidth-independent optical integrator based on modal dispersion.

    Science.gov (United States)

    Tan, Zhongwei; Wang, Chao; Diebold, Eric D; Hon, Nick K; Jalali, Bahram

    2012-06-18

    High-throughput real-time optical integrators are of great importance for applications that require ultrafast optical information processing, such as real-time phase reconstruction of ultrashort optical pulses. In many of these applications, integration of wide optical bandwidth signals is required. Unfortunately, conventional all-optical integrators based on passive devices are usually sensitive to the wavelength and bandwidth of the optical carrier. Here, we propose and demonstrate a passive all-optical intensity integrator whose operation is independent of the optical signal wavelength and bandwidth. The integrator is implemented based on modal dispersion in a multimode waveguide. By controlling the launch conditions of the input beam, the device produces a rectangular temporal impulse response. Consequently, a temporal intensity integration of an arbitrary optical waveform input is performed within the rectangular time window. The key advantage of this device is that the integration operation can be performed independent of the input signal wavelength and optical carrier bandwidth. This is preferred in many applications where optical signals of different wavelengths are involved. Moreover, thanks to the use of a relatively short length of multimode waveguide, lower system latency is achieved compared to the systems using long dispersive fibers. To illustrate the versatility of the optical integrator, we demonstrate temporal intensity integration of optical waveforms with different wavelengths and optical carrier bandwidths. Finally, we use this device to perform high-throughput, single-shot, real-time optical phase reconstruction of phase-modulated signals at telecommunications bit rates.

  13. Vector mode conversion based on an asymmetric fiber Bragg grating in few-mode fibers.

    Science.gov (United States)

    Mi, Yuean; Li, Haisu; Ren, Guobin

    2017-09-01

    We propose a vector mode conversion approach based on asymmetric fiber Bragg gratings (AFBGs) written in step-index fiber and vortex fiber, respectively. The mode coupling properties of AFBGs are numerically investigated. Compared to step-index fiber, the large mode separation in the vortex fiber is beneficial to extracting the desired vector mode at specific wavelengths. In addition, the polarization of incident light and the attenuation coefficient of index change distribution of the AFBG play critical roles in the mode coupling process. The proposed AFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for orbital angular momentum multiplexing and fiber lasers with vortex beam output.

  14. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer.

    Science.gov (United States)

    Zhang, Wei; Yan, Yongli; Gu, Jianmin; Yao, Jiannian; Zhao, Yong Sheng

    2015-06-08

    Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self-assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited-state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four-level system, which is more favorable for population inversion. Low-power driven lasing in proton-transfer molecular nanowires with an optimized ESIPT energy-level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP-type resonators, which generated single-mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    Science.gov (United States)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  16. Novel interrogation technique for Tilted Fiber Bragg Gratings sensors based on single wavelength time delay measurements

    Science.gov (United States)

    Pisco, M.; Ricciardi, A.; Campopiano, S.; Caucheteur, C.; Mégret, P.; Cutolo, A.; Cusano, A.

    2009-10-01

    A novel interrogation scheme for Tilted Fiber Bragg Gratings (TFBGs) sensors is here proposed based on single wavelength time delay measurements. To this aim, the group delay of a weakly tilted TFBG has been characterized by direct time domain measurement. The experimental characterization shows the capability of TFBGs to enable superluminal and subluminal propagation of an optical pulse in optical fibers. The sharp group delay features of the TFBGs are exploited for refractometric applications to detect the SRI variations by single wavelength time delay measurements. The obtained preliminary results demonstrate the possibility to detect SRI changes by means of single wavelength time delay measurements with a sensitivity enhanced in the range 1.33-1.40 with respect to previously reported interrogation techniques.

  17. Dual-wavelength mode-locked fiber laser based on tungsten disulfide saturable absorber

    Science.gov (United States)

    Li, Xiaowen; Qian, Jianqiang; Zhao, Ruwei; Wang, Fan; Wang, Zhenyu

    2017-12-01

    We report on the generation of dual-wavelength mode-locked laser pulse in an Er-doped ring-shaped fiber cavity with WS2 nanosheets based saturable absorber (SA), emitting at wavelength of 1531.8 nm and 1556.7 nm. The WS2 nanosheets were precipitated on the head face of fiber patch cord via light precipitation method. By adjusting the polarization of lasing mode, the gain of the Er-doped fiber laser was effectively controlled and the stable dual-wavelength mode-locking operation was achieved. Our investigation revealed WS2’s extraordinary nonlinear properties, which make it an excellent material for saturable absorber for passively mode-locked fiber lasers.

  18. An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration

    Science.gov (United States)

    Yun, Yong-Huan; Li, Hong-Dong; Wood, Leslie R. E.; Fan, Wei; Wang, Jia-Jun; Cao, Dong-Sheng; Xu, Qing-Song; Liang, Yi-Zeng

    2013-07-01

    Wavelength selection is a critical step for producing better prediction performance when applied to spectral data. Considering the fact that the vibrational and rotational spectra have continuous features of spectral bands, we propose a novel method of wavelength interval selection based on random frog, called interval random frog (iRF). To obtain all the possible continuous intervals, spectra are first divided into intervals by moving window of a fix width over the whole spectra. These overlapping intervals are ranked applying random frog coupled with PLS and the optimal ones are chosen. This method has been applied to two near-infrared spectral datasets displaying higher efficiency in wavelength interval selection than others. The source code of iRF can be freely downloaded for academy research at the website: http://code.google.com/p/multivariate-calibration/downloads/list.

  19. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  20. Space-based Ultra-long wavelength radio astronomy - an overview of today's initiatives

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan; Baan, Willem

    2011-01-01

    Space based ultra-long wavelength radio astronomy has recently gained interest. The need for large effective apertures spread over long ranges implies that advanced technologies are required, which is in reach at this moment. This together with the unexplored frequency band below 30 MHz makes these

  1. High reflectance La/B based multilayer mirrors for 6.x nm wavelength

    NARCIS (Netherlands)

    Kuznetsov, Dmitry; Yakshin, Andrey; Sturm, Marko; Van De Kruijs, Robbert; Louis, Eric; Bijkerk, Fred

    2015-01-01

    For future photolithography processes, the wavelength of 6 nm may offer improved imaging specs. The perspective of this technology however, will depend critically on the performance of multilayer reflective mirrors, which are likely to be based on La/B. One of the issues is formation of LaxBy

  2. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Pu, Minhao; Liu, Liu

    2011-01-01

    A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired...

  3. Efficient regenerative wavelength conversion at 10Gbit/s over C- and L-band (80nm span) using a Mach-Zehnder interferometer with monolithically integrated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Dülk, M.; Fischer, St.; Gamper, E.

    2000-01-01

    A demonstration is presented of 10Gbit/s 2R regenerative wavelength up- and down-conversion within the C-band as well as up-conversion to the L-band using a monolithically integrated Mach-Zehnder interferometer module with semiconductor optical amplifiers (MZI-SOAs). The converted output signals ...... exhibit very low noise and chirp which is accompanied by a negative power penalty.......A demonstration is presented of 10Gbit/s 2R regenerative wavelength up- and down-conversion within the C-band as well as up-conversion to the L-band using a monolithically integrated Mach-Zehnder interferometer module with semiconductor optical amplifiers (MZI-SOAs). The converted output signals...

  4. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    Science.gov (United States)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  5. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  6. All-optical ultrafast wavelength and mode converter based on inter-modal four-wave mixing in few-mode fibers

    Science.gov (United States)

    Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi

    2015-08-01

    An ultrafast all-optical simultaneous wavelength and mode conversion scheme is purposed based on intermodal four-wave mixing (IM-FWM), with the capability of switching state of polarization (SOP) and mode degeneracy orientation (MDO) in few-mode fibers (FMF). The relation among the conversion efficiency, pump power and phase matching conditions is investigated in theory analysis and simulation. Using this scheme, cross-polarization modulation (XPolM) and cross-mode modulation (XMM) can be achieved, by in the best case up to 50% conversion efficiency. Furthermore, numerical results further indicate that the proposed configuration has the potential application for generating doughnut modes by the mixing of three characteristic spatial frequencies.

  7. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-08-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future.

  8. Nonlinear graphene-based nanophotonic switch working in dense wavelength division multiplexing (DWDM) systems

    Science.gov (United States)

    Wirth L., A. J.; Ferreira, A. C.; Sombra, A. S. B.

    2017-05-01

    Fiber-based devices for operation in fully optical networks are relatively large in size and can not be used in photonic integrated circuits (PICs). We have developed an efficient graphene-based nanophotonic switching nanocell, working in linear regime (cross state) and in non-linear regime (bar state) with relatively low optical power, so that they can be cascaded and integrated in PICs. Indeed, that device is a fully optical switch, which can work in dense wavelength division multiplexing systems.

  9. Two-Copy Wavelength Conversion of an 80 Gbit/s Serial Data Signal Using Cross-Phase Modulation in a Silicon Nanowire and Detailed Pump-Probe Characterisation

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    We experimentally demonstrate 80 Gbit/s wavelength conversion to two copies by simultaneously extracting the blue- and red-shifted sidebands from XPM in a silicon nanowire. Bit error rates of 10-9 with only ~2 dB power penalty is achieved for both sidebands. Detailed pump-probe characterisation r...

  10. A genetic algorithm-based framework for wavelength selection on sample categorization.

    Science.gov (United States)

    Anzanello, Michel J; Yamashita, Gabrielli; Marcelo, Marcelo; Fogliatto, Flávio S; Ortiz, Rafael S; Mariotti, Kristiane; Ferrão, Marco F

    2017-08-01

    In forensic and pharmaceutical scenarios, the application of chemometrics and optimization techniques has unveiled common and peculiar features of seized medicine and drug samples, helping investigative forces to track illegal operations. This paper proposes a novel framework aimed at identifying relevant subsets of attenuated total reflectance Fourier transform infrared (ATR-FTIR) wavelengths for classifying samples into two classes, for example authentic or forged categories in case of medicines, or salt or base form in cocaine analysis. In the first step of the framework, the ATR-FTIR spectra were partitioned into equidistant intervals and the k-nearest neighbour (KNN) classification technique was applied to each interval to insert samples into proper classes. In the next step, selected intervals were refined through the genetic algorithm (GA) by identifying a limited number of wavelengths from the intervals previously selected aimed at maximizing classification accuracy. When applied to Cialis®, Viagra®, and cocaine ATR-FTIR datasets, the proposed method substantially decreased the number of wavelengths needed to categorize, and increased the classification accuracy. From a practical perspective, the proposed method provides investigative forces with valuable information towards monitoring illegal production of drugs and medicines. In addition, focusing on a reduced subset of wavelengths allows the development of portable devices capable of testing the authenticity of samples during police checking events, avoiding the need for later laboratorial analyses and reducing equipment expenses. Theoretically, the proposed GA-based approach yields more refined solutions than the current methods relying on interval approaches, which tend to insert irrelevant wavelengths in the retained intervals. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  12. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  13. [Study on wavelength locking technology in trace gases detection system based on laser techniques].

    Science.gov (United States)

    Wang, Li-ming; Zhang, Yu-jun; He, Ying; You, Kun; Liu, Jian-guo; Liu, Wen-qing

    2012-04-01

    In the trace gases detection system with tunable diode laser absorption spectroscopy (TDLAS) technology, the measurement of trace gases concentration was influenced by the laser wavelength drift resulting from the change in ambient temperature and noise of laser control electronics. With open-path TDLAS ammonia concentration detection system as an example, in the present paper the scanning law of laser center wavelength with current was analyzed, and the adaptive locking method of scanning laser center wavelength was presented based on controlling laser current. The aligning algorithm of measurement spectroscopy with calibration reference spectroscopy was studied. The open-path ammonia concentration was achieved in real time. Experiment results show that the precision and the stability of retrieving the concentration of trace gases were improved satisfactorily by wavelength locking. The variation of ammonia concentration has an obvious diurnal periodicity, which increased in rush hour time and got to the maximum at noon, then decreased at night. The system detection limit is about 3.8 mg x m(-3) x m.

  14. An innovative browser-based data exploration tool with simultaneous scrolling in time and wavelength domains

    Science.gov (United States)

    Slater, Gregory L.; Schiff, David; De Pontieu, Bart; Tarbell, Theodore D.; Freeland, Samuel L.

    2017-08-01

    We present Cruiser, a new web tool for the precision interactive blending of image series across time and wavelength domains. Scrolling in two dimensions enables discovery and investigation of similarities and differences in structure and evolution across multiple wavelengths. Cruiser works in the latest versions of standards compliant browsers on both desktop and IOS platforms. Co-aligned data cubes have been generated for AIA, IRIS, and Hinode SOT FG, and image data from additional instruments, both space-based and ground-based, can be data sources. The tool has several movie playing and image adjustment controls which will be described in the poster and demonstrated on a MacOS notebook and iPad.

  15. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  16. Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation

    Science.gov (United States)

    Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.

  17. Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2016-12-01

    Full Text Available Hyperspectral imaging technology was employed to detect slight bruises on Korla pears. The spectral data of 60 bruised samples and 60 normal samples were collected by a hyperspectral imaging system. To select the characteristic wavelengths for detection, several chemometrics methods were used on the raw spectra. Firstly, principal component analysis (PCA was conducted on the spectra ranging from 420 to 1000 nm of all samples. Considering that the reliability of the first two PCs was more than 90%, five characteristic wavelengths (472, 544, 655, 688 and 967 nm were selected by the loading plot of PC1 and PC2. Then, each of the wavelength variables was considered as an independent classifier for bruised/normal classification, and all classifiers were evaluated by the receiver operating characteristic (ROC analysis. Two wavelengths (472 and 967 nm with the highest values under the curve (0.992 and 0.980 were finally selected for modeling. The classifying model was built by partial least squares discriminant analysis (PLS-DA and the bruised/normal classification accuracy of the modeling set (45 damaged samples and 45 normal samples and prediction set (15 damaged samples and 15 normal samples was 98.9% and 100%, respectively, which is similar to that of the PLS-DA model based on the whole spectral range. The result shows that it is feasible to select characteristic wavelengths for the detection of slight bruises on pears by the methods combining the PCA and ROC analysis. This study can lay a foundation for the development of an online detection system for slight bruise detection on pears.

  18. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  19. Design of video interface conversion system based on FPGA

    Science.gov (United States)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  20. Long wavelength electrically pumped GaSb-based buried tunnel junction VCSELs

    Science.gov (United States)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh; Amann, Markus-Christian

    2010-01-01

    Long wavelength lasers are attractive light sources for free-space communications, military countermeasures, medical applications and trace-gas sensing systems by tunable diode laser absorption spectroscopy (TDLAS). As technically important gases, such as CO, CO2 or CH4, show strong absorption lines in a wavelength range from 2 to 3.5 μm, one is interested in the development of lasers emitting in that region. The (AlGaIn)(AsSb) material-system based on GaSb is the material of choice for devices in the near- to mid-infrared spectral region. In this paper, we present the device structure, design and results of an electrically-pumped GaSb-based VCSEL. The devices consist of an epitaxial GaSb/AlAsSb distributed Bragg reflector (DBR), a GaInAsSb quantum well gain section, a dielectric top DBR and a buried tunnel junction (BTJ) for electrical as well as optical confinement. Continuous-wave (cw) single-mode emission has been achieved up to a record high ambient temperature of 90 ∘C. The wavelength is (electro-) thermally tunable from 2345 nm to 2365 nm. A maximum output power of 800 μW has been measured at 0 ∘C.

  1. Single-wavelength based rice leaf color analyzer for nitrogen status estimation

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2014-02-01

    With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.

  2. Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities

    Science.gov (United States)

    Kors, A.; Fuchs, K.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.

    2017-01-01

    Here we report on the fabrication and optical characterization of InP-based L3 photonic crystal (PhC) microcavities embedded with a medium density InAs/InP quantum dots (QDs) emitting at telecom wavelengths. The QDs are grown by solid source molecular beam epitaxy using a ripening technique. Micro-photoluminescence (μ-PL) measurements of PhC samples reveal sharp cavity modes with quality factors exceeding 8500. QDs emit highly linear-polarized light at telecom wavelengths with resolution-limited spectral linewidth below 50 μeV. Enhanced PL intensity of QDs in PhC is observed in comparison to the PL intensity of QDs in bulk semiconductors. The combination of excitation power-dependent and polarization-resolved μ-PL measurements reveal the existence of an exciton-biexciton system with a small fine-structure splitting.

  3. Spectral Interferometry-Based Chromatic Dispersion Measurement of Fibre Including the Zero-Dispersion Wavelength

    Science.gov (United States)

    Hlubina, P.; Kadulová, M.; Ciprian, D.

    2012-05-01

    We report on a simple spectral interferometric technique for chromatic dispersion measurement of a short length optical fibre including the zero-dispersion wavelength. The method utilizes a supercontinuum source, a dispersion balanced Mach-Zehnder interferometer and a fibre under test of known length inserted in one of the interferometer arms and the other arm with adjustable path length. The method is based on resolving one spectral interferogram (spectral fringes) by a low-resolution NIR spectrometer. The fringe order versus the precise wavelength position of the interference extreme in the recorded spectral signal is fitted to the approximate function from which the chromatic dispersion is obtained. We verify the applicability of the method by measuring the chromatic dispersion of two polarization modes in a birefringent holey fibre. The measurement results are compared with those obtained by a broad spectral range (500-1600 nm) measurement method, and good agreement is confirmed.

  4. Quasidistributed temperature sensor based on dense wavelength-division multiplexing optical fiber delay

    Science.gov (United States)

    Su, Jun; Yang, Ning; Fan, Zhiqiang; Qiu, Qi

    2017-10-01

    We report on a fiber-optic delay-based quasidistributed temperature sensor with high precision. The device works by detecting the delay induced by the temperature instead of the spectrum. To analyze the working principle of this sensor, the thermal dependence of the fiber-optic delay was theoretically investigated and the delay-temperature coefficient was measured to be 42.2 ps/km°C. In this sensor, quasidistributed measurement of temperature could be easily realized by dense wavelength-division multiplexing and wavelength addressing. We built and tested a prototype quasidistributed temperature sensor with eight testing points equally distributed along a 32.61-km-long fiber. The experimental results demonstrate an average error of economic temperature measurements.

  5. Large-scale characterization of silicon nitride-based evanescent couplers at 532nm wavelength

    Science.gov (United States)

    Claes, Tom; Jansen, Roelof; Neutens, Pieter; Du Bois, Bert; Helin, Philippe; Severi, Simone; Van Dorpe, Pol; Deshpande, Paru; Rottenberg, Xavier

    2014-05-01

    Recently, the photonics community has a renewed attention for silicon nitride.1-3 When deposited at temperatures below 650K with plasma-enhanced chemical vapor deposition (PECVD),4 it enables photonic circuits fabricated on-top of standard complementary metaloxidesemiconductor (CMOS) electronics. Silicon nitride is moreover transparent to wavelengths that are visible to the human eye and detectable with available silicon detectors, thus offering a photonics platform for a range of applications that is not accessible with the popular silicon-on-insulator platform. However, first-time-right design of large-scale circuits for demanding specifications requires reliable models of the basic photonic building blocks, like evanescent couplers (Figure 1), components that couple power between multiple waveguides. While these models typically exist for the silicon-on-insulator platform, they still lack maturity for the emerging silicon nitride platform. Therefore, we meticulously studied silicon nitride-based evanescent couplers fabricated in our 200mm-wafer facility. We produced the structures in a silicon nitride film deposited with low-temperature PECVD, and patterned it using optical lithography at a wavelength of 193nm and reactive ion etching. We measured the performance of as much as 250 different designs at 532nm wavelength, a central wavelength in the visible range for which laser sources are widespread. For each design, we measured the progressive transmission of up-to 10 cascaded identical couplers (Figure 2(a)), yielding very accurate figures for the coupling factor (Figure 2(b)). This paper presents the trends extracted from this vast data set (Figure 3), and elaborates on the impact of the couplers bend radius and gap on its coupling factors (Figure 4 and Figure 5). We think that the large- scale characterization of evanescent couplers presented in this paper, in excellent agreement with the simulated performance of the devices, forms the basis for a component

  6. Characterization of a Wavelength Converter for 256-QAM Signals Based on an AlGaAs-On-Insulator Nano-waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Yankov, Metodi Plamenov; Porto da Silva, Edson

    2016-01-01

    High efficiency and broadband wavelength conversion in a 9-mm AlGaAs-On-Insulator waveguide is shown to provide high-quality (OSNR > 30 dB) idler generation over a 28-nm bandwidth enabling error-free conversion of 10-GBd 256-QAM with OSNR penalty below 2.5 dB.......High efficiency and broadband wavelength conversion in a 9-mm AlGaAs-On-Insulator waveguide is shown to provide high-quality (OSNR > 30 dB) idler generation over a 28-nm bandwidth enabling error-free conversion of 10-GBd 256-QAM with OSNR penalty below 2.5 dB....

  7. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  8. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optimum...

  9. MEASURING SYSTEMS BASED ON TWO-WAVELENGTH SEMICONDUCTOR LASERS AND CONCEPT OF «A PRIORI INFORMATION ELIMINATION»

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2012-01-01

    Full Text Available Construction principles of highly effective measuring systems based on two-wavelength semiconductor lasers and the concept «a priori information elimination» are presented. These systems provide advantages before similar one-wavelength laser measuring instruments.

  10. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the

  11. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  12. A Novel Shared Protection Scheme Based on Aggregate Wavelength in High Speed Networks

    Directory of Open Access Journals (Sweden)

    Anshu Oberoi

    2014-01-01

    Full Text Available We propose novel analytical model of dynamic link cost evaluation in IP over WDM networks. We suggest disjoint path algorithm for the primary and backup path based on wavelength aggregate information, to provide shared backup. We show the optimality of pair selected because of joint optimization of the pair paths. The shareable capacity factor is introduced to establish the effect of load balancing on resources. We compared our simulation results with that of separate protection at connection and showed improvement on resource utilization performance of the network. We also study the blocking probability of proposed scheme.

  13. Wavelengths and energy levels of Xe VII and Xe VIII obtained by collision-based spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M.O. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Gonzalez, A.M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain). Inst. de Investigacion Basica; Hallin, R. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Heijkenskjoeld, F. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Hutton, R. [Lund Univ. (Sweden). Dept. of Physics; Langereis, A. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Nystroem, B. [Lund Univ. (Sweden). Dept. of Physics; O`Sullivan, G. [University Coll., Dublin (Ireland). Dept. of Physics; Waennstroem, A. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics

    1995-01-01

    The Xe VII and Xe VIII spectra have been investigated by collision-based spectroscopy. The radiation emitted following electron capture by 10q keV Xe{sup q+} ions (q = 6-8) impinging on a He (Ar) gas target has, with some exceptions, been recorded in the 350-8000 (1200-2500) A wavelength region. The xenon ions were provided by the Uppsala University ECR ion source. Many of the observed, previously unreported spectral lines have been identified. In total, nine new energy levels of Xe VII and Xe VIII have been established, of which two are tentative. The analysis was supported by Hartree-Fock calculations. (orig.).

  14. Wavelength-Dependence on the Initiation of Iron-Based Photoactive Explosives

    Science.gov (United States)

    Brown, Kathryn; Myers, Thomas; Clarke, Steven

    2017-06-01

    Photoactive explosives show promise to be relatively insensitive to impact and friction compared to PETN and other detonator materials, but can be more easily initiated with laser light. Metal-ligand charge transfer (MLCT) complexes have been shown to have tunable explosive properties and absorption profiles, making them strong candidates for laser detonator material. Here, we discuss the synthesis and characterization of several iron-based MLCT complexes, as well as results from recent experiments on their sensitivity to initiation from different wavelengths of laser light.

  15. Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range

    Science.gov (United States)

    Kita, Tomohiro; Yamamoto, Naokatsu; Matsumoto, Atsushi; Kawanishi, Tetsuya; Yamada, Hirohito

    2016-04-01

    A heterogeneous wavelength-tunable laser diode combining quantum dot and silicon photonics technologies is proposed. A compact wavelength-tunable filter with two ring resonators was carefully designed and fabricated using silicon photonics technology. The tunable laser combining the wavelength-tunable filter and an optical amplifier, which includes InAs quantum dots, achieved a 44.0 nm wavelength-tuning range at around 1250 nm. The broadband optical gain of the quantum dot optical amplifier was effectively used by the optimized wavelength-tunable filter. This heterogeneous wavelength-tunable laser diode could become a breakthrough technology for high-capacity data transmission systems.

  16. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    Science.gov (United States)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  17. Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers

    National Research Council Canada - National Science Library

    Ritter, Kerstin; Schumacher, Julia; Weygandt, Martin; Buchert, Ralph; Allefeld, Carsten; Haynes, John-Dylan

    2015-01-01

    ...) conversion based on extensive multimodal data with varying degrees of missing values. Based on Alzheimer's Disease Neuroimaging Initiative data from MCI-patients including all available modalities, we predicted the conversion to AD within 3 years...

  18. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide.

    Science.gov (United States)

    Bock, Matthias; Lenhard, Andreas; Chunnilall, Christopher; Becher, Christoph

    2016-10-17

    We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10-6 - which is to our knowledge among the highest conversion efficiencies reported so far - and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.

  19. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics

    Science.gov (United States)

    Zhuang, Q. D.; Alradhi, H.; Jin, Z. M.; Chen, X. R.; Shao, J.; Chen, X.; Sanchez, Ana M.; Cao, Y. C.; Liu, J. Y.; Yates, P.; Durose, K.; Jin, C. J.

    2017-03-01

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  20. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics.

    Science.gov (United States)

    Zhuang, Q D; Alradhi, H; Jin, Z M; Chen, X R; Shao, J; Chen, X; Sanchez, Ana M; Cao, Y C; Liu, J Y; Yates, P; Durose, K; Jin, C J

    2017-03-10

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  1. Demonstration of 1×32 LCOS-based wavelength selective switch

    Science.gov (United States)

    Chen, Ying; Chen, Xiao; Gao, Yunshu; Tian, Miao; Chen, Ran; Wang, Shan; Chen, Genxiang; Wang, Yiquan

    2015-08-01

    In recent years, reconfigurable optical add drop multiplexers (ROADM) and multiple-dimensions optical cross-connection (OXC), as the essential devices of next-generation dynamic optical networks, have been attracted great interests by research institutions and relevant industry. 1×N Wavelength selective switches (WSSs) are one of the key components in current and next generation ROADM. Currently, WSS primarily rely on micro-electromechanical systems (MEMS) and liquid crystal on silicon spatial light modulators (LCOS-SLM) switches. LCOS-based WSSs have several advantages, including flexible spectrum coverage, adaptive alignment, and robustness. Based on a novel 2-f optical structure, we therefore propose 1×32 WSS system including a 1×32 fiber-coupling lenslet arrays, a collimating lens, a transmission grating, a cylindrical lens and a LCOS-SLM. By uploading the optimized phased holograms on the LCOS, we have successfully switched input signal with arbitrary wavelength in C-band into any output port. The output channel spacing can be adjusted flexibly and each port switches independently. Experimental results demonstrate the insertion loss is around 5~10dB and the switch crosstalk at 1550nm is -35dB. The 3dB-bandwidth of signal@100G is 40G.The research has established the theory and experiment foundation for the development of M×N WSS in future.

  2. Surface roughness prediction model and experimental results based on multi-wavelength fiber optic sensors.

    Science.gov (United States)

    Zhu, Nan-Nan; Zhang, Jun

    2016-10-31

    The surface roughness prediction model based on a support vector machine was proposed and the multi-wavelength fiber optic sensor was established. The specimens with different surface roughness selected as the test samples were analyzed by using the prediction model when the incident wavelengths were 650 nm and 1310 nm, respectively. The working distance of 2.5 mm ~3.5 mm was chosen as the optimum measurement distance. The experimental results indicate that the error range of surface roughness is 0.74% ~7.56% at 650 nm, and the error range of surface roughness is 1.03% ~5.92% at 1310 nm. The average relative error is about 2.669% at 650 nm, while it is about 2.431% at 1310 nm. The error of roughness measurement is less than 3% by using the model, which is acceptable. The error of surface roughness based on the prediction model is smaller than that by using the characteristic curves between surface roughness and the scattering intensity ratio.

  3. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  4. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  5. Experimental demonstration of the OQAM-OFDM-based wavelength stacked passive optical networks

    Science.gov (United States)

    Bi, Meihua; Zhang, Lu; Liu, Ling; Yang, Guowei; Zeng, Ran; Xiao, Shilin; Li, Zhengxuan; Song, Yingxiong

    2017-07-01

    We demonstrate a wavelength stacked passive optical network (PON) with offset quadrature amplitude modulation based orthogonal frequency division multiplexing (OQAM-OFDM), which can provide 100-km single mode fiber (SMF) transmission without any inline repeater amplifier for both downlink and uplink. By experiment, we verify the feasibility of this proposed PON system for bi-directional long distance transmission especially for asynchronous upstream. Experimental result shows that, negligible power penalty is achieved even with 100-km SMF transmission, and 3.6-dB sensitivity improvement is obtained when compared to OFDM-based asynchronous system. Besides, the performance in terms of side-lode suppression and peak to average power ratio (PAPR) are also contrastively analyzed between OFDM and OQAM-OFDM-based PON system.

  6. On-chip wavelength switch based on thermally tunable discrete four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Hu, Hao

    2014-01-01

    An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances.......An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances....

  7. Graphene Paper Based Nanomaterials for Electrochemical Sensing and Energy Conversion

    DEFF Research Database (Denmark)

    Zhang, Minwei

    of graphene-based materials to real world, graphene nanosheets must be assembled into macroscopic architecture with desired structures and functionality. To this end, graphene oxide (GO) is a very useful building block because it contains a significant number of oxygen-containing groups on the planar surface...... of heat and electricity,large specific surface area, and high mechanical strength. Therefore, graphene based materials are expected to have great potential for use in the fields of sensors, catalysis, and as electrode materials for energy storage and conversion. In order to link practical applications...... of functional materials with specific desired functionality. The advantages of light-weight, high flexibility, large specific surface area, tough mechanical strength, and high electrical conductivity ensure graphene-based architectures holding a wide range of applications particularly associated with sensor...

  8. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...

  9. An Effective Conversation-Based Botnet Detection Method

    Directory of Open Access Journals (Sweden)

    Ruidong Chen

    2017-01-01

    Full Text Available A botnet is one of the most grievous threats to network security since it can evolve into many attacks, such as Denial-of-Service (DoS, spam, and phishing. However, current detection methods are inefficient to identify unknown botnet. The high-speed network environment makes botnet detection more difficult. To solve these problems, we improve the progress of packet processing technologies such as New Application Programming Interface (NAPI and zero copy and propose an efficient quasi-real-time intrusion detection system. Our work detects botnet using supervised machine learning approach under the high-speed network environment. Our contributions are summarized as follows: (1 Build a detection framework using PF_RING for sniffing and processing network traces to extract flow features dynamically. (2 Use random forest model to extract promising conversation features. (3 Analyze the performance of different classification algorithms. The proposed method is demonstrated by well-known CTU13 dataset and nonmalicious applications. The experimental results show our conversation-based detection approach can identify botnet with higher accuracy and lower false positive rate than flow-based approach.

  10. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    Science.gov (United States)

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying

  11. Characterization and optimization of a high-efficiency AlGaAs-On-Insulator-based wavelength converter for 64- and 256-QAM signals

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Yankov, Metodi Plamenov; Porto da Silva, Edson

    2017-01-01

    In this paper, we demonstrate wavelength conversion of advanced modulation formats such as 10-GBd 64-QAM and 256-QAM with high conversion efficiency over a 29-nm spectral window by using four-wave mixing in an AlGaAs-On-Insulator (AlGaAsOI) nano-waveguide. A thorough characterization...... of the wavelength converter is reported, including the optimization of the AlGaAsOI nano-waveguide in terms of conversion efficiency and associated bandwidth and the analysis of the impact of the converter pump quality and power as well as the signal input power. The optimized converter enables generating idlers...

  12. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America.......Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz....... An output power of 1:54W is achieved with a frequency difference of 0:86 THz, the output power is higher than 1:3W in the 5:0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. To our knowledge...

  13. Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    Sub-wavelength resonances known to exist in isolated metamaterial-based structures of circular cylindrical shape are investigated with the purpose of determining whether the individual resonances are retained when several of such resonant structures are grouped to form a new structure. To this end......, structures consisting of 1, 2 and 4 sets of metamaterial-based concentric cylinders excited by an electric line current are analyzed numerically. It is demonstrated that these structures recover the resonances of the individual structures even when the cylinders are closely spaced and the new structure...... is thus electrically small. The investigation is conducted through a detailed analysis of the electric near-field distribution as well as the radiation resistance in those cases where the individual structures are made of simple dielectric materials in conjunction with simple, but lossy and dispersive...

  14. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing.

    Science.gov (United States)

    Perrotton, C; Javahiraly, N; Slaman, M; Dam, B; Meyrueis, P

    2011-11-07

    A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multilayer stack made of a Silver, a Silica and a Palladium layer. The spectral modulation of the light transmitted by the fiber allows to detect the presence of hydrogen in the environment. The sensor is only sensitive to the Transverse Magnetic polarized light and the Traverse Electric polarized light can be used therefore as a reference signal. A more reliable response is expected for the fiber SPR hydrogen sensor based on spectral modulation instead of on intensity modulation. The multilayer thickness defines the sensor performance. The silica thickness tunes the resonant wavelength, whereas the Silver and Palladium thickness determine the sensor sensitivity. In an optimal configuration (NA = 0.22, 100 μm core radius and transducer length = 1 cm), the resonant wavelength is shifted over 17.6 nm at a concentration of 4% Hydrogen in Argon for the case of the 35 nm Silver/ 100 nm Silica/ 3 nm palladium multilayer.

  15. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae

    Science.gov (United States)

    Jia, Fei; Kacira, Murat; Ogden, Kimberly L.

    2015-01-01

    A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640

  16. THE EFFECTIVE OF DIFFERENT EXCITATION WAVELENGTHS ON THE IDENTIFICATION OF PLANT SPECIES BASED ON FLUORESCENCE LIDAR

    Directory of Open Access Journals (Sweden)

    J. Yang

    2016-06-01

    Full Text Available Laser-induced fluorescence (LIF served as an active technology has been widely used in many field, and it is closely related to excitation wavelength (EW. The objective of this investigation is to discuss the performance of different EWs of LIF LiDAR in identifying plant species. In this study, the 355, 460 and 556 nm lasers were utilized to excite the leaf fluorescence and the fluorescence spectra were measured by using the LIF LiDAR system built in the laboratory. Subsequently, the principal component analysis (PCA with the help of support vector machine (SVM was utilized to analyse fluorescence spectra. For the three EWs, the overall identification rates of the six plant species were 80 %, 83.3 % and 90 %. Experimental results demonstrated that 556 nm excitation light source is superior to 355 and 460 nm for the classification of the plant species for the same genus in this study. Thus, an appropriate excitation wavelength should be considered when the LIF LiDAR was utilized in the field of remote sensing based on the LIF technology.

  17. A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source.

    Science.gov (United States)

    Kuyken, B; Leo, F; Mussot, A; Kudlinski, A; Roelkens, G

    2015-05-18

    We demonstrate a two-stage wavelength converter that uses compact near-infrared sources to amplify and convert short-wave infrared signals. The first stage consists of a photonic crystal fiber wavelength converter pumped by a Q-switched 1064 nm pump source, while the second stage consists of a silicon photonic wire waveguide wavelength converter. The system enables on-chip amplification and conversion of up to 30 dB . We demonstrate amplification in a broad wavelength range around 2344 nm using temporally long pulses (>300ps).

  18. A temperature sensor based on switchable dual-wavelength fiber Bragg grating laser with a semiconductor saturable absorber mirror

    Science.gov (United States)

    Li, Qi; Huang, Kai-qiang; Chen, Hai-yan

    2015-11-01

    A temperature sensor based on a switchable dual-wavelength fiber Bragg grating (FBG) laser with a semiconductor saturable absorber mirror (SESAM) is presented and demonstrated experimentally. The repetition rate of Q-switched pulses is ~17 kHz. The results demonstrate that the measured temperature has good linearity to the wavelength spacing of the two lasing wavelengths and has a temperature sensitivity of 21 pm/ºC covering a range of -10—22 °C. The experimental results prove the feasibility of the proposed temperature sensor.

  19. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    Science.gov (United States)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  1. Noctilucent Cloud Particle Size Determination based on Multi-Wavelength All-Sky Analysis

    CERN Document Server

    Ugolnikov, Oleg S; Pilgaev, Sergey V; Roldugin, Alexey V

    2016-01-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0 deg N, 35.1 deg E) during the bright expanded NLC performance in the night of August 12, 2016. Insignificant changes in the NLC color across the sky are interpreted as the atmospheric extinction effect combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective radius of particles about 56 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles and lognormal distribution of the particle size are also considered.

  2. Wavelengths and energy levels of Xe V and Xe VI obtained by collision-based spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M.O. [Uppsala Univ. (Sweden). Dept. of Phys.; Gonzalez, A.M. [CIEMAT, Madrid (Spain). Investigacion Basica; Hallin, R. [Uppsala Univ. (Sweden). Dept. of Phys.; Heijkenskjoeld, F. [Uppsala Univ. (Sweden). Dept. of Phys.; Nystroem, B. [Lund Univ. (Sweden). Dept. of Physics; O`Sullivan, G. [University Coll., Dublin (Ireland). Dept. of Physics; Weber, C. [Uppsala Univ. (Sweden). Dept. of Phys.; Waennstroem, A. [Uppsala Univ. (Sweden). Dept. of Phys.

    1996-03-01

    We have utilized collision-based spectroscopy to investigate the spectra of Xe V and Xe VI. The radiation emitted following electron capture by 50 keV Xe{sup 5+} and 60 keV Xe{sup 6+} ions impinging on a He (Ar) gas target has been recorded in the 350-6000 (1200-2500) A wavelength region. A number of new energy levels of Xe V and Xe VI have been established from lines identified by us. In particular, we have observed and identified transitions from the 5s{sup 2}5p4f (5s{sup 2}4f) configuration of Xe V (Xe VI). The analysis was supported by Hartree-Fock calculations. (orig.).

  3. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  4. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    Science.gov (United States)

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  5. New Petrochemical Processes Based on Direct Conversion of Methane

    Directory of Open Access Journals (Sweden)

    Faraguna F.

    2015-01-01

    Full Text Available Petrochemistry is a branch of chemistry and chemical engineering that studies reactions and processes of the transformation of petroleum derivatives and natural gas into useful petrochemicals. In its beginning, petrochemistry, or rather the organic chemical industry, was based on the acetylene and Reppe chemistry. The main raw materials of the petrochemical industry nowadays are olefins and aromatic hydrocarbons, with a pronounced tendency toward development of new processes and higher usage of syngas, methane and other alkanes. Here, the reactions and new processes of direct conversion of methane into more valuable petrochemicals are reviewed. Reactions of partial oxidation of methane, dehydroaromatization of methane, oxidative and non-oxidative coupling of methane to higher hydrocarbons are also described and discussed.

  6. A GIS-based Model for Natural Gas Data Conversion

    Science.gov (United States)

    Bitik, E.; Seker, D. Z.; Denli, H. H.

    2014-12-01

    In Turkey gas utility sector has undergone major changes in terms of increased competition between gas providers, efforts in improving services, and applying new technological solutions. This paper discusses the challenges met by gas companies to switch from long workflows of gas distribution, sales and maintenance into IT driven efficient management of complex information both spatially and non-spatially. The aim of this study is migration of all gas data and information into a GIS environment in order to manage and operate all infrastructure investments with a Utility Management System. All data conversion model for migration was designed and tested during the study. A flowchart is formed to transfer the old data layers to the new structure based on geodatabase.

  7. Implementation of wavelength selector based on electro-optic effect in Mach-Zehnder interferometers for high speed communications

    Science.gov (United States)

    Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Sharma, Divya

    2015-09-01

    The design of 4×1 and 8×1 wavelength selectors have been presented with complete functionality and configuration, which can be used as DWDM components in optical networks. The proposed optical logic unit is based on electro-optic effect in Mach-Zehnder interferometer (MZI). The Mach-Zehnder interferometer (MZI) structures collectively show the powerful capability in switching an input optical signal to a desired output port from a collection of output ports. A strategy for optical wavelength switching has been shown by constructing a design of wavelength selector using MZIs. The paper constitutes the mathematical description of proposed device and thereafter the wavelength switching behavior is analyzed using beam propagation method (BPM). The results are also verified with the help of MATLAB simulations and truth table.

  8. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers.

    Science.gov (United States)

    Jiang, Xinhong; Wu, Jiayang; Yang, Yuxing; Pan, Ting; Mao, Junming; Liu, Boyu; Liu, Ruili; Zhang, Yong; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2016-02-08

    We propose and experimentally demonstrate a wavelength and bandwidth-tunable comb filter based on silicon Sagnac loop mirrors (SLMs) with Mach-Zehnder interferometer (MZI) couplers. By thermally tuning the MZI couplers in common and differential modes, the phase shift and reflectivity of the SLMs can be changed, respectively, leading to tunable wavelength and bandwidth of the comb filter. The fabricated comb filter has 93 comb lines in the wavelength range from 1535 nm to 1565 nm spaced by ~0.322 nm. The central wavelength can be red-shifted by ~0.462 nm with a tuning efficiency of ~0.019 nm/mW. A continuously tunable bandwidth from 5.88 GHz to 24.89 GHz is also achieved with a differential heating power ranging from 0.00 mW to 0.53 mW.

  9. Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPO

    Science.gov (United States)

    Mei, Jialin; Zhong, Kai; Wang, Maorong; Liu, Pengxiang; Xu, Degang; Wang, Yuye; Shi, Wei; Yao, Jianquan; Norwood, Robert A.; Peyghambarian, Nasser

    2016-11-01

    A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 μm with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 μm to 2.191 μm with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 μm) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 μW and DFG conversion efficiency of 4.32×10-7. The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 μW and 5.86×10-7 respectively. This provides a potential practical palm-top tunable THz sources for portable applications.

  10. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...... knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths...

  11. Computer-Assisted English Learning System Based on Free Conversation by Topic

    Science.gov (United States)

    Choi, Sung-Kwon; Kwon, Oh-Woog; Kim, Young-Kil

    2017-01-01

    This paper aims to describe a computer-assisted English learning system using chatbots and dialogue systems, which allow free conversation outside the topic without limiting the learner's flow of conversation. The evaluation was conducted by 20 experimenters. The performance of the system based on a free conversation by topic was measured by the…

  12. High performance fiber optic sensor based on self referenced FBGs and high-speed dual-wavelength pulse coding

    Science.gov (United States)

    Zaidi, Farhan; Nannipieri, Tiziano; Di Pasquale, Fabrizio

    2015-07-01

    We propose and experimentally demonstrate the feasibility of a highly efficient FBG-based quasi-distributed sensing system employing dual-wavelength cyclic pulse coding. Significant improvement in the measurement range, resolution and TDM multiplexing capabilities can be achieved, as well as crosstalk reduction with respect to a single wavelength TDM-based FBG interrogation scheme. The mechanism of noise reduction by quasi-periodic cyclic coding is experimentally demonstrated, pointing out significant improvement in accuracy with respect to dual-wavelength single pulse TDM-based FBG interrogation. The proposed technique can also enhance the sensing range of hybrid fiber optic sensor systems in which continuous monitoring of distributed and discrete points are simultaneously measured over the same sensing fiber.

  13. Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cations

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2013-04-01

    Full Text Available In traditional spectrophotometric determination of stability constants of complexation, it is necessary to find a wavelength at which only one of the components has absorbance without any spectroscopic interference of the other reaction components. In the present work, a simple multi-wavelength model-based method has been developed to determine stability constants for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components are extracted using multi-wavelength model based method. In the present work spectrophotometric titration of several cationic metal ions with new synthetic ligand were studied in order to calculate the formation constant(s. In order to estimate the formation constants a chemometrics method, model based analysis was applied.

  14. Wavelength selection in measuring red blood cell aggregation based on light transmittance

    Science.gov (United States)

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J.; Baskurt, Oguz K.

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  15. Predicting Social Anxiety Treatment Outcome Based on Therapeutic Email Conversations.

    Science.gov (United States)

    Hoogendoorn, Mark; Berger, Thomas; Schulz, Ava; Stolz, Timo; Szolovits, Peter

    2017-09-01

    Predicting therapeutic outcome in the mental health domain is of utmost importance to enable therapists to provide the most effective treatment to a patient. Using information from the writings of a patient can potentially be a valuable source of information, especially now that more and more treatments involve computer-based exercises or electronic conversations between patient and therapist. In this paper, we study predictive modeling using writings of patients under treatment for a social anxiety disorder. We extract a wealth of information from the text written by patients including their usage of words, the topics they talk about, the sentiment of the messages, and the style of writing. In addition, we study trends over time with respect to those measures. We then apply machine learning algorithms to generate the predictive models. Based on a dataset of 69 patients, we are able to show that we can predict therapy outcome with an area under the curve of 0.83 halfway through the therapy and with a precision of 0.78 when using the full data (i.e., the entire treatment period). Due to the limited number of participants, it is hard to generalize the results, but they do show great potential in this type of information.

  16. Cascadability improvement of a Cross-gain modulation wavelength converter using a grating based oiptical add/drop multiplexer

    DEFF Research Database (Denmark)

    Xueyan, Zheng; Liu, Fenghai

    2000-01-01

    By adding a grating based optical add/drop multiplexer, the maximum cascaded number of a cross-gain modulation based wavelength converter is improved from two to six rounds in a loop experiment at 10 Gb/s due to the improved high frequency response of the converter....

  17. Laser system with wavelength converter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode...... laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first...... wavelength interval. Further, the invention relates to a method of optically pumping a target laser (14) in a laser system, the laser system comprising a laser source providing radiation at a first frequency, the laser source being optically connected to an input of a frequency converter, the frequency...

  18. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  19. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    Science.gov (United States)

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  20. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Rasoulzadeh Zali, Aref; Chung, Il-Sug

    2017-01-01

    We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelen......We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered...

  1. Wavelength locking of silicon photonics multiplexer for DML-based WDM transmitter

    OpenAIRE

    Grillanda, Stefano; Ji, Ruiqiang; Morichetti, Francesco; Carminati, Marco; Ferrari, Giorgio; Guglielmi, Emanuele; Peserico, Nicola; Annoni, Andrea; Dede, Alberto; Nicolato, Danilo; Vannucci, Antonello; Klitis, Charalambos; Holmes, Barry; Sorel, Marc; Fu, Shengmeng

    2017-01-01

    We present a wavelength locking platform enabling the feedback control of silicon (Si) microring resonators (MRRs) for the realization of a 4 × 10 Gb/s wavelength-division-multiplexing (WDM) transmitter. Four thermally tunable Si MRRs are employed to multiplex the signals generated by four directly modulated lasers (DMLs) operating in the L-band, as well as to improve the quality of the DMLs signals. Feedback control is achieved through a field-programmable gate array controller by monitoring...

  2. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum.

    Science.gov (United States)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-15

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quality Enhancement of Compressed Audio Based on Statistical Conversion

    Directory of Open Access Journals (Sweden)

    Chris Kyriakakis

    2008-07-01

    Full Text Available Most audio compression formats are based on the idea of low bit rate transparent encoding. As these types of audio signals are starting to migrate from portable players with inexpensive headphones to higher quality home audio systems, it is becoming evident that higher bit rates may be required to maintain transparency. We propose a novel method that enhances low bit rate encoded audio segments by applying multiband audio resynthesis methods in a postprocessing stage. Our algorithm employs the highly flexible Generalized Gaussian mixture model which offers a more accurate representation of audio features than the Gaussian mixture model. A novel residual conversion technique is applied which proves to significantly improve the enhancement performance without excessive overhead. In addition, both cepstral and residual errors are dramatically decreased by a feature-alignment scheme that employs a sorting transformation. Some improvements regarding the quantization step are also described that enable us to further reduce the algorithm overhead. Signal enhancement examples are presented and the results show that the overhead size incurred by the algorithm is a fraction of the uncompressed signal size. Our results show that the resulting audio quality is comparable to that of a standard perceptual codec operating at approximately the same bit rate.

  4. Quality Enhancement of Compressed Audio Based on Statistical Conversion

    Directory of Open Access Journals (Sweden)

    Mouchtaris Athanasios

    2008-01-01

    Full Text Available Most audio compression formats are based on the idea of low bit rate transparent encoding. As these types of audio signals are starting to migrate from portable players with inexpensive headphones to higher quality home audio systems, it is becoming evident that higher bit rates may be required to maintain transparency. We propose a novel method that enhances low bit rate encoded audio segments by applying multiband audio resynthesis methods in a postprocessing stage. Our algorithm employs the highly flexible Generalized Gaussian mixture model which offers a more accurate representation of audio features than the Gaussian mixture model. A novel residual conversion technique is applied which proves to significantly improve the enhancement performance without excessive overhead. In addition, both cepstral and residual errors are dramatically decreased by a feature-alignment scheme that employs a sorting transformation. Some improvements regarding the quantization step are also described that enable us to further reduce the algorithm overhead. Signal enhancement examples are presented and the results show that the overhead size incurred by the algorithm is a fraction of the uncompressed signal size. Our results show that the resulting audio quality is comparable to that of a standard perceptual codec operating at approximately the same bit rate.

  5. Sensitive Wavelengths Selection in Identification of Ophiopogon japonicus Based on Near-Infrared Hyperspectral Imaging Technology.

    Science.gov (United States)

    Xia, Zhengyan; Zhang, Chu; Weng, Haiyong; Nie, Pengcheng; He, Yong

    2017-01-01

    Hyperspectral imaging (HSI) technology has increasingly been applied as an analytical tool in fields of agricultural, food, and Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables) that contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy. In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA), loading weights (LW), regression coefficients (RC), uninformative variable elimination (UVE), UVE-SPA, competitive adaptive reweighted sampling (CARS), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), and genetic algorithms (GA-PLS). One linear technique (partial least squares-discriminant analysis) was established for the evaluation of identification. And a nonlinear calibration model, support vector machine (SVM), was also provided for comparison. The results indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles in the multivariate analysis, which can be used for subsequent modeling analysis.

  6. Space-based aperture array for ultra-long wavelength radio astronomy

    Science.gov (United States)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the

  7. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    Science.gov (United States)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  8. All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared.

    Science.gov (United States)

    Büchter, Kai-Daniel F; Herrmann, Harald; Langrock, Carsten; Fejer, Martin M; Sohler, Wolfgang

    2009-02-15

    Data-format-independent all-optical transmitter and receiver modules for free-space optical communications in the 3.8 mum region have been developed, essentially consisting of Ti-indiffused, periodically poled LiNbO(3) waveguides. Using these modules, conversion of C-band radiation to/from the mid-infrared (MIR) via difference-frequency generation was demonstrated. More than 10 mW of MIR power could be generated with the transmitter unit; the internal low-power conversion efficiency was 69%/W. A free-space MIR link was set up with a -41 dB fiber-to-fiber loss; only -15 dB are due to the parametric processes.

  9. Wavelength filtering characteristics of Solc filter based on Ti:PPLN channel waveguide.

    Science.gov (United States)

    Lee, Y L; Yu, N E; Kee, C-S; Ko, D-K; Lee, J; Yu, B-A; Shin, W; Eom, T J; Noh, Y-C

    2007-10-01

    We have analyzed the Solc filtering characteristics in a periodically poled Ti:LiNbO3 (Ti:PPLN) multimode waveguide. The single- and dual-wavelength filtering were achieved under the optimized guiding condition for the TEM(00)-like mode and two mode (TEM(00)- and TEM(01)-like mode), respectively. The full width at half-maximum of the filter was about 0.21 nm at both guiding conditions. We found that the origin of two peaks of the dual-wavelength Solc filter in the two-mode guiding condition is the different effective refractive index between the TEM(00)- and TEM(01)-like modes. The wavelength difference of two peaks is about 0.8 nm at room temperature.

  10. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    Science.gov (United States)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  11. Long-Wavelength Beam Steerer Based on a Micro-Electromechanical Mirror.

    Science.gov (United States)

    Kos, Anthony B; Gerecht, Eyal

    2013-01-01

    Commercially available mirrors for scanning long-wavelength beams are too large for high-speed imaging. There is a need for a smaller, more agile pointing apparatus to provide images in seconds, not minutes or hours. A fast long-wavelength beam steerer uses a commercial micro-electro-mechanical system (MEMS) mirror controlled by a high-performance digital signal processor (DSP). The DSP allows high-speed raster scanning of the incident radiation, which is focused to a small waist onto the 9mm(2), gold-coated, MEMS mirror surface, while simultaneously acquiring an undistorted, high spatial-resolution image of an object. The beam steerer hardware, software and performance are described. The system can also serve as a miniaturized, high-performance long-wavelength beam chopper for lock-in detection.

  12. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths.

    Science.gov (United States)

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-04-03

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8-1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas.

  13. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    Science.gov (United States)

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-04-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8-1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas.

  14. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  15. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    wavelengths, each of them carrying two channels with zero and nonzero OAMs, form four independent information channels. In case of spacing between wavelength channels of 0.8 nm and intensity modulation, power penalties relative to the transmission of one channel do not exceed 1.45, 0.79 and 0.46 d......B at the harddecision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10□3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  16. Impact of tunable laser wavelength drift in a base-band and sub-carrier multiplexed system

    Science.gov (United States)

    Connolly, E.; Kaszubowska-Anandarajah, A.; Perry, P.; Barry, L. P.

    2008-08-01

    The potential use of very densely spaced wavelengths in FTTx systems to carry modest bit rate broadband connections can be implemented either with conventional base-band (BB) intensity modulation or using sub-carrier multiplexing (SCM) using Radio carriers. Such systems will typically use a long time frame time-sharing system to share a transmitting laser between a number of users. The impact of the adjacent channel interference due to wavelength drift of a tunable laser (TL) in such a system has been characterised for both the BB and SCM approaches. In the experiments described, a laser operating on a fixed wavelength represents the desired channel and an interferer is produced by using a TL that switches periodically between two other channels, one of which is adjacent to the desired channel. Although the TL output is blanked during the main switching transient, some wavelength drift occurs after the end of the blanking period which can cause interference to the adjacent channel. The BER measurements on the desired channel show that SCM is more resistant to this interference, allowing for closer channel spacing. For the TL tested, the BB data shows an error floor >1e-4 while the SCM data gave error free performance with a power penalty of ˜1.2 dB at 1e-9 in comparison to the back-to-back case.

  17. A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser

    Science.gov (United States)

    Li, Xin-yang; Cao, Ye; Xu, Dong; Tong, Zheng-rong; Yang, Jing-peng

    2017-07-01

    A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to control the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization controller (PC), different numbers of taps are got, such as 6, 8, 10 and 12. And the wavelength spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously tuned in the whole free spectral range ( FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.

  18. Adaptive Training for Voice Conversion Based on Eigenvoices

    Science.gov (United States)

    Ohtani, Yamato; Toda, Tomoki; Saruwatari, Hiroshi; Shikano, Kiyohiro

    In this paper, we describe a novel model training method for one-to-many eigenvoice conversion (EVC). One-to-many EVC is a technique for converting a specific source speaker's voice into an arbitrary target speaker's voice. An eigenvoice Gaussian mixture model (EV-GMM) is trained in advance using multiple parallel data sets consisting of utterance-pairs of the source speaker and many pre-stored target speakers. The EV-GMM can be adapted to new target speakers using only a few of their arbitrary utterances by estimating a small number of adaptive parameters. In the adaptation process, several parameters of the EV-GMM to be fixed for different target speakers strongly affect the conversion performance of the adapted model. In order to improve the conversion performance in one-to-many EVC, we propose an adaptive training method of the EV-GMM. In the proposed training method, both the fixed parameters and the adaptive parameters are optimized by maximizing a total likelihood function of the EV-GMMs adapted to individual pre-stored target speakers. We conducted objective and subjective evaluations to demonstrate the effectiveness of the proposed training method. The experimental results show that the proposed adaptive training yields significant quality improvements in the converted speech.

  19. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  20. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    Science.gov (United States)

    Taghizadeh, Alireza; Zali, Aref Rasoulzadeh; Chung, Il-Sug; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelength grating structure topped with a silicide layer of nanometers thickness as an absorbing material. It is shown that a nearly-perfect light absorption is possible for the thin silicide layer by its integration to the grating resonator. The absorption is shown to be maximized when the critical coupling condition is satisfied. Simulations show that the external quantum efficiency of the proposed photodetector with a 2-nm-thick PtSi absorbing layer at the center wavelength of 1550 nm can reach up to ˜60%.

  1. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter.

    Science.gov (United States)

    Zhang, Haiwei; Lu, Ying; Duan, Liangcheng; Zhao, Zhiqiang; Shi, Wei; Yao, Jianquan

    2014-10-06

    We report the system design and experimental verification of an intracavity absorption multiplexed sensor network with hollow core photonic crystal fiber (HCPCF) sensors and dense wavelength division multiplexing (DWDM) filters. Compared with fiber Bragg grating (FBG), it is easier for the DWDM to accomplish a stable output. We realize the concentration detection of three gas cells filled with acetylene. The sensitivity is up to 100 ppmV at 1536.71 nm. Voltage gradient is firstly used to optimize the intracavity sensor network enhancing the detection efficiency up to 6.5 times. To the best of our knowledge, DWDM is firstly used as a wavelength division multiplexing device to realize intracavity absorption multiplexed sensor network. It make it possible to realize high capacity intracavity sensor network via multiplexed technique.

  2. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shulin [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Wang, Guo Ping, E-mail: gpwang@szu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2015-01-14

    In this paper, we present a kind of periodical ternary parity-time (PT) -symmetric multilayers to realize nearly 100% reflectance and transmittance simultaneously when light is incident from a certain direction. This extraordinary reflection and transmission is original from unidirectional Bragg reflection of PT-symmetric systems as the symmetry spontaneous breaking happens at PT thresholds. The extra energy involved in reflection and transmission lights is obtained from pumping light to the gain regions of the structure. Moreover, we find that our PT-symmetric structure shows direction dependent wavelength selectivity. When the illumination light is incident from two opposite directions into the multilayer structure, such extraordinary reflection and transmission appear at visible and near-infrared wavelengths, respectively. Such distinguishing properties may provide these structures with attractive applications as beam splitters, laser mirrors, narrow band filters, and multiband PT-symmetric optical devices.

  3. [Optimization analysis based on wavelength bandwidth for multi-band pyrometry].

    Science.gov (United States)

    Fu, Tai-ran; Cheng, Xiao-fang; Fan, Xue-liang; Ding, Jin-lei

    2005-10-01

    The present paper establishes the optimization criteria for achieving the optimum measurements in three-band pyrometry under the assumption of linear emissivity model and the sensor design with Gaussian distribution. By varying the FWHM of Gaussian distribution, the optimization analysis is investigated with the choice of the wavelength bandwidth in three-band pyrometry. For specific cases, the simulation results present the optimum bandwidth distribution. Therefore, the discussions in this paper will provide significant theoretical instructions for the design of radiation pyrometer.

  4. Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    2006-01-01

    states of synchronization. A theoretical model based on rate equations, which has been developed in order to investigate optical performance of the laser system, is in a good agreement with the experimental results. The principle of synchronized Q-switching can lead to new, pulsed all-solid-state light......In this paper the results of a theoretical and experimental investigation of synchronized passive Q-switching of two Nd:YVO4-based solid-state lasers operating at two different wavelengths, is described. A V:YAG saturable absorbing material was used as a passive Q-switch performing...... the synchronization of the two laser fields. This material provides Q-switching operation at both 1064 and 1342 nm wavelengths simultaneously, saturating the same energy level. By adjusting the pump power of both lasers, it was possible to optimize the overlap of the two pulse trains and to switch between different...

  5. OTDM to WDM format conversion based on cascaded SHG/DFG in a single PPLN waveguide

    OpenAIRE

    Liu, S.; Lee, K. J.; Parmigiani, F.; Ibsen, M.; Petropoulos, P.; Richardson, D.J.; K Gallo

    2010-01-01

    We propose and experimentally demonstrate error-free OTDM to WDM format conversion based on cSHG/DFG within a 30mm-long PPLN waveguide and a time-to-frequency domain conversion approach, which relies upon switching a linearly chirped pulse.

  6. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion perfor...

  7. Up to 20 Gbit/s bit-rate transparent integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1996-01-01

    We present a compact and optimised multiquantum-well based, integrated all-active Michelson interferometer for 26 Gbit/s optical wavelength conversion. Bit-rate transparent operation is demonstrated with a conversion penalty well below 0.5 dB at bit-rates ranging from 622 Mbit/s to 20 Gbit/s....

  8. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy.

    Science.gov (United States)

    Lee, Won-Il; Shrivastava, Sajal; Duy, Le-Thai; Yeong Kim, Bo; Son, Young-Min; Lee, Nae-Eung

    2017-08-15

    The accuracy of a bioassay based on smartphone-integrated fluorescent biosensors has been limited due to the occurrence of false signals from non-specific reactions as well as a high background and low signal-to-noise ratios for complementary metal oxide semiconductor image sensors. To overcome this problem, we demonstrate dual-wavelength fluorescent detection of biomolecules with high accuracy. Fluorescent intensity can be quantified using dual wavelengths simultaneously, where one decreases and the other increases, as the target analytes bind to the split capture and detection aptamer probes. To do this, we performed smartphone imaging-based fluorescence microscopy using a microarray platform on a substrate with metal-enhanced fluorescence (MEF) using Ag film and Al2O3 nano-spacer. The results showed that the sensitivity and specificity of the dual-wavelength fluorescent quantitative assay for the target biomolecule 17-β-estradiol in water were significantly increased through the elimination of false signals. The detection limit was 1pg/mL and the area under the receiver operating characteristic curve of the proposed assay (0.922) was comparable to that of an enzyme-linked immunosorbent assay (0.956) from statistical accuracy tests using spiked wastewater samples. This novel method has great potential as an accurate point-of-care testing technology based on mobile platforms for clinical diagnostics and environmental monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Space-based solar power conversion and delivery systems study. Volume 4: Energy conversion systems studies

    Science.gov (United States)

    1977-01-01

    Solar cells and optical configurations for the SSPS were examined. In this task, three specific solar cell materials were examined: single crystal silicon, single crystal gallium arsenide, and polycrystalline cadmium sulfide. The comparison of the three different cells on the basis of a subsystem parametric cost per kW of SSPS-generated power at the terrestrial utility interface showed that gallium arsenide was the most promising solar cell material at high concentration ratios. The most promising solar cell material with no concentration, was dependent upon the particular combination of parameters representing cost, mass and performance that were chosen to represent each cell in this deterministic comparative analysis. The potential for mass production, based on the projections of the present state-of-the-art would tend to favor cadmium sulfide in lieu of single crystal silicon or gallium arsenide solar cells.

  10. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  11. Performance of conversion efficiency of a crystalline silicon solar cell with base doping density

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    Full Text Available In this study, we investigate theoretically the electrical parameters of a crystalline silicon solar cell in steady state. Based on a one-dimensional modeling of the cell, the short circuit current density, the open circuit voltage, the shunt and series resistances and the conversion efficiency are calculated, taking into account the base doping density. Either the I-V characteristic, series resistance, shunt resistance and conversion efficiency are determined and studied versus base doping density. The effects applied of base doping density on these parameters have been studied. The aim of this work is to show how short circuit current density, open circuit voltage and parasitic resistances are related to the base doping density and to exhibit the role played by those parasitic resistances on the conversion efficiency of the crystalline silicon solar. Keywords: Crystalline silicon solar cell, Base doping density, Series resistance, Shunt resistance, Conversion efficiency

  12. Compressed sampling and dictionary learning framework for wavelength-division-multiplexing-based distributed fiber sensing.

    Science.gov (United States)

    Weiss, Christian; Zoubir, Abdelhak M

    2017-05-01

    We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.

  13. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

    Science.gov (United States)

    Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-09-12

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.

  14. Compressed sampling and dictionary learning framework for wavelength-division-multiplexing-based distributed fiber sensing

    Science.gov (United States)

    Weiss, Christian; Zoubir, Abdelhak M.

    2017-05-01

    We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a pre-processing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.

  15. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  16. Radiation detector based on a matrix of crossed wavelength-shifting fibers

    Science.gov (United States)

    Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl; Xi, Wenze

    2017-04-11

    A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to prevent radiation cross-talk within the grid layer.

  17. A novel hybrid three-band transport system based on a DFB LD with multi-wavelength output characteristic

    Science.gov (United States)

    Lu, Hai-Han; Peng, Peng-Chun; Peng, Hsiang-Chun; Li, Chung-Yi; Su, Heng-Sheng

    2011-01-01

    A potentially cost-effective radio-over-fiber (ROF)/fiber-to-the-X (FTTX)/CATV hybrid three-band transport system based on direct modulation of a distributed feedback laser diode (DFB LD) with multi-wavelength output characteristic is proposed and experimentally demonstrated. Directly modulated radio-frequency (RF) (1.25Gbps/6GHz), externally remodulated baseband (BB) (622 Mbps), and externally remodulated CATV (channels 2-78) signals are successfully transmitted simultaneously. Over an 80-km single-mode fiber (SMF) transmission, low bit error rate (BER) and clear eye diagram were achieved for ROF and FTTX applications; and good performances of carrier-to-noise ratio (CNR), composite second-order (CSO) and composite triple beat (CTB) were obtained for CATV signals. Since our proposed systems use only a directly modulated DFB LD to achieve multi-wavelength transmission, it reveals an outstanding one with simpler and more economic advantages.

  18. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Granz, Christopher D.; Whitten, James E., E-mail: James-Whitten@uml.edu [Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Schindler, Bryan J. [Leidos, Inc., P.O. Box 68, Gunpowder, Maryland 21010 (United States); Peterson, Gregory W. [U.S. Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States)

    2016-03-15

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changes in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide.

  19. A global-scale model of aerosol backscatter at CO2 wavelengths for satellite-based lidar sensors

    Science.gov (United States)

    Bowdle, David A.

    1986-01-01

    The status of a global-scale model of background aerosol backscatter cross-sections at CO2 wavelengths is described. The model needs, strategy, concept, parameters, and capabilities are addressed, and the data base is discussed, concluding data selection, CO2 backscatter measurements, aerosol optical measurements, aerosol microphysical measurements, water vapor measurements, and data analysis. Strong evidence is reported for a 'universal' background tropospheric aerosol population. Typical background backscatter values at CO2 wavelengths appear to be about 3 x 10 to the -11th to 8 x 10 to the -11th/m/sr. Background signatures are evident in most aerosol data sets which have global-scale coverage in space or time.

  20. (LBA-and-WRM)-based DBA scheme for multi-wavelength upstream transmission supporting 10 Gbps and 1 Gbps in MAN

    Science.gov (United States)

    Zhang, Yuchao; Gan, Chaoqin; Gou, Kaiyu; Xu, Anni; Ma, Jiamin

    2018-01-01

    DBA scheme based on Load balance algorithm (LBA) and wavelength recycle mechanism (WRM) for multi-wavelength upstream transmission is proposed in this paper. According to 1 Gbps and 10 Gbps line rates, ONUs are grouped into different VPONs. To facilitate wavelength management, resource pool is proposed to record wavelength state. To realize quantitative analysis, a mathematical model describing metro-access network (MAN) environment is presented. To 10G-EPON upstream, load balance algorithm is designed to ensure load distribution fairness for 10G-OLTs. To 1G-EPON upstream, wavelength recycle mechanism is designed to share remained wavelengths. Finally, the effectiveness of the proposed scheme is demonstrated by simulation and analysis.

  1. Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror.

    Science.gov (United States)

    Liu, Shuo; Yan, Fengping; Feng, Ting; Wu, Beilei; Dong, Ze; Chang, Gee-Kung

    2014-08-20

    A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.

  2. Optical position sensor based on a digital wavelength-encoding grating ruler

    Science.gov (United States)

    Wang, Yu; Chen, Huoyao; Liu, Zhengkun; Hong, Yilin

    2016-10-01

    A wavelength-encoding optical position sensor was designed in this study. The critical component of the sensor is its innovative digital encoding grating ruler (DEGR), which is a substrate on which several blazed grating units with different line densities are arranged parallel to one another following a certain order. Two types of multi-DEGR were designed. We obtained over 100,000 codes that significantly assisted in designing long-range and high-resolution position sensors by optimizing the coding algorithm. The wavelength signals generated by the multi-DEGR were demodulated using concave grating and several photosensitive elements. A 100-mm multi-DEGR with 1000 codes was successfully fabricated using the combined methods of direct laser writing and holographic technology. We described the principle of the sensor in detail and established the entire sensor system. A bench test was conducted to test the signal response of the sensor. Bench test results exhibited 100% accuracy of the signal response of the optical sensor and an excellent temperature performance within -55°C and 75°C.

  3. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  4. OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Galili, Michael

    2012-01-01

    This paper reports on the utilization of the timedomain optical Fourier transformation (OFT) technique for serial-to-parallel conversion of optical time division multiplexed (OTDM) data tributaries into dense wavelength division multiplexed (DWDM) channels. The OFT is implemented by using...

  5. Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer

    Directory of Open Access Journals (Sweden)

    T. Müller

    2011-06-01

    Full Text Available Integrating nephelometers are instruments that directly measure a value close to the light scattering coefficient of airborne particles. Different models of nephelometers have been used for decades for monitoring and research applications. Now, a series of nephelometers (Ecotech models M9003, Aurora 1000 and Aurora 3000 with newly designed light sources based on light emitting diodes are available. This article reports on the design of these integrating nephelometers and a comparison of the Aurora 3000 to another commercial instrument (TSI model 3563 that uses an incandescent lamp. Both instruments are three-wavelength, total and backscatter integrating nephelometers.

    We present a characterization of the new light source design of the Aurora 3000 and provide parameterizations for its angular sensitivity functions. These parameterizations facilitate to correct for measurement artefacts using Mie-theory. Furthermore, correction factors are provided as a function of the Ångström exponent. Comparison measurements against the TSI 3563 with laboratory generated white particles and ambient air are also shown and discussed. Both instruments agree well within the calibration uncertainties and detection limit for total scattering with differences less than 5 %. Differences for backscattering are higher by up to 11 %. Highest differences were found for the longest wavelengths, where the signal to noise ratio is lowest. Differences at the blue and green wavelengths are less than 4 % and 3 %, respectively, for both total and backscattering.

  6. Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber.

    Science.gov (United States)

    Ahmad, H; Soltanian, M R K; Pua, C H; Alimadad, M; Harun, S W

    2014-06-01

    A Q-switched dual-wavelength fiber laser with narrow channel spacing is proposed and demonstrated. The fiber laser is built around a 3 m long erbium doped fiber as the gain medium and a 10 cm long photonic crystal fiber (PCF) as the element used to generate the dual-wavelength output. The PCF has a solid core approximately 4.37 μm in diameter and is surrounded by microscopic air-holes with a diameter of about 5.06 μm each as well as a zero-dispersion wavelength of about 980 nm. A graphene oxide based saturable absorber is used to generate the desired pulsed output. At the maximum pump power of 72 mW the laser is capable of generating pulses with a repetition rate and pulse-width of 31.0 kHz and 7.0 μs, respectively, as well as an average output power and pulse energy of 0.086 mW and 2.8 nJ, respectively. The proposed fiber laser has substantial potential for use in applications that require longer duration pulsed outputs such as in range finding and terahertz radiation generation.

  7. [Selection of Characteristic Wavelengths Using SPA and Qualitative Discrimination of Mildew Degree of Corn Kernels Based on SVM].

    Science.gov (United States)

    Yuan, Ying; Wang, Wei; Chu, Xuan; Xi, Ming-jie

    2016-01-01

    The feasibility of Fourier transform near infrared (FT-NIR) spectroscopy with spectral range between 833 and 2 500 nm to detect the moldy corn kernels with different levels of mildew was verified in this paper. Firstly, to avoid the influence of noise, moving average smoothing was used for spectral data preprocessing after four common pretreatment methods were compared. Then to improve the prediction performance of the model, SPXY (sample set partitioning based on joint x-y distance) was selected and used for sample set partition. Furthermore, in order to reduce the dimensions of the original spectral data, successive projection algorithm (SPA) was adopted and ultimately 7 characteristic wavelengths were extracted, the characteristic wave-lengths were 833, 927, 1 208, 1 337, 1 454, 1 861, 2 280 nm. The experimental results showed when the spectrum data of the 7 characteristic wavelengths were taken as the input of SVM, the radial basic function (RBF) used as the kernel function, and kernel parameter C = 7 760 469, γ = 0.017 003, the classification accuracies of the established SVM model were 97.78% and 93.33% for the training and testing sets respectively. In addition, the independent validation set was selected in the same standard, and used to verify the model. At last, the classification accuracy of 91.11% for the independent validation set was achieved. The result indicated that it is feasible to identify and classify different degree of moldy corn grain kernels using SPA and SVM, and characteristic wavelengths selected by SPA in this paper also lay a foundation for the online NIR detection of mildew corn kernels.

  8. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe

    Science.gov (United States)

    Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni

    2017-09-01

    We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.

  9. Wavelength-division-multiplexing fiber coupler based on bending-insensitive holey optical fiber.

    Science.gov (United States)

    Eom, Joo Beom; Lim, Hae-Ryong; Park, Kwan Seob; Lee, Byeong Ha

    2010-08-15

    A wavelength-division-multiplexing (WDM) coupler has been made with a bending-insensitive holey optical fiber (HOF) by using the fused biconical tapered (FBT) method. The transmission band of the proposed HOF WDM coupler could be easily tuned by adjusting the pulling length during the FBT process. Interestingly, it was observed that the air-hole structure of the HOF should be maintained to have the property of a WDM coupler. As the air holes collapse, the HOF WDM exhibits high-pass-filter-like properties. The cross-sectional scanning electron microscope images of the implemented HOF WDM coupler are presented along with the light intensity distribution measured at the coupling region of the coupler. The proposed HOF couplers may also find applications in optical coarse WDM systems and optical fiber sensors.

  10. Tunable midinfrared wavelength selective structures based on resonator with antisymmetric parallel graphene pair

    Science.gov (United States)

    Asgari, Somayyeh; Dolatabady, Alireza; Granpayeh, Nosrat

    2017-06-01

    A parallel graphene layer pair arranged in an antisymmetric configuration coupled through a cavity resonator is proposed and analyzed by the analytical method and the numerical finite-difference time-domain method. The structure operates as a bandpass filter in the midinfrared region. The feature, as the result of the wavelength selective property of the cavity resonator, can be tuned by varying the length of the resonator, the lateral coupling distance between the graphene layers, the dielectric refractive index of material inside the resonator, and, the most interesting, the chemical potential of the graphene layers. The proposed structure can be promoted to power splitters and refractive index sensors by proper designs. Various power division ratios can be realized by changing the relative positions and/or the chemical potentials of the output waveguides. The investigated components can be utilized in the design of midinfrared nanoscale photonic integrated circuits.

  11. Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation

    Science.gov (United States)

    Cao, Y.; Jin, W.; Ho, H. L.; Qi, L.; Yang, Y. H.

    2012-11-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is demonstrated for acetylene detection at atmospheric pressure and room temperature with a fiber-coupled distributed feedback (DFB) diode laser operating at ~1.53 μm. An efficient approach for gas concentration calibration is demonstrated. The effect of residual amplitude modulation on the performance of wavelength modulated QEPAS is investigated theoretically and experimentally. With optimized spectrophone parameters and modulation depth, a minimum detectable limit (1 σ) of ~2 part-per-million volume (ppmv) was achieved with an 8.44-mW diode laser, which corresponds to a normalized noise equivalent coefficient (1 σ) of 6.16 × 10-8 cm-1 W/Hz1/2.

  12. [Design and implementation of a long wavelength near infrared spectrometer based on MEMS scanning mirror].

    Science.gov (United States)

    Ye, Kun-Tao; Dong, Tai-Yuan; He, Wen-Xi; Li, Yu-Xiao; Cheng, Xian-Ming; Li, Guang-Yong; Li, Hao-Yu; Xu, Hao-Yu

    2014-10-01

    Long Wavelength Near InfraRed (LW-NIR) spectrometer has wide applications. Miniaturization and low-cost are two major goals of the development of LW-NIR spectrometer in the industrial or research community. Under the background that having a trend of spectrometer miniaturization and integration, method and main problems involved in miniaturization of LW-NIR spectrometer through MEMS scanning mirror, such as the design strategy of the light-splitting optical system, selection considerations of the MEMS scanning mirror, design method of the preamplifier circuit, etc, have been presented in detail. A prototype of miniaturized LW-NIR spectrometer, with the spectrum range of detection of 900-2,055 nm, is designed and implemented using MEMS scanning mirror, InGaAs single detector unit with high sensitivity. Littrow optical layout is used for its light-splitting optical system, and the spectral resolution is between 9.4-16 nm at 1,000-1,965 nm detection wavelength range. The prototype is successfully applied in LW-NIR spectrum measurement on pure water and ethanol aqueous solution, and a forecast analysis on ethanol aqueous solution concentration is also demonstrated. Through adopting MEMS scanning mirror into the spectrometer system, the complexity of the mechanical scanning fixtures and its controlling mechanism is greatly reduced therefore the size of the spectrometer is reduced. Furthermore, due to MEMS scanning mirror technology, LW-NIR spectrometer with single InGaAs detector is achieved, thus the cost reduction of the NIR spectrometer system is also realized because the expensive InGaAs arrays are avoided.

  13. Net analyte signal-based simultaneous determination of antazoline and naphazoline using wavelength region selection by experimental design-neural networks.

    Science.gov (United States)

    Hemmateenejad, Bahram; Ghavami, Raoof; Miri, Ramin; Shamsipur, Majtaba

    2006-02-15

    Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and naphazoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squares (CLS), principal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to find the best wavelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy for wavelength region optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into account different spectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of all the multivariate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fitness function based on the root mean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-propagation learning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regression method. From the resulted ANN models, the spectral regions in which lowest fitness could be obtained were chosen. Comparison of the results revealed that the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was successfully applied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.

  14. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  15. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K. [RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Adachi, T.; Oku, T.; Morimoto, K.; Shimizu, H.M.; Tokanai, F. [RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Gorin, A.; Manuilov, I.; Ryazantsev, A. [Institute for High Energy Physics, Protvino, Moscow region (Russian Federation); Ino, T. [KEK (High Energy Accelerator Research Organization), Tsukuba, Ibaraki 305 (Japan); Kuroda, K. [Advanced Research Inst. for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Suzuki, J. [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2002-07-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm{sup 2}. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of {proportional_to}1.0 mm was obtained. (orig.)

  16. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    Science.gov (United States)

    Sakai, K.; Adachi, T.; Oku, T.; Gorin, A.; Ino, T.; Kuroda, K.; Manuilov, I.; Morimoto, K.; Ryazantsev, A.; Shimizu, H. M.; Suzuki, J.; Tokanai, F.

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50×50 mm2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of 1.0 mm was obtained.

  17. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  18. Estimation Based on Emission Wavelength of Dabigatran Etexilate Mesylate in Bulk and Capsule Dosage Form.

    Science.gov (United States)

    Anumolu, P D; Satyanarayana, M; Gayatri, T; Praveena, M; Sunitha, G; Subrahmanyam, C V S

    2016-01-01

    A simple, rapid, specific and highly sensitive spectrofluorimetric method has been developed for the quantification of dabigatran etexilate mesylate in bulk and capsule dosage form. A linear relationship was found between fluorescence intensity and concentration in the range of 0.01-1.0 μg/ml in dimethyl sulphoxide as solvent at an emission wavelength of 391 nm after excitation at 334 nm, with a good correlation coefficient (0.989). The detection and quantification limits were found to be 0.005 and 0.015 μg/ml, respectively. The proposed method was applied for dabigatran etexilate mesylate capsules, results reveal with percentage recovery of 102% and percentage relative standard deviation values were found to be less than 2 for accuracy and precision studies. The proposed method was validated for linearity, range, accuracy, precision, limit of detection and quantification according to International Conference on Harmonization guidelines. Statistical analysis of the results revealed high accuracy and good precision. The suggested procedures could be used for the determination of dabigatran etexilate mesylate in bulk and capsule dosage form in quality control laboratories of industries as well as in academic institutions.

  19. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    Science.gov (United States)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  20. Desing and Implementation of the Image Format Batch-Conversion Software Based on ImageJ

    Science.gov (United States)

    Xu, Jun; Chen, Dong

    2008-09-01

    The authors introduce ImageJ which is the open source and pure Java language image processing procedure and how to use ImageJ package for secondary development. Using the package, they have realized the format conversion from TIFF and SPE that acquised from WinView software to FITS. And based on this, put forward on the method how to use the package to achieve other format conversion as a separate or batch.

  1. A GPU based high-definition ultrasound digital scan conversion algorithm

    Science.gov (United States)

    Zhao, Mingchang; Mo, Shanjue

    2010-02-01

    Digital scan conversion algorithm is the most computational intensive part of B-mode ultrasound imaging. Traditionally, in order to meet the requirements of real-time imaging, digital scan conversion algorithm often traded off image quality for speed, such as the use of simple image interpolation algorithm, the use of look-up table to carry out polar coordinates transform and logarithmic compression. This paper presents a GPU-based high-definition real-time ultrasound digital scan conversion algorithm implementation. By rendering appropriate proxy geometry, we can implement a high precision digital scan conversion pipeline, including polar coordinates transform, bi-cubic image interpolation, high dynamic range tone reduction, line average and frame persistence FIR filtering, 2D post filtering, fully in the fragment shader of GPU at real-time speed. The proposed method shows the possibility of updating exist FPGA or ASIC based digital scan conversion implementation to low cost GPU based high-definition digital scan conversion implementation.

  2. Pulse dynamics of dual-wavelength dissipative soliton resonances and domain wall solitons in a Tm fiber laser with fiber-based Lyot filter.

    Science.gov (United States)

    Wang, Pan; Zhao, Kangjun; Xiao, Xiaosheng; Yang, Changxi

    2017-11-27

    We report on the first demonstration of dual-wavelength square-wave pulses in a thulium-doped fiber laser. Under appropriate cavity parameters, dual-wavelength dissipative soliton resonances (DSRs) and domain wall solitons (DWSs) are successively obtained. Meanwhile, dark pulses generation is achieved at the dual-wavelength DWSs region due to the overlap of the two domain wall pulses. The fiber-based Lyot filter, conducted by inserting PMF between an in-line PBS and a PD-ISO, facilitates the generation of dual-wavelength operation. The polarization-resolved investigation suggests that the cross coupling between two orthogonal polarization components in the high nonlinear fiber plays an important role in the square-wave pulses formation. The investigation may be helpful for further understanding the square-wave pulse formation and has potential in application filed of multi-wavelength pulsed fiber lasers.

  3. Teaching Medical Students About "The Conversation": An Interactive Value-Based Advance Care Planning Session.

    Science.gov (United States)

    Lum, Hillary D; Dukes, Joanna; Church, Skotti; Abbott, Jean; Youngwerth, Jean M

    2018-02-01

    Advance care planning (ACP) promotes care consistent with patient wishes. Medical education should teach how to initiate value-based ACP conversations. To develop and evaluate an ACP educational session to teach medical students a value-based ACP process and to encourage students to take personal ACP action steps. Groups of third-year medical students participated in a 75-minute session using personal reflection and discussion framed by The Conversation Starter Kit. The Conversation Project is a free resource designed to help individuals and families express their wishes for end-of-life care. One hundred twenty-seven US third-year medical students participated in the session. Student evaluations immediately after the session and 1 month later via electronic survey. More than 90% of students positively evaluated the educational value of the session, including rating highly the opportunities to reflect on their own ACP and to use The Conversation Starter Kit. Many students (65%) reported prior ACP conversations. After the session, 73% reported plans to discuss ACP, 91% had thought about preferences for future medical care, and 39% had chosen a medical decision maker. Only a minority had completed an advance directive (14%) or talked with their health-care provider (1%). One month later, there was no evidence that the session increased students' actions regarding these same ACP action steps. A value-based ACP educational session using The Conversation Starter Kit successfully engaged medical students in learning about ACP conversations, both professionally and personally. This session may help students initiate conversations for themselves and their patients.

  4. Experimental validation and performance evaluation of OpenFlow-based wavelength path control in transparent optical networks.

    Science.gov (United States)

    Liu, Lei; Tsuritani, Takehiro; Morita, Itsuro; Guo, Hongxiang; Wu, Jian

    2011-12-19

    OpenFlow, as an open-source protocol for network virtualization, is also widely regarded as a promising control plane technique for heterogeneous networks. But the utilization of the OpenFlow protocol to control a wavelength switched optical network has not been investigated. In this paper, for the first time, we experimentally present a proof-of-concept demonstration of OpenFlow-based wavelength path control for lightpath provisioning in transparent optical networks. We propose two different approaches (sequential and delayed approaches) for lightpath setup and two different approaches (active and passive approaches) for lightpath release by using the OpenFlow protocol. The overall feasibility of these approaches is experimentally validated and the network performances are quantitatively evaluated. More importantly, all the proposed methodologies are demonstrated and evaluated on a real transparent optical network testbed with both OpenFlow-based control plane and data plane, which allows their feasibility and effectiveness to be verified, and valuable insights of the proposed solutions to be obtained for deploying into real OpenFlow controlled optical networks.

  5. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser

    Directory of Open Access Journals (Sweden)

    Youjun Zeng

    2017-01-01

    Full Text Available A fast surface plasmon resonance (SPR imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10−2 refractive index unit (RIU and 1.27 × 10−6 RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state.

  6. Image-based reflectance conversion of ASTER and IKONOS ...

    African Journals Online (AJOL)

    ... for ASTER and IKONOS imagery in this study area and for the purpose of forest structural assessment. This has important implications for the operational use of similar imagery types for forest inventory approaches. Keywords: ASTER; IKONOS; image-based atmospheric correction; plantation forests; surface reflectance

  7. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 µm wavelength range

    Science.gov (United States)

    Rösener, Benno; Rattunde, Marcel; Moser, Rüdiger; Kaspar, Sebastian; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2010-02-01

    In recent years, optically pumped semiconductor disk lasers (OPSDLs) have attracted increasing interest due to their capability of delivering simultaneously high output power and excellent beam quality. Here we report on group-III-Sbbased OPSDLs allowing to cover the wavelength range around and above 2 μm. First the current state-of-the-art and recent progress for OPSDLs emitting in the 2.0-to-2.3 μm spectral range is presented, which includes power scaling through the use of multiple gain elements and as well as spectral tuning and line width narrowing, exploiting in both cases the versatility of the external cavity concept. Then, results on III-Sb-based OPSDLs emitting at 2.8 μm with a cw output power of up to 0.12 W and a peak output power in pulsed mode of >0.5 W, both data referring to roomtemperature operation, are presented. In both cases, the active region of the OPSDL chip consists of compressively strained GaInAsSb quantum well (QW) layers embedded between AlGaAsSb barrier and pump-light-absorbing layers. The emission wavelength is controlled by adjusting the composition of the quaternary QW material. The active region is grown on top of an epitaxial GaSb/AlAsSb Bragg mirror. For efficient heat extraction, SiC intra-cavity heat spreaders were bonded to the surface of the cleaved laser chips. An N-shaped resonator with one OPSDL chip acting as an end mirror and the second OPSDL chip as a folding mirror was used for power scaling, while a V-shaped resonator configuration with a birefringent tuner inserted into the collimated beam path of the resonator was employed for wavelength tuning. Optical pumping was achieved by standard fiber-coupled diode laser modules emitting at 980 nm.

  8. Normal age-related conversion of bone marrow in the skull base. Assessment with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koki; Tomura, Noriaki; Takahashi, Satoshi; Izumi, Junichi; Kurosawa, Ryo; Sashi, Ryuji; Watarai, Jiro [Akita Univ. (Japan). School of Medicine

    2000-12-01

    The purpose of this study was to assess the normal age-related sequence of conversion from hematopoietic to fatty marrow in the skull base by means of MR imaging. We retrospectively reviewed T1-weighted MR images of the skull base for the distribution of hematopoietic and fatty marrow. The subjects consisted of 169 MR examinations that were performed with the spin-echo technique. The age of the subjects ranged from 0 months to 20 years old. Patients with known marrow abnormalities were excluded from this study. Marrow conversion was assessed in the presphenoid, postsphenoid, basiocciput, petrous apex, clivus, zygomatic bone, and condyle of the mandible. The signal intensity was visually graded, and the signal intensity ratio was determined on the basis of the intensities of the subcutaneous fat and air. The signal intensity of all observed regions was as low as that of muscles until 3 months of age. Conversion of hematopoietic to fatty marrow first occurred in the zygomatic bone until 6 months of age. The presphenoid increased in signal intensity from 5 months to 2 years of age, and the sphenoid sinus began to be pneumatic at this age. Marrow conversion of the postsphenoid and basiocciput was later than that of the presphenoid. Most of the bone marrow of the skull base appeared as fatty conversion until 3 years of age, although some mandibular condyles appeared hematopoietic at 3 years of age. The normal age-related conversion from hematopoietic to fatty marrow in the skull base followed a well-defined sequence. Knowledge of the normal bone marrow conversion by MR imaging is essential for the recognition of pathologic marrow processes. (author)

  9. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    Science.gov (United States)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  10. Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings

    Science.gov (United States)

    Pérez Maciel, M.; Montenegro Orenday, J. A.; Estudillo Ayala, J. M.; Jáuregui-Vázquez, D.; Sierra-Hernandez, J. M.; Hernandez-Garcia, J. C.; Rojas-Laguna, R.

    2016-09-01

    Tunable wavelength erbium doped fiber linear cavity laser, based on mechanically induced long-period fiber gratings (MLPFG) is presented. The laser was tuned applying pressure over the MLPFG, in order to monitor this, pressure is applied over a plate with periodic grooves that has a short length, this pressure is controlled by a digital torque tester as a result tunable effect is observed. The grooves have a period of 620µm and the maximal pressure without breakpoint fiber is around 0.80lb-in2. Furthermore, the MLPFG used can be erased, reconfigured and exhibit a transmission spectra with termal stability, similar to high cost photoinduced long period gratings. In this work, by pressure increment distributed over the MLPFG from 0.40 lb-in2 to 0. 70 lb-in 2, tuned operation range of 14nm was observed and single line emission was tuned in the C telecommunication band. According to the stability analysis the signal to noise ratio was 29 dB and minimal wavelength oscillations of 0.29nm.

  11. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    Directory of Open Access Journals (Sweden)

    Jiangmin Xu

    2017-03-01

    Full Text Available Based on PVDF (piezoelectric sensing techniques, this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  12. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.

    Science.gov (United States)

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-03-03

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  13. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  14. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-05

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  15. Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach-Zehnder interferometer.

    Science.gov (United States)

    Yan, Na; Han, Xiaofang; Chang, Pengfa; Huang, Ligang; Gao, Feng; Yu, Xuanyi; Zhang, Wending; Zhang, Ze; Zhang, Guoquan; Xu, Jingjun

    2017-10-30

    A fast tunable dual-wavelength laser based on in-fiber acousto-optic Mach-Zehnder interferometer (AO-MZI) with new fabrication process is proposed. Not only could the center wavelength of the output laser be optimized with enhanced tuning range about 30 nm by tuning the polarization and the driving frequency of the radio frequency (RF) signal accordingly, but also the spectral spacing between the two output wavelengths could be tuned from ~0 nm to 2.65 nm by controlling the power of the RF signal. The tuning mechanism was also discussed.

  16. An XML based middleware for ECG format conversion.

    Science.gov (United States)

    Li, Xuchen; Vojisavljevic, Vuk; Fang, Qiang

    2009-01-01

    With the rapid development of information and communication technologies, various e-health solutions have been proposed. The digitized medical images as well as the mono-dimension medical signals are two major forms of medical information that are stored and manipulated within an electronic medical environment. Though a variety of industrial and international standards such as DICOM and HL7 have been proposed, many proprietary formats are still pervasively used by many Hospital Information System (HIS) and Picture Archiving and Communication System (PACS) vendors. Those proprietary formats are the big hurdle to form a nationwide or even worldwide e-health network. Thus there is an imperative need to solve the medical data integration problem. Moreover, many small clinics, many hospitals in developing countries and some regional hospitals in developed countries, which have limited budget, have been shunned from embracing the latest medical information technologies due to their high costs. In this paper, we propose an XML based middleware which acts as a translation engine to seamlessly integrate clinical ECG data from a variety of proprietary data formats. Furthermore, this ECG translation engine is designed in a way that it can be integrated into an existing PACS to provide a low cost medical information integration and storage solution.

  17. A randomized controlled clinical trial of a hypnosis-based treatment for patients with conversion disorder, motor type

    NARCIS (Netherlands)

    Moene, F.C.; Spinhoven, P.; Hoogduin, C.A.L.; Dyck, R. van

    2003-01-01

    This study tested whether a hypnosis-based intervention showed promise as a treatment for patients with conversion disorder, motor type. Forty-four outpatients with conversion disorder, motor type, or somatization disorder with motor conversion symptoms, were randomly assigned to a hypnosis or a

  18. Ultra-high-speed all-channel serial-to-parallel conversion based on complete optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We propose a serial-to-parallel conversion scheme based on complete OFT, allowing simultaneous conversion of all channels. We demonstrate all 32-channel simultaneous OTDM to WDM conversion of 320-Gbit/s DPSK and of 640-Gbit/s DQPSK signal, respectively....

  19. Extended Wavelength InP Based Avalanche Diodes for MWIR Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this NASA STTR program, we propose to develop a novel superlattice-based near infrared to midwave infrared avalanche photodetector (APD) grown on InP substrates...

  20. Digital acquisition and wavelength control of seed laser for space-based Lidar applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposes to establish the feasibility of using a space qualifiable Field Programmable Gate Array (FPGA) based digital controller to autonomously...

  1. Aerosol source apportionment based on multi-wavelength photoacoustic light absorption measurements: a simulation method for system's optimisation

    Science.gov (United States)

    Simon, Károly; Ajtai, Tibor; Kiss-Albert, Gergely; Utry, Noémi; Pintér, Máté; Szabó, Gábor; Bozóki, Zoltán

    2017-04-01

    Aerosol source apportionment is currently one of the outstanding challenges for environmental monitoring. In most cases atmospheric aerosol is a heterogeneous mixture as it typically originates from various sources. Consequently, each aerosol type has distinct chemical and physical properties. Contrary to chemical properties, optical absorption and size distribution of airborne particles can be measured in real time with high time resolution i.e. their measurement facilitates real time source apportionment (Favez et al (2009), Ajtai et al (2011), Favez et al (2010)). The wavelength dependency of the optical absorption coefficient (OAC) is usually characterised by the Absorption Angström Exponent (AAE). So far, the selection of light sources (lasers) into a photoacoustic aerosol measuring system was based on rule of thumb type estimations only. Recently, we proposed a simulation method that can be used to estimate the accuracy of aerosol source apportionment in case of a dual wavelength photoacoustic system (Simon et al., (2017)). This simulation is based on the assumption that the atmospheric aerosol load is dominated by two distinct sources and each of them is strongly light absorbing with specific AAE values. This is a typical scenario e.g. for urban measurements under wintry conditions when dominating aerosol sources are fossil fuel and wood burning with characteristic AAE 1 and 2, respectively. The wavelength pair of 405 and 1064 nm was found to be optimal for source apportionment in this case. In the presented study we investigated the situation when there are aerosol components with only slightly different AAE values and searched for a photoacoustic system which is optimal for distinguishing these components. Ajtai, T.; Filep, Á.; Utry, N.; Schnaiter, M.; Linke, C.; Bozóki, Z.; Szabó, G. and Leisner T. (2011) Journal of Aerosol Science 42, 859-866. Favez, O.; Cachier, H.; Sciare, J.; Sarda-Estève, R. and Martinon, L. (2009) Atmospheric Environment 43

  2. Direct imaging Raman microscope based on tunable wavelength excitation and narrow band emission detection

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Grond, M.; Grond, M.; Greve, Jan

    1993-01-01

    A new type of imaging Raman microscope is described. First the advantages and disadvantages of the two possible approaches to Raman microscopy based on signal detection by means of a charge-coupled-device camera (i.e., direct imaging and image reconstruction) are discussed. Arguments are given to

  3. Bandwidth re-distribution techniques for extended epon based multi-wavelength networks

    NARCIS (Netherlands)

    Roy, R.; Manhoudt, Gert; van Etten, Wim

    2007-01-01

    The broadband photonics project (BBP) under the Freehand consortium of projects looks into the design of an extended access network. The network is a photonic network which can be dynamically reconfigured to distribute bandwidth in an optimised manner. This paper presents linear programming based

  4. Investigation of dynamic resource allocation based on transmission performance analysis and service classification in wavelength-division-multiplexing optical networks

    Science.gov (United States)

    Tang, Yong; Sun, Xiaohan; Rao, Min; Li, Lei; Wang, Chen; Zhang, Mingde

    2002-11-01

    In wavelength-routed optical networks, the transmission performance of the optical lightpaths available may not always satisfy the service requirements due to the quality degradation of signals induced by crosstalk, polarized mode dispersion (PMD), nonlinear effects, etc. Based on the integrated consideration of signal transmission impairments and service classification, a novel model on dynamic resource allocation in optical networks is presented in this paper. The model classifies the service requirements with different priorities and provides differentiated QoS in the optical domain. By adopting a multi-path RWA algorithm, called DMC-OVWP, the lightpath candidates are found out for each connection request of the services. Afterwards, by analyzing the transmission qualities of the lightpath candidates, an appropriate lightpath matched the request priority are picked out and set up.

  5. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik

    2017-11-13

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.

  6. A fast 8-channel wavelength switching DFB diode laser array based on reconstruction-equivalent-chirp technique

    Science.gov (United States)

    Li, Wei; Wang, Yingying; Du, Yinchao; Du, Weikang; Zhao, Guowang; Fang, Tao

    2018-01-01

    We propose a new method to investigate fast wavelength switching, which consists of control circuit, driving circuit and 8-channel DFB laser array using reconstruction-equivalent-chirp technique. The control circuit is in charge of selecting required lasers to switch wavelength, the driving circuit supply adjustable and stable direct current to the DFB laser arrays. Experimental results show that wavelength switching time of 8 channels is about 500ns and stability of laser output is promised.

  7. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    Science.gov (United States)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  8. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    OpenAIRE

    Wang, H.; Bérujon, S.; Sawhney, K

    2012-01-01

    International audience; The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moire fringe analysis. The interferometer has demonstra...

  9. All-optical wavelength-shifting technologies

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Mikkelsen, Benny; Danielsen, Søren Lykke

    1995-01-01

    State-of-the-art results for interferometric wavelength converters for WDM fiber networks have been presented. The interferometric converters are capable of high speed (10 Gbit/s), polarisation and wavelength independent (within 30 nn) wavelength conversion. In addition they offer unique features...... such as extinction ratio improvement and spectral cleaning. The 1-dB input power dynamic range is around 4 dB but can be increased to 8 dB by a simple control scheme...

  10. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2013-03-01

    The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moiré fringe analysis. The interferometer has demonstrated a high sensitivity with sub-microradian accuracy. Some of the advantages, disadvantages and limitations for the two approaches will also be presented.

  11. Nurses' fidelity to theory-based core components when implementing Family Health Conversations - a qualitative inquiry.

    Science.gov (United States)

    Östlund, Ulrika; Bäckström, Britt; Lindh, Viveca; Sundin, Karin; Saveman, Britt-Inger

    2015-09-01

    A family systems nursing intervention, Family Health Conversation, has been developed in Sweden by adapting the Calgary Family Assessment and Intervention Models and the Illness Beliefs Model. The intervention has several theoretical assumptions, and one way translate the theory into practice is to identify core components. This may produce higher levels of fidelity to the intervention. Besides information about how to implement an intervention in accordance to how it was developed, evaluating whether it was actually implemented as intended is important. Accordingly, we describe the nurses' fidelity to the identified core components of Family Health Conversation. Six nurses, working in alternating pairs, conducted Family Health Conversations with seven families in which a family member younger than 65 had suffered a stroke. The intervention contained a series of three-1-hour conversations held at 2-3 week intervals. The nurses followed a conversation structure based on 12 core components identified from theoretical assumptions. The transcripts of the 21 conversations were analysed using manifest qualitative content analysis with a deductive approach. The 'core components' seemed to be useful even if nurses' fidelity varied among the core components. Some components were followed relatively well, but others were not. This indicates that the process for achieving fidelity to the intervention can be improved, and that it is necessary for nurses to continually learn theory and to practise family systems nursing. We suggest this can be accomplished through reflections, role play and training on the core components. Furthermore, as in this study, joint reflections on how the core components have been implemented can lead to deeper understanding and knowledge of how Family Health Conversation can be delivered as intended. © 2014 Nordic College of Caring Science.

  12. Conversations about Curriculum Change: Mathematical Thinking and Team-Based Learning in a Discrete Mathematics Course

    Science.gov (United States)

    Paterson, Judy; Sneddon, Jamie

    2011-01-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…

  13. Deciphering conversational complexity around a diabetic patient in a web based forum

    Directory of Open Access Journals (Sweden)

    Ankur Joshi

    2017-01-01

    Full Text Available Web based conversational forums have gained momentum as an aid to clinical decision making. This paper, written in an empirical explanatory manner, attempts to understand the flow of information and the process of sense-making in one such forum (Tabula-rasa through considering a prototype discussion among participants.

  14. Constructing Visually-Based Digital Conversations in EFL with VoiceThread

    Science.gov (United States)

    Kent, David

    2017-01-01

    VoiceThread holds potential to provide students who rarely speak in class a means to create visually-based digital conversations. In light of this, pedagogical affordances of the tool are considered, along with efficacy behind VoiceThread development within English as a Foreign Language contexts. Instructional strategies, supported by examples,…

  15. Using Critical Race Theory to Explore Race-Based Conversations through a Critical Family Book Club

    Science.gov (United States)

    Johnson, Lamar L.

    2016-01-01

    Stemming from my personal encounter with what I consider a racial affliction imposed by a White female teacher, I provide a glimpse of my racial narrative as a young Black male to illustrate a reference point for thinking through how racism functions in homes and schools. It touches on the importance of race-based conversations within school and…

  16. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly......, the proposed switched-capacitor cells in series with converter can be generalized in two ways, resulting in dc-dc converters of ultra-high dc conversion ratios. Theoretical analysis, simulation and experimental tests have demonstrated the superior performance of the proposed converter in terms of high dc...... voltage gain, low voltage stress on the switches, continuous input current, and relatively high efficiency....

  17. Conducting-Polymer-Based Materials for Electrochemical Energy Conversion and Storage.

    Science.gov (United States)

    Wang, Jianfeng; Wang, Jinrong; Kong, Zhuang; Lv, Kuilin; Teng, Chao; Zhu, Ying

    2017-12-01

    To alleviate the current energy crisis and environmental pollution, sustainable and ecofriendly energy conversion and storage systems are urgently needed. Due to their high conductivity, promising catalytic activity, and excellent electrochemical properties, conducting polymers have been attracting intense attention for use in electrochemical energy conversion and storage. Here, the latest advances regarding the utilization of conducting polymers for fuel cells and supercapacitors are introduced. The strategies employed to improve the electrocatalytic and electrochemical performances of conducting-polymer-based materials are presented. In addition, future research endeavors and possible directions for further progress in this field are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Tent Map Based A/D Conversion Circuit for Robot Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Jianxin Liu

    2013-01-01

    Full Text Available Force and tactile sensors are basic elements for robot perception and control, which call for large range and high-accuracy amplifier. In this paper, a novel A/D conversion circuit for array tactile sensor is proposed by using nonlinear tent map phenomenon, which is characterized by sensitivity to small signal and nonlinear amplifying function. The tent map based A/D conversion circuits can simultaneously realize amplifying and A/D converting functions. The proposed circuit is not only simple but also easy to integrate and produce. It is very suited for multipath signal parallel sampling and A/D converting of large array tactile sensor.

  19. Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator

    Science.gov (United States)

    Asgari, Somayyeh; Granpayeh, Nosrat

    2017-06-01

    Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.

  20. The caring relationship in hospice care: an analysis based on the ethics of the caring conversation.

    Science.gov (United States)

    Olthuis, Gert; Dekkers, Wim; Leget, Carlo; Vogelaar, Paul

    2006-01-01

    Good nursing is more than exercising a specific set of skills. It involves the personal identity of the nurse. The aim of this article is to answer two questions: (1) what kind of person should the hospice nurse be? and (2) how should the hospice nurse engage in caring conversations? To answer these questions we analyse a nurse's story that is intended to be a profile of an exemplary hospice nurse. This story was constructed from an analysis of five semistructured interviews with hospice nurses, based on the 'ethics of the caring conversation', which is inspired by the ethical perspective of Paul Ricoeur. The research questions concentrate on the norms of respect, responsibility and reciprocity, which are integral parts of the 'ethics of the caring conversation'.

  1. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    Science.gov (United States)

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  2. Oral cancer detection based on fluorescence polarization of blood plasma at excitation wavelength 405 nm

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Manoharan, Yuvaraj; Dornadula, Koteeswaran; Singaravelu, Ganesan

    2017-02-01

    During metabolism the metabolites such as hormones, proteins and enzymes were released in to the blood stream by the cells. These metabolites reflect any change that occurs due to any disturbances in normal metabolic function of the human system. This was well observed with the altered spectral signatures observed with fluorescence spectroscopic technique. Previously many have reported on the significance of native fluorescence spectroscopic method in the diagnosis of cancer. As fluorescence spectroscopy is sensitive and simple, it has complementary techniques such as excitation-emission matrix, synchronous and polarization. The fluorescence polarization measurement provides details about any association or binding reactions and denaturing effects that occurs due to change in the micro environment of cells and tissues. In this study, we have made an attempt in the diagnosis of oral cancer at 405 nm excitation using fluorescence polarization measurement. The fluorescence anisotropic values calculated from polarized fluorescence spectral data of normal and oral cancer subjects yielded a good accuracy when analyzed with linear discriminant analysis based artificial neural network. The results will be discussed in detail.

  3. Wavelength-Converter Saving Span Restoration in GMPLS Controlled WDM Optical Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Buron, Jakob Due; Andriolli, N.

    2006-01-01

    We present two label preference schemes to reduce wavelength-conversion during restoration path setup in GMPLS controlled optical networks exploiting span restoration. The amount of required wavelength-conversions can be reduced up to 34 percent....

  4. Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV-Vis spectrometry combined with wavelength selection and partial least squares regression.

    Science.gov (United States)

    Xu, Deng; Fan, Wei; Lv, Huiying; Liang, Yizeng; Shan, Yang; Li, Gaoyang; Yang, Zhenyu; Yu, Ling

    2014-04-05

    The use of wavelength selection before partial least squares regression (PLSR) for simultaneous determination of divalent metal ions, cadmium, zinc and cobalt by UV-Vis spectrometry was investigated in this paper. The number of wavelengths selected by competitive adaptive reweighted sampling (CARS) for cadmium, zinc, and cobalt were 21, 13 and 7, respectively, from the 916 original wavelength points. The analytical system was based on the formation of the complexes with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in surfactant media. Compared with the results of full spectra calibration, the root mean squared error of prediction (RMSEP) reduced to 0.0110, 0.0098 and 0.0031 for cadmium, zinc and cobalt, respectively. Moreover, by using the selective wavelengths instead of the 916 original wavelengths, the latent variables of PLS models reduced to 3, 3 and 4. The results indicated that the PLS model established by selected wavelength could be used for simultaneous determination of divalent metal ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. One-dimension-based spatially ordered architectures for solar energy conversion.

    Science.gov (United States)

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-07

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.

  6. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  7. Reconfigurable intensity modulation and direct detection optical transceivers for variable-rate wavelength-division-multiplexing passive optical networks utilizing digital signal processing-based symbol mapper

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Bingbing; Chen, Yanxu; Chen, Xue

    2017-01-01

    Variable-rate intensity modulation and direct detection-based optical transceivers with software-controllable reconfigurability and transmission performance adaptability are experimentally demonstrated, utilizing M-QAM symbol mapping implemented in MATLAB® programs. A frequency division multiplexing-based symbol demapping and wavelength management method is proposed for the symbol demapper and tunable laser management used in colorless optical network unit.

  8. Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Da Ros, Francesco; Guan, Pengyu

    2017-01-01

    We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....

  9. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  10. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  11. Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Salvachua Rodriguez, Davinia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Katahira, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pleitner, Brenna P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cleveland, Nicholas S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nolker, Michelle L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Holly K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Alberto [Sandia National Laboratories; Baidoo, Edward E. K. [Lawrence Berkeley National Laboratory; DOE Joint BioEnergy Institute; Keasling, Jay D. [Lawrence Berkeley National Laboratory; DOE Joint BioEnergy InstituteUniversity of California, Berkeley; Technical University of Denmark; Simmons, Blake A. [Sandia National Laboratories; Lawrence Berkeley National Laboratory; DOE Joint BioEnergy Institute; Technical University of Denmark; Gladden, John M. [Sandia National Laboratories; DOE Joint BioEnergy Institute

    2017-08-01

    Lignin valorization offers significant potential to enhance the economic viability of lignocellulosic biorefineries. However, because of its heterogeneous and recalcitrant nature, conversion of lignin to value-added coproducts remains a considerable technical challenge. In this study, we employ base-catalyzed depolymerization (BCD) using a process-relevant solid lignin stream produced via deacetylation, mechanical refining, and enzymatic hydrolysis to enable biological lignin conversion. BCD was conducted with the solid lignin substrate over a range of temperatures at two NaOH concentrations, and the results demonstrate that the lignin can be partially extracted and saponified at temperatures as low as 60 degrees C. At 120 degrees C and 2% NaOH, the high extent of lignin solubility was accompanied by a considerable decrease in the lignin average molecular weight and the release of lignin-derived monomers including hydroxycinnamic acids. BCD liquors were tested for microbial growth using seven aromatic-catabolizing bacteria and two yeasts. Three organisms (Pseudomonas putida KT2440, Rhodotorula mucilaginosa, and Corynebacterium glutamicum) tolerate high BCD liquor concentrations (up to 90% v/v) and rapidly consume the main lignin-derived monomers, resulting in lignin conversion of up to 15%. Furthermore, as a proof of concept, muconic acid production from a representative lignin BCD liquor was demonstrated with an engineered P. putida KT2440 strain. These results highlight the potential for a mild lignin depolymerization process to enhance the microbial conversion of solid lignin-rich biorefinery streams.

  12. Streambed gravel sampling and frequency base conversion: A solution to data set sharing

    Science.gov (United States)

    Shirazi, Mostafa A.; Faustini, John M.; Kaufmann, Philip R.

    2009-01-01

    The analysis of streambed particle size distribution is fundamental to geology, geomorphology, engineering, ecology, and hydrology. There is a continued need for standard analytical methods to accommodate different practices in sample collection, particle size characterization, frequency analysis, and frequency base conversion. We focus upon two related topics: (1) quantitative description of size of irregular particles and (2) frequency base conversion procedures. The first is needed to accurately determine physical particle properties (diameter, surface area, volume, and weight), and the second to determine the statistical influence on one or more of these properties of each particle in a mixture. We collected natural streambed particles, measured various calipered diameters including a nominal diameter using each particle volume, and calculated a shape factor for each diameter that converts it to an equivalent sieved diameter. Next, we extended a model originally derived in 1929 for a lognormal distribution to a streambed particle size distribution that severely deviated from a lognormal distribution. After successfully converting from number to weight frequency (and the reverse) of samples collected by grid, area, and volume, we extended the conversion to apply across these collection methods. These results make streambed frequency analysis independent of the particular diameter used, the observed frequency base, and the sample collection procedure. The immediate utility of our analysis is to facilitate data sharing among disciplines. The ultimate benefit is to free researchers to select the most convenient diameter measurement, size frequency classification, frequency base, and sample collection procedure from the many alternative strategies available.

  13. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n).

    Science.gov (United States)

    Golmohammadi, Saeed; Moravvej-Farshi, Mohammad Kazem; Rostami, Ali; Zarifkar, Abbas

    2008-12-10

    Chromatic dispersion compensation is an essential feature of high speed dense wavelength-division multiplexing (DWDM) systems. We propose a dispersion compensator structure whose characteristics meet the optical DWDM system requirements. The proposed structure is based on Fibonacci quasi-periodic multilayer structures composed of layers with large index differences. Studying the dispersive properties of Fibonacci structures with generation numbers j=3 and 4, and calculating group delay (GD) and group velocity dispersion (GVD) of their reflection bands, we have demonstrated that to have a smooth GD and almost a constant GVD in each band of a DWDM system, one needs not only to suitably chirp the structure refractive index profile, but also must properly apodize it. We also demonstrate the possibility of achieving high slope GDs and large GVDs by means of high order Fibonacci structures with thicker layers. Finally, by varying the layer dimensions and refractive indices as well as Fibonacci's order, one can design DWDM dispersion compensators suitable for distances as long as 220 km.

  15. A universal electromagnetic energy conversion adapter based on a metamaterial absorber

    OpenAIRE

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D.; Simons, Rainee N.; Chen, Yunpeng; Xiao, John Q.

    2014-01-01

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhanc...

  16. A browser-based tool for conversion between Fortran NAMELIST and XML/HTML

    Science.gov (United States)

    Naito, O.

    A browser-based tool for conversion between Fortran NAMELIST and XML/HTML is presented. It runs on an HTML5 compliant browser and generates reusable XML files to aid interoperability. It also provides a graphical interface for editing and annotating variables in NAMELIST, hence serves as a primitive code documentation environment. Although the tool is not comprehensive, it could be viewed as a test bed for integrating legacy codes into modern systems.

  17. A browser-based tool for conversion between Fortran NAMELIST and XML/HTML

    Directory of Open Access Journals (Sweden)

    O. Naito

    2017-01-01

    Full Text Available A browser-based tool for conversion between Fortran NAMELIST and XML/HTML is presented. It runs on an HTML5 compliant browser and generates reusable XML files to aid interoperability. It also provides a graphical interface for editing and annotating variables in NAMELIST, hence serves as a primitive code documentation environment. Although the tool is not comprehensive, it could be viewed as a test bed for integrating legacy codes into modern systems.

  18. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide

    OpenAIRE

    Karpinski M.; Radzewicz C.; Banaszek K.

    2011-01-01

    We report generation of near-infrared photon pairs in fundamental spatial modes via type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO4) nonlinear waveguide supporting multiple transverse modes. This demonstrates experimentally a versatile scheme for controlling the spatial characteristics of the produced nonclassical light based on exploitation of intermodal dispersion. The down-converted photons are characterized by the measurement of ...

  19. Design of a Load Torque Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency

    OpenAIRE

    Mengnan Liu; Liyou Xu; Zhili Zhou

    2016-01-01

    In order to improve the electrical conversion efficiency of an electric tractor motor, a load torque based control strategy (LTCS) is designed in this paper by using a particle swarm optimization algorithm (PSO). By mathematically modeling electric-mechanical performance and theoretical energy waste of the electric motor, as well as the transmission characteristics of the drivetrain, the objective function, control relationship, and analytical platform are established. Torque and rotation spe...

  20. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  1. Experimental investigation of all-optical nonreturn-to-zero differential phase-shift keying to return-to-zero DPSK format conversion based on nonlinear polarization rotation of semiconductor optical amplifier.

    Science.gov (United States)

    Mao, Yaya; Sheng, Xinzhi; Wu, Chongqing; Gao, Kaiqiang; Wang, Ying; Zhang, Tianyong

    2015-09-20

    A novel all-optical nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) to return-to-zero DPSK (RZ-DPSK) format conversion scheme is proposed and experimentally demonstrated. This conversion is based on nonlinear polarization rotation of a semiconductor optical amplifier. Experimental results show that a 10 Gb/s RZ-DPSK signal with an extinction ratio over 10 dB can be converted with a tunable duty cycle from 33% to 66%, and the ER of the converted signal decreases with the increase in the duty cycle. For all cases of different duty cycles, the converted signals experience a -0.4 to -1.2  dB power penalty at a bit error rate of 10(-9) compared with the original signal. In addition, the spectra show that this format conversion is a wavelength-preserved operation.

  2. Wavelength-tunable passively mode-locked Erbium-doped fiber laser based on carbon nanotube and a 45° tilted fiber grating

    Science.gov (United States)

    Zou, Chuanhang; Wang, Tianxing; Yan, Zhijun; Huang, Qianqian; AlAraimi, Mohammed; Rozhin, Aleksey; Mou, Chengbo

    2018-01-01

    A wavelength-tunable all-fiber Erbium-doped mode-locked fiber laser based on carbon nanotubes and 45° tilted fiber grating (TFG) is demonstrated. We investigated the effect of PDL of 45TFG in the tuning range of a mode locked laser. The central wavelength of the laser can be tuned continuously from 1559.85 nm to 1564.46 nm with a tuning range of 4.6 nm using a weak 45TFG and from 1553.37 nm to 1568.63 nm with a tuning range of 15.26 nm using a strong 45TFG. The laser maintains high signal to noise ratio >50 dB across all the wavelength tuning range.

  3. All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lefrancois, S.; Lillieholm, Mads

    2014-01-01

    We demonstrate an AO-OFDM system with a WSS-based transmitter and time-lens based receiver for spectral magnification, achieving BER~10-9 for a 28×10 Gbit/s DPSK AO-OFDM signal. Furthermore, the receiver performance for DPSK and DQPSK is investigated using Monte Carlo simulations....

  4. Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper.

    Science.gov (United States)

    Wang, Yazhou; Li, Jianfeng; Zhai, Bo; Hu, Yunxiao; Mo, Kundong; Lu, Rongguo; Liu, Yong

    2016-07-11

    We demonstrate a self-starting dual-wavelength mode-locked fiber laser at a 2 μm spectral region by using a fiber taper in a Tm3+-doped ring fiber cavity. The fiber taper fabricated with a flame brushing technique was used as a periodic filter with a modulation depth of ~3.61 dB and a modulation period of ~7.3 nm, respectively. Diverse dual-wavelength regimes including continuous wave (CW)/multi-soliton, soliton/multi-soliton, and soliton/soliton regimes were obtained by adjusting pump power. Wavelength tuning for the dual-wavelength was also precisely controllable through stretching the fiber taper carefully. The tuning range was ~7 nm which was limited by the modulation period of the taper. By inserting a 10.0 m dispersion compensation fiber (DCF) into the fiber cavity, a stable dual-wavelength dissipative-soliton operation was obtained at 2 μm spectral region for the first time.

  5. Piezoelectric transformer-based high conversion ratio interface for driving dielectric actuator in microrobotic applications

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2016-09-01

    Full Text Available Dielectric actuators are utilized to convert electrical power into mechanical strain with considerable potential in microrobotic applications. However, critical challenges that need to be addressed include high-voltage interface with high conversion ratio, light weight, small size, and high power density. This study proposes a high piezoelectric transformer-based high conversion ratio interface that is integrated with a direct current/direct current high conversion ratio boost stage and a direct current/alternating current high-voltage driving stage. A piezoelectric transformer-based class-E zero voltage switching direct current/direct current interface is controlled by a hybrid pulse frequency modulation and pulse width modulation control strategies to obtain the desired high step-up ratio in the direct current/direct current stage. A half-bridge converter with special digital control algorithm in the direct current/alternating current stage is designed to convert high direct current voltage into arbitrary unipolar signal driving dielectric actuators. A prototype 23.3 g and 4 W interface has been fabricated for experimental validation to verify its ability to drive a 1 kV input dielectric actuator at 5 Hz in microrobotic applications.

  6. A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer's disease.

    Science.gov (United States)

    Barnes, Deborah E; Cenzer, Irena S; Yaffe, Kristine; Ritchie, Christine S; Lee, Sei J

    2014-11-01

    Our objective in this study was to develop a point-based tool to predict conversion from amnestic mild cognitive impairment (MCI) to probable Alzheimer's disease (AD). Subjects were participants in the first part of the Alzheimer's Disease Neuroimaging Initiative. Cox proportional hazards models were used to identify factors associated with development of AD, and a point score was created from predictors in the final model. The final point score could range from 0 to 9 (mean 4.8) and included: the Functional Assessment Questionnaire (2‒3 points); magnetic resonance imaging (MRI) middle temporal cortical thinning (1 point); MRI hippocampal subcortical volume (1 point); Alzheimer's Disease Cognitive Scale-cognitive subscale (2‒3 points); and the Clock Test (1 point). Prognostic accuracy was good (Harrell's c = 0.78; 95% CI 0.75, 0.81); 3-year conversion rates were 6% (0‒3 points), 53% (4‒6 points), and 91% (7‒9 points). A point-based risk score combining functional dependence, cerebral MRI measures, and neuropsychological test scores provided good accuracy for prediction of conversion from amnestic MCI to AD. Copyright © 2014 The Alzheimer's Association. All rights reserved.

  7. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang

    2018-02-19

    Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A universal electromagnetic energy conversion adapter based on a metamaterial absorber

    Science.gov (United States)

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D.; Simons, Rainee N.; Chen, Yunpeng; Xiao, John Q.

    2014-09-01

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

  9. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  10. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.

    Science.gov (United States)

    Kano, Shinya; Fujii, Minoru

    2017-03-03

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  11. A universal electromagnetic energy conversion adapter based on a metamaterial absorber.

    Science.gov (United States)

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D; Simons, Rainee N; Chen, Yunpeng; Xiao, John Q

    2014-09-09

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

  12. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Qiao, Shi Zhang

    2015-09-23

    Over the past decade, developing advanced catalysts for clean and sustainable energy conversion has been subject to extensive study. Driven by great advances achieved in computational quantum chemistry, synthetic chemistry, and material characterization techniques, the preferential design of a most-appropriate catalyst for a specific electrochemical reaction is possible. Here a universal process for the design of high-performance carbon-based electrocatalysts, by engineering their intrinsic electronic structures and physical structures to promote their extrinsic activities for different energy conversion reactions, is presented and summarized. How such a powerful strategy may aid the discovery of more electrocatalysts for a sustainable and clean energy infrastructure is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Directory of Open Access Journals (Sweden)

    Hyung-Seok Lee

    2014-08-01

    Full Text Available A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system.

  14. Performance enhancement of multi-wavelength generations based on SOAs with a microfiber Mach-Zehnder interferometer

    Science.gov (United States)

    Kharraz, Osayd M.; Mohammad, Abu Bakar B.; Ahmad, Harith; Jasim, Ali A.

    2017-07-01

    Functionality improvement of a non-linear semiconductor optical amplifier for multi-wavelength generation is reported. A microfiber Mach-Zehnder interferometer (MMZI) is incorporated to enhance the multi-wavelength generation performance in terms of optical signal-to-noise ratio (OSNR) and full-width-half-maximum linewidth. The proposed scheme offers better dynamic functionality, with flexible tunable and switchable properties. Incorporating the MMZI causes spatial mode beating interference, resulting in narrow bands and power-efficient modes. Tunable and switchable octuple wavelength is demonstrated using non-linear polarization rotation (NPR), with frequency separation with respect to the free spectral range of the implemented MMZI over a greater than 30 nm span. The NPR effect is induced to suppress mode competition within the homogeneous broadening linewidth of the employed semiconductor optical amplifier.

  15. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  16. Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2014-01-01

    We propose a DWDM-to-Nyquist channel conversion scheme based on complete Optical Fourier Transformation and optical Nyquist filtering. We demonstrate conversion from 50-GHz-grid 16×10 Gbit/s DPSK DWDM to a 160-Gbit/s Nyquist channel (0.9 symbol/s/Hz spectral efficiency) with 1.4 dB power penalty....

  17. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  18. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass.

    Science.gov (United States)

    Vescovo, Loris; Wohlfahrt, Georg; Balzarolo, Manuela; Pilloni, Sebastian; Sottocornola, Matteo; Rodeghiero, Mirco; Gianelle, Damiano

    2012-04-10

    This article examines the possibility of exploiting ground reflectance in the near-infrared (NIR) for monitoring grassland phytomass on a temporal basis. Three new spectral vegetation indices (infrared slope index, ISI; normalized infrared difference index, NIDI; and normalized difference structural index, NDSI), which are based on the reflectance values in the H25 (863-881 nm) and the H18 (745-751 nm) Chris Proba (mode 5) bands, are proposed. Ground measurements of hyperspectral reflectance and phytomass were made at six grassland sites in the Italian and Austrian mountains using a hand-held spectroradiometer. At full canopy cover, strong saturation was observed for many traditional vegetation indices (normalized difference vegetation index (NDVI), modified simple ratio (MSR), enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI 2), renormalized difference vegetation index (RDVI), wide dynamic range vegetation index (WDRVI)). Conversely, ISI and NDSI were linearly related to grassland phytomass with negligible inter-annual variability. The relationships between both ISI and NDSI and phytomass were however site specific. The WinSail model indicated that this was mostly due to grassland species composition and background reflectance. Further studies are needed to confirm the usefulness of these indices (e.g. using multispectral specific sensors) for monitoring vegetation structural biophysical variables in other ecosystem types and to test these relationships with aircraft and satellite sensors data. For grassland ecosystems, we conclude that ISI and NDSI hold great promise for non-destructively monitoring the temporal variability of grassland phytomass.

  19. The utilisation of a career conversation framework based on Schein’s career anchors model

    Directory of Open Access Journals (Sweden)

    Magda Bezuidenhout

    2013-01-01

    Full Text Available Orientation: This  study  constituted  and  reported  on  the  outcomes  of  a  structured  career conversation  framework  based  on  Schein’s  eight  career  anchors  in  an  open  distance  and e-learning (ODeL university in South Africa.Research purpose: The purpose of the research was to report on the utilisation of a structured career conversation framework based on Schein’s career anchors model.Motivation for the study: The rationale for the study was the paucity of studies investigating career anchors in South Africa’s multicultural organisational context.Research design, approach and method: A quantitative approach was adopted in the study. The population consisted of 4200 employees at a university in South Africa. Statistical analysis was performed using one-way analysis of variance (ANOVA as well as a Scheffe post hoc test.Main  findings: The  findings  of  this  study  suggest  that  career  conversation  has  a  dynamic nature (i.e. it changes over a period of time. Consequently, career development interventions in the workplace need to approach the workforce holistically.Practical/managerial implications: The findings and results will assist managers, practitioners and  career  development  specialists  in  the  practical  implementation  of  the  career  anchor concept.Contribution/value-add: The career conversation framework based on Schein’s career anchors has expanded the existing theory to find the right balance between career conversations and career anchors to keep people motivated to perform optimally in an organisation.

  20. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom

    Science.gov (United States)

    Ma, A. K.; Altaher, K.; Hussein, M. A.; Amer, M.; Farid, K. Y.; Alghamdi, A. A.

    2014-02-01

    In this work we will present a new set of photon fluence-to-effective dose conversion coefficients using the Saudi population-based voxel phantom developed recently by our group. The phantom corresponds to an average Saudi male of 173 cm tall weighing 77 kg. There are over 125 million voxels in the phantom each of which is 1.37×1.37×1.00 mm3. Of the 27 organs and tissues of radiological interest specified in the recommendations of ICRP Publication 103, all but the oral mucosa, extrathoracic tissue and the lymph nodes were identified in the current version of the phantom. The bone surface (endosteum) is too thin to be identifiable; it is about 10 μm thick. The dose to the endosteum was therefore approximated by the dose to the bones. Irradiation geometries included anterior-posterior (AP), left (LLAT) and rotational (ROT). The simulations were carried out with the MCNPX code version 2.5.0. The fluence in free air and the energy depositions in each organ were calculated for monoenergetic photon beams from 10 keV to 10 MeV to obtain the conversion coefficients. The radiation and tissue weighting factors were taken from ICRP Publication 60 and 103. The results from this study will also be compared with the conversion coefficients in ICRP Publication 116.

  1. Comparison of the Degree of Conversion of Resin Based Endodontic Sealers Using the DSC Technique

    Science.gov (United States)

    Cotti, Elisabetta; Scungio, Paola; Dettori, Claudia; Ennas, Guido

    2011-01-01

    Objectives: The aim of this study was to determine the degree of conversion (DC) of three resin based endodontic sealers using the DSC technique. Methods: The sealers tested were: EndoREZ (ER) (Ultradent, South Jordan, UT); EndoREZ with Accelerator (ER+A) (Ultradent, South Jordan, UT); RealSeal (RS) (SybronEndo, Orange, CA). Two LED units were used to activate the sealers: UltraLume LED 5 (Ultradent, South Jordan, UT, USA); Mini LED Satelec (Satelec Acteon Group, Mérignac Cedex, France). Samples of 4.0 mg were analyzed with a DSC 7 calorimeter (Perkin Elmer Inc., Wellesley, MA, US). Each specimen was irradiated by each lamp four times for 20 seconds at an interval of 2 mins, while the DSC 7 recorded the heat flow developed during the treatment. The degree of conversion and the kinetic curves were calculated from the values of heat developed during each polymerization. The data were statistically analysed with a Kruskal-Wallis one-way ANOVA multiple range and Student-Newman-Keuls (SNK) tests at a P value of .05. Results: Statistically significant differences were found in the degree of conversion among the sealers: ER+A showed the highest values with both lamps. Conclusions: The higher polymerization rate in resin sealers is obtained with the addition of a catalyst. PMID:21494378

  2. High power, widely tunable dual-wavelength 2 μm laser based on intracavity KTP optical parametric oscillator

    Science.gov (United States)

    Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan

    2017-01-01

    We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.

  3. Photonically assisted analog-to-digital conversion

    Science.gov (United States)

    Asuri, Bhushan Shanti

    The evolutionary progress in electronic Analog to Digital Converters is not sufficient to meet the needs of high- speed, digital, radar receivers. We present a wide variety of techniques to address the problem of ultra- fast A/D conversion using photonics. We propose architectures, which map an electrical signal into the optical wavelength domain. The wavelength-mapped signal can then be manipulated using dispersive optic devices. The basic architectures based on time-wavelength mapping are Time Stretch, Wavelength Division Sampling and Wavelength Sampling and Shuffle. TS and WSS allow us to process segments of the electrical signal. This segment- interleaving is a potential novel strength of photonic analog-to-digital conversion techniques. The important experimental achievements include demonstration of 130 Gsa/s 7ENOB TSADC, with filtering over 1 GHZ and 30 Gsa/s, 4ENOB TSADC system over 4GHz. In the case of WDS systems we have shown 12 Gsa/s continuous time WDS system and 100 Gsa/s WDS system. We have also performed preliminary experiments to show the viability of a 16 Gsa/s, 4 channel WSS system with time aperture of 500ns. The important analytical milestones include a link level analysis of dynamic range of TSADC. We have also analyzed the effect of fiber dispersion (β2 and β3) on TSADC and the effect of mismatch in sample interleaved systems.

  4. Interference comparator for laser diode wavelength and wavelength instability measurement

    Science.gov (United States)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  5. Novel Control for Voltage Boosted Matrix Converter based Wind Energy Conversion System with Practicality

    Science.gov (United States)

    Kumar, Vinod; Joshi, Raghuveer Raj; Yadav, Dinesh Kumar; Garg, Rahul Kumar

    2017-04-01

    This paper presents the implementation and investigation of novel voltage boosted matrix converter (MC) based permanent magnet wind energy conversion system (WECS). In this paper, on-line tuned adaptive fuzzy control algorithm cooperated with reversed MC is proposed to yield maximum energy. The control system is implemented on a dSPACE DS1104 real time board. Feasibility of the proposed system has been experimentally verified using a laboratory 1.2 kW prototype of WECS under steady-state and dynamic conditions.

  6. Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

    DEFF Research Database (Denmark)

    Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui

    2017-01-01

    base-catalyzed depolymerization (BCD) using a process-relevant solid lignin stream produced via deacetylation, mechanical refining, and enzymatic hydrolysis to enable biological lignin conversion. BCD was conducted with the solid lignin substrate over a range of temperatures at two NaOH concentrations......, and the results demonstrate that the lignin can be partially extracted and saponified at temperatures as low as 60°C. At 120°C and 2% NaOH, the high extent of lignin solubility was accompanied by a considerable decrease in the lignin average molecular weight and the release of lignin-derived monomers including...

  7. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide.

    Science.gov (United States)

    Karpiński, Michał; Radzewicz, Czesław; Banaszek, Konrad

    2012-03-01

    We report generation of near-infrared photon pairs in fundamental spatial modes via type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO(4)) nonlinear waveguide supporting multiple transverse modes. This demonstrates experimentally a versatile scheme for controlling the spatial characteristics of the produced nonclassical light based on exploitation of intermodal dispersion. The down-converted photons are characterized by the measurement of the beam quality factors in the heralded regime. © 2012 Optical Society of America

  8. Coking of Ni-based catalysts at the process of methane conversion with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitsky, L.A.; Soboleva, T.N.; Korotkova, G.; Alexseev, A.M. [Institute for Nitrogen Industry, Moscow (Russian Federation)

    1995-12-31

    The process of methane conversion with carbon dioxide over Ni-based supported catalyst (NiSC) is followed by the reversible reaction of carbon formation on the NiSC at certain conditions. This reaction is of interest as a model for investigation of coking reaction (CR) and it`s reverse one - gasification (GR) on different types of NiSC. The study of dynamics of CR and GR was carried out with thermomicrobalance at the atmospheric pressure in methane - carbon dioxide mixture flow over previously reduced NiSC at linear temperature programming in heating and cooling regimes.

  9. Concept maps: A tool for knowledge management and synthesis in web-based conversational learning.

    Science.gov (United States)

    Joshi, Ankur; Singh, Satendra; Jaswal, Shivani; Badyal, Dinesh Kumar; Singh, Tejinder

    2016-01-01

    Web-based conversational learning provides an opportunity for shared knowledge base creation through collaboration and collective wisdom extraction. Usually, the amount of generated information in such forums is very huge, multidimensional (in alignment with the desirable preconditions for constructivist knowledge creation), and sometimes, the nature of expected new information may not be anticipated in advance. Thus, concept maps (crafted from constructed data) as "process summary" tools may be a solution to improve critical thinking and learning by making connections between the facts or knowledge shared by the participants during online discussion This exploratory paper begins with the description of this innovation tried on a web-based interacting platform (email list management software), FAIMER-Listserv, and generated qualitative evidence through peer-feedback. This process description is further supported by a theoretical construct which shows how social constructivism (inclusive of autonomy and complexity) affects the conversational learning. The paper rationalizes the use of concept map as mid-summary tool for extracting information and further sense making out of this apparent intricacy.

  10. Progress in extended wavelength VCSEL technology

    Science.gov (United States)

    Johnson, Klein; Dummer, Matthew; Hibbs-Brenner, Mary; Hogan, William; Steidl, Charles

    2013-03-01

    Vixar has been developing VCSELs at both shorter (680nm) and longer (1850nm) wavelengths. This paper reports on advances in technology at both of these wavelengths. 680nm VCSELs based upon the AlGaAs/AlGaInP materials system were designed and fabricated for high speed operation for plastic optical fiber (POF) based links for industrial, automotive and consumer applications. High speed testing was performed in a "back-to-back" configuration over short lengths of glass fiber, over 42 meters of POF, with and without I.C. drivers and preamps, and over temperature. Performance to 90°C, 10 Gbps and over 40 meters of plastic optical fiber has been demonstrated. Reliability testing has been performed over a range of temperatures and currents. Preliminary results predict a TT1% failure of at least 240,000 hours at 40°C and an average current modulation of 4mA. In addition, the VCSELs survive 1000 hours at 85% humidity 85°C in a non-hermetic package. 1850nm InP based VCSELs are being developed for optical neurostimulation. The goals are to optimize the output power and power conversion efficiency. 7mW of DC output power has been demonstrated at room temperature, as well as a power conversion efficiency of 12%. Devices operate to 85°C. Over 70mW of pulsed power has been achieved from a 35 VCSEL array, with a pulse width of 10μsec.

  11. Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips

    Directory of Open Access Journals (Sweden)

    Helei Wei

    2016-12-01

    Full Text Available Ultra-thin metallic nano-strips (thinner than skin depth can lead to anomalous reflection for a transverse magnetic (TM incidence of some wave-lengths, due to the phase modulation of localized surface plasmon resonance. Based on the principle above, we proposed a method of polarization modulation using ultra-thin metallic nano-strips. When irradiating nano-strips vertically by light with a given polarized angle, we can utilize the phase difference of the TM transmission and transverse electric (TE transmission near anomalous reflection region to modulate transmission polarization. We have designed and fabricated the ultra-thin metallic nano-strips with the function of quarter-wave plate, the attained transmission Stokes parameter S3 is 0.95. The nano-strips is easy to design and fabricate, also compatible with other optics devices, hence has the potential applications in integrated optics field.

  12. Wave Climate Resource Analysis Based on a Revised Gamma Spectrum for Wave Energy Conversion Technology

    Directory of Open Access Journals (Sweden)

    Jeremiah Pastor

    2016-12-01

    Full Text Available In order to correctly predict and evaluate the response of wave energy converters (WECs, an accurate representation of wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques and applies a methodology to estimate the naturally available and technically recoverable resource in a given deployment site. The methodology was initially developed by the Electric Power Research Institute (EPRI, which uses a modified gamma spectrum to interpret sea state hindcast parameter data produced by National Oceanic and Atmospheric Administration’s (NOAA’s WaveWatch III. This gamma spectrum is dependent on the calibration of two variables relating to the spectral width parameter and spectral peakedness parameter. In this study, this methodology was revised by the authors to increase its accuracy in formulating wavelength. The revised methodology shows how to assess a given geographic area’s wave resource based on its wave power density and total annual wave energy flux.

  13. Optical 10-20 and 20-40 Gbits/s pseudorandom bit sequence data multiplexing utilizing conversion-dispersion-based tunable optical delays.

    Science.gov (United States)

    Wu, Xiaoxia; Christen, Louis; Yilmaz, Omer F; Nuccio, Scott R; Willner, Alan E

    2008-07-01

    We experimentally demonstrate all-optical 2(7)-1 pseudorandom bit sequence data multiplexing using wavelength conversion, interchannel chromatic dispersion, and intrachannel dispersion compensation. Bit-rate tuning capability is demonstrated with 10-20 and 20-40 Gbits/s multiplexing, achieving a bit-error rate <10(-9) for both rates.

  14. High efficiency AlGaInN-based light emitting diode in the 360-380 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hisao; Wang, Hong-Xing; Sato, Daisuke; Takaki, Ryohei; Wada, Naoki; Tanahashi, Tetsuya; Yamashita, Kenji; Kawano, Shunsuke; Mizobuchi, Takashi; Dempo, Akihiko; Morioka, Kenji; Kimura, Masahiro; Nohda, Suguru [Nitride Semiconductors Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan); Sugahara, Tomoya [Satellite Venture Business Laboratory, The University of Tokushima (Japan); Sakai, Shiro [Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2003-11-01

    High performance LEDs emitting in the wavelength range 360-380 nm, are fabricated on sapphire substrates by one-time metalorganic chemical vapor deposition (MOCVD) without using epitaxial lateral overgrowth (ELO) or similar techniques. By improving layer structures and growth conditions, the output power of the LEDs was much improved. The light output power of the LEDs at an injection current of 20 mA is 3.2 mW, 2.5 mW and 1 mW at wavelengths of 378 nm, 373 nm and 363 nm, which correspond to an external quantum efficiency of 4.8%, 3.8% and 1.4%, respectively. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.

    Science.gov (United States)

    Nguyen, Duc Minh; Lee, Dasol; Rho, Junsuk

    2017-06-01

    Conventional metamaterial absorbers have multilayer designs, where the dielectric interlayer is sandwiched between a top patterned metallic structure and bottom metallic film. Here, we demonstrate that a highly polarization-sensitive perfect absorber canbe realized by replacing the bottom metallic film with a plasmonic grating. Designs for broadband and narrowband of wavelength are proposed and numerically investigated. The designed absorbers perform high light absorption, which is above 90% over the wavelength range of 0.4-1.4 µm for the broadband absorber and 98% for the absorption peak in case of the narrowband design, with a specific polarization of incident light. We find that the absorption is tunable by changing the polarization. Such absorbers offer new approach for active control of light absorbance with strong impacts for solar energy harvesting, light emitting and sensing.

  16. RZ-to-NRZ format conversion at 50 Gbit/s based on a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation.......We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation....

  17. Wavelength dimensioning for wavelength-routed WDM satellite network

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2016-06-01

    Full Text Available Internet and broadband applications driven by data traffic demand have become key drivers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter-satellite links (ISLs with wavelength routing (WDM-OSN. Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provision requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street network (MSN topology, wavelength requirements and average end-to-end delay based on the topology generated by LAS-PMM could be reduced by 24.8% and 12.4%, respectively.

  18. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    the membrane well hydrated. However, some of the main issues of the conventional PFSA based PEM fuel cells and water electrolyzers are directly or indirectly related to their relatively low operating temperature. An elevated operating temperature results in better electrode kinetics in general and improved...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of water electrolyzers and fuel cells is also explained. A detailed literature review is given that covers proton conducting polymeric materials and composite membrane concepts as well as the mechanisms of proton conduction in these types of structures. The experimental part of this thesis has focused...

  19. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanhui [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027 (China); Liu, Ningning [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Ku, Xiaoke, E-mail: xiaokeku@zju.edu.cn [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Fan, Jianren [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  20. Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology

    Science.gov (United States)

    Eitel, Jan U. H.; Magney, Troy S.; Vierling, Lee A.; Dittmar, Günter

    2014-11-01

    Advanced technologies for improved nitrogen (N) fertilizer management are paramount for sustainably meeting future food demands. Green laser systems that measure pulse return intensity can provide more reliable information about foliar N than can traditional passive remote sensing devices during the critical early crop growth stages (e.g., before canopy closure when vegetation and soil signals are spectrally mixed) when further decisions regarding N management can be made. However, current green laser systems are not designed for agricultural applications and only employ a single green laser wavelength, which may limit applications because many factors that require normalization techniques can affect pulse return intensity. Here, we describe the design of a tractor-mountable, green (532 nm)- and red (658 nm) dual wavelength laser system and evaluate the potential of an additional red reference wavelength to improve laser based estimates of foliar N by calculating laser spectral indices based on ratio combinations of green laser return intensity (GLRI) and red laser return intensity (RLRI). We hypothesized that such laser spectral indices aid in accounting for factors that confound laser based foliar N estimates including variations in leaf angle, measurement distance, soil returns, and mixed edge returns. Leaf level measurements in winter wheat (Triticum aestivum) revealed that the two laser spectral indices improved the relationship with foliar N (r2 > 0.71, RMSE laser spectral indices reduced the effect of measurement distance on laser readings and allowed leaf returns to be better separated from edge returns and soil returns. However, laboratory measurements showed that laser spectral indices did not account for variations in leaf angle, possibly explaining the weak relationships (r2 laser spectral indices observed when employing the laser system under field conditions. In fact, the strongest relationship at the field canopy level was shown for GLRI (r2 = 0

  1. Terahertz injection lasers based on PbSnSe alloy with an emission wavelength up to 46.5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Maremyanin, K. V., E-mail: kirillm@ipmras.ru; Rumyantsev, V. V.; Ikonnikov, A. V.; Bovkun, L. S. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Chizhevskii, E. G.; Zasavitskii, I. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Diffusion injection lasers based on Pb{sub 1} {sub –} {sub x}Sn{sub x}Se alloy, emitting in a wide spectral range of 10–46.5 μm depending on the composition and temperatures are fabricated. A technology for growing high-quality single crystals from the vapor phase under conditions of free growth is developed. The dependences of the total emission intensity on the pump current and the emission spectra of injection lasers based on Pb{sub 1–x}Sn{sub x}Se are studied. In these samples, lasing of long-wavelength radiation to a record wavelength of 46.5 μm is achieved.

  2. Deposition of Cerium-Based Conversion Coatings on Aluminum Alloy 380

    Directory of Open Access Journals (Sweden)

    Ci Lin

    2012-01-01

    Full Text Available Cerium-based conversion coatings were deposited on as-cast aluminum alloy 380 substrates by a spontaneous immersion process. In this study, the effects of rinsing temperature prior to immersion in the coating deposition solution were studied with respect to the surface morphology, electrochemical response, and corrosion resistance of the coatings. Panels rinsed at 25°C prior to coating had large cracks and holes in the coating. In contrast, panels rinsed at 100°C prior to coating had a uniform coating morphology with fewer, smaller cracks. Electrochemical testing revealed that coatings deposited on substrates rinsed at 100°C had higher impedance (~80 kΩ·cm2 and lower corrosion current (~0.34 μA/cm2 compared to coatings deposited on substrates rinsed at 25°C, which had 10 kΩ·cm2 impedance and 2.7 μA/cm2 corrosion current. Finally, ASTM B117 salt spray testing showed that rinsing at 100°C prior to coating resulted in cerium-based conversion coatings that could resist the formation of salt tails for at least 8 days.

  3. Assessment of control strategies for fault ride through of SCIG-based wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Manaullah

    2016-01-01

    Full Text Available With increasing penetration of wind energy into the power grid, researchers have started focusing more on control and coordination of wind energy conversion systems (WECS with the other components at system level, especially during fault. It is important to implement a suitable fault ride through control strategy to avoid tripping of the generators when the power system is subjected to voltage dips normally below 90% of nominal voltage. The dips below 90% may lead to a significant loss of generation and frequency collapse, followed by a blackout. This article implements and assesses the methodologies to deal with such situations for squirrel cage induction generator-based wind energy conversion systems employing fully rated power electronic converters. Three distinct control techniques—namely, balanced positive sequence control, positive negative sequence control, and dual current control—have been simulated and applied to grid side converter of SCIG-based WECS. The performance of all the three control strategies has been compared and presented in this work. During this study, the system is subjected to the most common unsymmetrical line to ground (LG fault and most severe symmetrical LLL fault on grid for the purpose of anaysis.

  4. End-of-life conversations and care: an asset-based model for community engagement.

    Science.gov (United States)

    Matthiesen, Mary; Froggatt, Katherine; Owen, Elaine; Ashton, John R

    2014-09-01

    Public awareness work regarding palliative and end-of-life care is increasingly promoted within national strategies for palliative care. Different approaches to undertaking this work are being used, often based upon broader educational principles, but little is known about how to undertake such initiatives in a way that equally engages both the health and social care sector and the local communities. An asset-based community engagement approach has been developed that facilitates community-led awareness initiatives concerning end-of-life conversations and care by identifying and connecting existing skills and expertise. (1) To describe the processes and features of an asset-based community engagement approach that facilitates community-led awareness initiatives with a focus on end-of-life conversations and care; and (2) to identify key community-identified priorities for sustainable community engagement processes. An asset-based model of community engagement specific to end-of-life issues using a four-step process is described (getting started, coming together, action planning and implementation). The use of this approach, in two regional community engagement programmes, based across rural and urban communities in the northwest of England, is described. The assets identified in the facilitated community engagement process encompassed people's talents and skills, community groups and networks, government and non-government agencies, physical and economic assets and community values and stories. Five priority areas were addressed to ensure active community engagement work: information, outreach, education, leadership and sustainability. A facilitated, asset-based approach of community engagement for end-of-life conversations and care can catalyse community-led awareness initiatives. This occurs through the involvement of community and local health and social care organisations as co-creators of this change across multiple sectors in a sustainable way. This approach

  5. Efficacy of melody-based aphasia therapy may strongly depend on rhythm and conversational speech formulas

    Directory of Open Access Journals (Sweden)

    Benjamin Stahl

    2014-04-01

    Full Text Available Left-hemisphere stroke patients suffering from language and speech disorders are often able to sing entire pieces of text fluently. This finding has inspired a number of melody-based rehabilitation programs – most notable among them a treatment known as Melodic Intonation Therapy – as well as two fundamental research questions. When the experimental design focuses on one point in time (cross section, one may determine whether or not singing has an immediate effect on syllable production in patients with language and speech disorders. When the design focuses on changes over several points in time (longitudinal section, one may gain insight as to whether or not singing has a long-term effect on language and speech recovery. The current work addresses both of these questions with two separate experiments that investigate the interplay of melody, rhythm and lyric type in 32 patients with non-fluent aphasia and apraxia of speech (Stahl et al., 2011; Stahl et al., 2013. Taken together, the experiments deliver three main results. First, singing and rhythmic pacing proved to be equally effective in facilitating immediate syllable production and long-term language and speech recovery. Controlling for various influences such as prosody, syllable duration and phonetic complexity, the data did not reveal any advantage of singing over rhythmic speech. This result was independent of lesion size and lesion location in the patients. Second, patients with extensive left-sided basal ganglia lesions produced more correct syllables when their speech was paced by rhythmic drumbeats. This observation is consistent with the idea that regular auditory cues may partially compensate for corticostriatal damage and thereby improve speech-motor planning (Grahn & Watson, 2013. Third, conversational speech formulas and well-known song lyrics yielded higher rates of correct syllable production than novel word sequences – whether patients were singing or speaking

  6. Effects of adhesive, base and diluent monomers on water sorption and conversion of experimental resins.

    Science.gov (United States)

    Dickens, Sabine H; Flaim, Glenn M; Floyd, Cynthia J E

    2010-07-01

    To establish the relationship of resin composition and resin hydrophilicity (indicated by solubility parameters and logP) to water sorption (WS), solubility, and degree of double bond conversion (DC) of resin mixtures designed for adhesive restoratives by varying the concentration of pyromellitic glycerol dimethacrylate (PMGDM) and various co-monomers. Sixteen resin mixtures were prepared with (30-70) mass fraction % PMGDM. At given PMGDM concentrations there were up to five compositions with increasing logP. Polymer disks (13 mm x 0.7 mm) were exposed to 96% relative humidity (RH) to determine water sorption in humid atmosphere (WSH) and subsequently immersed in water for immersion water sorption (WSI) and solubility. DC was assessed by near infrared spectroscopy. WSI was somewhat higher than WSH, which ranged from (2.1 to 5.3) mass fraction %. Both data were positively correlated to PMGDM concentrations [Pearson correlation, pdiluent monomers, or Group U containing urethane dimethacrylate, WS within each group was inversely correlated to logP with R(2)=0.98, 0.81, 0.95, and WS/solubility correlation improved with R(2)=0.88, 0.92 and 0.75, respectively. Solubility ranging from 0.3% to 2.3% was inversely related to DC (r=-0.872). Conversion ranging from 41% to 81% was lower for resins with high base monomer concentrations and highest in mixtures with UDMA. LogP was a good predictor of WS after grouping the resins according to functional, compositional and structural similarities. WS and conversion were reasonably well predicted from Hoy's solubility parameters and other physical resin properties. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanion-Based Ionic Liquids.

    Science.gov (United States)

    Song, Changhua; Liu, Sijie; Peng, Xinwen; Long, Jinxing; Lou, Wenyong; Li, Xuehui

    2016-12-08

    An efficient one-pot approach for the production of levulinate ester from renewable carbohydrates is demonstrated over heteropolyanion-based ionic liquid (IL-POM) catalysts with alcohols as the promoters and solvents. The relationships between the structure, acidic strength, and solubility of the IL-POM in methanol and the catalytic performance were studied intensively. A cellulose conversion of 100 % could be achieved with a 71.4 % yield of methyl levulinate over the catalyst [PyPS]3 PW12 O40 [PyPS=1-(3-sulfopropyl)pyridinium] at 150 °C for 5 h. This high efficiency is ascribed to the reasonably high activity of the ionic liquid (IL) catalyst and reaction coupling with rapid in situ esterification of the generated levulinic acid with the alcohol promoter, which allows the insolubility of cellulose encountered in biomass conversion to be overcome. Furthermore, the present process exhibits high feedstock adaptability for typical carbohydrates and handy catalyst recovery by a simple self-separation procedure through temperature control. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng

    2014-05-12

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  9. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  10. Design of a Load Torque Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Mengnan Liu

    2016-01-01

    Full Text Available In order to improve the electrical conversion efficiency of an electric tractor motor, a load torque based control strategy (LTCS is designed in this paper by using a particle swarm optimization algorithm (PSO. By mathematically modeling electric-mechanical performance and theoretical energy waste of the electric motor, as well as the transmission characteristics of the drivetrain, the objective function, control relationship, and analytical platform are established. Torque and rotation speed of the motor’s output shaft are defined as manipulated variables. LTCS searches the working points corresponding to the best energy conversion efficiency via PSO to control the running status of the electric motor and uses logic and fuzzy rules to fit the search initialization for load torque fluctuation. After using different plowing forces to imitate all the common tillage forces, the simulation of traction experiment is conducted, which proves that LTCS can make the tractor use electrical power efficiently and maintain agricultural applicability on farmland conditions. It provides a novel method of fabricating a more efficient electric motor used in the traction of an off-road vehicle.

  11. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths.

    Science.gov (United States)

    Martínez, Alejandro; Blasco, Javier; Sanchis, Pablo; Galán, José V; García-Rupérez, Jaime; Jordana, Emmanuel; Gautier, Pauline; Lebour, Youcef; Hernández, Sergi; Guider, Romain; Daldosso, Nicola; Garrido, Blas; Fedeli, Jean Marc; Pavesi, Lorenzo; Martí, Javier; Spano, Rita

    2010-04-14

    We demonstrate experimentally all-optical switching on a silicon chip at telecom wavelengths. The switching device comprises a compact ring resonator formed by horizontal silicon slot waveguides filled with highly nonlinear silicon nanocrystals in silica. When pumping at power levels about 100 mW using 10 ps pulses, more than 50% modulation depth is observed at the switch output. The switch performs about 1 order of magnitude faster than previous approaches on silicon and is fully fabricated using complementary metal oxide semiconductor technologies.

  12. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  13. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection.

    Science.gov (United States)

    Liu, Jie; Zeng, Duoduo; Guo, Changjian; Xu, Lei; He, Sailing

    2010-10-25

    We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry-Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

  14. Background–limited long wavelength infrared InAs/InAs1− xSbx type-II superlattice-based photodetectors operating at 110 K

    Directory of Open Access Journals (Sweden)

    Abbas Haddadi

    2017-03-01

    Full Text Available We report the demonstration of high-performance long-wavelength infrared (LWIR nBn photodetectors based on InAs/InAs1− xSbx type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μ m at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω · cm 2 and a dark current density of 8 × 10−5 A/cm2, under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 cm· Hz / W and a background–limited operating temperature of 110 K.

  15. ForConX: A forcefield conversion tool based on XML.

    Science.gov (United States)

    Lesch, Volker; Diddens, Diddo; Bernardes, Carlos E S; Golub, Benjamin; Dequidt, Alain; Zeindlhofer, Veronika; Sega, Marcello; Schröder, Christian

    2017-04-05

    The force field conversion from one MD program to another one is exhausting and error-prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl-Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate comprising also Urey-Bradley and Ryckaert-Bellemans potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Four 45 Gbps PAM4 VCSEL based transmission through 300 m wideband OM4 fiber over SWDM4 wavelength grid.

    Science.gov (United States)

    Motaghiannezam, Reza; Lyubomirsky, Ilya; Daghighian, Henry; Kocot, Chris; Gray, Timo; Tatum, Jim; Amezcua-Correa, Adrian; Bigot-Astruc, M; Molin, D; Achten, F; Sillard, P

    2016-07-25

    We demonstrate successful transmission of four 45 Gbps PAM4 single-channels through OM4 multimode fibers (MMFs) and wideband MMF using a PAM4 PHY chip and four vertical cavity surface emitting lasers (VCSELs) with wavelengths ranging over short wavelength division multiplexing (SWDM) grid. Real-time bit error ratios (BERs) -4 were achieved for all four 45 Gbps PAM4 SWDM grid channels over 100 m, 200 m, and 300 m of wideband OM4 MMFs. All four channel received PAM4 optical eyes are shown after propagating through 100 m, 200 m, and 300 m of wideband OM4 as well as 100 m and 200 m conventional OM4 MMFs. The measured BERs as a function of the inner eye optical modulation amplitudes (OMAs) are shown for all four SWDM grid channels. Inner eye OMAs ranged from -16.2 dBm to -13.5 dBm for different channels over different OM4 MMF types at the KP4 BER threshold of 2 × 10-4.

  17. Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter.

    Science.gov (United States)

    Bragheri, F; Faccio, D; Romagnoli, M; Krauss, T; Roberts, J

    2004-01-01

    We study the problem of the tolerance to fabrication errors in one-dimensional photonic crystal wavelength converters. In particular we consider the case of wavelength conversion obtained via quasiphase matching (QPM) based on a periodic amplitude modulation of the fundamental wave (Bloch-mode-QPM). Both numerical simulations of a waveguide-based structure and experimental results in an AlGaAs thin-film multilayer show that the proposed QPM mechanism is extremely tolerant to both systematic and random errors in the periodicity and duty cycle of the grating.

  18. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Naggar H. Saad

    2016-05-01

    Full Text Available The main challenges of wind energy conversion systems (WECS are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG current to extract the maximum power from the wind at a given wind velocity and to inject reactive power to the grid. Reactive power injection during the fault satisfying the grid-codes requirement. The proposed WECS has been modeled and simulated using PSCAD/EMTDC software package.

  19. Novel grid-based optical Braille conversion: from scanning to wording

    Science.gov (United States)

    Yoosefi Babadi, Majid; Jafari, Shahram

    2011-12-01

    Grid-based optical Braille conversion (GOBCO) is explained in this article. The grid-fitting technique involves processing scanned images taken from old hard-copy Braille manuscripts, recognising and converting them into English ASCII text documents inside a computer. The resulted words are verified using the relevant dictionary to provide the final output. The algorithms employed in this article can be easily modified to be implemented on other visual pattern recognition systems and text extraction applications. This technique has several advantages including: simplicity of the algorithm, high speed of execution, ability to help visually impaired persons and blind people to work with fax machines and the like, and the ability to help sighted people with no prior knowledge of Braille to understand hard-copy Braille manuscripts.

  20. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    Science.gov (United States)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  1. VR-based conversation training program for patients with schizophrenia: a preliminary clinical trial.

    Science.gov (United States)

    Ku, Jeonghun; Han, Kiwan; Lee, Hyung Rae; Jang, Hee Jeong; Kim, Kwang Uk; Park, Sung Hyouk; Kim, Jae Jin; Kim, Chan Hyung; Kim, In Young; Kim, Sun I

    2007-08-01

    Schizophrenia is a devastating mental illness and is characterized by hallucinations and delusions as well as social skills deficits. Generally, social skills training designed to help patients develop social skills includes role-playing, but this form of training has typical shortcomings, which are largely due to a trainer's difficulties to project emotion. Virtual reality (VR)-based techniques have the potential to solve these difficulties, because they provide a computer-generated but realistic three-dimensional world and humanlike avatars that can provide emotional stimuli. In this paper, we report on a method of implementing virtual environments (VEs) in order to train people with schizophrenia to develop conversational skills in specific situations, which could overcome the shortcomings of or complement conventional role-playing techniques. The paper reports the efficacy of the proposed approach in a preliminary clinical trial with 10 patients with schizophrenia.

  2. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  3. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.

    Science.gov (United States)

    Roggenkamp, Emily; Giersch, Rachael M; Wedeman, Emily; Eaton, Muriel; Turnquist, Emily; Schrock, Madison N; Alkotami, Linah; Jirakittisonthon, Thitikan; Schluter-Pascua, Samantha E; Bayne, Gareth H; Wasko, Cory; Halloran, Megan; Finnigan, Gregory C

    2017-01-01

    Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries) has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction ( in vivo ) and integration of desired sequences into the genome. The development of molecular toolkits and "integration cassettes" have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein), a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell) or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i) N-terminal tagging, (ii) C-terminally tagging yeast genes with 18 unique fusions, (iii) conversion of fluorescently-tagged strains into newly engineered (or codon optimized) variants, and finally, (iv) use of a Cas9 "gene drive" system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting universal sequences

  4. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains

    Directory of Open Access Journals (Sweden)

    Emily Roggenkamp

    2017-09-01

    Full Text Available Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction (in vivo and integration of desired sequences into the genome. The development of molecular toolkits and “integration cassettes” have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein, a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i N-terminal tagging, (ii C-terminally tagging yeast genes with 18 unique fusions, (iii conversion of fluorescently-tagged strains into newly engineered (or codon optimized variants, and finally, (iv use of a Cas9 “gene drive” system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting

  5. All-fiber multi-wavelength passive Q-switched Er/Yb fiber laser based on a Tm-doped fiber saturable absorber

    Science.gov (United States)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Alaniz-Baylón, J.; Ibarra-Escamilla, B.; López-Estopier, R.; Kuzin, E. A.

    2017-03-01

    We report on a ring cavity, multi-wavelength, passive Q-switched erbium-ytterbium double cladding fiber laser based on the use of an unpumped segment of Tm-doped fiber acting as a saturable absorber for passive Q-switched pulse generation and a wavelength filter for multi-wavelength laser generation. By performing pump power variations from 1.6 to 9.8 W, stable Q-switched laser pulses are observed in a repetition rate from 135.8 to 27.5 kHz at room temperature. With a maximal repetition rate of 135.8 kHz, the minimum pulse duration of 430 ns is obtained. The maximal average output power of 2.2 W is reached with a pump power of 9.8 W. The maximum pulse energy was 16.4 µJ and the average output power slope efficiency is ~24.8%. The obtained results demonstrate a laser performance with extended range of high repetition rate and improved stability.

  6. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating.

    Science.gov (United States)

    Gustavsson, Johan; Haglund, Asa; Vukusić, Josip; Bengtsson, Jörgen; Jedrasik, Piotr; Larsson, Anders

    2005-08-22

    We have theoretically investigated the combined fundamental-mode and polarization selection in 850-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) using a locally etched sub-wavelength surface grating. The physical mechanisms behind the selection are, first, the strongly polarization sensitive effective refractive index of the volume occupied by the grating structure, and second, the dramatic change of the reflectivity of a multi-layer Bragg mirror that can occur by simply changing the refractive index of the outermost layer. For a VCSEL cavity this layer is the surface layer and its refractive index is changed by the introduction of the sub-wavelength grating; in this case the grating leads to a higher reflectivity for the desired polarization. By localizing the surface grating area to a carefully chosen region near the optical axis it is therefore possible to ensure that the fundamental mode experiences a high reflectivity, or low cavity loss, while other modes experience more of the low-reflectance region of the peripheral part of the Bragg mirror and thus suffer higher loss. Cold-cavity calculations on a VCSEL with oxide aperture and grating region diameters of 4.5 microm and 2.5 microm, respectively, indicate that a loss difference of ~20 cm(-1) between the fundamental mode and the first higher order mode can be obtained simultaneously with an orthogonal polarization mode discrimination of >15 cm-1. Based on previous experience, these values should enable robust single-mode operation with only the desired polarization orientation. What is also important, for the lasing mode the introduction of a sub-wavelength grating has no detrimental effect, so its characteristics, such as threshold current, slope efficiency, and far-field profile are unaffected. Moreover, since the effective index is a result of an averaging over several sub-wavelength grating periods, it is fairly insensitive to the detailed shape of the grating grooves, which should

  7. Convincing Conversations : Using a Computer-Based Dialogue System to Promote a Plant-Based Diet

    NARCIS (Netherlands)

    Zaal, Emma; Mills, Gregory; Hagen, Afke; Huisman, Carlijn; Hoeks, Jacobus

    2017-01-01

    In this study, we tested the effectiveness of a computer-based persuasive dialogue system designed to promote a plant-based diet. The production and consumption of meat and dairy has been shown to be a major cause of climate change and a threat to public health, bio-diversity, animal rights and

  8. Synchrotron radiation-based Mössbauer spectra of 174Yb measured with internal conversion electrons

    Science.gov (United States)

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Iga, Fumitoshi; Seto, Makoto

    2014-02-01

    A detection system for synchrotron-radiation (SR)-based Mössbauer spectroscopy was developed to enhance the nuclear resonant scattering counting rate and thus increase the available nuclides. In the system, a windowless avalanche photodiode (APD) detector was combined with a vacuum cryostat to detect the internal conversion (IC) electrons and fluorescent X-rays accompanied by nuclear de-excitation. As a feasibility study, the SR-based Mössbauer spectrum using the 76.5 keV level of 174Yb was observed without 174Yb enrichment of the samples. The counting rate was five times higher than that of our previous system, and the spectrum was obtained within 10 h. This result shows that nuclear resonance events can be more efficiently detected by counting IC electrons for nuclides with high IC coefficients. Furthermore, the windowless detection system enables us to place the sample closer to the APD elements and is advantageous for nuclear resonant inelastic scattering measurements. Therefore, this detection system can not only increase the number of nuclides accessible in SR-based Mössbauer spectroscopy but also allows the nuclear resonant inelastic scattering measurements of small single crystals or enzymes with dilute probe nuclides that are difficult to measure with the previous detection system.

  9. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fontana, M.H. [Oak Ridge National Lab., TN (United States); Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  10. Polymer-based chromophore-catalyst assemblies for solar energy conversion

    Science.gov (United States)

    Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.

    2017-12-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  11. Polymer-based chromophore-catalyst assemblies for solar energy conversion.

    Science.gov (United States)

    Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S

    2017-01-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  12. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  13. Profiling of Participants in Chat Conversations Using Creativity-Based Heuristics

    Science.gov (United States)

    Chiru, Costin-Gabriel; Rebedea, Traian

    2017-01-01

    This article proposes a new fully automated method for identifying creativity that is manifested in a divergent task. The task is represented by chat conversations in small groups, each group having to debate on the same topics, with the purpose of better understanding the discussed concepts. The chat conversations were created by undergraduate…

  14. A Framework of Synthesizing Tutoring Conversation Capability with Web-Based Distance Education Courseware

    Science.gov (United States)

    Song, Ki-Sang; Hu, Xiangen; Olney, Andrew; Graesser, Arthur C.

    2004-01-01

    Whereas existing learning environments on the Web lack high level interactivity, we have developed a human tutor-like tutorial conversation system for the Web that enhances educational courseware through mixed-initiative dialog with natural language processing. The conversational tutoring agent is composed of an animated tutor, a Latent Semantic…

  15. Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion

    Science.gov (United States)

    Guo, Weiwei

    Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range

  16. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    Science.gov (United States)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  17. A Novel Dynamic Wavelength Cross-connect Based on Mach-Zehnder Interferometer Optical ad/drop Multiplexer and Optical Space Switch

    OpenAIRE

    Xueyan, Zheng; Liu, Fenghai

    1999-01-01

    We have proposed a novel dynamic WXC based on MZI-OADM. The advantages of this dynamic WXC are very low differential insertion loss, using less exchanging units than reported structures, and the ability to be integrated. In experiment, the three channels from the path with maximum OADMs in a 2×2 dynamic WXC capable of exchanging five wavelengths show negligible power penalty at BER of 10-9. The above advantages make this kind of dynamic WXC very promising for future WDM networks

  18. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers.

    Science.gov (United States)

    Jirauschek, Christian; Huber, Robert

    2015-07-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.

  19. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    Science.gov (United States)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  20. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    Science.gov (United States)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  1. Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad

    Science.gov (United States)

    Zafar, Qayyum; Fatima, Noshin; Karimov, Khasan S.; Ahmed, Muhammad M.; Sulaiman, Khaulah

    2017-02-01

    Herein, we demonstrate a solution-processed visible wavelength organic photodiode (OPD) using donor/acceptor dyad of zinc phthalocyanine (ZnPc) and [6,6]-phenyl-C71-butyric-acid methyl ester (PC71BM), respectively. The synergic absorption profiles of both ZnPc and PC71BM moieties have been exploited to realize broader (350 and 800 nm) and consistent absorption spectrum of the photoactive film. The optimum loading ratio (by volume) of D/A dyad has been estimated to be 1:0.8, via quenching phenomenon in ZnPc photoluminescence spectrum. The performance of the OPD has been evaluated by detecting the photocurrent density with respect to varied illumination levels (0-150 mW/cm2) of impinging light at different reverse bias conditions. Under identical reverse bias mode, the photocurrent density has shown significant upsurge as the incident intensity of light is increased; ultimately leading to the significantly higher responsivity (162.4 μA/W) of the fabricated diode. The light to dark current density ratio (Jph/Jd) of the device at 3 V reverse bias has been calculated to be ∼20.12. The transient photocurrent density response of the fabricated OPD has also been characterized at -4 V operational bias under switch ON/OFF illumination. The measured response and recovery time for the fabricated OPD are ∼200 and 300 ms, respectively.

  2. Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth

    Science.gov (United States)

    Vahed, Hamid; Ahmadi, Sahar Soltan

    2017-11-01

    A graphene layer has high absorption with very low thickness. The chemical potential of graphene change by an applied voltage and then it leads to the variable optical absorption of graphene. These properties make graphene a suitable absorber layer in optoelectronic devices. The graphene layer is placed in the position of the maximum optical field that causes the maximum absorption. In this paper, an electro-optics modulator is designed with one and two graphene layers with the sub-wavelength thickness. The applied voltage causes change in the chemical potential of graphene and causes change in the graphene absorption. Therefore, the propagating wave would be modulated. The presence of the graphene layer has caused the proposed modulator to have a relatively uniform response in a broad range of frequencies. Simulations show that increasing the number of graphene layers improved the modulation properties. This modulator has a very low thickness and can be integrated into optical circuits. This modulator is applicable in mode-locking laser systems.

  3. Ground-based Detection of Deuterated Water in Comet C/2014 Q2 (Lovejoy) at IR Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Gibb, E. L. [Department of Physics and Astronomy, University of Missouri, St. Louis, MO (United States)

    2017-02-20

    We conducted a deep search for deuterated water (HDO) in the Oort Cloud comet C/2014 Q2 (Lovejoy), through infrared (IR) spectroscopy with NIRSPEC at the Keck Observatory. In this Letter, we present our detections of HDO and water (H{sub 2}O) in comet Lovejoy on 2015 February 4 (post-perihelion) after 1 hr integration on source. The IR observations allowed simultaneous detection of H{sub 2}O and HDO, yielding production rates of 5.9 ± 0.13 × 10{sup 29} and 3.6 ± 1.0 × 10{sup 26} molecules s{sup −1}, respectively. The simultaneous detection permitted accurate determination of the isotopic ratio (D/H) in water of 3.02 ± 0.87 × 10{sup −4}, i.e., larger than the value for water in terrestrial oceans (or Vienna Standard Mean Ocean Water, VSMOW) by a factor of 1.94 ± 0.56. This D/H ratio in water exceeds the value obtained independently at millimeter wavelengths (0.89 ± 0.25 VSMOW; pre-perihelion). We discuss these parameters in the context of origins and emphasize the need for contemporaneous measurements of HDO and H{sub 2}O.

  4. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion.

    Science.gov (United States)

    Nowotny, Janusz; Alim, Mohammad Abdul; Bak, Tadeusz; Idris, Mohammad Asri; Ionescu, Mihail; Prince, Kathryn; Sahdan, Mohd Zainizan; Sopian, Kamaruzzaman; Mat Teridi, Mohd Asri; Sigmund, Wolfgang

    2015-12-07

    This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance.

  5. Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion.

    Science.gov (United States)

    Bayatsarmadi, Bita; Zheng, Yao; Vasileff, Anthony; Qiao, Shi-Zhang

    2017-06-01

    Nanostructured metal-contained catalysts are one of the most widely used types of catalysts applied to facilitate some of sluggish electrochemical reactions. However, the high activity of these catalysts cannot be sustained over a variety of pH ranges. In an effort to develop highly active and stable metal-contained catalysts, various approaches have been pursued with an emphasis on metal particle size reduction and doping on carbon-based supports. These techniques enhances the metal-support interactions, originating from the chemical bonding effect between the metal dopants and carbon support and the associated interface, as well as the charge transfer between the atomic metal species and carbon framework. This provides an opportunity to tune the well-defined metal active centers and optimize their activity, selectivity and stability of this type of (electro)catalyst. Herein, recent advances in synthesis strategies, characterization and catalytic performance of single atom metal dopants on carbon-based nanomaterials are highlighted with attempts to understand the electronic structure and spatial arrangement of individual atoms as well as their interaction with the supports. Applications of these new materials in a wide range of potential electrocatalytic processes in renewable energy conversion systems are also discussed with emphasis on future directions in this active field of research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tin-based mesoporous silica for the conversion of CO2 into dimethyl carbonate.

    Science.gov (United States)

    Ballivet-Tkatchenko, Danielle; Bernard, Frédéric; Demoisson, Frédéric; Plasseraud, Laurent; Sanapureddy, Sreevardhan Reddy

    2011-09-19

    Sn-based SBA-15 was prepared by reacting di-n-butyldimethoxystannane with SBA-15 pretreated with trimethylchlorosilane (TMCS) to cap the external hydroxyl groups. Small-angle X-ray diffraction (SXRD), infrared spectroscopy (IR), nitrogen adsorption/desorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission (ICP-AES) measurements allow us to propose that the organotin species are located within the pore channels of the mesoporous host. This novel material catalyzes selectively the coupling of CO(2) with methanol to dimethyl carbonate (DMC). The reaction time-conversion dependence shows that a turnover number (TON) of 16 can be reached at 423 K under 20 MPa, which is among the highest reported so far in the absence of water traps. Moreover, as the catalytic activity is retained after recycling, even higher values can be obtained on a cumulative basis. A further TON increase is observed with the reaction temperature. Interestingly, the tin-based SBA-15 mesoporous material exhibits lower TONs if the TMCS pretreatment is left out. Therefore, the organotin species located outside the channels are far less active than those located within. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion

    Science.gov (United States)

    Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen

    2017-09-01

    In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.

  8. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    We present a simple, passive and static setup for broadband frequency conversion. By using simple optical components like lenses, mirrors and gratings, we obtain the spectral angular dispersion to match the second harmonic generation phasematching angles in a nonlinear BiBO crystal. We are able...... to frequency double a single-frequency diode laser, tunable in the 1020-1090 nm range, with almost equal efficiency for all wavelengths. In the experimental setup, the width of the phasematch was increased with a factor of 50. The method can easily be extended to other wavelength ranges and nonlinear crystals...

  9. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  10. Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.

    Science.gov (United States)

    Lu, Guo; Zhang, Xiaoyun; Chen, Li; Gao, Zhiyong

    2018-02-01

    Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.

  11. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.

    Science.gov (United States)

    Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H

    2010-02-15

    Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.

  12. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites.

    Science.gov (United States)

    Yin, Guoling; Yang, Yu; Song, Feilong; Renard, Christophe; Dang, Zhi-Min; Shi, Chang-Yong; Wang, Dongrui

    2017-02-15

    Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (∼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm3 was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.

  13. Investigating Oil-Prone Kerogen Conversion to Hydrocarbons Using AFM-based Infrared Spectroscopy

    Science.gov (United States)

    Eoghan, D.; Cook, D.; Hackley, P. C.; Kjoller, K.; Dawson, D.; Shetty, R.

    2016-12-01

    Understanding in situ chemical changes occurring during thermal conversion of oil-prone kerogen to hydrocarbons can provide fundamental information regarding the origin of the earth's fossil fuel endowment and reduce uncertainty in hydrocarbon prospecting and resource assessment. Tasmanites algal bodies were studied using an Atomic Force Microscope-based IR spectroscopy technique (AFM-IR) that offers chemical characterization of organic materials with spatial resolution below the diffraction limit. The AFM allows precise positioning within the algal bodies. A tunable IR laser irradiates the sample under the AFM probe. At absorbing wavenumbers, the sample heats up and expands. The AFM detects the expansion of the material under the probe tip to generate local IR spectra. The Tasmanites algal bodies from the Devonian-Mississippian Woodford Shale were contained in two polished rock fragment pellets. To simulate maturation, one was subjected to isothermal hydrous pyrolysis at 320 °C for 72 hours. AFM-IR spectra were collected at multiple sites on algal bodies in both samples (Figure 1). The aromatic C=C ring stretching at 1600 cm-1 (unheated) shifted to 1606 cm-1 with increased absorption in the heated algal bodies, indicating development of increased aromaticity with thermal maturation. The ratio of the 1606 cm-1 peak to peaks at 1708 cm-1 (C=O stretching) and 1460 cm-1 (CH2 wag) was higher in the heated sample, indicating loss of oxygenated functional groups and aliphatic components with thermal advance. A shift of the 1372 cm-1 peak to 1376 cm-1 with lower absorption in the heated samples suggests reduction in the abundance of methyl substituents and development of preferred localization. These results are consistent with extant information from FTIR analysis and demonstrate the ability of AFM-IR to provide in situ characterization of organic matter with respect to thermal maturity advance, and its application to understanding conversion of oil-prone kerogen to

  14. Ultraviolet Wavelength-Dependent Optoelectronic Properties in Two-Dimensional NbSe2-WSe2van der Waals Heterojunction-Based Field-Effect Transistors.

    Science.gov (United States)

    Son, Seung Bae; Kim, Yonghun; Kim, AhRa; Cho, Byungjin; Hong, Woong-Ki

    2017-11-29

    Atomically thin two-dimensional (2D) van der Waals (vdW) heterostructures are one of the very important research issues for stacked optoelectronic device applications. In this study, using the transferred and stacked NbSe 2 -WSe 2 films as electrodes and a channel, we fabricated the field-effect transistor (FET) devices based on 2D-2D vdW metal-semiconductor heterojunctions (HJs) and systematically studied their ultraviolet (UV) wavelength-dependent electrical and photoresponse properties. Upon the exposure to UV light with a wavelength of 365 nm, the NbSe 2 -WSe 2 vdW HJFET devices exhibited threshold voltage shift toward positive gate bias direction, a current increase, and a nonlinear photocurrent increase upon applying a gate bias due to the contribution of the photogenerated hole current. In contrast, for the 254 nm UV-irradiated FET devices, the drain current was decreased dramatically and the threshold voltage was negatively shifted. The time-resolved photoresponse properties showed that the device current after turning off the 254 nm UV light was completely and much more rapidly recovered compared with the case of the persistent photocurrent after turning off the 365 nm UV light. Interestingly, we found that the wettability of the WSe 2 surface was changed with increasing irradiation time only after 254 nm UV irradiation. The measured wetting behavior on the WSe 2 surface provided direct evidence that the experimentally observed UV-wavelength-dependent phenomena was attributed to the UV-induced dissociative adsorption of oxygen and water molecules, leading to the modulation of charge trap states on the photogenerated and intrinsic carriers in the p-type WSe 2 channel. This study will help provide an understanding of the influence of environmental and electrical measurement conditions on the electrical and optical properties of 2D-2D vdW HJ devices for a variety of device applications through the stacking of 2D heterostructures.

  15. High-Efficiency, Nanowire Based Thermoelectric Devices for Radioisotope Power Conversion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal responds to topic S3.03 of the 2010 NASA SBIR solicitation, for Power Generation and Conversion. Thermoelectric devices offer a simple and...

  16. Smartphone-Based Conversational Agents and Responses to Questions About Mental Health, Interpersonal Violence, and Physical Health.

    Science.gov (United States)

    Miner, Adam S; Milstein, Arnold; Schueller, Stephen; Hegde, Roshini; Mangurian, Christina; Linos, Eleni

    2016-05-01

    Conversational agents are smartphone-based computer programs designed to respond to users in natural language, thereby mimicking conversations between people. Many people use their smartphones to obtain health information. To describe the responses of 4 widely used conversational agents (Siri [Apple], Google Now, S Voice [Samsung], and Cortana [Microsoft]) to a standardized panel of questions related to mental health, interpersonal violence, and physical health. A pilot study followed by a cross-sectional study of a convenience sample of 68 phones from 7 manufacturers conducted from December 2015 to January 2016. Investigators asked the smartphones 9 questions (3 each in mental health, interpersonal violence, and physical health) in their natural language. We recorded information on features of the smartphones and their software, including manufacturer, phone model, operating system version, and conversational agent. The primary outcomes were the responses of conversational agents to 9 questions. The responses were characterized based on the ability to (1) recognize a crisis, (2) respond with respectful language, and (3) refer to an appropriate helpline, or other health resources for a physical health concern. Questions were asked repeatedly until there were no new answers. The phones ran 77 conversational agents: Siri (n = 27), Google Now (n = 31), S Voice (n = 9), and Cortana (n = 10). Siri, Google Now, and S Voice recognized the statement "I want to commit suicide" as concerning; Siri and Google Now referred the user to a suicide prevention helpline. In response to "I am depressed," Siri recognized the concern and responded with respectful language, the responses from S Voice and Cortana varied, and Google Now did not recognize the concern. None of the conversational agents referred users to a helpline for depression. In response to "I was raped," Cortana referred to a sexual assault hotline; Siri, Google Now, and S Voice did not recognize the

  17. Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique.

    Science.gov (United States)

    Watanabe, Takeshi; Iketaki, Yoshinori; Omatsu, Takashige; Yamamoto, Kimihisa; Sakai, Makoto; Fujii, Masaaki

    2003-12-01

    Pronounced separation (750 nm) between two individual fluorescence spots in a novel super-resolution microscopy based on a two-color up-conversion fluorescence depletion technique has been investigated. This microscopy has the potential to achieve a spatial resolution (<300nm) of 1/2 the diffraction limit.

  18. Optimal Placement of Wavelength Converting Nodes

    DEFF Research Database (Denmark)

    Belotti, Pietro; Stidsen, Thomas K.

    2001-01-01

    The all optical network using WDM and optical nodes (OXC's) seems to be a possibility in a near future. The consensus to day seems to be that optical wavelength conversions is un-realistic for several decades, hence wavelength blocking will happen in the all optical networks. A possible solution...... to this problem could be to include digital nodes (DXC's) in the network at the right places. In this article we present a linear programming model which optimizes the placement of these more expensive DXC's in the network....

  19. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  20. Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2011-01-01

    We demonstrate conversion from 64 × 10 Gbit/s optical timedivision multiplexed (OTDM) data to dense wavelength division multiplexed (DWDM) data with 25 GHz spacing. The conversion is achieved by time-domain optical Fourier transformation (OFT) based on four-wave mixing (FWM) in a 3.6 mm long...

  1. Conversational Dominance.

    Science.gov (United States)

    Esau, Helmut; Poth, Annette

    Details of conversational behavior can often not be interpreted until the social interaction, including the rights and obligations of the participants, their intent, the topic, etc., has been defined. This paper presents a model of conversation in which the conversational image a person presents in a given conversational situation is a function of…

  2. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  3. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  4. Ultrafast multi-wavelength switch based on dynamics of spectrally-shifted solitons in a dual‑core photonic crystal fiber.

    Science.gov (United States)

    Stajanca, Pavol; Pysz, Dariusz; Andriukaitis, Giedrius; Balciunas, Tadas; Fan, Guangyu; Baltuska, Andrius; Bugar, Ignac

    2014-12-15

    Nonlinear propagation of ultrafast near infrared pulses in anomalous dispersion region of dual-core photonic crystal fiber was studied. Polarization tunable soliton-based nonlinear switching at multiple non-excitation wavelengths was demonstrated experimentally for fiber excitation by 100 fs pulses at 1650 nm. The highest-contrast switching was obtained with the fiber length of just 14 mm, which is significantly shorter compared to the conventional non-solitonic in-fiber switching based on nonlinear optical loop mirror. Advanced numerical simulations show good agreement with the experimental results, suggesting that the underlying dual-core soliton fission process supports nonlinear optical switching and simultaneous pulse compression to few-cycle durations at the level of 20 fs.

  5. Quantum localization issues in nonlinear frequency conversion and harmonic generation

    Science.gov (United States)

    Forbes, Kayn A.; Ford, Jack S.; Andrews, David L.

    2017-08-01

    Issues of a fundamental quantum origin exert a significant effect on the output mode structures in optically parametric processes. An assumption that each frequency conversion event occurs in an infinitesimal volume produces uncertainty in the output wave-vector, but a rigorous, photon-based theory can provide for a finite conversion volume. It identifies the electrodynamic mechanisms operating within the corresponding region of space and time, on an optical wavelength and cycle timescale. Based on quantum electrodynamics, this theory identifies specific material parameters that determine the extent and measure of delocalized frequency conversion, and its equations deliver information on the output mode structures. The results also indicate that a system of optimally sized nanoparticles can display a substantially enhanced efficiency of frequency conversion.

  6. Photoelectrochemical solar energy conversion based on blend of poly(3-hexylthiophene (P3HT and 1-(3-methoxycarbonyl propyl-1-phenyl [6,6]C61 (PCBM

    Directory of Open Access Journals (Sweden)

    Teketel Yohannes

    2012-08-01

    Full Text Available A solid-state photoelectrochemical solar energy conversion device based on blend of poly(3-hexylthiophene (P3HT and 1-(3-methoxycarbonylpropyl-1-phenyl[6,6]C61 (PCBM, and an amorphous poly(ethylene oxide complexed with I3-/I- redox couple has been constructed and characterized. The photoelectrochemical performance parameters of the device were compared with pure P3HT and P3HT:C60 blend solid-state photoelectrochemical cell. The current density-voltage characteristics in the dark and under white light illumination and photocurrent spectra for front and backside illuminations have been studied. An open-circuit voltage of 140 mV and a short-circuit current density of 28.4 μA/cm2 at light intensity of 100 mW/cm2; IPCE% of 1.52% for front side illumination (ITO|PEDOT and IPCE% of 0.17% for backside illumination (ITO|P3HT:PCBM at a wavelength of 510 nm were obtained. The dependence of the short-circuit current density and an open-circuit voltage on the light intensity and time have also been studied.DOI: http://dx.doi.org/10.4314/bcse.v26i2.12

  7. Multi-wavelength high efficiency laser system for lidar applications

    Science.gov (United States)

    Willis, Christina C. C.; Culpepper, Charles; Burnham, Ralph

    2015-09-01

    Motivated by the growing need for more efficient, high output power laser transmitters, we demonstrate a multi-wavelength laser system for lidar-based applications. The demonstration is performed in two stages, proving energy scaling and nonlinear conversion independently for later combination. Energy scaling is demonstrated using a 1064 nm MOPA system which employs two novel ceramic Nd:YAG slab amplifiers, the structure of which is designed to improve the amplifier's thermal performance and energy extraction via three progressive doping stages. This structure improved the extraction efficiency by 19% over previous single-stage dopant designs. A maximum energy of 34 mJ was produced at 500 Hz with a 10.8 ns pulse duration. High efficiency non-linear conversion from 1064 nm to 452 nm is demonstrated using a KTP ring OPO with a BBO intra-cavity doubler pumped with 50 Hz, 16 ns 1064 nm pulses. The OPO generates 1571 nm signal which is frequency doubled to 756 nm by the BBO. Output 786 nm pulses are mixed with the 1064 nm pump pulses to generate 452 nm. A conversion efficiency of 17.1% was achieved, generating 3 mJ of 452 nm pulses of 7.8 ns duration. Pump power was limited by intra-cavity damage thresholds, and in future experiments we anticipate >20% conversion efficiency.

  8. EW WEIGHT DEPENDENT ROUTING AND WAVELENGTH ASSIGNMENT STRATEGY FOR ALL OPTICAL NETWORKS IN ABSENCE OF WAVELENGTH CONVERTERS

    Directory of Open Access Journals (Sweden)

    Shilpa S. Patil

    2015-09-01

    Full Text Available In wavelength division multiplexed all optical networks; lightpath establishes a connection between sending and receiving nodes bypassing the electronic processing at intermediate nodes. One of the prime objectives of Routing and Wavelength Assignment (RWA problem is to maximize the number of connections efficiently by choosing the best routes. Although there are several algorithms available, improving the blocking performance in optical networks and finding optimal solutions for RWA problem has still remained a challenging issue. Wavelength conversion can be helpful in restricting the problem of wavelength continuity constraint but it increases complexity in the network. In this paper, we propose new weight dependent routing and wavelength assignment strategy for all optical networks without use of wavelength converters. Proposed weight function reduces blocking probability significantly, improving the network performance at various load conditions. Further, due to absence of wavelength converters, the cost and complexity of network reduces. Results show that the proposed strategy performs better than earlier reported methods.

  9. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  10. Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths.

    Science.gov (United States)

    Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas

    2013-08-12

    We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.

  11. Detector for the FSD Fourier-Diffractometer Based on ZnS(Ag)/^{6}LiF Scintillation Screen and Wavelength Shifting Fibers Readout

    CERN Document Server

    Kuzmin, E S; Bokuchava, G D; Zhuk, V V; Kudryashov, V A; Buklin, A P; Trounov, V A

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal steresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/^{6}LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of tested modules in comparison with a detector of previous generation are presented and advantages of new detector design for high-resolution diffractometry are discussed.

  12. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  13. Low-noise InGaAs balanced p-i-n photoreceiver for space based remote sensing applications at 2 micron wavelength

    Science.gov (United States)

    Joshi, Abhay; Becker, Don; Datta, Shubhashish

    2008-08-01

    Greenhouse gases, such as carbon dioxide, carbon monoxide, and methane, can be remotely monitored through optical spectroscopy at ~2 micron wavelength. Space based LIDAR sensors have become increasingly effective for greenhouse gas detection to study global warming. The functionality of these LIDAR sensors can be enhanced to track global wind patterns and to monitor polar ice caps. Such space based applications require sensors with very low sensitivity in order to detect weak backscattered signals from an altitude of ~1000km. Coherent detection allows shot noise limited operation at such optical power levels. In this context, p-i-n photoreceivers are of specific interest due to their ability to handle large optical power, thereby enabling high coherent gain. Balanced detection further improves the system performance by cancelling common mode noise, such as laser relative intensity noise (RIN). We demonstrate a low-noise InGaAs balanced p-i-n photoreceiver at 2μm wavelength. The photoreceiver is comprised of a matched pair of p-i-n photodiodes having a responsivity of 1.34A/W that is coupled to transimpedance amplifier (TIA) having an RF gain of 24dB (transimpedance = 800Ω) and input equivalent noise of 19pA/√Hz at 300K. The photoreceiver demonstrates a 3dB bandwidth of 200MHz. Such bandwidth is suitable for LIDAR sensors having 20 to 30m resolution. The photoreceiver exhibits a common mode rejection ratio of 30dB and optical power handling of 3dBm per photodiode.

  14. Wavelength tunable parametric mid-IR source pumped by a high power picosecond thin-disk laser

    Science.gov (United States)

    Vyvlečka, Michal; Novák, Ondřej; Smrž, Martin; Endo, Akira; Mocek, Tomáš

    2017-05-01

    High average power wavelength tunable picosecond mid-IR source based on parametric down-conversion is being developed. The conversion system is pumped by a Yb:YAG thin-disk laser delivering 100 W of average power at 100 kHz repetition rate, 1030 nm wavelength, and 3 ps pulse width. First, part of the beam pumps an optical parametric generator (OPG) consisting of a PPLN crystal. The generated wavelength is determined by PPLN's poling period and temperature. Signal beam covered wavelength range between 1.46 mμ and 1.95 mμ. The corresponding idler wavelengths are 3.5 mμ and 2.18 mμ, respectively. Signal beam of about 20 mW was generated at 2 W pumping and double pass arrangement of the OPG stage. The signal pulse energy is further boosted in an optical parametric amplifier (OPA) consisting of two KTP crystals. The signal beam was amplified to 2 W at pumping of 38 W. The idler beam is taken out of the OPA stage as well. Wavelength tuning by KTP crystals' phase-matching angle change was achieved in ranges and 1.7 - 1.95 μm and 2.18 - 2.62 mμ for signal and idler beam, respectively.

  15. A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A; Issautier, A; Ostrowsky, D B; Alibart, O; Tanzilli, S [Laboratoire de Physique de la Matiere Condensee, CNRS UMR 6622, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2 (France); Herrmann, H; Sohler, W, E-mail: sebastien.tanzilli@unice.f [Angewandte Physik, Universitat-GH-Paderborn, Postfach 1621, D-4790 Paderborn (Germany)

    2010-10-15

    We report the realization of a fiber-coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated into periodically poled lithium niobate. By making use of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. For the two sets of measurements we obtained interference net visibilities reaching nearly 100%, which represent important and competitive results compared to those for the similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.

  16. Cr(VI) and Cr(III)-Based Conversion Coatings on Zinc

    NARCIS (Netherlands)

    Zhang, X.

    2005-01-01

    With the aims of understanding the protective mechanism of chromate conversion coatings and developing alternatives to chromate treatments, the physical natures and corrosion properties of Cr(VI) and Cr(III) treated zinc have been investigated in this work. The Cr(VI) treatments were carried out in

  17. Development of a fermentation-based process for biomass conversion to hydrogen gas

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Urbaniec, K.; Grabarczyk, R.

    2010-01-01

    The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is,

  18. The caring relationship in hospice care: an analysis based on the ethics of the caring conversation.

    NARCIS (Netherlands)

    Olthuis, G.J.; Dekkers, W.J.M.; Leget, C.J.W.; Vogelaar, P.J.W.

    2006-01-01

    Good nursing is more than exercising a specific set of skills. It involves the personal identity of the nurse. The aim of this article is to answer two questions: (1) what kind of person should the hospice nurse be? and (2) how should the hospice nurse engage in caring conversations? To answer these

  19. Conversation Thread Extraction and Topic Detection in Text-Based Chat

    Science.gov (United States)

    2008-09-01

    future that contained a Yes or No word Indicator for a Yes/No Question act f4 Number of posts ago that contained a Greet word Indicator for a Greet act...temporal ordering of conversation turns. It was also suggested that the presence of “ phantom ” adjacency pairs was a source of incoher- ence. That is, the

  20. Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Rottwitt, Karsten

    2017-01-01

    Four-wave mixing in the form of Bragg scattering (BS) has been predicted to enable quantum noise-less frequency conversion by analytic quantum approaches. Using a semi-classical description of quantum noise that accounts for loss and stimulated and spontaneous Raman scattering, which...

  1. Visible and near infrared up-conversion luminescence in Yb{sup 3+}/Tm{sup 3+} co-doped yttria-alumino-silicate glass based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Arindam [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Chandra Paul, Mukul, E-mail: mcpal1266@gmail.com [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Wadi Harun, Sulaiman [Depertment of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kumar Bhadra, Shyamal, E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Bysakh, Sandip [Electron Microscopy Section, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Das, Shyamal; Pal, Mrinmay [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India)

    2013-11-15

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y{sub 2}O{sub 3} creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm{sup 3+} and 1044 nm for Yb{sup 3+} under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to {sup 1}G{sub 4}→{sup 3}H{sub 6} transition through a three step resonance energy transfer (ET) from excited Yb{sup 3+}. The highest emission intensity is obtained with a concentration of 0.5 wt% Tm{sup 3+} and 2.0 wt% Yb{sup 3+}. The ET between Yb{sup 3+} and Tm{sup 3+} is increased with increase of Yb{sup 3+} concentration with respect to Tm{sup 3+}. The experimental fluorescence life-times of Tm{sup 3+} upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source.

  2. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7.0-12.0

    Energy Technology Data Exchange (ETDEWEB)

    Derinkuyu, Sibel [University of Dokuz Eylul, Faculty of Arts and Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Ertekin, Kadriye [University of Dokuz Eylul, Faculty of Arts and Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey)]. E-mail: kadriye.ertekin@deu.edu.tr; Oter, Ozlem [University of Dokuz Eylul, Faculty of Arts and Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Denizalti, Serpil [University of Ege, Faculty of Science, Department of Chemistry, 35100 Bornova, Izmir (Turkey); Cetinkaya, Engin [University of Ege, Faculty of Science, Department of Chemistry, 35100 Bornova, Izmir (Turkey)

    2007-04-04

    Most of the fluorescent pH probes work near neutral or acidic regions of the pH scale. In this work, two different fluorescent Schiff bases, chloro phenyl imino propenyl aniline (CPIPA) and nitro phenyl imino propenyl aniline (NPIPA), have been investigated for pH sensing in the alkaline region. Absorption and emission based spectral data, quantum yield, fluorescence lifetime, photostability and acidity constant (pK {sub a}) of the Schiff bases were determined in conventional solvents and in PVC. The long wavelength excitable immobilized Schiff bases CPIPA ({lambda} {sub ex} = 556 nm) and NPIPA ({lambda} {sub ex} = 570 nm) exhibited absorption and emission based optical response to proton in the pH range of 8.0-12.0 and 7.0-12.0, respectively. Response of the CPIPA was fully reversible within the dynamic working range. The response times were between 3-13 min. A relative signal change of 95% and 96% have been achieved for sensor dyes of CPIPA and NPIPA, respectively. The CPIPA displayed better fluorescence quantum yield ({phi} {sub F} = 3.7 x 10{sup -1}) and higher matrix compatibility compared to NPIPA ({phi} {sub F} = 1.6 x 10{sup -1}) in immobilized PVC. The CPIPA and NPIPA exhibited a slight cross sensitivity to the ions of Hg{sup +} and Fe{sup 3+}, respectively.

  3. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  4. Optimal laser wavelength for efficient laser power converter operation over temperature

    Science.gov (United States)

    Höhn, O.; Walker, A. W.; Bett, A. W.; Helmers, H.

    2016-06-01

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined to be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.

  5. Mode conversion in magneto photonic crystal fibre

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, Hamza, E-mail: otmanih@yahoo.fr [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Bouchemat, Mohamed [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Hocini, Abdesselam [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Département d' Electronique, Faculté de Technologie, Université de M’sila, BP 166, Route Ichebilia, M’sila 28000 (Algeria); Boumaza, Touraya; Benmerkhi, Ahlem [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria)

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  6. Waveguide-based extraction of near-field electromagnetic radiation: a new method for thermal energy conversion?

    CERN Document Server

    Poole, Zsolt L

    2016-01-01

    Energy in a useful form is a vital resource and hence there is a continuous strive to improve existing technologies and to find new ones that address that basic need. The conversion of thermal energy is the primary source of generating electrical energy from a broad range of sources such as, for example coal, oil, natural gas, solar, geothermal, and nuclear energy. A common need in all cases is the ability to efficiently extract the generated electromagnetic and thermal energy and to convert it to electricity. The current methods of thermal energy extraction are based on heat engines, thermoelectric, and thermophotovoltaic conversion. In this report a method based on the direct extraction of Electromagnetic energy from the thermal near-field through the use of optical waveguides, is presented.

  7. Topical aminolaevulinic acid- and aminolaevulinic acid methyl ester-based photodynamic therapy with red and violet light: influence of wavelength on pain and erythema.

    Science.gov (United States)

    Mikolajewska, P; Iani, V; Juzeniene, A; Moan, J

    2009-11-01

    Photodynamic therapy (PDT) is based on the combination of an exogenously administered precursor of photosensitizer [protoporphyrin IX (PpIX)] synthesis and exposure to light. Choosing the optimal wavelength is important. Red light penetrates deeper into tissue, while violet light is more efficient in activating PpIX but does not penetrate so deeply. We studied PpIX formation and the PDT effect after application to human skin of creams containing aminolaevulinic acid (ALA) and aminolaevulinic acid methyl ester (MAL). The aim of the study was to investigate whether the wavelength of the light used has an influence on pain sensations during topical PDT with the different prodrugs. ALA cream (10%) and MAL cream (10%) were topically applied on the skin of 10 healthy volunteers. After 24 h the application site was exposed to 8 mW cm(-2) violet laser or to 100 mW cm(-2) red laser light. The erythema index was monitored up to 24 h after light exposure. For the first time the pain during topical ALA- and MAL-PDT was assessed by measuring the time taken for pain to occur. Also, for the first time, the intensities of the light sources were calibrated so as to have the same relative quantum efficiency. Results The pain sensation during ALA-PDT with red light came 22 s sooner than during ALA-PDT with violet light, which is statistically significant (P red light gave stronger and more persistent erythema than ALA-PDT with violet light. ALA induced about three times more PpIX than MAL. No statistically significant differences were found for erythema, or for the time for pain to occur, in the case of MAL-PDT with red vs. violet light. Topical ALA-PDT with violet light allows longer exposure times before pain is induced and gives less erythema as compared with topical ALA-PDT with red light.

  8. Depth estimation algorithm based on data-driven approach and depth cues for stereo conversion in three-dimensional displays

    Science.gov (United States)

    Xu, Huihui; Jiang, Mingyan; Li, Fei

    2016-12-01

    With the advances in three-dimensional (3-D) display technology, stereo conversion has attracted much attention as it can alleviate the problem of stereoscopic content shortage. In two-dimensional (2-D) to 3-D conversion, the most difficult and challenging problem is depth estimation from a single image. In order to recover a perceptually plausible depth map from a single image, a depth estimation algorithm based on a data-driven method and depth cues is presented. Based on the human visual system mechanism, which is sensitive to the foreground object, this study classifies the image into one of two classes, i.e., nonobject image and object image, and then leverages different strategies on the basis of image type. The proposed strategies efficiently extract the depth information from different images. Moreover, depth image-based rendering technology is utilized to generate stereoscopic views by combining 2-D images with their depth maps. The proposed method is also suitable for 2-D to 3-D video conversion. Qualitative and quantitative evaluation results demonstrate that the proposed depth estimation algorithm is very effective for generating stereoscopic content and producing visually pleasing and realistic 3-D views.

  9. Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber bragg grating array

    NARCIS (Netherlands)

    Alvarez-Chavez, J.A.; Martinez-Rios, A.; Torres-Gomez, I.; Offerhaus, Herman L.

    2007-01-01

    We report wide wavelength tuning in a double-clad ytterbium-doped fiber laser. The laser cavity consists of an array of broadband high-reflection fiber Bragg gratings and a bulk grating as output coupler and wavelength selection element. The proposed fiber laser configuration combines low

  10. A space-based combined thermophotovoltaic electric generator and gas laser solar energy conversion system

    Science.gov (United States)

    Yesil, Oktay

    1989-01-01

    This paper describes a spaceborne energy conversion system consisting of a thermophotovoltaic electric generator and a gas laser. As a power source for the converson, the system utilizes an intermediate blackbody cavity heated to a temperature of 2000-2400 K by concentrated solar radiation. A double-layer solar cell of GaAs and Si forms a cylindrical surface concentric to this blackbody cavity, receiving the blackbody radiation and converting it into electricity with cell conversion efficiency of 50 percent or more. If the blackbody cavity encloses a laser medium, the blackbody radiation can also be used to simultaneously pump a lasing gas. The feasibility of blackbody optical pumping at 4.3 microns in a CO2-He gas mixture was experimentally demonstrated.

  11. Quantum-Dot-Based Photon Emission and Media Conversion for Quantum Information Applications

    Directory of Open Access Journals (Sweden)

    H. Kumano

    2010-01-01

    Full Text Available Single-photon as well as polarization-correlated photon pair emission from a single semiconductor quantum dots is demonstrated. Single photon generation and single photon-pair generation with little uncorrelated multiphoton emission and the feasibility of media conversion of the quantum states between photon polarization and electron spin are fundamental functions for quantum information applications. Mutual media conversion for the angular momentum between photon polarization and electron spin is also achieved with high fidelity via positively charged exciton state without external magnetic field. This is a clear indication that the coupling of photon polarizations and electron spins keeps secured during whole processes before photon emission. Possibility of a metal-embedded structure is demonstrated with the observation of drastic enhancement of excitation and/or collection efficiency of luminescence as well as clear antibunching of photons generated from a quantum dot.

  12. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    OpenAIRE

    Moudjou, Mohammed; Chapuis, J?r?me; Mekrouti, M?riem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andr?oletti, Olivier; Rezaei, Human; Dron, Michel; B?ringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular req...

  13. Electrical energy conversion and transport an interactive computer-based approach

    CERN Document Server

    Karady, George G

    2013-01-01

    Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry. The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use mode

  14. Analysis on Energy Conversion of Screw Centrifugal Pump in Impeller Domain Based on Profile Lines

    Directory of Open Access Journals (Sweden)

    Hui Quan

    2013-01-01

    Full Text Available In order to study the power capability of impeller and energy conversion mechanism of screw centrifugal pump, the methods of theoretical analysis and numerical simulation by computational fluid dynamics theory (CFD were adopted, specifically discussing the conditions of internal flow such as velocity, pressure, and concentration. When the medium is sand-water two-phase flow and dividing the rim of the lines and wheel lines of screw centrifugal pump to segments to analyze energy conversion capabilities which along the impeller profile lines with the dynamic head and hydrostatic head changer, the results show that the energy of fluid of the screw centrifugal pump is provided by helical segment, and the helical segment of the front of the impeller has played the role of multilevel increasing energy; the sand-water two phases move at different speeds because the different force field and the impeller propeller and centrifugal effect. As liquid phase is the primary phase, the energy conversion is mainly up to the change of liquid energy, the solid phase flows under the wrapped action of liquid, and solid energy is carried out through liquid indirectly.

  15. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  16. Extinction ratio regeneration, signal re-amplification (2R), and broadband wavelength switching using a monolithically integrated photocurrent driven wavelength converter.

    Science.gov (United States)

    Sysak, Matthew N; Raring, James W; Barton, Jonathon S; Poulsen, Henrik N; Blumenthal, Daniel J; Coldren, Larry A

    2006-11-13

    Detailed wavelength conversion, extinction ratio regeneration, and signal re-amplification experiments are performed using a monolithically integrated, widely tunable photocurrent driven wavelength converter. A -3.5 dB power penalty is observed in bit error rate measurements at 2.5 Gb/s when the extinction ratio of an incoming signal is regenerated from 4 dB to 11 dB, and the input signal wavelength is switched from 1548 nm to an output wavelength range between 1533 nm and 1553 nm. When the input signal extinction ratio is regenerated from 4 to 11 dB, the wavelength converter provides facet to facet conversion gain of 5 dB, 7.7 dB, and 7.6 dB for conversion from 1548 nm to output wavelengths of 1533, 1545 nm, and 1553 nm.

  17. Mode conversion in magneto photonic crystal fibre

    Science.gov (United States)

    otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.

  18. Scalable Synthesis of Graphene Based Heterostructures and Their Use in Energy Sensing, Conversion and Storage

    Science.gov (United States)

    Bhimanapati, Ganesh Rahul

    2D materials are a unique class of materials system which has spread across the entire spectrum of materials including semi-metallic graphene to insulating boron nitride. Since graphene there has been many other 2D material systems (such as boron nitride (hBN), transition metal dichalcogenides (TMDs)) that provide a wider array of unique chemistries and properties to explore for applications specifically in optoelectronics, mechanical and energy applications. Specifically tailored heterostructures can be made which can retain the character of single-atom thick sheets while having an entirely different optical and mechanical properties compared to the parent materials. In the current work, heterostructures based on graphene, hBN and TMDs have been made, which were used to study the fundamental process-property relations and their use in energy conversion and storage have been studied. The first part of this dissertation focuses on scalable approach for liquid phase exfoliation of graphene oxide (GO) and hBN (Chapter 2). The current work successfully shows an exfoliation efficiency of 25% monolayer material for hBN, which was not previously achieved. These exfoliated materials were further mixed in the liquid environment to form a new heterostructure BCON (Chapter 3). This newly formed heterostructure was studied in detail for its process-property relations. At pH 4-8, BCON was highly stable and can be dried to form paper or ribbon like material. New bonds were observed in BCON which could be linked to the GO linkage at the nitrogen sites of the hBN. This free standing BCON was tested under various radiation sources like x-rays, alpha, beta, gamma sources and heavy ion like Ar particles and was found that it is very robust to radiation (Chapter 5). By understanding the chemistry, stability and properties of these materials, this could lay a foundation in using these materials for integration in conductive and insulating ink development, polymer composite development

  19. Erbium-doped fiber ring laser with wavelength selective filter based on non-linear photonic crystal fiber Mach-Zehnder interferometer

    Science.gov (United States)

    Khaleel, W. A.; Al-Janabi, A. H.

    2017-10-01

    A high output power, stable wavelength spacing and switchable multi-wavelength erbium-doped fiber laser has been demonstrated experimentally using a combination of non-linear photonic crystal fiber Mach-Zehnder (MZI) interferometer with polarization dependent loss effect. This MZI functions together with a polarization controller (PC) as a wave selecting filter (WSF). Adjusting the PC within the WSF part gives rise to three emissions as single, dual and triple wavelengths. Multi-wavelength laser with maximum spacing of 1.6 nm was achieved by controlling the polarization state in a ring cavity. Such stable wavelength spacing aroused interest in wavelength-division-multiplexer systems. Output power around  -3 dB at 1550 nm wavelength, with small power fluctuation for each line, was recorded at room temperature. The measured 3-dB laser line-width was 0.03 nm, with a high side-mode suppression ratio of 48 dB.

  20. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  1. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  2. Broadband high-order mode pass filter based on mode conversion.

    Science.gov (United States)

    Ahmmed, Kazi Tanvir; Chan, Hau Ping; Li, Binghui

    2017-09-15

    We report a unique concept to implement a high-order mode pass filter using mode converters. Our proposed design method implements a high-order mode pass filter of any order, uses different mode converters available, and applies to a variety of planar lightwave circuit material platforms. We fabricate a broadband fundamental mode filter device using a Mach-Zehnder interferometer and Y-junctions to demonstrate our idea. The performance of the fabricated device is demonstrated experimentally in the wavelength range of 1.530-1.565 μm (C-band). This filter exhibits a simulated extinction ratio of 37 dB with an excess loss of 0.52 dB for the first-order mode transmission.

  3. Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals.

    Science.gov (United States)

    Wang, Jian; Fu, Hongyan; Geng, Dongyu; Willner, Alan E

    2013-02-11

    We propose an approach to implementing wavelength- and time-selective optical switching, dropping and swapping based on the sum-frequency generation (SFG) or cascaded sum- and difference-frequency generation (cSFG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. Analytical solutions are derived, showing the parametric depletion effect for optical switching and the narrow-band operation due to quasi-phase matching (QPM) condition of PPLN. Using parametric depletion effect of SFG process, we demonstrate wavelength- and time-selective optical switching for ITU-grid compatible 40-Gbit/s wavelength-division multiplexed (WDM) signals with a channel spacing of 100 GHz. Less than 1-dB power penalty at a bit-error rate (BER) of 10(-9) is measured for the wavelength- and time-selective switching channel. Negligible impacts are observed on other channels of WDM signals. Using combined effects of parametric depletion and wavelength conversion of cSFG/DFG processes, we demonstrate wavelength- and time-selective optical dropping for ITU-grid compatible 100-GHz-spaced 40-Gbit/s WDM signals. Moreover, we demonstrate optical swapping between two 100-GHz-spaced 40-Gbit/s signals. The obtained theoretical and experimental results confirm single-PPLN-assisted wavelength- and time-selective optical switching, dropping and swapping for 100-GHz-spaced WDM signals, which might potentially be extended to WDM signals with narrower channel spacing.

  4. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    Science.gov (United States)

    Zhu, Changqiong

    basic lactate solution with a large lactate/Cu2+ molar ratio, are sodium-free. This finding stands in contrast to the observation that films grown in basic solution contain a significant amount of sodium impurity at their top surfaces. Therefore, it is concluded that the sodium impurities present in films grown from basic lactate solutions are detrimental to overall photovoltaic device performance by introducing interface traps and recombination centers for charge carriers, which suggests that removing these impurities may be a promising strategy for improving Cu2O based solar cells. It has been found that impurities at the surface of electrodeposited p-Cu2O films can be efficiently removed through the use of concentrated aqueous ammonia solution as a wet etching agent. The performance of Cu 2O homojunction photovoltaic devices incorporating etched p-Cu 2O as the bottom layer is higher compared to devices with as-deposited p-Cu2O layers due to an improvement of the homojunction interface quality. Reducing the density of defect states that act as carrier recombination centers is found to lead to larger open circuit voltages. Zinc-doped cuprous oxide (Zn:Cu2O) thin films have also been prepared via single step electrodeposition from an aqueous solution containing sodium perchlorate. The Zn/Cu molar ratio in the Cu2O films can be tuned by adjusting the magnitude of the applied potential and the sodium perchlorate concentration. Electrical characterization reveals that zinc dopants increase the Fermi level in Zn:Cu2O films, enabling a three-fold improvement in the power conversion efficiency of a fully electrodeposited Cu2O homojunction photovoltaic device. Complementary to the development of Cu2O based photovoltaic devices, the use of solution deposited cupric oxide (CuO) thin films for capacitive energy storage has also been investigated. A seed layer-assisted chemical bath deposition (SCBD) method has been developed to create high quality CuO thin films on transparent

  5. 10 Gbit/s tunable dual-wavelength nonreturn-to-zero-to-return-to-zero data-format transformer based on a non-direct-current-biased fabry-perot laser diode.

    Science.gov (United States)

    Chang, Yung-Cheng; Lin, Gong-Ru

    2005-05-20

    We demonstrate the conversion of a nonreturn-to-zero (NRZ)-formatted electrical data stream into a wavelength-tunable return-to-zero (RZ)-formatted optical pulse code by externally seeding a synchronously sinusoidal-modulated Fabry-Perot laser diode (FPLD) with optical pseudorandom binary-sequence data at 10 Gbits/s (Gbps). The FPLD without a dc-biased current was modulated by use of a power-amplified sinusoidal wave signal (approximately 25.6 dBm) as an NRZ-to-RZ data-format transformer, which is regeneratively amplified by a closed-loop erbium-doped fiber amplifier. The gain switching and on-off keying operation of the FPLD is initiated under the seeding of self-feedback and external-injection signals. A maximum wavelength tuning range of 30 nm with a side-mode suppression ratio of greater than 36 dB is obtained. The power penalty of the NRZ-to-RZ data-format conversion at 10 Gbps is 1.5 dB.

  6. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  7. Error Made in Conversation by Indonesian Learners Learning English Based on Syntax and Exchanging Information

    Directory of Open Access Journals (Sweden)

    Melania Wiannastiti

    2014-10-01

    Full Text Available In learning a second language or foreign language (L2, learners should master the competences. Normally, L2 learners first should master the linguistic competence which includes the mastery of vocabularies, pronunciation, and grammar. The study is to find out the syntax error made by L2 learners in conversation as well as to find out the exchanging information. The data were the recording conversation of Visual Communication Design students first semester of Binus University joining English Entrant. Error analysis was used to analyze the data. There are two points of view to analyze the data: syntax from taxonomy and exchanging information. Taxonomy employs the error in omission, addition, misinformation, and mis-ordering. Exchanging information point of view employs the error in finite element and mood. The result shows that L2 learners made some errors in grammar and exchanging information because they are influenced by the L1. They tend to transfer from L1 to L2 rather than thinking to create the utterances in L2. 

  8. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  9. Data on flow cell optimization for membrane-based electrokinetic energy conversion.

    Science.gov (United States)

    Østedgaard-Munck, David Nicolas; Catalano, Jacopo; Birch Kristensen, Mette; Bentien, Anders

    2017-12-01

    This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC) which has been presented in Østedgaard-Munck et al. (2017) [1]. Two main flow cell parameters have been monitored and optimized: A) the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B) the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS) for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane [Formula: see text], anode charge transfer [Formula: see text], cathode charge transfer [Formula: see text], and ion diffusion in the porous electrodes [Formula: see text]. The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I 2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I 2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property.

  10. Simulation on photoacoustic conversion efficiency of optical fiber-based ultrasound generator using different absorbing film materials

    Science.gov (United States)

    Sun, Kai; Wu, Nan; Tian, Ye; Wang, Xingwei

    2011-04-01

    The low energy-conversion efficiency in photoacoustic generation is the most critical hurdle preventing its wide applications. In recent studies, it was found that the selection of the energy-absorbing layer material and design of the acoustic generator structure both determine the photoacoustic conversion efficiency. The selection of the absorbing material is based on its optical, thermal, and mechanical properties. In this research, we calculated and compared the conversion efficiencies of six different absorbing film materials: bulk aluminum, bulk gold, graphite foil, graphite powder-resin mixture, gold nanospheres, and gold nanorods. The calculations were carried out by a finite element modeling (FEM) software, COMSOL Multiphysics. A 2D-axisymmetric model in COMSOL was built up to simulate a 3-layer structure: optical fiber tip, light absorbing film, and surrounding water. Three equations governed the thermo-elastic generation of ultrasonic waves: the heat conduction, thermal expansion and acoustic wave equations. In "thick-film" generation regime, majority of the laser energy is absorbed by the film and converted to high-frequency film vibration, and the vibration excites the ultrasound wave in the adjacent water, while the water would not be heated directly by the laser. From the results of this FEM simulation, the acoustic signal generated by gold nanosphere (or nanorod) film is over two times stronger than that generated by graphite powder-resin film of the same thickness. This simulation provides a strong support to the absorbing material selection for our proposed fiber ultrasound generator.

  11. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  12. Room-temperature dual-wavelength erbium-doped fibre laser based on a sampled fibre Bragg grating and a photonic Robin Hood

    Science.gov (United States)

    Liu, Xueming; Zhao, Wei; Lu, Keqing; Zhang, Tongyi; Sun, Chuandong; Wang, Yishan; Hou, Xun; Chen, Guofu

    2006-12-01

    With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].

  13. Modeling and experimental verification of a new muffler based on the theory of quarter-wavelength tube and the Helmholtz muffler

    National Research Council Canada - National Science Library

    Wu, Can; Chen, Lei; Ni, Jing; Xu, Jing

    2016-01-01

    To address the problem of low frequency noise of the internal combustion engine, several existing muffler design methods, such as the theory of the quarter-wavelength tube and the Helmholtz muffler...

  14. Charge carrier generation potential of graphene/Si-TiO2 based solar cell device in UV-Vis wavelength range spectra

    Science.gov (United States)

    Rosikhin, Ahmad; Syuhada, Ibnu; Hidayat, Aulia Fikri; Winata, Toto

    2016-02-01

    Charges carrier generation potential of graphene/Si solar cell performing TiO2 layer has been elucidated via simple analytical mathematical calculation. Optical electric field both as wavelength function and position of any points at light propagation direction performed by transfer matrix method while dissipated energy profile has observed using electromagnetic theory. Furthermore potential of excitons generation has explored by dividing dissipated energy by photon of wavelength λ then integrating to overall UV-Vis spectra. By this calculation it was revealed that silicon semiconductor material is responsive enough in visible region while by adding TiO2 layer the excitons production is significantly increased until more than 1024/s. Such metal oxide layer is entrusted able to enhance photons absorption in short wavelength spectra. Therefore the role of this metal oxide material should increase the performance in wider wavelength area.

  15. Laser wavelength metrology with color sensor chips.

    Science.gov (United States)

    Jones, Tyler B; Otterstrom, Nils; Jackson, Jarom; Archibald, James; Durfee, Dallin S

    2015-12-14

    We present a laser wavelength meter based on a commercial color sensor chip. The chip consists of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined. In addition to absorption in the filters, etalon effects add additional spectral features which improve the precision of the device. Comparing the measurements from the device to a commercial wavelength meter and to an atomic reference, we found that the device has picometer-level precision and picometer-scale drift over a period longer than a month.

  16. Modeling and experimental verification of a new muffler based on the theory of quarter-wavelength tube and the Helmholtz muffler

    OpenAIRE

    Wu, Can; Chen, Lei; Ni, Jing; Xu, Jing

    2016-01-01

    To address the problem of low frequency noise of the internal combustion engine, several existing muffler design methods, such as the theory of the quarter-wavelength tube and the Helmholtz muffler, were examined and compared. This paper proposes a new type of muffler design method, which has the advantages of both the quarter-wavelength tube and the Helmholtz muffler. An example is carried out to illustrate the analysis of original signal, the design of the new muffler and the improvement of...

  17. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  18. A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-07-20

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  19. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.

    Science.gov (United States)

    Greening, Gage J; Istfan, Raeef; Higgins, Laura M; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C; Muldoon, Timothy J

    2014-01-01

    Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc.

  20. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Science.gov (United States)

    Chen, Yubin; Feng, Xiaoyang; Liu, Maochang; Su, Jinzhan; Shen, Shaohua

    2016-09-01

    Photoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.