WorldWideScience

Sample records for wavelength coherent light

  1. EFFECTS OF LIGHT WAVELENGTHS AND COHERENCE ON BASIDIOSPORES GERMINATION

    Directory of Open Access Journals (Sweden)

    Natalia Poyedinok

    2015-02-01

    Full Text Available The effects of light wavelengths and coherence on basidiospore germination of Agaricus bisporus, Flammulina velutipes, Ganoderma applanatum, Ganoderma lucidum, Hericium erinaceus, Lentinus edodes and Pleurotus ostreatus have been studied. Short-term low-intensity irradiation by coherent (laser light wavelength 488.0 nm and 632.8 nm at doses 45 and 230 mJ/cm2 has significantly increased the number of germinated basidiospores. It has established that there are differences in the photosensitivity not only between species but also between strains. Spores irradiation by 514.5 nm light has been either neutral or inhibitory. A comparative analysis of basidiospores sensitivity to laser and LED light has also been conducted. To stimulate germination of basidiospores and growth of monokaryons the most suitable solution was to use red coherent and incoherent light of 632.8 nm and 660,0 nm for A. bisporus, G. applanatum and P. ostreatus, red and blue coherent light of 632.8 nm and 488,0 nm for F. velutipes, and both red and blue laser and LED light G. lucidum and H. erinaceus and for L. edodes. No essential difference of a continuous wave mode and intermittent mode light effect at the same doses and wavelength on spore germination were revealed. Light influence has reduced germination time and formation of aerial mycelium on agar medium as compared to the original value and increased the growth rate of monosporous isolates. Characterization of basidiospores photosensitivity and development of environmentally friendly stimulating methods of their germination is important for creating highly effective technologies of mushrooms selection and cultivation.

  2. Workshop on scientific applications of short wavelength coherent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses ; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  3. Workshop on scientific applications of short wavelength coherent light sources

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS` Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

  4. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  5. Dispersion-flattened supercontinuum light source design at 1.0 μm center wavelength for high resolution optical coherence tomography in ophthalmology

    Science.gov (United States)

    Hossain, M. A.; Namihira, Y.

    2013-06-01

    Optimal wavelength light sources are designed for medical imaging to overcome the effects of the dispersion of the sampling medium of biological tissues which contain about 60% water in normal tissues and 90% water in anatomic structures such as in the eye. Based on highly nonlinear photonic crystal fiber (HNL-PCF), two light sources are designed at 1.0 μm center wavelength as the influences of the dispersion of the main component of biological tissues on the resolution of optical coherence tomography (OCT) can be eliminated. Using finite element method with a circular perfectly matched boundary layer, it is shown through simulations that the proposed HNL-PCFs offer efficient SC generation for such applications at 1.0 μm. By propagating sech2 picoseconds optical pulses having 1.0 ps pulse width at a full width at half maximum through the proposed HNL-PCFs, output optical pulses are analyzed by the split-step Fourier method to obtain the spectral properties. Simulation results show that 270 m of the proposed HNL-PCF can produce highest 95 nm spectrum (10 dB bandwidth) or 62 nm spectrum (3 dB bandwidth). Therefore, the highest longitudinal resolutions in the depth direction for medical OCT imaging is found about 3.3 μm (using 10 dB bandwidth) or 5.1 μm (using 3 dB bandwidth), respectively, for biological tissues.

  6. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  7. Status of the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  8. Coherently driven semiconductor quantum dot at a telecommunication wavelength.

    Science.gov (United States)

    Takagi, Hiroyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Arakawa, Yasuhiko

    2008-09-01

    We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 microm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.

  9. Coherent dynamics of a telecom-wavelength entangled photon source.

    Science.gov (United States)

    Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2014-01-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  10. Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity.

    Directory of Open Access Journals (Sweden)

    Li Zhaoping

    Full Text Available We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats. Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.

  11. Lethal effects of short-wavelength visible light on insects

    Science.gov (United States)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  12. Coherent ultra dense wavelength division multiplexing passive optical networks

    Science.gov (United States)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  13. Coherent population oscillations and superluminal light in a protein complex.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Laoui, Samir; Philip, Reji; Rao, D V G L N

    2008-03-17

    We observed superluminal light in aqueous solution of the protein complex bacteriorhodopsin (bR) at 647.1 nm wavelength where it exhibits reverse saturable behavior, exploiting the technique of coherent population oscillations (CPO). With a modulation frequency of 10 Hz, the signal pulse through a 1 cm path cell is ahead by 3 msec relative to the reference pulse, corresponding to a group velocity of -3.3 m/sec. Following our early work on slow light in the same sample at the saturable wavelength 568.2 nm, we now explicitly observed the narrow spectral hole in the absorption band of the stable B state and further, demonstrated a close correlation between the profile of the hole and the corresponding pulse delay for various modulation frequencies. A similar behavior is observed for superluminal light versus antihole blown in the absorption band.

  14. Coherent Population Oscillation-Based Light Storage

    Science.gov (United States)

    Neveu, P.; Maynard, M.-A.; Bouchez, R.; Lugani, J.; Ghosh, R.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2017-02-01

    We theoretically study the propagation and storage of a classical field in a Λ -type atomic medium using coherent population oscillations (CPOs). We show that the propagation eigenmodes strongly relate to the different CPO modes of the system. Light storage in such modes is discussed by introducing a "populariton" quantity, a mixture of populations and field, by analogy to the dark state polariton used in the context of electromagnetically induced transparency light storage protocol. As experimentally shown, this memory relies on populations and is then—by contrast with usual Raman coherence optical storage protocols—robust to dephasing effects.

  15. Spatial coherence and entanglement of light

    NARCIS (Netherlands)

    Di Lorenzo Pires, Henrique

    2011-01-01

    In this thesis we investigate diverse aspects of spatial coherence of light. Non-classical fields containing two photons can be generated by a nonlinear optical process known as spontaneous parametric down conversion (SPDC). Among the questions we consider are: What is so special about spatial

  16. Superluminal light propagation assisted by Zeeman coherence.

    Science.gov (United States)

    He, Huijuan; Hu, Zhengfeng; Wang, Yuzhu; Wang, Ligang; Zhu, Shiyao

    2006-08-15

    We have observed a dispersionlike absorption (or gain) spectrum at the D1 transition in a Rb vapor cell filled with a buffer gas, due to Zeeman coherence of the ground states in a double Lambda configuration. Meanwhile, we have also observed superluminal pulse propagation. It is experimentally demonstrated that the front speed of a light pulse still equals the light speed c in vacuum, although the group velocity of the light pulse is(-2.2+/-0.6) x 10(4) m/s.

  17. Lethal effects of short-wavelength visible light on insects

    OpenAIRE

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-01-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiatio...

  18. Long-wavelength instability of coherent structures in plane Couette flow

    NARCIS (Netherlands)

    Melnikov, K.; Kreilos, T.; Eckhardt, B.E.

    2014-01-01

    We study the stability of coherent structures in plane Couette flow against long-wavelength perturbations in wide domains that cover several pairs of coherent structures. For one and two pairs of vortices, the states retain the stability properties of the small domains, but for three pairs new

  19. Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm.

    Science.gov (United States)

    Eigenwillig, Christoph M; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2011-08-01

    The wavelength swept amplified spontaneous emission (ASE) source presented in this paper is an alternative approach to realize a light source for high speed swept source optical coherence tomography (OCT). ASE alternately passes a cascade of different optical gain elements and tunable optical bandpass filters. In this work we show for the first time a wavelength swept ASE source in the 1060 nm wavelength range, enabling high speed retinal OCT imaging. We demonstrate ultra-rapid retinal OCT at a line rate of 170 kHz, a record sweep rate at 1060 nm of 340 kHz with 70 nm full sweep width, enabling an axial resolution of 11 μm. Two different implementations of the source are characterized and compared to each other. The last gain element is either a semiconductor optical amplifier or an Ytterbium-doped fibre amplifier enabling high average output power of >40 mW. Various biophotonic imaging examples provide a wide range of quality benchmarks achievable with such sources. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Rosfjord, Kristine Marie [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  1. Lux vs. wavelength in light treatment of Seasonal Affective Disorder.

    Science.gov (United States)

    Anderson, J L; Glod, C A; Dai, J; Cao, Y; Lockley, S W

    2009-09-01

    Published dosing guidelines for treatment of Seasonal Affective Disorder (SAD) refer to photopic lux, which is not appropriate for short-wavelength light. Short wavelengths are most potent for many non-visual responses to light. If SAD therapy were similarly mediated, standards utilizing lux risk overestimating necessary dose. We investigated antidepressant responses to light using two light-emitting diode (LED) sources, each emitting substantial short-wavelength light, but <2500 lux. A randomized, double-blind trial investigated 3-week 45 min/day out-patient treatment with blue-appearing (goLITE) or blue-enriched white-appearing light in 18 moderately-depressed adults (12F, 49.1 +/- 9.5 years). Equivalent numbers of photons within the short-wavelength range were emitted, but the white source emitted twice as many photons overall and seven-fold more lux. Depression ratings (SIGH-ADS; http://www.cet.org) decrease averaged 82% (SD = 17%) from baseline (P < 0.0001) in both white- and blue-light groups. Both sources were well tolerated. Short-wavelength LED light sources may be effective in SAD treatment at fewer lux than traditional fluorescent sources.

  2. Control of laser wavelength tuning and its application in coherent optical time domain reflectometer

    Science.gov (United States)

    Lu, Lidong; Sun, Xiaoyan; Li, Binglin

    2017-02-01

    A laser diode temperature control scheme is adopted to achieve the laser wavelength tuning of a narrow linewidth laser, which sends commands by serial communication to change the laser diode temperature. The laser diode temperature is presented by the temperature sensitive resistance. And then the laser wavelength tuning method is also used in a coherent optical time domain reflectometer (C-OTDR) to reduce the coherent Rayleigh noise (CRN) caused by the coherence of the narrow linewidth laser. As the serial communication for the laser wavelength tuning is time-consuming which costs at least 10ms to finish the wavelength tuning once, the measurement time and efficiency of the C-OTDR should be considered. And then the relationship between the times for the laser wavelength changing and the CRN fluctuation is experimentally studied to balance the measurement time consumption and the measurement results, which illustrates that the laser wavelength needs not be changed in each measurement period of the C-OTDR and it can also obtain the ideal result to change the laser wavelength every 500 measurement periods. In traditional C-OTDR, by serial communication, the laser wavelength is changed in each measurement period and the total measurement periods are 218, so by the new scheme it can save about 2600 seconds to achieve an ideal measurement, which is of high efficiency.

  3. Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing.

    Science.gov (United States)

    Berer, Thomas; Leiss-Holzinger, Elisabeth; Hochreiner, Armin; Bauer-Marschallinger, Johannes; Buchsbaum, Andreas

    2015-04-01

    We present multimodal noncontact photoacoustic (PA) and optical coherence tomography (OCT) imaging. PA signals are acquired remotely on the surface of a specimen with a Mach-Zehnder interferometer. The interferometer is realized in a fiber-optic network using a fiber laser at 1550 nm as the source. In the same fiber-optic network, a spectral-domain OCT system is implemented. The OCT system utilizes a supercontinuum light source at 1310 nm and a spectrometer with an InGaAs line array detector. Light from the fiber laser and the OCT source is multiplexed into one fiber using a wavelength-division multiplexer; the same objective is used for both imaging modalities. Reflected light is spectrally demultiplexed and guided to the respective imaging systems. We demonstrate two-dimensional and three-dimensional imaging on a tissue-mimicking sample and a chicken skin phantom. The same fiber network and same optical components are used for PA and OCT imaging, and the obtained images are intrinsically coregistered.

  4. Dual wavelength full field imaging in low coherence digital holographic microscopy.

    Science.gov (United States)

    Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2011-11-21

    A diffractive optical element (DOE) is presented to simultaneously manipulate the coherence plane tilt of a beam containing a plurality of discrete wavelengths. The DOE is inserted into the reference arm of an off-axis dual wavelength low coherence digital holographic microscope (DHM) to provide a coherence plane tilt so that interference with the object beam generates fringes over the full detector area. The DOE maintains the propagation direction of the reference beam and thus it can be inserted in-line in existing DHM set-ups. We demonstrate full field imaging in a reflection commercial DHM with two wavelengths, 685 nm and 794 nm, resulting in an unambiguous range of 2.494 micrometers. © 2011 Optical Society of America

  5. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  6. Quantum communication with coherent states of light.

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-08-06

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  7. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  8. Linac Coherent Light Source (LCLS) Conceptual Design Report

    CERN Document Server

    Nuhn, H D

    2002-01-01

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) RandD facility operating in the wavelength range 1.5-15 (angstrom). This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiatio...

  9. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon.

    Science.gov (United States)

    Sahin, Levent; Figueiro, Mariana G

    2013-05-27

    Light has an acute effect on neuroendocrine responses, performance, and alertness. Most studies to date have linked the alerting effects of light to its ability to suppress melatonin, which is maximally sensitive to short-wavelength light. Recent studies, however, have shown alerting effects of white or narrowband short-wavelength lights during daytime, when melatonin levels are low. While the use of light at night to promote alertness is well understood, it is important to develop an understanding of how light impacts alertness during the daytime, especially during the post-lunch hours. The aim of the current study was to investigate how 48-minute exposures to short-wavelength (blue) light (40 lux, 18.9 microWatts/cm(2) λ(max) = 470 nanometers [nm]) or long-wavelength (red) light (40 lux, 18.9 microWatts/cm(2) λ(max) = 630 nm) close to the post-lunch dip hours affect electroencephalogram measures in participants with regular sleep schedules. Power in the alpha, alpha theta, and theta ranges was significantly lower (plight than after they remained in darkness. Exposure to blue light reduced alpha and alpha theta power compared to darkness, but these differences did not reach statistical significance (p>0.05). The present results extend those performed during the nighttime, and demonstrate that light can be used to increase alertness in the afternoon, close to the post-lunch dip hours. These results also suggest that acute melatonin suppression is not needed to elicit an alerting effect in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  11. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  12. High-speed interrogation of multiplexed fiber Bragg grating sensors with similar Bragg wavelength by synthesis of optical coherence function

    Science.gov (United States)

    He, Zuyuan; Hayashi, Tetsuya; Hotate, Kazuo

    2005-11-01

    We have reported recently a multiplexed fiber Bragg grating (FBG) strain sensor by using the technique of synthesis of optical coherence function. By modulating the optical frequency of the light source in a sinusoidal waveform, the coherence function is synthesized into a series of periodical peaks in the meaning of time- integration. Using one of the coherence peaks as a measurement window, and sweeping it along a string of FBGs by adjusting the repetitive frequency of the sinusoidal modulation waveform, we can selectively pick up the reflection as interference signal from any one FBG from the string. Therefore, the FBGs are resolved spatially; they are not necessarily different to each other in Bragg wavelength. By sweeping the center frequency of the light source in a sawtooth waveform, the shape of the FBG reflection spectrum can be obtained, and thus the amount of the strain applied to the FBG can be estimated. Up to date, 100-Hz interrogation speed was achieved with this method, and the measurement range is limited to within the coherence length of the light source. In this presentation, novel methods are proposed to enhance the interrogation speed and the measurement range further. The performance-limiting factors on the interrogation speed and the measurement range are evaluated. It is found that the detected interference signal appears at a certain frequency shifted from the heterodyne beat due to the sweeping of the center frequency. By observing at the shifted frequency, 1-kHz interrogation speed and measurement range beyond coherence length of the light source are achieved.

  13. Magic wavelengths of the Ca+ ion for circularly polarized light

    Science.gov (United States)

    Jiang, Jun; Jiang, Li; Wang, Xia; Zhang, Deng-Hong; Xie, Lu-You; Dong, Chen-Zhong

    2017-10-01

    The dynamic dipole polarizabilities of low-lying states of Ca+ ions for circularly polarized light are calculated by using the relativistic configuration interaction plus core polarization approach. The magic wavelengths are determined for the magnetic sublevel transitions 4 s1/2 ,m→4 pj',m' and 4 s1/2 ,m→3 dj',m' with total angular momentum j' and its components m'. In contrast to the case of linearly polarized light, several additional magic wavelengths are found for these transitions. We suggest that accurate measurements on the magic wavelengths near 851 nm for the 4 s1/2 ,m→4 p3/2 ,m' transitions can be used to determine the ratio of the oscillator strengths for the 4 p3/2→3 d3/2 and 4 p3/2→3 d5/2 transitions.

  14. Partially coherent light propagation in stratified media containing an optically thick anisotropic layer

    Science.gov (United States)

    Nichols, Shane M.; Arteaga, Oriol; Martin, Alexander T.; Kahr, Bart

    2017-11-01

    Methods used to compute the reflection or transmission Mueller matrix of stratified media assume light is a monochromatic plane wave, but measurements with spectroscopic devices invariably involve a finite distribution of wavelengths and incidence angles. Consequently, there can be stark disagreement between calculation and experiment, especially when the specimen includes a thick non-opaque layer. To accurately model specimens with a thick layer, it is sometimes necessary to explicitly include the coherence of the light in models. For anisotropic and/or optically active media, we distinguish between five regimes of coherence. Algebraic expressions valid for all regimes are given. Experimental data spanning multiple regimes is modeled.

  15. Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light.

    Science.gov (United States)

    Kozaki, Tomoaki; Kubokawa, Ayaka; Taketomi, Ryunosuke; Hatae, Keisuke

    2016-03-11

    Bright nocturnal light has been shown to suppress melatonin secretion. However, bright light exposure during the day might reduce light-induced melatonin suppression at night. The human circadian system is sensitive to short wavelength light. This study evaluated the preventive effect of different wavelengths of daytime light on light-induced melatonin suppression at night. Twelve male subjects were exposed to various light conditions (dim, white, and bluish white light) between the hours of 09:00 and 10:30 (daytime light conditions). They were then exposed to light (300lx) again between 01:00 and 02:30 (night-time light exposure). Subjects provided saliva samples before (00:55) and after night-time light exposure (02:30). A two-tailed paired t-test yielded significant decrements in melatonin concentrations after night-time light exposure under daytime dim and white light conditions. No significant differences were found in melatonin concentrations between pre- and post-night-time light exposure with bluish-white light. Present findings suggest that daytime blue light exposure has an acute preventive impact on light-induced melatonin suppression in individuals with a general life rhythm (sleep/wake schedule). These findings may be useful for implementing artificial light environments for humans in, for example, hospitals and underground shopping malls to reduce health risks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of light wavelength on hot spring microbial mat biodiversity.

    Science.gov (United States)

    Nishida, Akifumi; Thiel, Vera; Nakagawa, Mayuko; Ayukawa, Shotaro; Yamamura, Masayuki

    2018-01-01

    Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled

  17. Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography

    DEFF Research Database (Denmark)

    Unterhuber, A.; Povaay, B.; Müller, André

    2013-01-01

    We demonstrate an optical coherence tomography device that simultaneously combines different novel ultrabroad bandwidth light sources centered in the 800 and 1060 nm regions, operating at 66 kHz depth scan rate, and a confocal laser scanning ophthalmoscope-based eye tracker to permit motion-artif...

  18. RF Design for the Linac Coherent Light Source (LCLS) Injector

    CERN Document Server

    Dowell, D H; Boyce, Richard F; Hodgson, J A; Li, Zenghai; Limborg-Deprey, C; Xiao, Liling; Yu, Nancy

    2004-01-01

    The Linac Coherent Light Source (LCLS) will be the world’s first free electron laser, and the successful operation of this very short-wavelength FEL will require excellent beam quality from its electron source. Therefore a critical component is the RF photocathode injector. This paper describes the design issues of the LCLS RF gun and accelerator structures. The injector consists of a 1.6 cell s-band gun followed by two 3-meter SLAC sections. The gun and the first RF section will have dual RF feeds both to eliminate transverse RF kicks and to reduce the pulsed heating of the coupling ports. In addition, the input coupler cavity of the first accelerator section will be specially shaped to greatly reduce the RF quadrupole fields. The design for the accelerator section is now complete, and the RF design of the gun’s dual coupler and the full cell shape is in progress. These and other aspects of the gun and structure designs will be discussed.

  19. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  20. Homometry in the light of coherent beams

    OpenAIRE

    Ravy, Sylvain

    2013-01-01

    Two systems are homometric if they are indistinguishable by diffraction. We first make a distinction between Bragg and diffuse scattering homometry, and show that in the last case, coherent diffraction can allow the diffraction diagrams to be differentiated. The study of the Rudin-Shapiro sequence, homometric to random sequences, allows one to manipulate independently two-point and four-point correlation functions, and to show their effect on the statistics of speckle patterns. Consequences f...

  1. Contributions to the Theories of Coherence and Polarization of Light

    Science.gov (United States)

    Lahiri, Mayukh

    In this thesis, coherence and polarization properties of stochastic optical fields are investigated. The so-called cross-spectral density matrices of polarized and natural light beams are studied. It is shown how coherence and polarization properties of stochastic beams change on superposition. The relationship between the so-called space-time and space-frequency descriptions of completely polarized fields and of completely coherent fields are investigated. An inverse scattering problem involving a random medium is discussed. In this context, the condition which ensures that a beam retains its beam-like form on scattering, is also presented. Basic polarization properties of light beams are discussed based on quantum mechanical theory of fields. A quantum theory of optical coherence in the space-frequency domain is also presented.

  2. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  3. Disentangling electronic and vibrational coherence in the Phycocyanin-645 light-harvesting complex

    CERN Document Server

    Richards, Gethin H; Curmi, Paul M G; Davis, Jeffrey A

    2013-01-01

    Energy transfer between chromophores in photosynthesis proceeds with near unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilise a two-colour four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited state structure based on two strongly-coupled electronic states and two vibrational modes. Separation of the cohe...

  4. Cost-effective wavelength selectable light source using DFB fiber laser array

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    A cost-effective wavelength selectable light source comprising a distributed feedback (DFB) fibre laser array is proposed. A large number of wavelengths can be selected via optical space switches using only one shared pump laser. The structure is a good candidate for use as a wavelength selectabl...... backup transmitter for wavelength division multiplexed (WDM) systems....

  5. Homometry in the light of coherent beams.

    Science.gov (United States)

    Ravy, Sylvain

    2013-11-01

    Two systems are homometric if they are indistinguishable by diffraction. A distinction is first made between Bragg and diffuse scattering homometry, and it is shown that in the last case coherent diffraction can allow the diffraction diagrams to be differentiated. The study of the Rudin-Shapiro sequence, homometric to random sequences, allows one to manipulate independently two-point and four-point correlation functions, and to show their effect on the statistics of speckle patterns. This study provides evidence that long-range order in high-order correlation functions has a measurable effect on the speckle statistics.

  6. Simulation of partially coherent light propagation using parallel computing devices

    Science.gov (United States)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  7. Prototype for Long Wavelength Array Sees First Light

    Science.gov (United States)

    2007-03-01

    Astronomers at the Naval Research Laboratory have produced the first images of the sky from a prototype of the Long Wavelength Array (LWA), a revolutionary new radio telescope to be constructed in southwestern New Mexico. The images show emissions from the center of our Galaxy, a supermassive black hole, and the remnant of a star that exploded in a supernova over 300 years ago. Not only a milestone in the development of the LWA, the images are also a first glimpse through a new window on the cosmos. "First light" is an astronomical term for the first image produced with a telescope. It is a key milestone for any telescope because it indicates that all of the individual components are working in unison as planned. Once completed, the LWA will provide an entirely novel view of the sky, in the radio frequency range of 20-80 MHz, currently one of the most poorly explored regions of the electromagnetic spectrum in astronomy. The LWA will be able to make sensitive high-resolution images, and scan the sky rapidly for new and transient sources of radio waves, which might represent the explosion of distant, massive stars, the emissions from planets outside of our own solar system or even previously unknown objects or phenomena. "The LWA will allow us to make the sharpest images ever possible using very long wavelength radio waves. This newly opened window on the universe will help us understand the acceleration of relativistic particles in a variety of extreme astrophysical environments including from the most distant supermassive black holes. But perhaps most exciting is the promise of new source classes waiting to be discovered," says Dr. Namir Kassim, an NRL astronomer in the Remote Sensing Division and LWA Project Scientist. Dr. Tracy Clarke, of Interferometrics, Inc. in Herndon, Virginia, another astronomer on the NRL team adds, "By detecting distant clusters of galaxies the LWA may also provide new insights on the cosmological evolution of the mysterious dark matter

  8. Cell response to quasi-monochromatic light with different coherence

    Energy Technology Data Exchange (ETDEWEB)

    Budagovsky, A V; Solovykh, N V [I.V.Michurin All-Russian Recearch Institute of Fruit Crops Genetics and Breeding (Russian Federation); Budagovskaya, O N [I.V.Michurin All-Russia Research and Development Institute of Gardening, Michurinsk, Tambov region (Russian Federation); Budagovsky, I A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)

  9. Second and third harmonic measurements at the linac coherent light source

    Directory of Open Access Journals (Sweden)

    D. Ratner

    2011-06-01

    Full Text Available The linac coherent light source (LCLS is a self-amplified spontaneous emission (SASE free-electron laser (FEL operating at fundamental photon energies from 0.5 to 10 keV. Characterization of the higher harmonics present in the FEL beam is important to users, for whom harder x rays can either extend the useful operating wavelength range or increase experimental backgrounds. We present measurements of the power in both the second and third harmonics, and compare the results to expectations from simulations. We also present studies of the transport of harmonics to the users, and the harmonic power as a function of electron beam quality.

  10. Coherent Lensless imaging with Ultra-Broadband Light Sources

    Directory of Open Access Journals (Sweden)

    Eikema K. S. E.

    2013-03-01

    Full Text Available We demonstrate a method for efficient lensless imaging using ultra-broadband light sources. By using a pair of time-delayed, coherent pulses in a Fourier-transform scheme, spectrally resolved diffraction patterns are obtained throughout the entire spectrum of the incident light source. We perform a proof-of-principle experiment using an octave-spanning visible light source, and obtain images of a holographic test sample with near-diffraction limited resolution. Our approach provides a promising route towards efficient high-resolution imaging using table-top high-harmonic soft-X-ray sources.

  11. Coherent multiple light scattering in Faraday active materials

    Science.gov (United States)

    Schertel, L.; Aubry, G. J.; Aegerter, C. M.; Maret, G.

    2017-05-01

    Wave propagation in multiple scattering media shows various kinds of coherent phenomena such as coherent backscattering [1, 2] or Anderson localization [3], both of which are intimately connected to the concept of reciprocity. Manipulating reciprocity in such media is a powerful tool to study these phenomena in experiments [4]. Here we discuss the manipulation of reciprocity in reflection and transmission geometry for the case of light propagation in magneto-optical media. We show new experiments on coherent backscattering and speckle correlations in strongly scattering samples containing Faraday active materials (CeF3) with transport mean free path in the μm range, at low temperatures (T < 10 K) and high fields (B = 18 T). Under such conditions we observe the effect of a Faraday rotation saturation in multiple scattering measurements.

  12. Comparison Between Standard and Pulsed Coherent Light Polymerization

    OpenAIRE

    Šutalo, Zrinka; Meniga, Andrej; Šutalo, Jozo; Azinović, Davorka; Pichler, Goran

    1993-01-01

    An ever growing amount of photo-curable materials is being used in different fields of dentistry. Standard photopolymerization devices produce about 60% o f monomer conversion in composite resin fillings. In order to improve the quality of polymerization, a series of experiments was made using pulsed laser, because continuous coherent light leads to a higher polymerization shrinkage caused by a temperature rise in the material. Three different experiments were carried out with different shade...

  13. Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength

    Science.gov (United States)

    Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G.

    2017-05-01

    Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector's pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.

  14. Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping.

    Science.gov (United States)

    Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit

    2016-10-03

    Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.

  15. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  16. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  17. Comparative analysis of different doses of coherent light (laser and non-coherent light (light-emitting diode on cellular necrosis and apoptosis: a study in vitro

    Directory of Open Access Journals (Sweden)

    Vanessa dos Santos Silva

    Full Text Available Introduction Threshold doses of electromagnetic radiation can initiate necrosis and apoptosis in cells. The purpose of this study was to evaluate cellular apoptosis and necrosis immediately (t0 and 24 hours (t24 after irradiation with different doses of coherent light (laser or non-coherent light (LED. Methods CHO-K1 lineage cells were irradiated with laser (810nm or LED (945±20nm, with 24mW, contact area of 1cm2 and doses of 10, 20, 30, 40 and 50J/cm2 for 300, 660, 960, 1230 and 1620s, respectively, at both wavelengths. Cells were evaluated by fluorescence microscopy, differentiating viable, apoptotic and necrotic cells immediately and 24 hours after irradiation. Results The number of necrotic cells at t0 was higher in the LED 40 and 50J/cm2 groups (86±14 and 84±16% respectively, p <0.05, than in the 10 and 20J/cm2 laser (5±2 and 5±3%, p<0.05 and LED (5±3 and 4±1%, p<0.05 conditions. At t24, the LED 40J/cm2 (80±20%, p<0.05 group also showed more necrosis than the control and lower dose groups (laser 10, 20, and 30J/cm2 percentage of 6±4, 10±3 and 7±3%, p<0.05; LED 10 and 20J/cm2 percentage of 3±1 and 17±10%, p<0.05. A decrease in apoptotic cells was observed in the laser group with doses of 10, 40, and 50J/cm2 (6±4, 3±1 and 1±1% respectively, not significant, as well as in the LED 40J/cm2 (2±2%, not significant group versus control. The cells had a higher percentage of apoptosis cells in the control group and with laser doses of 10 and 30J/cm2 (percentage of 20±1 and 20±4%, not significant, while only the LED 40J/cm2 (10±10%, not significant had a lower percentage compared the control group. Conclusion Laser or LED stimulation promoted an increase in cell necrosis in a high energy density condition as characterized in a dose-dependent inhibition therapy. Laser or LED infrared irradiation in low doses (up to 20J/cm2 reduced the percentage of apoptosis in CHO-K1 cells, while high doses (30J/cm2 elevated apoptosis.

  18. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    Science.gov (United States)

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  19. Suppression of microbunching instability in the linac coherent light source

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2004-07-01

    Full Text Available A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation, and linac wakefields is studied for the linac coherent light source (LCLS accelerator system. Since the uncorrelated (local energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify rf-gun generated modulations or even shot-noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the free-electron laser performance. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impact of the instability on the quality of the electron beam.

  20. Multi-wavelength mid-IR light source for gas sensing

    Science.gov (United States)

    Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw

    2017-02-01

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.

  1. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength.

    Science.gov (United States)

    Fu, Xiumin; Chen, Yiyong; Mei, Xin; Katsuno, Tsuyoshi; Kobayashi, Eiji; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-11-16

    Regulation of plant growth and development by light wavelength has been extensively studied. Less attention has been paid to effect of light wavelength on formation of plant metabolites. The objective of this study was to investigate whether formation of volatiles in preharvest and postharvest tea (Camellia sinensis) leaves can be regulated by light wavelength. In the present study, in contrast to the natural light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased most endogenous volatiles including volatile fatty acid derivatives (VFADs), volatile phenylpropanoids/benzenoids (VPBs), and volatile terpenes (VTs) in the preharvest tea leaves. Furthermore, blue and red lights significantly up-regulated the expression levels of 9/13-lipoxygenases involved in VFADs formation, phenylalanine ammonialyase involved in VPBs formation, and terpene synthases involved in VTs formation. Single light wavelength had less remarkable influences on formation of volatiles in the postharvest leaves compared with the preharvest leaves. These results suggest that blue and red lights can be promising technology for remodeling the aroma of preharvest tea leaves. Furthermore, our study provided evidence that light wavelength can activate the expression of key genes involved in formation of plant volatiles for the first time.

  2. X-ray detectors at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella, E-mail: carini@slac.stanford.edu; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  3. Wideband perfect coherent absorber based on white-light cavity

    Science.gov (United States)

    Kotlicki, Omer; Scheuer, Jacob

    2015-03-01

    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  4. Wavelength dependence of light diffusion in strongly scattering macroporous gallium phosphide

    NARCIS (Netherlands)

    Peeters, W.H.; Vellekoop, Ivo Micha; Mosk, Allard; Lagendijk, Aart

    2008-01-01

    We present time-resolved measurements of light transport through strongly scattering macroporous gallium phosphide at various vacuum wavelengths between 705 nm and 855 nm. Within this range the transport mean free path is strongly wavelength dependent, whereas the observed energy velocity is shown

  5. Data systems for the Linac coherent light source.

    Science.gov (United States)

    Thayer, J; Damiani, D; Ford, C; Dubrovin, M; Gaponenko, I; O'Grady, C P; Kroeger, W; Pines, J; Lane, T J; Salnikov, A; Schneider, D; Tookey, T; Weaver, M; Yoon, C H; Perazzo, A

    2017-01-01

    The data systems for X-ray free-electron laser (FEL) experiments at the Linac coherent light source (LCLS) are described. These systems are designed to acquire and to reliably transport shot-by-shot data at a peak throughput of 5 GB/s to the offline data storage where experimental data and the relevant metadata are archived and made available for user analysis. The analysis and monitoring implementation (AMI) and Photon Science ANAlysis (psana) software packages are described. Psana is open source and freely available.

  6. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance

    National Research Council Canada - National Science Library

    Anna Alkozei; Ryan Smith; Natalie S Dailey; Sahil Bajaj; William D S Killgore

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system...

  7. Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner.

    Science.gov (United States)

    Mao, Youxin; Chang, Shoude; Murdock, Erroll; Flueraru, Costel

    2011-06-01

    We report a novel (to the best of our knowledge) simultaneous 1310/1550 two-wavelength band swept laser source and dual-band common-path swept-source optical coherence tomography (SS-OCT). Synchronized dual-wavelength tuning is performed by using two laser cavities and narrowband wavelength filters with a single dual-window polygonal scanner. Measured average output powers of 60 and 27 mW have been achieved for the 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 to 1387 nm for the 1310 nm band and from 1519 to 1581 nm for the 1550 nm band at an A-scan rate of 65 kHz. Broadband wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form dual-band common-path SS-OCT. Simultaneous OCT imaging at 1310 and 1550 nm is achieved. This technique allows for in vivo high-speed OCT imaging with potential application in functional (spectroscopic) investigations. © 2011 Optical Society of America

  8. A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography

    Science.gov (United States)

    Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin

    2017-02-01

    We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.

  9. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    Science.gov (United States)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  10. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Research and development for X-ray optics and diagnostics on the linac coherent light source (LCLS)

    CERN Document Server

    Wootton, A; Barbee, T W; Bionta, R; Jankowski, A; London, R; Ryutov, D; Shepherd, R; Shlyaptsev, V; Tatchyn, R; Toor, A

    2002-01-01

    The Linac Coherent Light Source is a 1.5-15 A-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center. The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high-resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-Z Fresnel lens design, fabrication and testing. Finally, some novel concepts for optical components are presented.

  12. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  13. ASSESSMENT OF IMPACT OF COHERENT LIGHT ON RESISTANCE OF PLANTS GROWING IN UNFAVOURABLE ENVIRONMENTAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Małgorzata Śliwka

    2014-04-01

    Full Text Available The results of experiments on the effect of the coherent light emitted by lasers on plant material show that properly selected laser stimulation parameters, such as: wavelength, power, time and type of exposure, allow to obtain a greater growth of plant biomass, changes in the content of elements in the biomass and increasing plant resistance to unfavorable environmental conditions. The aim of this study was to determine the effect of laser stimulation on selected plant species (Iris pseudoacorus L., Lemna minor L. to increase their resistance to low temperatures and the ability to adapt to an environment polluted by mining activities (Phelum pratense L.. Plants from experimental groups (Iris pseudoacorus L., Phelum pratense L., Lemna minor L. were stimulated with coherent light with specific characteristics. To irradiate plants from experimental groups different algorithms of stimulation parameters, differentiating the method and time of exposure were used. Plants group without the stimulation, were the reference group. The article discusses the results of preliminary experiments carried out on a laboratory scale and pot experiments.

  14. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light.

    Science.gov (United States)

    Clarke, Patrick J; Collins, Robert J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S

    2012-01-01

    Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.

  15. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  16. Visible light spectral domain optical coherence microscopy system for ex vivo imaging

    Science.gov (United States)

    Lichtenegger, Antonia; Harper, Danielle J.; Augustin, Marco; Eugui, Pablo; Fialová, Stanislava; Woehrer, Adelheid; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-02-01

    A visible light spectral domain optical coherence microscopy system operating in the wavelength range of 450-680 nm was developed. The resulting large wavelength range of 230 nm enabled an ultrahigh axial resolution of 0.88μm in tissue. The setup consisted of a Michelson interferometer combined with a homemade spectrometer with a spectral resolution of 0.03 nm. Scanning of 1 x 1 mm2 and 0.5 x 0.5 mm2 areas was performed by an integrated microelectromechanical mirror. After scanning the light beam is focused onto the tissue by a commercial objective with a 10 x magnification, resulting in a transverse resolution of 2 μm . Specification measurements showed that a -89 dB sensitivity with a 24 dB/mm roll-off could be achieved with the system. First of all the capabilities of the system were tested by investigating millimeter paper, tape and the USAF (US Air Force) 1951 resolution test target. Finally cerebral tissues from non-pathological and Alzheimer's disease affected brains were investigated. The results showed that structures, such as white and gray matter, could be distinguished. Furthermore a first effort was made to differentiate Alzheimer's disease from healthy brain tissue.

  17. Controlling light with light using coherent meta-devices: all-optical transistor, summator and invertor

    CERN Document Server

    Fang, Xu; Zheludev, Nikolay I

    2014-01-01

    Vast amounts of information are conveyed by photons in optical fibres, but most data processing is performed electronically, creating the infamous 'information bottleneck' and consuming energy at an increasingly unsustainable rate. The potential for photonic devices to manipulate light themselves remains unfulfilled, largely due to the absence of materials with strong, fast optical nonlinearities. Here we show that small-signal amplifier, summator and invertor functions for optical signals may all be realized with a 4-port device exploiting the coherent interaction of beams on a planar plasmonic metamaterial, assuming no intrinsic nonlinearity. We show that coherently controlled redistribution of energy among ports can deliver various forms of optical switching. Such devices can operate even at the single photon level, with THz bandwidth, and without introducing signal distortion, presenting powerful opportunities for novel optical data processing architectures, complexity oracles and the locally coherent net...

  18. Passive Decoy-State Quantum Key Distribution with Coherent Light

    Directory of Open Access Journals (Sweden)

    Marcos Curty

    2015-06-01

    Full Text Available Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett–Brassard 1984 (BB84 polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.

  19. Ultrashort Optical Pulses in the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, V.

    2005-01-31

    The Linac Coherent Light Source (LCLS) project at the Stanford Linear Accelerator Center (SLAC) will produce intense, coherent 0.15 nm x-rays, with an expected peak brightness many orders of magnitude greater than existing x-ray sources and energy density as high as 4 x 10{sup 25} watts/cm{sup 2}. These x-rays are produced by a single pass of a 15 GeV electron beam through a long undulator. The 15 GeV electron beam is generated using the last one third of the existing SLAC linac. This paper describes how to extend the present design of the LCLS to generate even shorter x-ray pulses than the nominal 255 femtoseconds FWHM. The goal of this study is to obtain pulse lengths as short as 50 femtoseconds. The scientific need for the shorter bunches is outlined, and electron and x-ray pulse compression options are reviewed. The analysis concludes that there are paths, albeit difficult, to obtaining shorter bunches and that the present LCLS design has the flexibility and range to test these paths.

  20. Sparsity-based single-shot sub-wavelength coherent diffractive imaging

    CERN Document Server

    Szameit, A; Osherovich, E; Bullkich, E; Sidorenko, P; Dana, H; Steiner, S; Kley, E B; Gazit, S; Cohen-Hyams, T; Shoham, S; Zibulevsky, M; Yavneh, I; Eldar, Y C; Cohen, O; Segev, M

    2011-01-01

    We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and ordered arrangements of 100 nm features with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our algorithmic technique relies on minimizing the number of degrees of freedom; it works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.

  1. The effects of ultraviolet-A wavelengths in light therapy for seasonal depression.

    Science.gov (United States)

    Lam, R W; Buchanan, A; Mador, J A; Corral, M R; Remick, R A

    1992-04-01

    Although light therapy is a recognized effective treatment for seasonal affective disorder (SAD), there has been little research into the critical wavelengths of light that produce the antidepressant effect. Previous studies found conflicting results for the importance of the ultraviolet (UV) spectrum in the therapeutic effect of light therapy. To assess the clinical effects of UV-A wavelengths (315-400 nm), we studied 33 depressed SAD patients diagnosed with structured interviews by DSM-IIIR criteria. Following a baseline week, patients underwent 2 weeks of 2500 lux light therapy for 2 h daily (06:00-08:00). Light therapy consisted of cool-white fluorescent light with the addition of a special UV-A fluorescent tube. Patients were randomized to wear glasses during light therapy that either blocked (UV-blocked condition) or passed (UV-A condition) wavelengths below 400 nm. Both treatments significantly reduced all depression ratings, but no differences were found between the UV-A and UV-blocked conditions. We conclude that the UV-A spectrum does not increase the antidepressant response of light therapy. Given the potential side effects of chronic UV exposure, clinical application of light therapy should use light sources that have the UV spectrum filtered.

  2. Linac Coherent Light Source Undulator RF BPM System

    Energy Technology Data Exchange (ETDEWEB)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; /Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; /SLAC

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  3. Modeling the role of mid-wavelength cones in circadian responses to light

    Science.gov (United States)

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frédéric; Cooper, Howard M.

    2007-01-01

    Summary Non-visual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and towards the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modelling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light. PMID:17329208

  4. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    CERN Document Server

    Ganapati, Vidya; Yablonovitch, Eli

    2013-01-01

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...

  5. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    OpenAIRE

    Ganapati, Vidya; Miller, Owen D.; Yablonovitch, Eli

    2013-01-01

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions ...

  6. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    Science.gov (United States)

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  7. Wavelength selection in measuring red blood cell aggregation based on light transmittance

    Science.gov (United States)

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J.; Baskurt, Oguz K.

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  8. Noise analysis of a white-light supercontinuum light source for multiple wavelength confocal laser scanning fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Gail [Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom)

    2005-08-07

    Intensity correlations of a Ti : sapphire, Kr/Ar and a white-light supercontinuum were performed to quantify the typical signal amplitude fluctuations and hence ascertain the comparative output stability of the white-light supercontinuum source for confocal laser scanning microscopy (CLSM). Intensity correlations across a two-pixel sample (n = 1000) of up to 98%, 95% and 94% were measured for the Ti : sapphire, Kr/Ar and white-light supercontinuum source, respectively. The white-light supercontinuum noise level is therefore acceptable for CLSM, with the added advantage of wider wavelength flexibility over traditional CLSM excitation sources. The relatively low-noise white-light supercontinuum was then used to perform multiple wavelength sequential CLSM of guinea pig detrusor to confirm the reliability of the system and to demonstrate system flexibility.

  9. Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change.

    Science.gov (United States)

    Malo, B; Vineberg, K A; Bilodeau, F; Albert, J; Johnson, D C; Hill, K O

    1990-09-01

    A novel technique is reported for detecting permanent and transient light-induced refractive-index changes (photosensitivity) in optical fibers. The index change is detected by irradiating one arm of an unbalanced Mach-Zehnder fiber interferometer with UV light, thereby changing its optical path length. From a measurement of the change in the spectral response of the Mach-Zehnder interferometer, the change in the fiber core index as a function of wavelength can be determined. The equilibrium change in the core index is found to have an almost constant value of approximately 2.3 x 10(-5) over the measured wavelength range of 700 to 1400 nm.

  10. Investigation of white light continuum generated using two-wavelength femtosecond laser pulses

    OpenAIRE

    Nemuraitė, Indrė

    2016-01-01

    White light continuum generation is a process which occurs when an intense ultrashort laser pulse is focused into a nonlinear medium. Because of the light matter interaction pump pulse undergoes significant spectral broadening. Main mechanisms causing this is self focusing and self phase modulation. Supercontinuum spectrum has both spatial and temporal coherence, because of these properties it has a wide variety of applications in microscopy, spectroscopy and metrology. Broad supercontinuum s...

  11. Widely wavelength tunable fast intensity-modulated light source for biophotonic applications.

    Science.gov (United States)

    Huang, Tzu-Feng; Tseng, Sheng-Hao; Wang, Hsien-Yi; Chan, Ming-Che

    2017-07-15

    High modulation depth, fast (megahertz to gigahertz), intensity-modulated light sources of various wavelengths within the 0.7-1.35 μm bio-penetration window are highly desirable for many biophotonic diagnosis systems. In this Letter, we present a novel scheme of a wavelength tunable, ultra-broadband light source which simply consists of a pump laser, a nonlinear fiber, and demodulation circuits. The working wavelength range of the light source is from 0.7 to 1.35 μm which covers a vast part of the bio-penetration window, and its modulation frequencies extends from tens of megahertz to gigahertz. The performances of the proposed light source in either working wavelength range or modulation frequency bandwidth are much superior to any typical laser diodes or solid state lasers currently employed in the frequency-domain or other biophotonic utilization. The wide applicability of this novel light source in diverse biophotonic applications can be observed from our carefully designed diffused optical spectroscopy phantom measurement.

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  13. On seeing yellow: the case for, and against, short-wavelength light-absorbing intraocular lenses.

    Science.gov (United States)

    Simunovic, Matthew P

    2012-07-01

    The normal human crystalline lens absorbs UV and short-wavelength visible electromagnetic radiation. Early intraocular lenses (IOLs) permitted the transmission of such radiation to the retina following cataract extraction. Experimental studies of the absorption profile of the crystalline lens and animal studies demonstrating the deleterious effects of short-wavelength radiation on the retina led to the development of UV-absorbing, and later, short-wavelength light-absorbing (SLA) IOLs. Short-wavelength light-absorbing IOLs were designed to mimic the absorption properties of the normal crystalline lens by absorbing some short-wavelength light in addition to UV radiation; however, debate continues regarding the relative merits of such lenses over UV-absorbing IOLs. Advocates of SLA IOLs suggest that they may theoretically offer increased photoprotection and decreased glare sensitivity and draw on in vitro, animal, and limited clinical studies that infer possible benefits. Detractors suggest that there is no direct evidence supporting a role for SLA IOLs in preventing retinal dysfunction in humans and suggest that they may have negative effects on color perception, scotopic vision, and circadian rhythms. This article examines the theoretical and empirical evidence for, and against, such lenses.

  14. Short-wavelength attenuated polychromatic white light during work at night : Limited melatonin suppression without substantial decline of alertness

    NARCIS (Netherlands)

    van de Werken, Maan; Giménez, Marina C; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength

  15. Analysis of complex samples using a portable multi-wavelength light emitting diode (LED) fluorescence spectrometer

    Science.gov (United States)

    Spectroscopic analysis of chemically complex samples often requires an increase n the dimensionality of the measured response surface. This often involves the measurement of emitted light intensities as functions of both wavelengths of excitation and emission resulting in the generation of an excita...

  16. Spin-Light Coherence for Single-Spin Measurement and Control in Diamond

    Science.gov (United States)

    Buckley, B. B.; Fuchs, G. D.; Bassett, L. C.; Awschalom, D. D.

    2010-11-01

    The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.

  17. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S

    2017-01-01

    Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  18. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance.

    Directory of Open Access Journals (Sweden)

    Anna Alkozei

    Full Text Available Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition using an abbreviated version of the California Verbal Learning Test (CVLT-II. At delayed recall, individuals who received blue light (n = 12 during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18, while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.

  19. Optimal secure quantum teleportation of coherent states of light

    Science.gov (United States)

    Liuzzo-Scorpo, Pietro; Adesso, Gerardo

    2017-08-01

    We investigate quantum teleportation of ensembles of coherent states of light with a Gaussian distributed displacement in phase space. Recently, the following general question has been addressed in [P. Liuzzo-Scorpo et al., arXiv:1705.03017]: Given a limited amount of entanglement and mean energy available as resources, what is the maximal fidelity that can be achieved on average in the teleportation of such an alphabet of states? Here, we consider a variation of this question, where Einstein-Podolsky-Rosen steering is used as a resource rather than plain entanglement. We provide a solution by means of an optimisation within the space of Gaussian quantum channels, which allows for an intuitive visualisation of the problem. We first show that not all channels are accessible with a finite degree of steering, and then prove that practical schemes relying on asymmetric two-mode Gaussian states enable one to reach the maximal fidelity at the border with the inaccessible region. Our results provide a rigorous quantitative assessment of steering as a resource for secure quantum teleportation beyond the so-called no-cloning threshold. The schemes we propose can be readily implemented experimentally by a conventional Braunstein-Kimble continuous variable teleportation protocol involving homodyne detections and corrective displacements with an optimally tuned gain. These protocols can be integrated as elementary building blocks in quantum networks, for reliable storage and transmission of quantum optical states.

  20. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    CERN Document Server

    Limborg-Deprey, Cecile

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

  1. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  2. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  3. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  4. Coherent diffraction and Cherenkov radiation of relativistic electrons from a dielectric target in the millimeter wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Bleko, V.V., E-mail: bleko_vitold@mail.ru; Konkov, A.S., E-mail: Ekwinus@tpu.ru; Soboleva, V.V.

    2015-07-15

    The coherent diffraction radiation (DR) and Cherenkov radiation (ChR) emitted by bunched electron beam of 6.1 MeV passing near a flat dielectric target have been observed in the millimeter wavelength range. The simple geometry of experiment allows testing different theoretical approaches, which consider the process of simultaneous emission of DR and ChR from dielectric targets. Properties of the radiation have been experimentally investigated in far-field zone. The angular distribution of the observed radiation at various tilt angles of the target in respect to the electron beam have shown the effect of interference between DR and ChR. The comparison of experimental results with the theoretical calculations based on the approach of polarization currents has been done.

  5. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B. [Indiana U.

    2018-02-06

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  6. T-matrix based inverse light scattering analysis using angle resolved low coherence interferometry

    Science.gov (United States)

    Giacomelli, Michael; Chalut, Kevin; Ostrander, Julie; Wax, Adam

    2009-02-01

    Inverse light scattering methods have been applied by several groups as a means to probe cellular structure in both clinical and scientific applications with sub-wavelength accuracy. These methods determine the geometric properties of tissue scatterers based on far field scattering patterns. Generally, structure is determined by measuring scattering over some range of angles, wavelengths, or polarizations and then fitting the observed data to a database of simulated scattering selected from a range of probable geometries. We have developed new light scattering software based on the T-matrix method that creates databases of scattering from spheroidal objects, representing a substantial improvement over Mie theory, a method limited to simulating scattering from spheres. The computational cost of the T-matrix method is addressed through a simple but massively parallel program that concurrently simulates scattering across hundreds of PCs. We are exploring the use of these T-matrix databases in inverting interferometric measurements of angle-resolved scattering from spheroidal cell nuclei using a technique called angle-resolved low coherence interferometry (a/LCI). With a/LCI, we have previously distinguished between healthy and dysplastic tissue in both cell cultures and in ex vivo rat and hamster tissue using Mie theory to measure nuclear diameter. We now present nuclear volume and spheroidal aspect ratio measurements of unstained, living MCF7 cells using the improved T-matrix database to analyze a/LCI data. We achieve measurement accuracy equivalent to conventional image analysis of stained samples. We will further validate the approach by comparing experimental measurements of scattering from polystyrene microspheroids, and show that the T-matrix is a suitable replacement for Mie theory in ex vivo tissue samples.

  7. Nature of quantum states created by one photon absorption: pulsed coherent vs pulsed incoherent light.

    Science.gov (United States)

    Han, Alex C; Shapiro, Moshe; Brumer, Paul

    2013-08-29

    We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatiotemporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be dramatically different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed from ultrashort coherent excitation does not reflect what happens in processes induced by solar-like radiation, and conclusions drawn from one do not, in general, apply to the other. These results provide further support to the view that the dynamics observed in studies using ultrashort coherent pulses can be significantly different than those that would result from excitation with natural incoherent light.

  8. Daytime Exposure to Short- and Medium-Wavelength Light Did Not Improve Alertness and Neurobehavioral Performance.

    Science.gov (United States)

    Segal, Ahuva Y; Sletten, Tracey L; Flynn-Evans, Erin E; Lockley, Steven W; Rajaratnam, Shantha M W

    2016-10-01

    While previous studies have demonstrated short-wavelength sensitivity to the acute alerting effects of light during the biological night, fewer studies have assessed the alerting effect of light during the daytime. This study assessed the wavelength-dependent sensitivity of the acute alerting effects of daytime light exposure following chronic sleep restriction in 60 young adults (29 men, 31 women; 22.5 ± 3.1 mean ± SD years). Participants were restricted to 5 h time in bed the night before laboratory admission and 3 h time in bed in the laboratory, aligned by wake time. Participants were randomized for exposure to 3 h total of either narrowband blue (λmax 458-480 nm, n = 23) or green light (λmax 551-555 nm, n = 25) of equal photon densities (2.8-8.4 × 10(13) photons/cm(2)/sec), beginning 3.25 h after waking, and compared with a darkness control (0 lux, n = 12). Subjective sleepiness (Karolinska Sleepiness Scale), sustained attention (auditory Psychomotor Vigilance Task), mood (Profile of Mood States Bi-Polar form), working memory (2-back task), selective attention (Stroop task), and polysomnographic and ocular sleepiness measures (Optalert) were assessed prior to, during, and after light exposure. We found no significant effect of light wavelength on these measures, with the exception of a single mood subscale. Further research is needed to optimize the characteristics of lighting systems to induce alerting effects during the daytime, taking into account potential interactions between homeostatic sleep pressure, circadian phase, and light responsiveness. © 2016 The Author(s).

  9. Investigating the contribution of short wavelengths in the alerting effect of bright light.

    Science.gov (United States)

    Sasseville, Alexandre; Martin, Jeanne Sophie; Houle, Jérôme; Hébert, Marc

    2015-11-01

    Short-wavelengths can have an acute impact on alertness, which is allegedly due to their action on intrinsically photosensitive retinal ganglion cells. Classical photoreceptors cannot, however, be excluded at this point in time as contributors to the alerting effect of light. The objective of this study was to compare the alerting effect at night of a white LED light source while wearing blue-blockers or not, in order to establish the contribution of short-wavelengths. 20 participants stayed awake under dim light (light condition for 30 min starting at 3:00 h. Group A (5M/5F) was exposed to 500 μW/cm(2) of unfiltered LED light, while group B (4M/6F) was required to wear blue-blocking glasses, while exposed to 1500 μW/cm(2) from the same light device in order to achieve 500 μW/cm(2) at eye level (as measured behind the glasses). Subjective alertness, energy, mood and anxiety were assessed for both nights at 23:30 h, 01:30 h and 03:30 h using a visual analog scale (VAS). Subjective sleepiness was assessed with the Stanford Sleepiness Scale (SSS). Subjects also performed the Conners' Continuous Performance Test II (CPT-II) in order to assess objective alertness. Mixed model analysis was used to compare VAS, SSS and CPT-II parameters. No difference between group A and group B was observed for subjective alertness, energy, mood, anxiety and sleepiness, as well as CPT-II parameters. Subjective alertness (p light exposure on the second night independently of the light condition. The current study shows that when sleepiness is high, the alerting effect of light can still be triggered at night in the absence of short-wavelengths with a 30 minute light pulse of 500 μW/cm(2). This suggests that the underlying mechanism by which a brief polychromatic light exposure improves alertness is not solely due to short-wavelengths through intrinsically photosensitive retinal ganglion cells.

  10. Light-emitting-diode induced retinal damage and its wavelength dependency in vivo.

    Science.gov (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David H; Yang, Chang-Hao; Lee, Li-Ling

    2017-01-01

    To examine light-emitting-diode (LED)-induced retinal neuronal cell damage and its wavelength-driven pathogenic mechanisms. Sprague-Dawley rats were exposed to blue LEDs (460 nm), green LEDs (530 nm), and red LEDs (620 nm). Electroretinography (ERG), Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunohistochemical (IHC) staining, Western blotting (WB) and the detection of superoxide anion (O2(-)·), hydrogen peroxide (H2O2), total iron, and ferric (Fe(3+)) levels were applied. ERG results showed the blue LED group induced more functional damage than that of green or red LED groups. H&E staining, TUNEL, IHC, and TEM revealed apoptosis and necrosis of photoreceptors and RPE, which indicated blue LED also induced more photochemical injury. Free radical production and iron-related molecular marker expressions demonstrated that oxidative stress and iron-overload were associated with retinal injury. WB assays correspondingly showed that defense gene expression was up-regulated after the LED light exposure with a wavelength dependency. The study results indicate that LED blue-light exposure poses a great risk of retinal injury in awake, task-oriented rod-dominant animals. The wavelength-dependent effect should be considered carefully when switching to LED lighting applications.

  11. Light-emitting-diode induced retinal damage and its wavelength dependency in vivo

    Science.gov (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David H.; Yang, Chang-Hao; Lee, Li-Ling

    2017-01-01

    AIM To examine light-emitting-diode (LED)-induced retinal neuronal cell damage and its wavelength-driven pathogenic mechanisms. METHODS Sprague-Dawley rats were exposed to blue LEDs (460 nm), green LEDs (530 nm), and red LEDs (620 nm). Electroretinography (ERG), Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunohistochemical (IHC) staining, Western blotting (WB) and the detection of superoxide anion (O2−·), hydrogen peroxide (H2O2), total iron, and ferric (Fe3+) levels were applied. RESULTS ERG results showed the blue LED group induced more functional damage than that of green or red LED groups. H&E staining, TUNEL, IHC, and TEM revealed apoptosis and necrosis of photoreceptors and RPE, which indicated blue LED also induced more photochemical injury. Free radical production and iron-related molecular marker expressions demonstrated that oxidative stress and iron-overload were associated with retinal injury. WB assays correspondingly showed that defense gene expression was up-regulated after the LED light exposure with a wavelength dependency. CONCLUSION The study results indicate that LED blue-light exposure poses a great risk of retinal injury in awake, task-oriented rod-dominant animals. The wavelength-dependent effect should be considered carefully when switching to LED lighting applications. PMID:28251076

  12. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the

  13. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    Science.gov (United States)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  14. Implications of controlled short-wavelength light exposure for sleep in older adults.

    Science.gov (United States)

    Figueiro, Mariana G; Lesniak, Natalia Z; Rea, Mark S

    2011-09-08

    Environmental and physiological conditions make older adults more likely to lose synchronization to their local time and experience sleep disturbances. A regular, 24-hour light/dark cycle promotes synchronization. It is now well established that the circadian system is maximally sensitive to short-wavelength (blue) light. The purpose of the present study was to measure dose effectiveness (amounts and durations) of short-wavelength (blue) light for stimulating the circadian systems of older adults. We investigated the impact of six corneal irradiances (0.7 to 72 μW/cm2) of 470-nm light on nocturnal melatonin production. Nine participants, each over 50 years of age completed a within-subjects study. Each week, participants were exposed to one of the six irradiances of 470-nm light for 90 minutes. A two-factor (6 corneal irradiances × 10 exposure durations), within-subjects analysis of variance (ANOVA) was conducted using the melatonin suppression levels. The ANOVA revealed a significant main effect of corneal irradiance (F5, 30 = 9.131, p exposure duration (F9, 54 = 5.731, p exposure whereas 0.7 μW/cm2 did not. Sleep disorders are common and a serious problem for millions of older adults. The present results showed that comfortable, precise and effective doses of light can be prescribed to older adults to reliably stimulate the circadian system that presumably would promote entrainment and, thus, regular sleep. Field studies on the impact of short-wavelength-light doses on sleep efficiency in older adults should be performed.

  15. Implications of controlled short-wavelength light exposure for sleep in older adults

    Directory of Open Access Journals (Sweden)

    Rea Mark S

    2011-09-01

    Full Text Available Abstract Background Environmental and physiological conditions make older adults more likely to lose synchronization to their local time and experience sleep disturbances. A regular, 24-hour light/dark cycle promotes synchronization. It is now well established that the circadian system is maximally sensitive to short-wavelength (blue light. The purpose of the present study was to measure dose effectiveness (amounts and durations of short-wavelength (blue light for stimulating the circadian systems of older adults. We investigated the impact of six corneal irradiances (0.7 to 72 μW/cm2 of 470-nm light on nocturnal melatonin production. Nine participants, each over 50 years of age completed a within-subjects study. Each week, participants were exposed to one of the six irradiances of 470-nm light for 90 minutes. Findings A two-factor (6 corneal irradiances × 10 exposure durations, within-subjects analysis of variance (ANOVA was conducted using the melatonin suppression levels. The ANOVA revealed a significant main effect of corneal irradiance (F5, 30 = 9.131, p 9, 54 = 5.731, p 45,270 = 1.927, p 2 reliably suppressed melatonin after 90-minute exposure whereas 0.7 μW/cm2 did not. Conclusions Sleep disorders are common and a serious problem for millions of older adults. The present results showed that comfortable, precise and effective doses of light can be prescribed to older adults to reliably stimulate the circadian system that presumably would promote entrainment and, thus, regular sleep. Field studies on the impact of short-wavelength-light doses on sleep efficiency in older adults should be performed.

  16. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  17. Coherence dynamics in light-harvesting complexes with two-colour spectroscopy

    Directory of Open Access Journals (Sweden)

    Quiney Harry M.

    2013-03-01

    Full Text Available We investigate coherent dynamics in the cryptophyte light-harvesting complex Phycocyanin-645 (PC-645. A two-colour four-wave mixing experiment allows us to isolate a coherence pathway and observe its evolution in the absence of other signals. We measured a decoherence time of 540fs for the coherence [1]. Additionally oscillations in the signal pathway give evidence for the coherent excitation of states outside the bandwidth of the laser pulse. This suggests strong coupling between the excited states and phonon modes [1].

  18. Mid-IR fiber optic light source around 6 micron through parametric wavelength translation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P; Sanghera, J; Shaw, L B; Aggarwal, I D

    2014-01-01

    We report numerically designed highly nonlinear all glass chalcogenide microstructured optical fiber for efficient generation of light around 6 micron through degenerate four wave mixing by considering continuous wave CO laser of 5 to 10 Watts power emitting at 5.6 micron as the pump. By tuning the pump wavelength, pump power, fiber dispersion and nonlinear properties, narrow and broad band mid-IR all-fiber light source could be realized. Parametric amplification of more than 20 decibel is achievable for the narrow band source at 6.46 micron with a maximum power conversion efficiency of 33 percent while amplification of 22 decibel is achievable for a B-band source over the wavelength range of 5 to 6.3 micron with a conversion efficiency of 40 percent.

  19. Stable wavelength-swept light source designed for industrial applications using KTN beam-scanning technology

    Science.gov (United States)

    Fujimoto, Masatoshi; Yamada, Mahiro; Yamamoto, Koei; Sasaki, Yuzo; Toyoda, Seiji; Sakamoto, Takashi; Yamaguchi, Joji; Sakamoto, Tadashi; Ueno, Masahiro; Imai, Tadayuki; Sugai, Eiichi; Yagi, Shogo

    2017-02-01

    Using light-beam scanning technology based on a potassium tantalate niobate (KTa1-xNbxO3, KTN) single crystal, we constructed a wavelength-swept light source for industrial applications. The KTN crystal is placed in an external cavity as an electro-optic deflector for wavelength scanning without any mechanical operation. Cavity arrangement and mechanism elements are specially designed for long-term stability and environmental robustness. In addition, we updated the handling of the KTN crystal. We used a pair of thermistors for accurate temperature monitoring, and weakly irradiated the crystal with a 405-nm light during operation to achieve drift suppression. We selected a moderate repetition rate of 20 kHz to suit the practical application. The output of the light source was 6.2 mW in average power, 1314.5 nm in central wavelength, and 83.3 nm in bandwidth. The interference fringes of the light enable us to specify the thickness of a wafer sample by the peak positions of the point spread functions. We measured the thickness of a silicon wafer as 3651 μm in the optical path length using a reference quartz plate. The distribution of the obtained values is about 0.1 μm (standard deviation). We experimentally confirmed that this property persists continuously at least over 153 days. Our light source has a remarkable feature: extremely low timing jitter of the sweep. Thus, we can easily reduce the noise level by averaging several fringes, if necessary.

  20. Light sensitive memristor with bi-directional and wavelength-dependent conductance control

    Energy Technology Data Exchange (ETDEWEB)

    Maier, P.; Hartmann, F., E-mail: fabian.hartmann@physik.uni-wuerzburg.de; Emmerling, M.; Schneider, C.; Kamp, M.; Worschech, L. [Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Rebello Sousa Dias, M. [Departamento de Fisica, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Castelano, L. K.; Marques, G. E.; Lopez-Richard, V. [Departamento de Fisica, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Höfling, S. [Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom)

    2016-07-11

    We report the optical control of localized charge on positioned quantum dots in an electro-photo-sensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photo-generated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.

  1. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  2. Vibronic origin of long-lived coherence in an artificial molecular light harvester.

    Science.gov (United States)

    Lim, James; Paleček, David; Caycedo-Soler, Felipe; Lincoln, Craig N; Prior, Javier; von Berlepsch, Hans; Huelga, Susana F; Plenio, Martin B; Zigmantas, Donatas; Hauer, Jürgen

    2015-07-09

    Natural and artificial light-harvesting processes have recently gained new interest. Signatures of long-lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate. In this macroscopically aligned tubular system, polarization-controlled 2D spectroscopy delivers an uncongested and specific optical response as an ideal foundation for an in-depth theoretical description. We derive analytical expressions that show under which general conditions vibronic coupling leads to prolonged excited-state coherence.

  3. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...... leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data...

  4. Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer

    CERN Document Server

    Frlez, E; Krause, B; Pocanic, D; Renker, D; Ritt, S; Slocum, P L; Supek, I; Wirtz, H P; Broennimann, Ch.

    2001-01-01

    We have measured scintillation properties of pure CsI crystals used in the shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals painted with a special wavelength-shifting solution were examined in a custom-build detection apparatus (RASTA=radioactive source tomography apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light emitting diode as complementary probes of the scintillator light response. We have extracted the total light output, axial light collection nonuniformities and timing responses of the individual CsI crystals. These results predict improved performance of the 3 pi sr PIBETA calorimeter due to the painted lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment did not affect appreciably the total light output and timing resolution of our crystal sample. The predicted energy resolution for positrons and photons in the energy range of 10-100 MeV was ...

  5. Easier detection of invertebrate "identification-key characters" with light of different wavelengths

    Directory of Open Access Journals (Sweden)

    Koken Marcel HM

    2011-10-01

    Full Text Available Abstract The marine α-taxonomist often encounters two problems. Firstly, the "environmental dirt" that is frequently present on the specimens and secondly the difficulty in distinguishing key-features due to the uniform colours which fixed animals often adopt. Here we show that illuminating animals with deep-blue or ultraviolet light instead of the normal white-light abrogates both difficulties; dirt disappears and important details become clearly visible. This light regime has also two other advantages. It allows easy detection of very small, normally invisible, animals (0.1 μm range. And as these light wavelengths can induce fluorescence, new identification markers may be discovered by this approach.

  6. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control

    Science.gov (United States)

    Yan, Zhihui; Jia, Xiaojun

    2017-06-01

    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  7. Fast interaction of atoms with crystal surfaces: coherent lighting

    Science.gov (United States)

    Gravielle, M. S.

    2017-11-01

    Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.

  8. Continuous manipulation of tunable mixed classical light from coherent light to pseudothermal light.

    Science.gov (United States)

    Lee, Hee Jung; Bae, In-Ho; Moon, Han Seb

    2011-04-01

    We demonstrated tunable mixed classical light (TMCL) using a mixture of a laser and a pseudothermal light. The TMCL was generated by adjusting the photon number ratio of a laser and a pseudothermal light. The photon number statistics of the TMCL continuously changed from the Poisson distribution to the Bose-Einstein distribution. The g((2)) (0) value of the TMCL was measured using the Hanbury Brown-Twiss method, and we could arbitrarily control the g((2)) (0) value between 1.0 and 1.7. The experimental g((2)) (0) value of the TMCL as a function of the photon number ratio of the two light sources was in close agreement with the calculated result. © 2011 Optical Society of America

  9. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  10. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography.

    Science.gov (United States)

    Leung, Michael K K; Mariampillai, Adrian; Standish, Beau A; Lee, Kenneth K C; Munce, Nigel R; Vitkin, I Alex; Yang, Victor X D

    2009-09-15

    We report a high-power wavelength-swept laser source for multichannel optical coherence tomography (OCT) imaging. Wavelength tuning is performed by a compact telescope-less polygon-based filter in Littman arrangement. High output power is achieved by incorporating two serial semiconductor optical amplifiers in the laser cavity in Fourier domain mode-locked configuration. The measured wavelength tuning range of the laser is 111 nm centered at 1329 nm, coherence length of 5.5 mm, and total average output power of 131 mW at 43 kHz sweeping rate. Multichannel simultaneous OCT imaging at an equivalent A-scan rate of 258 kHz is demonstrated.

  11. Effect of spatial coherence of light on the photoregulation processes in cells

    Science.gov (United States)

    Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2016-07-01

    The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.

  12. Coherent imaging with pseudo-thermal incoherent light

    DEFF Research Database (Denmark)

    Gatti, A.; Bache, Morten; Magatti, D.

    2006-01-01

    We investigate experimentally fundamental properties of coherent ghost imaging using spatially incoherent beams generated from a pseudo-thermal source. A complementarity between the coher- ence of the beams and the correlation between them is demonstrated by showing a complementarity between ghost...... diffraction and ordinary diffraction patterns. In order for the ghost imaging scheme to work it is therefore crucial to have incoherent beams. The visibility of the information is shown for the ghost image to become better as the object size relative to the speckle size is decreased, and therefore...

  13. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  14. Concept of coherence aperture and pathways toward white light high-resolution correlation imaging

    Science.gov (United States)

    Bouchal, P.; Bouchal, Z.

    2013-12-01

    Self-interference correlation imaging is a recently discovered method that takes advantage of holographic reconstruction when using a spatially incoherent light. Although the temporal coherence of light significantly influences the resolution of the method, it has not been studied either theoretically or experimentally. We present the first systematic study of the resolution in a broadband correlation imaging based on the concept of coherence-induced diffraction. We show that the physical limits of the resolution are reached in a non-dispersive experiment and their examination can be performed by the coherence aperture whose width depends on the coherence length of light and the optical path difference of interfering waves. As the main result, the optimal configuration of the non-dispersive experimental system is found in which the sub-diffraction image resolution previously demonstrated for monochromatic light can be retained even when the white light is used. Dispersion effects that prevent reaching the physical resolution limits are discussed and the dispersion sensitivity of the currently available experiments examined. The proposed concept of the coherence aperture is verified experimentally and its generalization to the concept of the dispersion-induced aperture suggested. As a challenge for future research, possible methods of dispersion elimination are outlined that allow the design of advanced optical systems enabling implementation of the high-resolution white light correlation imaging.

  15. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    Science.gov (United States)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  16. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    Directory of Open Access Journals (Sweden)

    Rongbo Wang

    2017-09-01

    Full Text Available An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR. Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  17. Transforming squeezed light into large-amplitude coherent-state superposition

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2007-01-01

    A quantum superposition of two coherent states of light with small amplitude can be obtained by subtracting a photon from a squeezed vacuum state. In experiments this preparation can be made conditioned on the detection of a photon in the field from a squeezed light source. We propose and analyze...

  18. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture.

    Science.gov (United States)

    Killoran, N; Huelga, S F; Plenio, M B

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  19. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    Energy Technology Data Exchange (ETDEWEB)

    Killoran, N.; Huelga, S. F.; Plenio, M. B. [Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.

  20. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  1. Performance study of wavelength shifting acrylic plastic for Cherenkov light detection

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, B., E-mail: beckford@aps.org [American Physical Society, One Physics Ellipse, College Park, MD 20740 (United States); De la Puente, A. [TRIUMF Laboratory, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Fujii, Y.; Hashimoto, O.; Kaneta, M.; Kanda, H.; Maeda, K.; Matsumura, A.; Nakamura, S.N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Perez, N.; Reinhold, J. [Department of Physics, Florida International University, Miami, FL 33199 (United States); Tang, L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Tsukada, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2014-01-21

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons produced through internally generated Cherenkov light as well as light incident from the radiator was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin{sup 2}θ{sub c}, where θ{sub c} is the opening angle of the Cherenkov light created. Based on estimations and results from similar conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in a fused silica radiator and 41% for light created in the WLS.

  2. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lee, Sooheyong [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hasylab at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric, E-mail: aymeric@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-14

    A description of the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source is presented. Recent highlights illustrate the coherence properties of the source as well as some recent dynamics measurements and future directions. The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

  3. Pump-phase-noise-free optical wavelength data exchange between QAM signals with 50-GHz channel-spacing using coherent DFB pump.

    Science.gov (United States)

    Lu, Guo-Wei; Albuquerque, André; Puttnam, Benjamin J; Sakamoto, Takahide; Drummond, Miguel; Nogueira, Rogério; Kanno, Atsushi; Shinada, Satoshi; Wada, Naoya; Kawanishi, Tetsuya

    2016-02-22

    An important challenge for implementing optical signal processing functions such as wavelength conversion or wavelength data exchange (WDE) is to avoid the introduction of linear and nonlinear phase noise in the subsystem. This is particularly important for phase noise sensitive, high-order quadrature-amplitude modulation (QAM) signals. In this paper, we propose and experimentally demonstrate an optical data exchange scheme through cascaded 2nd-order nonlinearities in periodically-poled lithium niobate (PPLN) waveguides using coherent pumping. The proposed coherent pumping scheme enables noise from the coherent pumps to be cancelled out in the swapped data after WDE, even with broad linewidth distributed feedback (DFB) pump lasers. Hence, this scheme allows phase noise tolerant processing functions, enabling the low-cost implementation of WDE for high-order QAM signals. We experimentally demonstrate WDEs between 10-Gbaud 4QAM (4QAM) signal and 12.5-Gbaud 4QAM (16QAM) signal with 3.5-MHz linewidth DFB pump lasers and 50-GHz channel spacing. Error-free operation is observed for the swapped QAM signals with coherent DFB pumping whilst use of free-running DFB pumps leads to visible error floors and unrecoverable phase errors. The phase noise cancellation in the coherent pump scheme is further confirmed by study of the recovered carrier phase of the converted signals. In addition to pump phase noise, the influence of crosstalk caused by the finite extinction ratio in WDE is also experimentally investigated for the swapped QAM signals.

  4. Coherent and dynamic beam splitting based on light storage in cold atoms

    OpenAIRE

    Kwang-Kyoon Park; Tian-Ming Zhao; Jong-Chan Lee; Young-Tak Chough; Yoon-Ho Kim

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the...

  5. Laser pumped light emitting diodes as broad area sources of coherent radiation

    Science.gov (United States)

    Rahman, Faiz; Sorel, Marc

    2006-08-01

    This paper describes the use of large area light emitting diodes, pumped with various laser sources, as extended area emitters of coherent radiation. The photon recycling takes place through the intermediary of electron hole pair formation and subsequent stimulated recombination. It is possible to generate both spontaneous and stimulated emission together and the two channels are then independent of each other. This allows the generation of a mixture of coherent and non-coherent radiation in any desired proportion. The technique described is a broad-band resonant process with diffusive feedback and can be used for generating non-collimated laser radiation for a variety of applications.

  6. Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina

    National Research Council Canada - National Science Library

    Zaidi, Farhan H; Hull, Joseph T; Peirson, Stuart N; Wulff, Katharina; Aeschbach, Daniel; Gooley, Joshua J; Brainard, George C; Gregory-Evans, Kevin; Rizzo, Joseph F; Czeisler, Charles A; Foster, Russell G; Moseley, Merrick J; Lockley, Steven W

    2007-01-01

    ...; one female, 87 yr old). In the male subject, we found that short-wavelength light preferentially suppressed melatonin, reset the circadian pacemaker, and directly enhanced alertness compared to 555 nm exposure, which is the...

  7. Interference comparator for laser diode wavelength and wavelength instability measurement

    Science.gov (United States)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  8. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  9. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam–Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light–matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  10. Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available We present broadband two-dimensional electronic spectra of a lightharvesting protein from photosynthetic algae. Analysis of the spectra show that the amplitude of the main cross peak oscillates as a function of the waiting time period. Both electronic coupling and intramolecular vibrational modes, and their mixture, can lead to such oscillations. Using predictions based on models of four-level systems, we describe ways to distinguish electronic from vibrational contributions to the coherence and find that both types of coupling contribute to the measured dynamics.

  11. A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve

    Science.gov (United States)

    Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.

    1975-01-01

    A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.

  12. Are short (blue) wavelengths necessary for light treatment of seasonal affective disorder?

    Science.gov (United States)

    Anderson, J L; Hilaire, M A St; Auger, R R; Glod, C A; Crow, S J; Rivera, A N; Salgado, S M Fuentes; Pullen, S J; Kaufman, T K; Selby, A J; Wolfe, D J

    2016-08-05

    Despite widely published speculation regarding a potential potency advantage of short-wavelength (blue-appearing) light for Seasonal Affective Disorder (SAD) treatment, there have been few systematic studies. Those comparing short-wavelength to broad-wavelength (white) light under actual clinical conditions suggest equivalent effectiveness. This multicenter, parallel-group design trial was undertaken to compare the effects of light therapy on SAD using blue (~465 nm) versus blue-free (595-612 nm) LED lights. Fifty-six medication-free subjects aged 21-64 years who met DSM-IV-TR criteria for recurrent major depression with winter-type seasonal pattern were enrolled in this blinded study at five participating centers between January and March 2012. Thirty-five subjects met the criteria for randomization to 30 min of either blue (~465 nm) or blue-free (595-612 nm) daily morning light therapy. Twenty-nine subjects completed the study; three subjects withdrew due to treatment-related adverse events, including migraines, and three withdrew for non-study-related reasons. The primary effectiveness variable was depression score (SIGH-ADS) after six weeks of daily light treatment. Secondary effectiveness variables included quality-of-life (QoL) and suicidality ratings. Using an intent-to-treat analysis, mean depression scores were different at baseline for the blue group (29 ± 5 versus 26 ± 5, p = 0.05 blue versus blue-free, respectively), and the initial score was used as a covariate. Baseline scores were not significantly different between treatment groups among those who completed the study, and no significant differences in depression scores were observed after 6 weeks (mean ± SD scores at 6 weeks: 5.6 ± 6.1 versus 4.5 ± 5.3, p = 0.74, blue versus blue-free, respectively). In addition, the proportion of subjects who met remission criteria, defined as a depression score ≤8, was not significantly different between the two groups (p = 0.41); among the 29 subjects who

  13. Second-Order Temporal Interference with Thermal Light: Interference beyond the Coherence Time

    Science.gov (United States)

    Ihn, Yong Sup; Kim, Yosep; Tamma, Vincenzo; Kim, Yoon-Ho

    2017-12-01

    We report the observation of a counterintuitive phenomenon in multipath correlation interferometry with thermal light. The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers (UMZIs) with two classically correlated beams of thermal light at the input exhibits genuine second-order interference with the visibility of 1 /3 . Surprisingly, the second-order interference does not degrade at all no matter how much the path length difference in each UMZI is increased beyond the coherence length of the thermal light. Moreover, the second-order interference is dependent on the difference of the UMZI phases. These results differ substantially from those of the entangled-photon Franson interferometer, which exhibits two-photon interference dependent on the sum of the UMZI phases and the interference vanishes as the path length difference in each UMZI exceeds the coherence length of the pump laser. Our work offers deeper insight into the interplay between interference and coherence in multiphoton interferometry.

  14. Directly measuring the concurrence of two-atom state via detecting coherent lights

    Science.gov (United States)

    Chen, Li; Yang, Ming; Zhang, Li-Hua; Cao, Zhuo-Liang

    2017-11-01

    Concurrence is an important parameter for quantifying quantum entanglement, but usually the state tomography must be determined before quantification. In this paper we propose a scheme, based on cavity-assisted atom–light interaction, to measure the concurrence of two-atom pure states and the Collins–Gisin state directly, without tomography. The concurrence of atomic states is encoded in the output coherent optical beams after interacting with cavities and the atoms therein, so the results of detection applied to the output coherent optical beams provide the concurrence data of the atomic states. This scheme provides an alternative method for directly measuring atomic entanglement by detecting coherent light, rather than measuring the atomic systems, which thus greatly simplifies the realization complexity of the direct measurement of atomic entanglement. In addition, as the cavity-assisted atom–light interaction used here is robust and scalable in realistic applications, the current scheme may be realized in the near future.

  15. Flecks in Recessive Stargardt Disease: Short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence Tomography.

    Science.gov (United States)

    Sparrow, Janet R; Marsiglia, Marcela; Allikmets, Rando; Tsang, Stephen; Lee, Winston; Duncker, Tobias; Zernant, Jana

    2015-07-01

    We evaluated the incongruous observation whereby flecks in recessive Stargardt disease (STGD1) can exhibit increased short-wavelength autofluorescence (SW-AF) that originates from retinal pigment epithelium (RPE) lipofuscin, while near-infrared AF (NIR-AF), emitted primarily from RPE melanin, is usually reduced or absent at fleck positions. Flecks in SW- and NIR-AF images and spectral-domain optical coherence tomography (SD-OCT) scans were studied in 19 STGD1 patients carrying disease-causing ABCA4 mutations. Fleck spatial distribution and progression were recorded in serial AF images. Flecks observed in SW-AF images typically colocalized with darkened foci in NIR-AF images; the NIR-AF profiles were larger. The decreased NIR-AF signal from flecks preceded apparent changes in SW-AF. Spatiotemporal changes in fleck distribution usually progressed centrifugally, but in one case centripetal expansion was observed. Flecks in SW-AF images corresponded to hyperreflective deposits that progressively traversed photoreceptor-attributable bands in SD-OCT images. Outer nuclear layer (ONL) thickness negatively correlated with expansion of flecks from outer to inner retina. In the healthy retina, RPE lipofuscin fluorophores form in photoreceptor cells but are transferred to RPE; thus the SW-AF signal from photoreceptor cells is negligible. In STGD1, NIR-AF imaging reveals that flecks are predominantly hypofluorescent and larger and that NIR-AF darkening occurs prior to heightened SW-AF signal. These observations indicate that RPE cells associated with flecks in STGD1 are considerably changed or lost. Spectral-domain OCT findings are indicative of ongoing photoreceptor cell degeneration. The bright SW-AF signal of flecks likely originates from augmented lipofuscin formation in degenerating photoreceptor cells impaired by the failure of RPE.

  16. Near-infrared autofluorescence: its relationship to short-wavelength autofluorescence and optical coherence tomography in recessive stargardt disease.

    Science.gov (United States)

    Greenstein, Vivienne C; Schuman, Ari D; Lee, Winston; Duncker, Tobias; Zernant, Jana; Allikmets, Rando; Hood, Donald C; Sparrow, Janet R

    2015-05-01

    We compared hypoautofluorescent (hypoAF) areas detected with near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) in patients with recessive Stargardt disease (STGD1) to retinal structure using spectral domain optical coherence tomography (SD-OCT). The SD-OCT volume scans, and SW-AF and NIR-AF images were obtained from 15 eyes of 15 patients with STGD1 and registered to each other. Thickness maps of the total retina, receptor-plus layer (R+, from distal border of the RPE to outer plexiform/inner nuclear layer boundary), and outer segment-plus layer (OS+, from distal border of the RPE to ellipsoid zone [EZ] band) were created from SD-OCT scans. These were compared qualitatively and quantitatively to the hypoAF areas in SW-AF and NIR-AF images. All eyes showed a hypoAF area in the central macula and loss of the EZ band in SD-OCT scans. The hypoAF area was larger in NIR than SW-AF images and it exceeded the area of EZ band loss for 12 eyes. The thickness maps showed progressive thinning towards the central macula, with the OS+ layer showing the most extensive and severe thinning. The central hypoAF areas on NIR corresponded to the OS+ thinned areas, while the hypoAF areas on SW-AF corresponded to the R+ thinned areas. Since the larger hypoAF area on NIR-AF exceeded the region of EZ band loss, and corresponded to the OS+ thinned area, RPE cell loss occurred before photoreceptor cell loss. The NIR-AF imaging may be an effective tool for following progression and predicting loss of photoreceptors in STGD1.

  17. Near-Infrared Autofluorescence: Its Relationship to Short-Wavelength Autofluorescence and Optical Coherence Tomography in Recessive Stargardt Disease

    Science.gov (United States)

    Greenstein, Vivienne C.; Schuman, Ari D.; Lee, Winston; Duncker, Tobias; Zernant, Jana; Allikmets, Rando; Hood, Donald C.; Sparrow, Janet R.

    2015-01-01

    Purpose. We compared hypoautofluorescent (hypoAF) areas detected with near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) in patients with recessive Stargardt disease (STGD1) to retinal structure using spectral domain optical coherence tomography (SD-OCT). Methods. The SD-OCT volume scans, and SW-AF and NIR-AF images were obtained from 15 eyes of 15 patients with STGD1 and registered to each other. Thickness maps of the total retina, receptor-plus layer (R+, from distal border of the RPE to outer plexiform/inner nuclear layer boundary), and outer segment-plus layer (OS+, from distal border of the RPE to ellipsoid zone [EZ] band) were created from SD-OCT scans. These were compared qualitatively and quantitatively to the hypoAF areas in SW-AF and NIR-AF images. Results. All eyes showed a hypoAF area in the central macula and loss of the EZ band in SD-OCT scans. The hypoAF area was larger in NIR than SW-AF images and it exceeded the area of EZ band loss for 12 eyes. The thickness maps showed progressive thinning towards the central macula, with the OS+ layer showing the most extensive and severe thinning. The central hypoAF areas on NIR corresponded to the OS+ thinned areas, while the hypoAF areas on SW-AF corresponded to the R+ thinned areas. Conclusions. Since the larger hypoAF area on NIR-AF exceeded the region of EZ band loss, and corresponded to the OS+ thinned area, RPE cell loss occurred before photoreceptor cell loss. The NIR-AF imaging may be an effective tool for following progression and predicting loss of photoreceptors in STGD1. PMID:26024107

  18. Flecks in Recessive Stargardt Disease: Short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence Tomography

    Science.gov (United States)

    Sparrow, Janet R.; Marsiglia, Marcela; Allikmets, Rando; Tsang, Stephen; Lee, Winston; Duncker, Tobias; Zernant, Jana

    2015-01-01

    Purpose We evaluated the incongruous observation whereby flecks in recessive Stargardt disease (STGD1) can exhibit increased short-wavelength autofluorescence (SW-AF) that originates from retinal pigment epithelium (RPE) lipofuscin, while near-infrared AF (NIR-AF), emitted primarily from RPE melanin, is usually reduced or absent at fleck positions. Methods Flecks in SW- and NIR-AF images and spectral-domain optical coherence tomography (SD-OCT) scans were studied in 19 STGD1 patients carrying disease-causing ABCA4 mutations. Fleck spatial distribution and progression were recorded in serial AF images. Results Flecks observed in SW-AF images typically colocalized with darkened foci in NIR-AF images; the NIR-AF profiles were larger. The decreased NIR-AF signal from flecks preceded apparent changes in SW-AF. Spatiotemporal changes in fleck distribution usually progressed centrifugally, but in one case centripetal expansion was observed. Flecks in SW-AF images corresponded to hyperreflective deposits that progressively traversed photoreceptor-attributable bands in SD-OCT images. Outer nuclear layer (ONL) thickness negatively correlated with expansion of flecks from outer to inner retina. Conclusions In the healthy retina, RPE lipofuscin fluorophores form in photoreceptor cells but are transferred to RPE; thus the SW-AF signal from photoreceptor cells is negligible. In STGD1, NIR-AF imaging reveals that flecks are predominantly hypofluorescent and larger and that NIR-AF darkening occurs prior to heightened SW-AF signal. These observations indicate that RPE cells associated with flecks in STGD1 are considerably changed or lost. Spectral-domain OCT findings are indicative of ongoing photoreceptor cell degeneration. The bright SW-AF signal of flecks likely originates from augmented lipofuscin formation in degenerating photoreceptor cells impaired by the failure of RPE. PMID:26230768

  19. Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems.

    Science.gov (United States)

    Huo, Pengfei; Miller, Thomas F

    2015-12-14

    We apply real-time path-integral dynamics simulations to characterize the role of electronic coherence in inter-complex excitation energy transfer (EET) processes. The analysis is performed using a system-bath model that exhibits the essential features of light-harvesting networks, including strong intra-complex electronic coupling and weak inter-complex coupling. Strong intra-complex coupling is known to generate both static and dynamic electron coherences, which delocalize the exciton over multiple chromophores and potentially influence the inter-complex EET dynamics. With numerical results from partial linearized density matrix (PLDM) real-time path-integral calculations, it is found that both static and dynamic coherence are correlated with the rate of inter-complex EET. To distinguish the impact of these two types of intra-complex coherence on the rate of inter-complex EET, we use Multi-Chromophore Förster Resonance Energy Transfer (MC-FRET) theory to map the original parameterization of the system-bath model to an alternative parameterization for which the effects of static coherence are preserved while the effects of dynamic coherence are largely eliminated. It is then shown that both parameterizations of the model (i.e., the original that supports dynamic coherence and the alternative that eliminates it), exhibit nearly identical EET kinetics and population dynamics over a wide range of parameters. These observations are found to hold for cases in which either the EET donor or acceptor is a dimeric complex and for cases in which the dimeric complex is either symmetric or asymmetric. The results from this study suggest that dynamic coherence plays only a minor role in the actual kinetics of inter-complex EET, whereas static coherence largely governs the kinetics of incoherent inter-complex EET in light-harvesting networks.

  20. Modular sub-wavelength diffractive light modulator for high-definition holographic displays

    Science.gov (United States)

    Stahl, Richard; Rochus, Veronique; Rottenberg, Xavier; Cosemans, Stefan; Haspeslagh, Luc; Severi, Simone; Van der Plas, Geert; Lafruit, Gauthier; Donnay, Stephane

    2013-02-01

    Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main challenges lies in technology scaling, as holography is based on light diffraction and interference - to achieve wide viewing angles, the light-modulating pixels need to be spaced close to or below the wavelength of the used visible light. Furthermore, achieving high 3D image quality, hundreds of millions of such individually programmable pixels are needed. As a solution, we develop a modular sub-wavelength light modulator, consisting of three main sub-systems: the optical sub-system, comprising a 2D array of sub-wavelength pixels; the driver sub-system for individual pixel control, and the holographic computational engine. Based on conclusions from our state-of-the art studies, numerous experiments and holographic demonstrators, we have focused on reflective phase-modulating MEMS-based system and its scaling beyond 500nm pitch. We have devised a unique binary-programmable phase-modulating pixel architecture realizing vertical pixel displacement of up to 150nm at 500nm by 500nm pixel pitch, while sustaining low operating voltages compatible with CMOS driver circuitry. IMEC SiGe MEMS technology enables integration of the CMOS pixel-line drivers, scan-line drivers and I/O circuits underneath the 2D MEMS array, resulting in a compact and modular single-chip system design. Refresh rates of few hundred frames per second are achieved using our patented segmented driver-array architecture. Integrated circuits implementing parallel holographic computational engines can be added to the module using advanced 3D stacking technology. Herein we further report on our progress in realizing

  1. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?

    Science.gov (United States)

    Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D

    2017-05-01

    In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    Science.gov (United States)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  3. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    Science.gov (United States)

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  4. Treatment of attention deficit hyperactivity disorder insomnia with blue wavelength light-blocking glasses

    Directory of Open Access Journals (Sweden)

    Fargason RE

    2013-01-01

    Full Text Available Rachel E Fargason, Taylor Preston, Emily Hammond, Roberta May, Karen L GambleDepartment of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USABackground: The aim of this study was to examine a nonmedical treatment alternative to medication in attention deficit hyperactivity disorder (ADHD insomnia, in which blue wavelength light-blocking glasses are worn during the evening hours to counteract the phase-delaying effect of light. Outcome measures included sleep quality and midsleep time. The capacity of ADHD subjects to comply with treatment using the glasses was assessed.Methods: Daily bedtime, wake-up time, and compliance diaries were used to assess sleep quality and timing during a baseline observation week and a 2-week intervention period. The Pittsburgh Sleep Quality Index (PSQI was administered following baseline and intervention. The intervention protocol consisted of use of blue wavelength-blocking glasses and a moderate lighting environment during evening hours.Results: Partial and variable compliance were noted, with only 14 of 22 subjects completing the study due to nonadherence with wearing the glasses and diary completion. Despite the minimum 3-hour recommendation, glasses were worn, on average, for 2.4 hours daily. Lighting was reduced for only 58.7% of the evening. Compared with baseline, the intervention resulted in significant improvement in global PSQI scores, PSQI subcomponent scores, and sleep diary measures of morning refreshment after sleep (P = 0.037 and night-time awakenings (P = 0.015. Global PSQI scores fell from 11.15 to 4.54, dropping below the cut-off score of 5 for clinical insomnia. The more phase-delayed subjects, ie, those with an initial midsleep time after 4:15 am, trended towards an earlier midsleep time by 43.2 minutes following the intervention (P = 0.073. Participants reported less anxiety following the intervention (P = 0.048.Conclusions

  5. Red Light-Dose or Wavelength-Dependent Photoresponse of Antioxidants in Herb Microgreens.

    Directory of Open Access Journals (Sweden)

    Giedė Samuolienė

    Full Text Available The purpose of this study was to evaluate the role of 638-nm and 665-nm LEDs on changes of antioxidants of basil (Ocimum basilicum and parsley (Petroselinum crispum, and to assess the effect of light quality on antioxidative status. Plants were grown in peat substrate for 19 days (21/17 ±2°C, 16 h. Experiments were performed in (I a controlled-environment: B455,R638,R665,FR731(control; B455,R*638,R665,FR731; B455,R638,R*665,FR731; R638; R665 (B-blue, R- red, FR-far-red light. PPFD was set from 231 during growth, upto 300 μmol m-2 s-1 during 3-day treatment changing R638 or R665 PPFD level; in (II greenhouse (November: high-pressure sodium lamps (HPS (control-300 μmol m-2s-1; and HPS + 638 (HPS generated 90 and red LEDs-210 μmol m-2s-1. In general, under supplemental or increased red 638 nm light, amounts of tested antioxidants were greater in basil, whereas sole 665 nm or sole 638 nm is more favourable for parsley. Increased or supplemental red light significantly increased contents of phenolics, α-tocopherol, ascorbic acid and DPPH• but suppressed accumulation of lutein and β-carotene in basil, whereas an increase of β-carotene and DPPH• was observed in parsley. Hereby, the photoresponse of antioxidant compounds suggests that photoprotective mechanism is stimulated by both light-dose-dependent and wavelength-dependent reactions.

  6. Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HOx Production.

    Science.gov (United States)

    Kowal, Shawn F; Allen, Seth R; Kahan, Tara F

    2017-09-19

    Photochemistry is a largely unconsidered potential source of reactive species such as hydroxyl and peroxy radicals (OH and HO2, "HOx") indoors. We present measured wavelength-resolved photon fluxes and distance dependences of indoor light sources including halogen, incandescent, and compact fluorescent lights (CFL) commonly used in residential buildings; fluorescent tubes common in industrial and commercial settings; and sunlight entering buildings through windows. We use these measurements to predict indoor HOx production rates from the photolysis of nitrous acid (HONO), hydrogen peroxide (H2O2), ozone (O3), formaldehyde (HCHO), and acetaldehyde (CH3CHO). Our results suggest that while most lamps can photolyze these molecules, only sunlight and fluorescent tubes will be important to room-averaged indoor HOx levels due to the strong distance dependence of the fluxes from compact bulbs. Under ambient conditions, we predict that sunlight and fluorescent lights will photolyze HONO to form OH at rates of 106-107 molecules cm-3 s-1, and that fluorescent lights will photolyze HCHO to form HO2 at rates of ∼106 molecules cm-3 s-1; rates could be 2 orders of magnitude higher under high precursor concentrations. Ozone and H2O2 will not be important photochemical OH sources under most conditions, and CH3CHO will generally increase HO2 production rates only slightly. We also calculated photolysis rate constants for nitrogen dioxide (NO2) and nitrate radicals (NO3) in the presence of the different light sources. Photolysis is not likely an important fate for NO3 indoors, but NO2 photolysis could be an important source of indoor O3.

  7. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  8. REVIEW ARTICLE: Slow and fast light based on coherent population oscillations in erbium-doped fibres

    Science.gov (United States)

    Arrieta-Yáñez, Francisco; Calderón, Oscar G.; Melle, Sonia

    2010-10-01

    In this paper we review the main results on slow and fast light induced by coherent population oscillations in optical fibres doped with erbium ions. We explain the physics behind this technique and we describe the experimental realization. Finally, we summarize some recent advances in this field and future goals.

  9. Coherent imaging of a pure phase object with classical incoherent light

    DEFF Research Database (Denmark)

    Bache, Morten; Magatti, D.; Gatti, A.

    2007-01-01

    A ghost imaging scheme is used to observe the diffraction pattern of a pure phase object . It is observed that when increasing the spatial coherence the diffraction pattern disappeared from the cross-correlation, while it appeared in the autocorrelation. The cross-correlation contains information...... about the phase object only when the light is spatially incoherent....

  10. Classical Light Sources with Tunable Temporal Coherence and Tailored Photon Number Distributions

    OpenAIRE

    Pandey, Deepak; Satapathy, Nandan; Suryabrahmam, Buti; Ivan, J. Solomon; Ramachandran, Hema

    2012-01-01

    We demonstrate the generation of classical incoherent light with electronic control over its temporal characteristics and photon number distribution. The tunability of the temporal coherence is shown, under both classical and quantum detection, through second order correlation ($G^2(\\tau)$) measurements. The tailoring of desired classical photon number distributions is illustrated by creating two representative light sources - one thermal and the other a specific classical, non-Gaussian state...

  11. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  12. Analogies between classical scalar wave fields in any state of spatial coherence and some quantum states of light.

    Science.gov (United States)

    Castañeda, Román; Cañas, Gustavo; Vinck-Posada, Herbert

    2012-04-01

    The border between the descriptions of the classical optical fields in any state of spatial coherence and the quantum coherence state of light is revisited in the framework of the phase-space representation. Although it is established that such descriptions are not completely equivalent, the exact calculation of the marginal power spectrum leads to new analogies that suggest that some features exclusively attributed to quantum states of light can be also shared by classical optical fields due to their spatial coherence state.

  13. Coherent light absorbing by concrete during its hardening

    Science.gov (United States)

    Gorsky, Mykhaylo P.; Maksimyak, Peter P.

    2018-01-01

    In this work changes of concrete reflection coefficient during its hydration were investigated theoretically and experimentally. Diffuse approximation method for concrete light-scattering description during hydration was used and its results were compared with received experimental data. Calculation of scattered and absorption sections for set of particles is described in details. Introduced optical diagnostics method allows performing earlier hydration stages diagnostics of concrete hardening process in comparison with other methods and predicting mechanical properties of produced concrete.

  14. Dependence on fiber Fabry-Pérot tunable filter characteristics in an all-fiber swept-wavelength laser for use in an optical coherence tomography system

    Science.gov (United States)

    Stay, Justin L.; Carr, Dustin; Ferguson, Steve; Haber, Todd; Jenkins, Robert; Mock, Joel

    2017-02-01

    Optical coherence tomography (OCT) has become a useful and common diagnostic tool within the field of ophthalmology. Although presently a commercial technology, research continues in improving image quality and applying the imaging method to other tissue types. Swept-wavelength lasers based upon fiber ring cavities containing fiber Fabry-Ṕerot tunable filters (FFP-TF), as an intracavity element, provide swept-source optical coherence tomography (SS-OCT) systems with a robust and scalable platform. The FFP-TF can be fabricated within a large range of operating wavelengths, free spectral ranges (FSR), and finesses. To date, FFP-TFs have been fabricated at operating wavelengths from 400 nm to 2.2 µm, FSRs as large as 45 THz, and finesses as high as 30 000. The results in this paper focus on presenting the capability of the FFP-TF as an intracavity element in producing swept-wavelength lasers sources and quantifying the trade off between coherence length and sweep range. We present results within a range of feasible operating conditions. Particular focus is given to the discovery of laser configurations that result in maximization of sweep range and/or power. A novel approach to the electronic drive of the PZT-based FFP-TF is also presented, which eliminates the need for the existence of a mechanical resonance of the optical device. This approach substantially increases the range of drive frequencies with which the filter can be driven and has a positive impact for both the short all-fiber laser cavity (presented in this paper) and long cavity FDML designs as well.

  15. Optical-Fiber-Type Broadband Cavity Ring-Down Spectroscopy Using Wavelength-Tunable Ultrashort Pulsed Light

    Science.gov (United States)

    Hiraoka, Takehiro; Ohta, Takayuki; Ito, Masafumi; Nishizawa, Norihiko; Hori, Masaru

    2013-04-01

    We proposed an optical-fiber-type broadband cavity ring-down spectroscopy system using wavelength-tunable ultrashort pulsed light. The absorbance of glucose in various concentrations in water was derived from the ring-down plots of intensities of the interference waveforms generated using a Mach-Zehnder interferometer with different optical delay path lengths, which were shifted by an automatic optical switching module. The absorption spectrum of glucose was obtained in the wavelength region from 1620 to 1690 nm by varying the wavelength using wavelength-tunable ultrashort pulsed light, which was generated from a femtosecond pulsed laser and polarization-maintaining fiber. The measurement error of concentration was improved using multiple linear regression analysis of absorption spectra. The results demonstrate that the optical-fiber-type cavity ring-down spectroscopy system has the potential to measure broadband absorption spectra with high sensitivity.

  16. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  17. How do light harvesting proteins support long lived quantum coherences

    Science.gov (United States)

    2017-01-31

    phase HPLC separation experiments on the open form PC577 phycobiliprotein as described above for the PE545 protein. Whether PC577 was titrated from...in the ~70° rotation between αβ monomers), we should be able to generate matched protein pairs that differ mainly in their structure. Experiment ...Under review.) Using pH titrations from pH 7 to pH 2, and then back to pH 7, we have shown the ability of the light-harvesting PE545

  18. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States); Shao, Lingmin [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Gao, Jianmin, E-mail: jmgao@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Guo, Hongwu, E-mail: hwg5052@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Chen, Yao [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Cheng, Qingzheng; Via, Brian K. [Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States)

    2015-03-15

    Highlights: • Investigate the selective absorption of different wavelengths of UV–vis light by dyed wood chromophores. • Identify connection between light wavelengths and surface color changes and chemical structure degradation. • Study hypochromic effect based on surface reflectance and K/S absorption changes during UV–vis irradiation. - Abstract: The surface of dyed wood is prone to discoloration when exposed to light irradiation which significantly decreases its decorative effect and shortens its service life. The influence of light wavelength exposure to the surface of dyed wood was investigated to study the effect on discoloration and degradation. Acid Blue V and Acid Red GR dyed wood veneers were subjected to light exposure with different wavelengths from the UV to visible region (254–420 nm). Results showed that the surface discoloration of dyed wood was linearly related to lignin concentration and dyes degradation and the consequent transformation of chromophoric groups such as aromatic (C=C) and carbonyl (C=O) through methoxy reaction. The dyes, lignin and some active constituents were degraded severely, even at short exposures. Acid Blue V dyed wood exhibited greater discoloration than the Acid Red GR treatment. The reflectance and K/S absorption curve showed a hypochromic effect on the dyed wood surface. The dyes and wood chemical structure played a complex and combined role on the selective absorption of different wavelengths of light. The color change rate was apparent with 254 nm exposure in the initial stages, but a greater discoloration rate occurred on the samples irradiated at 313 and 340 nm than at 254 and 420 nm with the time prolonged. The degradation rate and degree of discoloration correlated well with the light energy and wavelength.

  19. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    Science.gov (United States)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  20. Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence

    Science.gov (United States)

    Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2017-02-01

    By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.

  1. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source.

    Science.gov (United States)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S; Defever, Jim; Feng, Yiping; Flath, Daniel L; Glownia, James M; Lee, Sooheyong; Lemke, Henrik T; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-05-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4-25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

  2. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli­seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  3. Coherent frequency bridge between visible and telecommunications band for vortex light.

    Science.gov (United States)

    Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Shi, Shuai; Zhou, Zhi-Yuan; Shi, Bao-Sen

    2017-10-02

    In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

  4. First-Light Galaxies or Intrahalo Stars: Multi-Wavelength Measurements of the Infrared Background Anisotropies

    Science.gov (United States)

    Cooray, Asantha

    The research program described in this proposal can be broadly described as data analysis, measurement, and interpretation of the spatial fluctuations of the unresolved cosmic IR background. We will focus primarily on the background at optical and near-IR wavelengths as probed by Hubble and Spitzer. As absolute background intensity measurements are challenging, the focus is on the spatial fluctuations similar to the anisotropiesof the cosmic microwave background (CMB). Measurements of the unresolved Spitzer fluctuations by two independent teams on multiple fields agree within the measurement errors. However, there are now two interpretations on the origin of the unresolved IRAC fluctuations. One involves a population of faint sources at very high redshifts (z > 6) during the epoch of reionization. The second interpretation involves the integrated emission from intrahalo light associated with diffuse stars in the outskirts of z of 1 to 3 dark matter halos of galaxies. We now propose to further test these two interpretations with a new set of measurements at shorter IR and optical wavelengths with HST/ACS and WFC3 overlapping with deep IRAC surveys. A multi-wavelength study from 0.5 to 4.5 micron will allow us to independently determine the relative contribution of intrahalo light and z > 8 faint galaxies to the unresolved IR fluctuations. We will also place strong limits on the surface density of faint sources at z > 8. Such a limit will be useful for planning deep surveys with JWST. Moving to the recent wide IRAC fields with the warm mission, we propose to study fluctuations at tens of degree angular scales. At such large angular scales IRAC fluctuations should trace diffuse Galactic light (DGL), ISM dust-scattered starlight in our Galaxy. We will measure the amplitude and slope of the DGL power spectrum and compare them to measurements of the Galactic dust power spectrum from IRAS and Planck and study if the large degree-scale fluctuations seen in CIBER can be

  5. Facial photo rejuvenation using two different intense pulsed light (IPL) wavelength bands.

    Science.gov (United States)

    Bjerring, Peter; Christiansen, Kåre; Troilius, Agneta; Dierickx, Christine

    2004-01-01

    Intense pulsed light (IPL) systems are increasingly used for treatment of photo damaged skin. In the present study, we investigated the clinical efficacy and safety of two different wavelength bands generated by the same IPL device. An IPL device was equipped with either a 555-950 nm filter (VL), or a 530-750 nm filter (PR). Fair, good or excellent clearance of visible telangiectasias was obtained in 81.8% of the patients (PR) and in 58.8% (VL). In the treatment of diffuse erythema, fair, good or excellent clearance was obtained in 72.7% (PR) and in 35.0% (VL). The PR filter was more efficient (P = 0.025) in reduction of diffuse erythema. The average number of treatments was 1.75 (PR) and 1.82 (VL). For the treatment of irregular pigmentation, fair, good or excellent clearance was obtained in 54.5% (PR) and in 61.9% (VL). Multiple treatments of irregular pigmentation were also evaluated. Using the VL filter more than two treatments did not induce further clinical improvement. The patients also scored their over-all satisfaction. Either fair, good or excellent results were reported by 66.7% (PR) and by 76.2% (VL). No skin atrophy, scarring or pigment disturbances were noted after the treatments. Swelling and erythema were registered by 2/3 (PR) and 1/3 (VL) of the patients. The two IPL wavelength bands were both found to be effective in the treatment of photo damaged facial skin. The clinical efficacy and safety of the two different treatment procedures were comparable to those reported in earlier studies, and finally treatment with these filter combinations required less than half the fluence, no active cooling and fewer treatments. Copyright 2004 Wiley-Liss, Inc.

  6. Extinction of light and coherent scattering by a single nitrogen-vacancy center in diamond

    Science.gov (United States)

    Tran, Thai Hien; Siyushev, Petr; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-05-01

    The efficient interaction of light and a single quantum system is required to implement a photon to spin interface. It is important to determine the amount of coherent and incoherent photons in such a scheme, since it is based on coherent scattering. In this paper an external laser field is efficiently coupled to a single nitrogen vacancy center in diamond. We detect the direct extinction signal and estimate the nitrogen vacancy's extinction cross section. The exact amount of coherent and incoherent photons is determined against the saturation parameter. This reveals the optimal point of interaction for further experiments. A theoretical model allows us to explain the deviation to an atom in free space. The introduced experimental techniques are used to determine the properties of the tight focusing in an interference experiment and allow for a direct determination of the Gouy phase in a strongly focused beam.

  7. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.

    Science.gov (United States)

    Collini, Elisabetta; Wong, Cathy Y; Wilk, Krystyna E; Curmi, Paul M G; Brumer, Paul; Scholes, Gregory D

    2010-02-04

    Photosynthesis makes use of sunlight to convert carbon dioxide into useful biomass and is vital for life on Earth. Crucial components for the photosynthetic process are antenna proteins, which absorb light and transmit the resultant excitation energy between molecules to a reaction centre. The efficiency of these electronic energy transfers has inspired much work on antenna proteins isolated from photosynthetic organisms to uncover the basic mechanisms at play. Intriguingly, recent work has documented that light-absorbing molecules in some photosynthetic proteins capture and transfer energy according to quantum-mechanical probability laws instead of classical laws at temperatures up to 180 K. This contrasts with the long-held view that long-range quantum coherence between molecules cannot be sustained in complex biological systems, even at low temperatures. Here we present two-dimensional photon echo spectroscopy measurements on two evolutionarily related light-harvesting proteins isolated from marine cryptophyte algae, which reveal exceptionally long-lasting excitation oscillations with distinct correlations and anti-correlations even at ambient temperature. These observations provide compelling evidence for quantum-coherent sharing of electronic excitation across the 5-nm-wide proteins under biologically relevant conditions, suggesting that distant molecules within the photosynthetic proteins are 'wired' together by quantum coherence for more efficient light-harvesting in cryptophyte marine algae.

  8. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.; Arthur, J.; Baltay, M. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  9. Mitigation of nonlinear interference noise introduced by cross-phase modulation in the dual-polarization 16 QAM wavelength-division multiplexing coherent optical system

    Science.gov (United States)

    Zhang, Bo; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Ru; Zhang, Qi; Tian, Feng; Wang, Yongjun; Tian, Qinghua; Rao, Lan; Guo, Yuhan

    2017-05-01

    A complex adaptive equalizer using a least-mean-square (LMS) algorithm is proposed to mitigate the effect of nonlinear interference induced by cross-phase modulation in wavelength-division multiplexing (WDM) coherent optical systems. We show the effect of nonlinear interference is equivalent to slow time-varying intersymbol interference. Simulations of dual-polarization 16 quadrature amplitude modulation (QAM) WDM systems are conducted to test the effectiveness of our proposed compensation method. The consequences show that significant improvement in system performance can be achieved by using the adaptive LMS equalization method.

  10. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.

    Science.gov (United States)

    Brinks, Daan; Adam, Yoav; Kheifets, Simon; Cohen, Adam E

    2016-11-15

    Photons are a fascinating reagent, flowing and reacting quite differently compared to more massive and less ephemeral particles of matter. The optogenetic palette comprises an ever growing set of light-responsive proteins, which open the possibility of using light to perturb and to measure biological processes with great precision in space and time. Yet there are limits on what light can achieve. Diffraction limits the smallest features, and scattering in tissue limits the largest. Photobleaching, diffusion of photogenerated products, and optical crosstalk between overlapping absorption spectra further muddy the optogenetic picture, particularly when one wants to use multiple optogenetic tools simultaneously. But these obstacles are surmountable. Most light-responsive proteins and small molecules undergo more than one light-driven transition, often with different action spectra and kinetics. By overlapping multiple laser beams, carefully patterned in space, time, and wavelength, one can steer molecules into fluorescent or nonfluorescent, active or inactive conformations. By doing so, one can often circumvent the limitations of simple one-photon excitation and achieve new imaging and stimulation capabilities. These include subdiffraction spatial resolution, optical sectioning, robustness to light scattering, and multiplexing of more channels than can be achieved with simple one-photon excitation. The microbial rhodopsins are a particularly rich substrate for this type of multiphoton optical control. The natural diversity of these proteins presents a huge range of starting materials. The spectroscopy and photocycles of microbial rhodopsins are relatively well understood, providing states with absorption maxima across the visible spectrum, which can be accessed on experimentally convenient time scales. A long history of mutational studies in microbial rhodopsins allows semirational protein engineering. Mutants of Archaerhodopsin 3 (Arch) come in all the colors of the

  11. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.

    Science.gov (United States)

    Nguyen, Duc Minh; Lee, Dasol; Rho, Junsuk

    2017-06-01

    Conventional metamaterial absorbers have multilayer designs, where the dielectric interlayer is sandwiched between a top patterned metallic structure and bottom metallic film. Here, we demonstrate that a highly polarization-sensitive perfect absorber canbe realized by replacing the bottom metallic film with a plasmonic grating. Designs for broadband and narrowband of wavelength are proposed and numerically investigated. The designed absorbers perform high light absorption, which is above 90% over the wavelength range of 0.4-1.4 µm for the broadband absorber and 98% for the absorption peak in case of the narrowband design, with a specific polarization of incident light. We find that the absorption is tunable by changing the polarization. Such absorbers offer new approach for active control of light absorbance with strong impacts for solar energy harvesting, light emitting and sensing.

  12. Expanding color gamut of reflective liquid crystal displays from filtering undesirable wavelengths of a light source by an embedded etalon.

    Science.gov (United States)

    Liu, Cheng-Kai; Yang, Tsung-Hsun; Cheng, Ko-Ting

    2017-03-01

    This work demonstrates a method to reduce the intensity of the undesirable wavelengths of blue (B-) and green (G-) ambient lights to expand the color gamut of reflective liquid crystal displays (LCDs) by an embedded etalon. The built-in reflector of the reflective LCDs is replaced by the blue-green overlapping wavelengths filtering etalon, which is used to reduce the intensity of undesirable B- and G-primaries, thereby decreasing the color cross talk of B- and G-color filters. After etalon adoption, the color gamut can be expanded from 105.96% to 121.81% of National Television System Committee (NTSC) in International Commission on Illumination (CIE) 1976 color space. Compared with the color gamut of the display without the blue-green overlapping wavelength etalon, the maximum expansion of color gamut is ∼15.85%. Moreover, the balance between light loss and color gamut expansion should be taken into consideration.

  13. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  14. LIGHT MODULATION: Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    Science.gov (United States)

    Molchanov, V. Ya; Voloshinov, V. B.; Makarov, O. Yu

    2009-04-01

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at λ simeq 1550 nm are considered.

  15. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm

    DEFF Research Database (Denmark)

    Brøndsted, Adam Elias; Lundeman, Jesper Holm; Kessel, Line

    2013-01-01

    Photoentrainment of circadian rhythm begins with the stimulation of melanopsin containing retinal ganglion cells that respond directly to blue light. With age, the human lens becomes a strong colour filter attenuating transmission of short wavelengths. The purpose of the study was to examine the ...... the effect the ageing human lens may have for the photoentrainment of circadian rhythm and to compare with intraocular implant lenses (IOLs) designed to block UV radiation, violet or blue light....

  16. Development and testing of a homogenous multi-wavelength LED light source

    Science.gov (United States)

    Bolton, Frank J.; Bernat, Amir; Jacques, Steven L.; Levitz, David

    2017-03-01

    Multispectral imaging of human tissue is a powerful method that allows for quantify scattering and absorption parameters of the tissue and differentiate tissue types or identify pathology. This method requires imaging at multiple wavelengths and then fitting the measured data to a model based on light transport theory. Earlier, a mobile phone based multi-spectral imaging system was developed to image the uterine cervix from the colposcopy geometry, outside the patient's body at a distance of 200-300 mm. Such imaging of a distance object has inherent challenges, as bright and homogenous illumination is required. Several solutions addressing this problem were developed, with varied degrees of success. In this paper, several multi-spectral illumination setups were developed and tested for brightness and uniformity. All setups were specifically designed with low cost in mind, utilizing a printed circuit board with surface-mounted LEDs. The three setups include: LEDs illuminating the target directly, LEDs illuminating focused by a 3D printed miniature lens array, and LEDs coupled to a mixing lens and focusing optical system. In order to compare the illumination uniformity and intensity performance two experiments were performed. Test results are presented, and various tradeoffs between the three system configurations are discussed. Test results are presented, and various tradeoffs between the three system configurations are discussed.

  17. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  18. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High...... the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance. © 2014 AIP Publishing LLC....

  19. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  20. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    Science.gov (United States)

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  1. Coherent X-ray scattering beamline at port 9C of Pohang Light Source II.

    Science.gov (United States)

    Yu, Chung-Jong; Lee, Hae Cheol; Kim, Chan; Cha, Wonsuk; Carnis, Jerome; Kim, Yoonhee; Noh, Do Young; Kim, Hyunjung

    2014-01-01

    The coherent X-ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X-rays of 5-20 keV, and targets coherent X-ray experiments such as coherent diffraction imaging and X-ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.

  2. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men.

    Science.gov (United States)

    Münch, Mirjam; Kobialka, Szymon; Steiner, Roland; Oelhafen, Peter; Wirz-Justice, Anna; Cajochen, Christian

    2006-05-01

    Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.

  3. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.

    Science.gov (United States)

    Gawne, Timothy J; Siegwart, John T; Ward, Alexander H; Norton, Thomas T

    2017-02-01

    Shortly after birth, the eyes of most animals (including humans) are hyperopic because the short axial length places the retina in front of the focal plane. During postnatal development, an emmetropization mechanism uses cues related to refractive error to modulate the growth of the eye, moving the retina toward the focal plane. One possible cue may be longitudinal chromatic aberration (LCA), to signal if eyes are getting too long (long [red] wavelengths in better focus than short [blue]) or too short (short wavelengths in better focus). It could be difficult for the short-wavelength sensitive (SWS, "blue") cones, which are scarce and widely spaced across the retina, to detect and signal defocus of short wavelengths. We hypothesized that the SWS cone retinal pathway could instead utilize temporal (flicker) information. We thus tested if exposure solely to long-wavelength light would cause developing eyes to slow their axial growth and remain refractively hyperopic, and if flickering short-wavelength light would cause eyes to accelerate their axial growth and become myopic. Four groups of infant northern tree shrews (Tupaia glis belangeri, dichromatic mammals closely related to primates) began 13 days of wavelength treatment starting at 11 days of visual experience (DVE). Ambient lighting was provided by an array of either long-wavelength (red, 626 ± 10 nm) or short-wavelength (blue, 464 ± 10 nm) light-emitting diodes placed atop the cage. The lights were either steady, or flickering in a pseudo-random step pattern. The approximate mean illuminance (in human lux) on the cage floor was red (steady, 527 lux; flickering, 329 lux), and blue (steady, 601 lux; flickering, 252 lux). Refractive state and ocular component dimensions were measured and compared with a group of age-matched normal animals (n = 15 for refraction (first and last days); 7 for ocular components) raised in broad spectrum white fluorescent colony lighting (100-300 lux). During the 13 day

  4. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    Science.gov (United States)

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength.

    Science.gov (United States)

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Huber, Robert

    2009-07-01

    We report on recent progress in Fourier domain mode-locking (FDML) technology. The paper focuses on developments beyond pushing the speed of these laser sources. After an overview of improvements to FDML over the last three years, a brief analysis of OCT imaging using FDML lasers with different wavelengths is presented. For the first time, high speed, high quality FDML imaging at 1550 nm is presented and compared to a system at 1310 nm. The imaging results of human skin for both wavelengths are compared and analyzed. Sample arm optics, power on the sample, heterodyne gain, detection bandwidth, colour cut levels and sample location have been identical to identify the influence of difference in scattering and water absorption. The imaging performance at 1310 nm in human skin is only slightly better and the results suggest that water absorption only marginally affects the penetration depth in human skin at 1550 nm. For several applications this wavelength may be preferred.

  6. Different PEEK qualities irradiated with light of different wavelengths: Impact on Martens hardness.

    Science.gov (United States)

    Lümkemann, Nina; Eichberger, Marlis; Stawarczyk, Bogna

    2017-09-01

    To assess the impact of irradiation on Martens hardness parameters of different PEEK qualities filled with titanium dioxide (TiO 2 ), namely PEEK/0%, PEEK/20%, and PEEK/>30%. For Martens hardness (HM) measurements, 40 specimens of each PEEK quality were fabricated and air-abraded with 50μm Al 2 O 3 . HM parameters of PEEK specimens were measured initially and stepwise after irradiating for 5, 10, 20, 30, 40, 60, 80, 100, 180, 360 and 540s using light units with different wavelength: Elipar S10 (430-480nm), EyeVolutionMAX (385-390nm+465-470nm), Translux CL (380-500nm) and bre.Lux Power Unit (370-500nm). HM parameters of 10 human teeth were measured initially on enamel and dentin. Data was analysed using 3-way ANOVA with partial eta-squared (η P 2 ) and post-hoc Tuckey-HSD-test (phardness (p30% (197.35±19.9N/mm 2 ), followed by PEEK/20% (191.45±15.49 N/mm 2 ) showed significantly higher values for HM than PEEK/0% (189.55±16.89N/mm 2 ). PEEK/>30% (5.49±0.4kN/mm) and PEEK/20% (5.38±0.26kN/mm 2 ) presented higher indentation modulus (E IT ) than PEEK/0% (4.77±0.36kN/mm 2 ). Irradiated with wavelength of 430-480nm (PEEK/0%: 193.28N/mm 2 , PEEK20%: 198.83N/mm 2 , PEEK/>30%: 200.5N/mm 2 ) indicated higher HM compared to specimens irradiated with 380-500nm (PEEK/0%: 186.63N/mm 2 , PEEK20%: 191.05N/mm 2 , PEEK/>30%: 196.13N/mm 2 ). Irradiation using 430-480nm (PEEK/0%: 4.95kN/mm 2 , PEEK20%: 5.52kN/mm 2 , PEEK/>30%: 5.59kN/mm 2 ) and 370-500nm (PEEK/0%: 4.92kN/mm 2 , PEEK20%: 5.43kN/mm 2 , PEEK/>30%: 5.53kN/mm 2 ) indicated higher E IT values compared to specimens irradiated with 380-500nm (PEEK/0%: 4.72kN/mm 2 , PEEK20%: 5.34kN/mm 2 , PEEK/>30%: 5.47kN/mm 2 ). Duration of irradiation presented no impact on results. Enamel (HM: 2263.6±405.16, E IT : 63.16±19.24) and dentin (HM: 468.2±30.77N/mm 2 , E IT : 14.14±4.59kN/mm 2 ) presented significantly higher HM and E IT than the tested PEEK qualities (p<0.001). Irradiation with different wavelength impacted HM

  7. Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range.

    Science.gov (United States)

    Zhu, Yan; Koutchma, Tatiana; Warriner, Keith; Zhou, Ting

    2014-06-01

    This study evaluated three UVC wavelengths (222, 254, and 282 nm) to degrade patulin introduced into apple juice or apple cider. The average UV fluences of 19.6, 84.3, 55.0, and 36.6 mJ·cm(-2) achieved through exposure to UV lamps at 222-, 254-, and 282-nm wavelengths and the combination of these wavelengths, respectively, resulted in 90% reduction of patulin in apple juice. Therefore, the order of efficiency of the three wavelength lamps was as follows: far UVC (222 nm) > far UVC plus (282 nm) > UVC (254 nm). In terms of color, treatment of apple juice with 222 nm resulted in an increase in the L* (lightness) value but decreases in a* (redness) and b* (yellowness) values, although the changes were insignificantly different from the values for nontreated controls based on a sensory evaluation. The ascorbic acid loss in juice treated at 222 nm to support 90% reduction of patulin was 36.5%, compared with ascorbic acid losses of 45.3 and 36.1% in samples treated at 254 and 282 nm, respectively. The current work demonstrated that the 222-nm wavelength possesses the highest efficiency for patulin reduction in apple juice when compared with the reductions by 254 and 282 nm, with no benefit gained from using a combination of wavelengths.

  8. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to 0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  9. Characterization of edge effects in precision low-coherence interferometry using broadband light sources

    Science.gov (United States)

    Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.

    2017-06-01

    Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.

  10. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    Science.gov (United States)

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan

    2014-06-01

    We report a strategy to investigate O vacancy (VO) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y2O3:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of VO(0/+). In the following cross relaxation, energy transfer from VO to the excitation energy level of Tb3+ in ZnO:Tb core area. While in Y2O3:Eu shell area, energy transfer to the excitation energy level of Eu3+. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu3+ or Tb3+ in the range of 0.01-0.05, chromaticity coordinates of ZnO:Tb/Y2O3:Eu nanocable stably stays at yellow region in color space except ZnO:Tb0.01/Y2O3:Eu0.01. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  11. Novel coherent supercontinuum light sources based on all-normal dispersion fibers

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, Alexander

    2011-07-05

    submicron waist diameter. It is shown that coherent SC spectra with considerable spectral power densities in the usually hard to reach wavelength region below 300 nm can be generated using these freestanding photonic nanowires. Although technological difficulties currently prevent the fabrication of adequate nanofibers, the concept could be experimentally verified by coherent visible octave-spanning SC generation in tapered suspended core fibers with ANDi profile. The work contained in this thesis therefore makes important contributions to the availability and applicability of fiber-based broadband coherent SC sources with numerous high-impact applications in fundamental science and modern technology. (orig.)

  12. Near-Infrared Autofluorescence: Its Relationship to Short-Wavelength Autofluorescence and Optical Coherence Tomography in Recessive Stargardt Disease

    OpenAIRE

    Greenstein, Vivienne C.; Schuman, Ari D.; Lee, Winston; Duncker, Tobias; Zernant, Jana; Allikmets, Rando; Hood, Donald C.; Sparrow, Janet R.

    2015-01-01

    Quantitative methods were used to compare hypoautofluorescent areas detected with near-infrared and short-wavelength autofluorescence to retinal thickness maps created from SD-OCT volume scans in Stargardt patients. Results were consistent with RPE cell loss occurring before photoreceptor cell loss.

  13. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  14. Low-coherence enhanced backscattering of light: characteristics and applications for colon cancer screening

    Science.gov (United States)

    Kim, Young L.; Pradhan, Prabhakar; Turzhitsky, Vladimir M.; Subramanian, Hariharan; Liu, Yang; Wali, Ramesh K.; Roy, Hemant K.; Backman, Vadim

    2007-02-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, is a spectacular manifestation of self-interference effects in elastic light scattering, which gives rise to an enhanced scattered intensity in the backward direction. Although EBS has been the object of intensive investigation in non-biological media over the last two decades, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements of biological tissue by taking advantage of lowcoherence (or partially coherent) illumination, which is referred to as low-coherence EBS (LEBS) of light. LEBS possess novel and intriguing properties such as speckle reduction, self-averaging effect, broadening of the EBS width, depth-selectivity, double scattering, and circular polarization memory effect. After we review the current state of research on LEBS, we discuss how these characteristics apply for early cancer detection, especially in colorectal cancer (CRC), which is the second leading cause of cancer mortality in the United States. Although colonoscopy remains the gold standard for CRC screening, resource constraints and potential complications make it impractical to perform colonoscopy on the entire population at risk (age > 50). Thus, identifying patients who are most likely to benefit from colonoscopy is of paramount importance. We demonstrate that LEBS measurements in easily accessible colonoscopically normal mucosa (e.g., in the rectum of the colon) can be used for predicting the risk of CRC, and thus LEBS has the potential to serve as accurate markers of the risk of neoplasia elsewhere in the colon.

  15. Coherent and dynamic beam splitting based on light storage in cold atoms.

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-09-28

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing.

  16. Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris.

    Science.gov (United States)

    Yan, Cheng; Zhao, Yongjun; Zheng, Zheng; Luo, Xingzhang

    2013-09-01

    Chemical fertilizer agricultural wastewater is a typical high-strength wastewater that has dramatically triggered numerous environmental problems in China. The Chlorella vulgaris microalgae biological wastewater treatment system used in this study can effectively decontaminate the high-strength carbon and nitrogen wastewater under an optimum light wavelength and light intensity supply strategy. The descending order of both the dry weight for C. vulgaris reproduction and wastewater nutrient removal efficiency is red > white > yellow > purple > blue > green, which indicates that red light is the optimum light wavelength. Furthermore, rather than constant light, optimal light intensity is used for the incremental light intensity strategy. The phases for the optimal light intensity supply strategy are as follows: Phase 1 from 0 to 48 h at 800 μmol m(-2) s(-1); Phase 2 from 48 to 96 h at 1,200 μmol m(-2) s(-1); and Phase 3 from 96 to 144 h at 1,600 μmol m(-2) s(-1). Additionally, the optimal cultivation time is 144 h.

  17. Stimulated coherent transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  18. Pupillary responses to short-wavelength light are preserved in aging

    OpenAIRE

    Rukmini, A. V.; Dan Milea; Tin Aung; Gooley, Joshua J.

    2017-01-01

    With aging, less blue light reaches the retina due to gradual yellowing of the lens. This could result in reduced activation of blue light-sensitive melanopsin-containing retinal ganglion cells, which mediate non-visual light responses (e.g., the pupillary light reflex, melatonin suppression, and circadian resetting). Herein, we tested the hypothesis that older individuals show greater impairment of pupillary responses to blue light relative to red light. Dose-response curves for pupillary co...

  19. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  20. Laser Coherence Meter Based on Nanostructured Liquid Crystals

    Directory of Open Access Journals (Sweden)

    A. Anczykowska

    2013-01-01

    Full Text Available We present the method for coherence length measurement using coherence meter based on hybrid liquid crystal structures doped with gold nanoparticles. The results indicate that the method is able to determine the coherence length of coherent light sources with precision of 0.01 m at wavelength range from 200 to 800 nm for wide range of initial beam powers starting from 1 mW. Given the increasing use of laser technology in industry, military, or medicine, our research may open up a possible route for the development of improved techniques of coherent diagnostic light sources.

  1. The Soft X-ray Research instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L., E-mail: dakovski@slac.stanford.edu; Heimann, Philip; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Krupin, Oleg [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); European XFEL, Notkestrasse 85, 22607 Hamburg (Germany); Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-02

    A description of the Soft X-ray Research instrument (SXR) at the Linac Coherent Light Source is given. Recent scientific highlights illustrate the wide variety of experiments and detectors that can be accommodated at SXR. The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  2. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2016-10-01

    Full Text Available A new operating mode has been developed for the Linac Coherent Light Source (LCLS in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. We present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  3. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    Science.gov (United States)

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz).

  5. Short-Pulse Limits in Optical Instrumentation Design for the SLAC Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.

    2005-01-31

    The source properties of linac-driven X-Ray Free-Electron Lasers (XRFELs) operating in the Self-Amplified Spontaneous Emission (SASE) regime differ markedly from those of ordinary insertion devices on synchrotron storage rings. In the case of the 1.5 {angstrom} SLAC Linac Coherent Light Source (LCLS), the longitudinal output profile typically consists of a randomly-distributed train of fully-transversely-coherent micropulses of randomly varying intensity and an average length (corresponding to the source coherence length) two to three orders of magnitude smaller than the transverse diameter of the beam. Total pulse lengths are typically of the same order of size as the beam diameter. Both of these properties can be shown to significantly impact the performance of otherwise conventional synchrotron radiation optics; viz., mirrors, lenses, zone plates, crystals, multilayers, etc. In this paper we outline an analysis of short-pulse effects on selected optical components for the SLAC LCLS and discuss the implications for critical applications such as microfocusing and monochromatization.

  6. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent modea)

    Science.gov (United States)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.; Burke, W.; Davis, E.; Granetz, R.; Greenwald, M.; Irby, J.; Leccacorvi, R.; Marmar, E.; Parkin, W.; Porkolab, M.; Terry, J.; Vieira, R.; Wolfe, S.

    2014-05-01

    A novel "Shoelace" antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k⊥=1.5±0.1 cm-1 and 45Coherent Mode (QCM, k⊥˜1.5 cm-1, f ˜50-150 kHz) in Alcator C-Mod, responsible for exhausting impurities in the steady-state, ELM-free Enhanced Dα H-mode. In H-mode, whether or not there is a QCM, the antenna drives coherent, field-aligned perturbations in density, ñe, and field, B˜θ, which are guided by field lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly damped (γ/ω0˜5% -10%) resonance near the natural QCM frequency. This result is significant, offering the possibility that externally driven modes may be used to enhance particle transport. In L-mode, the antenna drives only a non-resonant B˜θ response. The facts that the driven mode has the same wave number and propagation direction as the QCM, and is resonant at the QCM frequency, suggest the antenna may couple to this mode, which we have shown elsewhere to be predominantly drift-mode-like [B. LaBombard et al., Phys. Plasmas 21, 056108 (2014)].

  7. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    Science.gov (United States)

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  8. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    Science.gov (United States)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  9. Discrimination between Doppler-shifted and non-shifted light in coherence domain path length resolved measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    We show a novel technique to distinguish between Doppler shifted and unshifted light in multiple scattering experiments on mixed static and dynamic media. With a phase modulated low coherence Mach- Zehnder interferometer, optical path lengths of shifted and unshifted light and path length dependent

  10. 300 mW of coherent light at 488 nm using a generic approach

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir; Pedersen, Christian; Andersen, Martin Thalbitzer

    2008-01-01

    We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered......, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crystal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability...

  11. Optical nano-structuring in light-sensitive AgCl-Ag waveguide thin films: wavelength effect.

    Science.gov (United States)

    Talebi, Razieh; Nahal, Arashmid; Bashouti, Muhammad Y; Christiansen, Silke H

    2014-12-15

    Irradiation of photosensitive thin films results in the nanostructures formation in the interaction area. Here, we investigate how the formation of nanostructures in photosensitive waveguide AgCl thin films, doped by Ag nanoparticles, can be customized by tuning the wavelength of the incident beam. We found, silver nanoparticles are pushed towards the interference pattern minima created by the interference of the incident beam with the excited TEn-modes of the AgCl-Ag waveguide. The interference pattern determines the grating constant of the resulting spontaneous periodic nanostructures. Also, our studies indicate a strong dependence of the shape and size distribution of the formed Ag nano-coalescences on the wavelength of the incident beam. It also influences on the surface coverage of the sample by the formed silver nanoparticles and on period of the self-organized nano-gratings. It is found, exposure time and intensity of the incident light are the most determinant parameters for the quality and finesse of our nanostructures. More intense incident light with shorter exposure time generates more regular nanostructures with smaller nano-coalescences and, produces gratings with higher diffraction efficiency. At constant intensity longer exposure time produces more complete nanostructures because of optical positive feedback. We observed exposure with longer wavelength produces finer gratings.

  12. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Science.gov (United States)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (work is needed for a full theoretical quantitative picture of the experimental results. In other work, I used coherent EUV nanometrology to simultaneously

  13. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    NARCIS (Netherlands)

    de Boer, JF; Milner, TE; Nelson, JS

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid

  14. High efficiency AlGaInN-based light emitting diode in the 360-380 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hisao; Wang, Hong-Xing; Sato, Daisuke; Takaki, Ryohei; Wada, Naoki; Tanahashi, Tetsuya; Yamashita, Kenji; Kawano, Shunsuke; Mizobuchi, Takashi; Dempo, Akihiko; Morioka, Kenji; Kimura, Masahiro; Nohda, Suguru [Nitride Semiconductors Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan); Sugahara, Tomoya [Satellite Venture Business Laboratory, The University of Tokushima (Japan); Sakai, Shiro [Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2003-11-01

    High performance LEDs emitting in the wavelength range 360-380 nm, are fabricated on sapphire substrates by one-time metalorganic chemical vapor deposition (MOCVD) without using epitaxial lateral overgrowth (ELO) or similar techniques. By improving layer structures and growth conditions, the output power of the LEDs was much improved. The light output power of the LEDs at an injection current of 20 mA is 3.2 mW, 2.5 mW and 1 mW at wavelengths of 378 nm, 373 nm and 363 nm, which correspond to an external quantum efficiency of 4.8%, 3.8% and 1.4%, respectively. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Granz, Christopher D.; Whitten, James E., E-mail: James-Whitten@uml.edu [Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Schindler, Bryan J. [Leidos, Inc., P.O. Box 68, Gunpowder, Maryland 21010 (United States); Peterson, Gregory W. [U.S. Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States)

    2016-03-15

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changes in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide.

  16. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected...... by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth...... for better depth resolution in combination with high tuning speed. We investigate the performance of novel semiconductor laser gain media in fiber-based high-speed swept source prototypes. We demonstrate high output power using a tapered amplifier, and we achieve improved depth resolution with a broadband...

  17. General approach to high power, coherent visible and ultraviolet light sources

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer

    -doped GdCOB crystals. The crystals are optimized for noncritical phasematching in the blue-UV spectral region through co-doping with Lu and Sc, a nonlinear coefficient for these crystals of 0.78, 0.81 and 0.89 pm/V are measured, which is comparable to LBO. The ability to adjust the noncritical......The main goal of this project is to develop a generic approach to synthesise any wavelength in the visible and UV spectral region based on sum frequency generation. The approach is based on a hybrid system combining solid state and semiconductor technology. The generation of light in the UV...... phasematching by co-doping of these crystals makes them promising candidates for generation of light in the blue-UV region. A novel method for cavity dumping based on nonlinear frequency conversion is investigated. A high finesse laser is constructed with an intracavity nonlinear material inserted in a beam...

  18. Differential effect of long versus short wavelength light exposure on pupillary re-dilation in patients with outer retinal disease.

    Science.gov (United States)

    Léon, Lorette; Crippa, Sylvain V; Borruat, François-Xavier; Kawasaki, Aki

    2012-01-01

    In patients with outer retinal degeneration, a differential pupil response to long wavelength (red) versus short wavelength (blue) light stimulation has been previously observed. The goal of this study was to quantify differences in the pupillary re-dilation following exposure to red versus blue light in patients with outer retinal disease and compare them with patients with optic neuropathy and with healthy subjects. Prospective comparative cohort study. Twenty-three patients with outer retinal disease, 13 patients with optic neuropathy and 14 normal subjects. Subjects were tested using continuous red and blue light stimulation at three intensities (1, 10 and 100 cd/m2) for 13 s per intensity. Pupillary re-dilation dynamics following the brightest intensity was analysed and compared between the three groups. The parameters of pupil re-dilation used in this study were: time to recover 90% of baseline size; mean pupil size at early and late phases of re-dilation; and differential re-dilation time for blue versus red light. Patients with outer retinal disease showed a pupil that tended to stay smaller after light termination and thus had a longer time to recovery. The differential re-dilation time was significantly greater in patients with outer retinal disease (median = 28.0 s, P blue light stimulation is present in patients with outer retinal disease but is not found in normal eyes or among patients with visual loss from optic neuropathy. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  19. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    Science.gov (United States)

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microcavity light emitting diodes in the visible red and near infrared wavelength range

    OpenAIRE

    Joray, Reto; Ilegems, Marc

    2005-01-01

    It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumption. Thus, the potential for saving energy is enormous in this area. The introduction of halogen, discharge and fluorescent lamps has lead to certain efficiency improvements, however more than half of the energy is still lost as heat. Light-e...

  1. A multi-wavelength scattered light analysis of the dust grain population in the GG Tau circumbinary ring

    Energy Technology Data Exchange (ETDEWEB)

    Duchene, G; McCabe, C; Ghez, A; Macintosh, B

    2004-02-04

    We present the first 3.8 {micro}m image of the dusty ring surrounding the young binary system GG Tau, obtained with the W. M. Keck II 10m telescope's adaptive optics system. THis is the longest wavelength at which the ring has been detected in scattered light so far, allowing a multi-wavelength analysis of the scattering proiperties of the dust grains present in this protoplanetary disk in combination with previous, shorter wavelengths, HST images. We find that the scattering phase function of the dust grains in the disk is only weakly dependent on the wavelength. This is inconsistent with dust models inferred from observations of the interstellar medium or dense molecular clouds. In particular, the strongly forward-throwing scattering phase function observed at 3.8 {micro}m implies a significant increase in the population of large ({approx}> 1 {micro}m) grains, which provides direct evidence for grain growth in the ring. However, the grain size distribution required to match the 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m image of the ring is incompatible with its published 1 {micro}m polarization map, implying that the dust population is not uniform throughout the ring. We also show that our 3.8 {micro}m scattered light image probes a deeper layer of the ring than previous shorter wavelength images, as demonstrated by a shift in the location of the inner edge of the disk's scattered light distribution between 1 and 3.8 {micro}m. We therefore propose a stratified structure for the ring in which the surface layers, located {approx} 50 AU above the ring midplane, contain dust grains that are very similar to those found in dense molecular clouds, while the region of the ring located {approx} 25 AU from the midplane contains significantly larger grains. This stratified structure is likely the result of

  2. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments.

    Science.gov (United States)

    Smith, Edward G; D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg

    2017-07-12

    The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral- Symbiodinium association across steep environmental gradients. © 2017 The Authors.

  3. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber

    Science.gov (United States)

    Shimizu, Kaoru; Horiguchi, Tsuneo; Koyamada, Yahei; Kurashima, Toshio

    1993-02-01

    Time-domain reflectometry of spontaneous Brillouin scattering in a single-mode optical fiber is performed with a coherent self-heterodyne detection system containing a recently proposed external frequency translator and a single light-wave source. The light wave is divided into probe and reference light waves. The frequency of the probe light wave is upconverted by the translator by an amount approximately equal to the Brillouin frequency shift. The frequency-converted probe is launched into the fiber and spontaneously Brillouin scattered. As the frequency of the scattered probe is downconverted to near that of the reference light wave, coherent self-heterodyne detection of spontaneous Brillouin scattering becomes possible without having to use a fast-speed detector.

  4. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice

    Directory of Open Access Journals (Sweden)

    Hughes Amanda M

    2005-05-01

    Full Text Available Abstract Background We observed that a dim, red light-emitting diode (LED triggered by activity increased the circadian periods of lab mice compared to constant darkness. It is known that the circadian period of rats increases when vigorous wheel-running triggers full-spectrum lighting; however, spectral sensitivity of photoreceptors in mice suggests little or no response to red light. Thus, we decided to test the following hypotheses: dim red light illumination triggered by activity (LEDfb increases the circadian period of mice compared to constant dark (DD; covering the LED prevents the effect on period; and DBA2/J mice have a different response to LEDfb than C57BL6/J mice. Methods The irradiance spectra of the LEDs were determined by spectrophotometer. Locomotor activity of C57BL/6J and DBA/2J mice was monitored by passive-infrared sensors and circadian period was calculated from the last 10 days under each light condition. For constant dark (DD, LEDs were switched off. For LED feedback (LEDfb, the red LED came on when the mouse was active and switched off seconds after activity stopped. For taped LED the red LED was switched on but covered with black tape. Single and multifactorial ANOVAs and post-hoc t-tests were done. Results The circadian period of mice was longer under LEDfb than under DD. Blocking the light eliminated the effect. There was no difference in period change in response to LEDfb between C57BL/6 and DBA/2 mice. Conclusion An increase in mouse circadian period due to dim far-red light (1 lux at 652 nm exposure was unexpected. Since blocking the light stopped the response, sound from the sensor's electronics was not the impetus of the response. The results suggest that red light as background illumination should be avoided, and indicator diodes on passive infrared motion sensors should be switched off.

  5. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent mode

    Energy Technology Data Exchange (ETDEWEB)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.; Burke, W.; Davis, E.; Granetz, R.; Greenwald, M.; Irby, J.; Leccacorvi, R.; Marmar, E.; Parkin, W.; Porkolab, M.; Terry, J.; Vieira, R.; Wolfe, S. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15

    A novel “Shoelace” antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k{sub ⊥}=1.5±0.1 cm{sup −1} and 45Coherent Mode (QCM, k{sub ⊥}∼1.5 cm{sup −1}, f∼50−150 kHz) in Alcator C-Mod, responsible for exhausting impurities in the steady-state, ELM-free Enhanced D{sub α} H-mode. In H-mode, whether or not there is a QCM, the antenna drives coherent, field-aligned perturbations in density, n{sup ~}{sub e}, and field, B{sup ~}{sub θ}, which are guided by field lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly damped (γ/ω{sub 0}∼5%−10%) resonance near the natural QCM frequency. This result is significant, offering the possibility that externally driven modes may be used to enhance particle transport. In L-mode, the antenna drives only a non-resonant B{sup ~}{sub θ} response. The facts that the driven mode has the same wave number and propagation direction as the QCM, and is resonant at the QCM frequency, suggest the antenna may couple to this mode, which we have shown elsewhere to be predominantly drift-mode-like [B. LaBombard et al., Phys. Plasmas 21, 056108 (2014)].

  6. An Optimized Low-Charge Configuration of the LINAC Coherent Light Source

    CERN Document Server

    Emma, Paul; Huang, Zhirong; Limborg-Deprey, Cecile; Reiche, Sven; Wu, Juhao; Zolotorev, Max S

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The nominal parameter set is founded on a 1-nC bunch charge and normalized emittance of about 1 micron. The most challenging issues, such as emittance generation, wakefields, and coherent synchrotron radiation (CSR), are associated with the high bunch charge. In the LCLS in particular, with its strong linac wakefields, the bunch compression process produces sharp temporal horns at the head and tail of the bunch with degraded local emittance, effectively wasting much of the charge. The sharp horns intensify CSR in the bends and further drive a strong resistive-wall wakefield in the long FEL undulator. Although these issues are not insurmountable, they suggest a lower bunch charge may be more suitable. This study uses a 0.2-nC bunch charge and 0.85-micron emittance with only 30 A of peak current in the injector, producing the same FEL saturation length. The resulting performance is more stable, has negl...

  7. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    Science.gov (United States)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  8. Hair removal with a non-coherent filtered flashlamp intense pulsed light source.

    Science.gov (United States)

    Weiss, R A; Weiss, M A; Marwaha, S; Harrington, A C

    1999-01-01

    To evaluate the effects on disruption of hair growth of the non-coherent filtered flashlamp intense pulsed light (IPL) source. Twenty-eight sites on 23 patients with Fitzpatrick type I-III were enrolled using a single treatment IPL followed for three months post-treatment. Another 56 on 48 patients with Fitzpatrick skin types I-V randomly enrolled for two treatments one month apart and followed for six months. Prior to beginning treatment and at each follow-up visit hair counts were obtained by averaging three 1-cm2 areas on a clear acetate template placed over the skin. Repeat hair counts and photographs were obtained at 2, 4, 8, and 12 weeks for the single treatment protocol and at additional 4, 5, and 6 months for the double treatment protocol. Parameters utilized were a 2.8-3.2 millisecond pulse duration typically for three pulses with thermal relaxation intervals of 20-30 milliseconds with a total fluence of 40-42 J/cm2. For the double treatment protocol hair clearance of 64% was achieved immediately following the second treatment. By week 8 reduction of hair counts was 42%. At 6 months, hair counts were reduced by 33%. Non-coherent IPL is an effective modality for long-term hair removal. IPL is safe with minimal side effects of epidermal injury or pigmentation change.

  9. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations

    OpenAIRE

    Prato, Frank S.; Desjardins-Holmes, Dawn; Keenliside, Lynn D; McKay, Julia C; Robertson, John A; Thomas, Alex W.

    2008-01-01

    Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0×1016 photons s−1 m−2) during the mid-light phase of the diurnal cycle. However, if the mice were exposed in the presence of visible light (2.0×1018 photons s−1 m−2, 400–750 nm), then the analgesic effects of shielding were eliminated. Here, we show that this effect of light...

  10. A Wire Scanner Design for Electron Beam Profile Measurement in the Linac Coherent Light Source Undulator

    CERN Document Server

    Bailey, James L; Yang Bing Xin

    2005-01-01

    The Linac Coherent Light Source (LCLS), currently under design, requires beam diagnostic instruments between the magnets in the beam undulator section. Ten wire scanners are planned as one of the primary instruments to characterize electron beam properties. The development of these wire scanners presents several design challenges due to the need for high accuracy and resolution of the wire motion (3 microns tolerance, typical) and the high intensity of the beam (3400 A over an area of 30 micron rms radius). In this paper, we present the technical specification and design criteria for the scanners. We will also present the mechanical design of the UHV-compatible drive and its engineering analysis. Lastly, we present the wire card design and discuss associated thermal and mechanical issues originating from the highly intense x-ray and electron beams.

  11. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Bob, E-mail: bnagler@slac.stanford.edu; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    A description of the Matter in Extreme Conditions instrument at the Linac Coherent Light Source is given. Recent scientific highlights illustrate phase-contrast imaging of shock waves, X-ray Thomson scattering and X-ray diffraction of shocked materials. The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  12. Commissioning of the Electron Line of the Linac Coherent Light Source. Dose Rate Measurements and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, M; Bauer, J.M.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, H.; /SLAC; Sanami, T.; /SLAC /KEK, Tsukuba; Vollaire, J.; /SLAC

    2009-05-20

    The Linac Coherent Light Source at the SLAC National Accelerator Laboratory (operated by Stanford University for the US Department of Energy) is the world's first hard X-ray Free Electron Laser machine. It uses high energy electrons delivered by a linac to create ultrafast and brilliant X-ray pulses that can be used as a 'high-speed' camera to obtain images of atoms and molecules. LCLS is a pioneer machine and, as such, its design has encountered unprecedented challenges, the solutions to which will benefit future facilities of its kind across the globe. This article describes the radiation protection aspects of LCLS electron beamlines. Special emphasis is put on the successful commissioning of the LCLS electron line, where, for all examined loss sources, the measured prompt and residual dose rates are in agreement with or below the values predicted through detailed Monte Carlo simulations, used earlier to design the shielding.

  13. Design of a Precision Positioning System for the Undulators of the Linac Coherent Light Source

    CERN Document Server

    Trakhtenberg, Emil; Den Hartog, Patric; White, Marion

    2005-01-01

    A precision positioning system has been designed for the Linac Coherent Light Source (LCLS) and a prototype system is being fabricated. The LCLS will use a beam based alignment technique to precisely align all of the segments of the 130-m long undulator line. The requirement for overlap between the electron beam and the x-ray beam, in order to develop and maintain lasing, demands that each of the quadrupoles be aligned within a tolerance of ± 2 μm and that the undulator axis be positioned within ± 10 μm vertically and horizontally. Five cam movers, each with an eccentricity of 1.5 mm, will allow adjustment of a cradle supporting the undulator, its vacuum chamber, a quadrupole, and a beam position monitor. An additional motion transverse to the beam axis allows removal of individual undulators from the beam path. Positioning feedback will be provided by a wire position monitor system and a hydrostatic leveling system.

  14. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease.

    Science.gov (United States)

    Duncker, Tobias; Marsiglia, Marcela; Lee, Winston; Zernant, Jana; Tsang, Stephen H; Allikmets, Rando; Greenstein, Vivienne C; Sparrow, Janet R

    2014-10-23

    Short-wavelength (SW) fundus autofluorescence (AF) is considered to originate from lipofuscin in retinal pigment epithelium (RPE) and near-infrared (NIR) AF from melanin. In patients with recessive Stargardt disease (STGD1), we correlated SW-AF and NIR-AF with structural information obtained by spectral-domain optical coherence tomography (SD-OCT). Twenty-four STGD1 patients (45 eyes; age 8 to 61 years) carrying confirmed disease-associated ABCA4 mutations were studied prospectively. Short-wavelength AF, NIR-AF, and SD-OCT images were acquired. Five phenotypes were identified according to features of the central lesion and extent of fundus change. Central zones of reduced NIR-AF were typically larger than areas of diminished SW-AF and reduced NIR-AF usually approximated areas of ellipsoid zone (EZ) loss identified by SD-OCT (group 1; r, 0.93, P < 0.0001). In patients having a central lesion with overlapping parafoveal rings of increased NIR-AF and SW-AF (group 3), the extent of EZ loss was strongly correlated with the inner diameter of the NIR-AF ring (r, 0.89, P < 0.0001) and the eccentricity of the outer border of the NIR-AF ring was greater than that of the SW-AF ring. Lesion areas were more completely delineated in NIR-AF images than with SW-AF. In most cases, EZ loss was observed only at locations where NIR-AF was reduced or absent, indicating that RPE cell atrophy occurs in advance of photoreceptor cell degeneration. Because SW-AF was often increased within the central area of EZ disruption, degenerating photoreceptor cells may produce lipofuscin at accelerated levels. Consideration is given to mechanisms underlying hyper-NIR-AF in conjunction with increased SW-AF. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae.

    Science.gov (United States)

    Ra, Chae Hun; Sirisuk, Phunlap; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-12-19

    Integrations of two-phase culture for cell growth and lipid accumulation using mixed LED and green LED wavelengths were evaluated with the microalgae, Phaeodactylum tricornutum, Isochrysis galbana, Nannochloropsis salina, and Nannochloropsis oceanica. Among the single and mixed LED wavelengths, mixed LED produced higher biomass of the four microalgae, reaching 1.03 g DCW/L I. galbana, followed by 0.95 g DCW/L P. tricornutum, 0.85 g DCW/L N. salina, and 0.62 g DCW/L N. oceanica than single LED or fluorescent lights at day 10. Binary combination of blue and red LEDs could produce the high biomass and photosynthetic pigments in the four microalgae. The highest lipid accumulation during second phase with the exposure to green LED wavelengths was 56.0% for P. tricornutum, 55.2% for I. galbana, 53.0% for N. salina, and 51.0% for N. oceanica. The major fatty acid in the four microalgae was palmitic acid (C16:0) accounting for 38.3-47.3% (w/w) of the total fatty acid content.

  16. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  17. Effect of emitted wavelength and light guide type on irradiance discrepancies in hand-held dental curing radiometers.

    Science.gov (United States)

    Kameyama, Atsushi; Haruyama, Akiko; Asami, Masako; Takahashi, Toshiyuki

    2013-01-01

    The purpose of this study was to determine any discrepancies in the outputs of five commercial dental radiometers and also to evaluate the accuracy of these devices using a laboratory-grade spectroradiometer. The power densities of 12 different curing light sources were repeatedly measured for a total of five times using each radiometer in a random order. The emission spectra of all of the curing light sources were also measured using the spectroradiometer, and the integral value of each spectrum was calculated to determine the genuine power densities, which were then compared to the displayed power densities measured by the dental radiometers. The displayed values of power density were various and were dependent on the brand of radiometer, and this may be because each radiometer has a different wavelength sensitivity. These results cast doubt upon the accuracy of commercially available dental radiometers.

  18. Complete Control of Polarization and Phase of Light with High Efficiency and Sub-wavelength Spatial Resolution

    CERN Document Server

    Arbabi, Amir; Bagheri, Mahmood; Faraon, Andrei

    2014-01-01

    Meta-surfaces are planar structures that locally change polarization, phase, and amplitude of light, thus enabling flat, lithographically patterned free-space optical components with functionalities controlled by design. Several types of meta-surfaces have been reported, but low efficiency and the inability to provide simultaneous phase and polarization control have limited their applications. Here we demonstrate a platform based on high-contrast dielectric elliptical nano-posts providing complete and efficient control of polarization and phase with sub-wavelength spatial resolution. The unprecedented freedom in manipulating light not only enables realization of conventional free-space transmissive optical elements such as phase-plates, wave-plates and beam-splitters, but also elements with novel functionalities such as general polarization switchable phase holograms and arbitrary vector beam generators which will change the design paradigms for free-space optical systems.

  19. Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer

    Science.gov (United States)

    Guo, Xuesong; Nakayama, Tomoki; Yamada, Hiroyuki; Inomata, Satoshi; Tonokura, Kenichi; Matsumi, Yutaka

    2014-09-01

    Diesel-exhaust particles (DEP) are one of the main anthropogenic sources of black carbon (BC) and organic matter (OM). Understanding the optical properties of DEP, including the enhancement of light absorption by BC due to coating and light absorption by OM, is important for evaluating the climate impact of DEP. In this study, a three-wavelength photoacoustic soot spectrometer (405, 532, and 781 nm) was used to investigate the wavelength-dependent optical properties of DEP emitted from a diesel engine vehicle running on a chassis dynamometer in transient driving mode (JE-05) and at a constant speed (either idling or driving at 70 km/h). Optical properties were measured after passing the diluted exhaust through a heater, set at 20, 47, or 300 °C (transient driving mode) or between 20 and 400 °C (constant driving mode). The OM accounted for, on average, ∼40 and ∼35% of the total mass concentration of DEP during the transient and constant driving modes, respectively. In transient driving mode, enhancements of scattering coefficients at 20 and 47 °C, and of the mass concentration of organics, were observed during the high-speed driving period (∼80 km/h) corresponding to driving on a highway. No difference was observed in the absorption coefficients between heated and unheated particles at 781 nm for either the transient (including the high-speed driving period) or constant driving modes. These results indicate a lack of enhancement due to the lensing effect, possibly because the BC was mainly mixed externally with the OM or because it was located at the edges of particles under these experimental conditions. Contributions to total light absorption at 405 nm by the OM were estimated by comparing the wavelength dependence of the absorption coefficients with and without heating. A significant contribution by light-absorbing OM (20 ± 7%) to total light absorption at 405 nm was observed during the high-speed driving period of the JE-05 mode, while the

  20. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri [Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology (MIT) Cambridge, MA (United States); Marley, Mark [NASA Ames Research Center, Moffett Field, CA (United States); Morley, Caroline; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to consider the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of

  1. Photocatalytic inactivation of Escherichia coli by natural sphalerite suspension: effect of spectrum, wavelength and intensity of visible light.

    Science.gov (United States)

    Chen, Yanmin; Lu, Anhuai; Li, Yan; Yip, Ho Yin; An, Taicheng; Li, Guiying; Jin, Peng; Wong, Po-Keung

    2011-08-01

    The photocatalytic disinfection of Escherichia coli K-12 is investigated by the natural sphalerite (NS) under different spectra, wavelengths and intensities of visible light (VL) emitted by light-emitting-diode lamp (LED). The spectrum effect of VL on disinfection efficiency is studied by using white LED, fluorescent tube (FT) and xenon lamp (XE), which indicates that the "discreted peak spectrum" of FT is more effective to inactivate bacteria than "continuous spectrum" of LED and XE. Besides, the photocatalytic disinfection of bacteria is compared under different single spectrum (blue, green, yellow and red color) LEDs. The results show that the most effective wavelength ranges of VL for photocatalytic disinfection with the NS are 440-490 and 570-620 nm. Furthermore, a positive relationship is obtained between the disinfection efficiency and the VL intensity. The experiment shows that NS can completely inactivate 10(7)cfu mL(-1)E. coli K-12 within 8h irradiation by white LED with the intensity of 200 mW cm(-2) at pH 8. Moreover, the destruction process of the cell wall and the cell membrane are directly observed by TEM. Finally, no bacterial colony can be detected within a 96 h regrowth test of inactivated bacteria, which reveals that the VL-photocatalytic disinfection leads to an irreversible damage to the bacterial cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Phase-coherent optical pulse synthesis from separate femtosecond lasers.

    Science.gov (United States)

    Shelton, R K; Ma, L S; Kapteyn, H C; Murnane, M M; Hall, J L; Ye, J

    2001-08-17

    We generated a coherently synthesized optical pulse from two independent mode-locked femtosecond lasers, providing a route to extend the coherent bandwidth available for ultrafast science. The two separate lasers (one centered at 760 nanometers wavelength, the other at 810 nanometers) are tightly synchronized and phase-locked. Coherence between the two lasers is demonstrated via spectral interferometry and second-order field cross-correlation. Measurements reveal a coherently synthesized pulse that has a temporally narrower second-order autocorrelation width and that exhibits a larger amplitude than the individual laser outputs. This work represents a new and flexible approach to the synthesis of coherent light.

  3. Inhibitory effect of light of different wavelengths on the fall of core temperature during the nighttime.

    Science.gov (United States)

    Morita, T; Teramoto, Y; Tokura, H

    1995-01-01

    Nocturnal core temperature fall was significantly inhibited by green, blue, and red light exposure with 1,000 lx from 21:00 h to 02:00 h. The core temperature in red became identical from that in control during the following sleep period, but not in green and blue. These findings are discussed in terms of urinary melatonin behavior.

  4. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light.

    Science.gov (United States)

    Huang, Jianfeng; Liu, Changxu; Zhu, Yihan; Masala, Silvia; Alarousu, Erkki; Han, Yu; Fratalocchi, Andrea

    2016-01-01

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of ∼100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (∼5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses.

  5. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light

    KAUST Repository

    Huang, Jianfeng

    2015-10-19

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of 100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses. © 2016 Macmillan Publishers Limited. All rights reserved.

  6. Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED)

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoshi, Yasunori; Oki, Yukinori; Nakano, Issei; Fujimoto, Aya [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Takahashi, Hirokazu [Environmental Business DivisionDaiki Ataka Engineering Co. Ltd., 2-1-9 Nishiku-Urihori, Osaka 550-0012 (Japan)

    2010-12-15

    Biohydrogen is expected as one of the alternative energy to fossil fuel. In this study, halotolerant photosynthetic hydrogen producing bacteria (ht-PHB) were isolated from a sediment of tideland, and hydrogen gas (H{sub 2}) production by isolated ht-PHB from mixed short-chain fatty acids (SFAs) using a long-wavelength light emitting diode (LW-LED) was investigated. The isolated ht-PHB grow on a culture containing three kinds of SFAs (lactic acid, acetic acid, butyric acid) and produced H{sub 2} with their complete consumption at NaCl concentration in the 0-3% range in the light of tungsten lamp. The isolated ht-PHB was phylogenetically identified as Rhodobacter sp. KUPB1. The KUPB1 showed well growth and H{sub 2} production even under LW-LED light irradiation, indicating that LW-LED is quite useful as an energy-saving light source for photosynthetic H{sub 2} production. (author)

  7. Coherent light from E-field induced quantum coupling of exciton states in superlattice-like quantum wells

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...

  8. Double-heterodyne-interferometry with delay-lines larger than coherence length of the laser light used

    Science.gov (United States)

    Hofbauer, Ulrich; Dalhoff, Ernst; Tiziani, Hans

    1999-04-01

    A double-heterodyne-interferometer (DHI) was realized with a laser diode as light source and a 500-MHz acoustooptical modulator (AOM). We show that measurements of the phase between the two heterodyne signals at optical path differences (OPD) up to 3.25 km, which is more than 350 times the coherence length of the laser light used, are possible. By measurements with this delay line, a distance resolution of 0.14 mm was obtained.

  9. Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation.

    Science.gov (United States)

    Giménez, Marina C; Beersma, Domien G M; Bollen, Pauline; van der Linden, Matthijs L; Gordijn, Marijke C M

    2014-06-01

    Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in particular by short-wavelength light. Exposure to short wavelengths is reduced, for instance, in elderly people due to yellowing of the ocular lenses. This reduction may be involved in the disrupted circadian rhythms observed in aged subjects. Here, we tested the effects of reduced blue light exposure in young healthy subjects (n = 15) by using soft orange contact lenses (SOCL). We showed (as expected) that a reduction in the melatonin suppressing effect of light is observed when subjects wear the SOCL. However, after chronic exposure to reduced (short wavelength) light for two consecutive weeks we observed an increase in sensitivity of the melatonin suppression response. The response normalized as if it took place under a polychromatic light pulse. No differences were found in the dim light melatonin onset or in the amplitude of the melatonin rhythms after chronic reduced blue light exposure. The effects on sleep parameters were limited. Our results demonstrate that the non-visual light system of healthy young subjects is capable of adapting to changes in the spectral composition of environmental light exposure. The present results emphasize the importance of considering not only the short-term effects of changes in environmental light characteristics.

  10. Matter in Extreme Conditions (MEC) Instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Lee, Hae

    2013-06-01

    The behavior and physical properties of matter under extreme conditions are of fundamental scientific interest. Extreme conditions created by intense light source generates dense state with densities of up to several times of solid density, temperatures of 0.1 eV to 100s eV, and pressures of 10s kbar to 10s Mbar. Model calculations in this regime predict electronic and structural phase transitions with new atomic and electronic band structure, anomalous transport, and changes of scattering properties and opacity. A new technique using the Linac Coherent Light Source (LCLS), an x-ray free electron laser source, was developed at Matter in Extreme Conditions (MEC) endstation to study wide range of extreme conditions in phase space. The LCLS has >=3 mJ per 60 fs pulse enabling an intensity x-ray beam between 4 keV -9.5 keV to be focused onto a small spot ~1 micron at MEC. The research areas that MEC instrument will address include equation of state, behavior of materials under high-pressure, and phenomena of solid materials under extreme conditions. We operate MEC instrument for users' experiments studying warm dense matter, hot dense matter, and high pressure physics. Here, we present the details of the MEC instrument, capabilities and progress. The MEC Instrument is funded by fusion energy science of the U.S. Department of Energy. The author would like to thank the LCLS MECi project team.

  11. Swept source optical coherence microscopy using a 1310 nm VCSEL light source.

    Science.gov (United States)

    Ahsen, Osman O; Tao, Yuankai K; Potsaid, Benjamin M; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F; Connolly, James L; Hornegger, Joachim; Cable, Alex; Fujimoto, James G

    2013-07-29

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens.

  12. Mechanism of a-IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects

    Science.gov (United States)

    Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao

    2017-10-01

    Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.

  13. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    OpenAIRE

    Wang, H.; Bérujon, S.; Sawhney, K

    2012-01-01

    International audience; The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moire fringe analysis. The interferometer has demonstra...

  14. Broadband coherent light generation in Raman-active crystals driven by femtosecond laser fields

    Science.gov (United States)

    Zhi, Miaochan

    I studied a family of closely connected topics related to the production and application of ultrashort laser pulses. I achieved broadband cascade Raman generation in crystals, producing mutually coherent frequency sidebands which can possibly be used to synthesize optical pulses as short as a fraction of a femtosecond (fs). Unlike generation using gases, there is no need for a cumbersome vacuum system when working with room temperature crystals. Our method, therefore, shows promise for a compact system. One problem for sideband generation in solids is phase matching, because the dispersion is significant. I solved this problem by using non-collinear geometry. I observed what to our knowledge is a record-large number of spectral sidebands generated in a popular Raman crystal PbWO4 covering infrared, visible, and ultraviolet spectral regions, when I applied two 50 fs laser pulses tuned close to the Raman resonance. Similar generation in diamond was also observed, which shows that the method is universal. When a third probe pulse is applied, a very interesting 2-D color array is generated in both crystals. As many as 40 anti-Stokes and 5 Stokes sidebands are generated when a pair of time-delayed linear chirped pulses are applied to the PbWO4 crystal. This shows that pulses with picosecond duration, which is on the order of the coherence decay time, is more effective for sidebands generation than Fourier transform limited fs pulses. I also studied the technique of fs coherent Raman anti-Stokes scattering (CARS) which is used as a tool for detecting dipicolinic acid, the marker molecule for bacterial spores. I observed that there is a maximum when the concentration dependence of the near-resonant CARS signal is measured. I presented a model to describe this behavior, and found an analytical solution that agrees with our experimental data. Theoretically, I explored a possible application for single-cycle pulses: laser induced nuclear fusion. I performed both classical

  15. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  16. Deep modulation of second-harmonic light by wavelength detuning of a laser diode

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    Power modulated visible lasers are interesting for a number of applications within areas such as laser displays and medical laser treatments. In this paper, we present a system for modulating the second-harmonic light generated by single-pass frequency doubling of a distributed feedback (DFB....... The bandwidth of the modulation is limited by the electronics. This method has the potential to decrease the size as well as cost of modulated visible lasers. The achievable optical powers will increase as DFB MOPAs are further developed. (C) 2017 Optical Society of America...

  17. Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2013-03-01

    The grating-based shearing interferometer has been established and further developed on B16 at Diamond Light Source. The beamline performances of both an X-ray plane mirror and a compound refractive lens (CRL) have been investigated using this technique. The slope error of the X-ray mirror was retrieved from the wavefront phase gradient, which was measured using two different processing schemes: phase stepping and moiré fringe analysis. The interferometer has demonstrated a high sensitivity with sub-microradian accuracy. Some of the advantages, disadvantages and limitations for the two approaches will also be presented.

  18. Ultra-small near-infrared multi-wavelength light source using a heterojunction photonic crystal waveguide and self-assembled InAs quantum dots

    Science.gov (United States)

    Uchida, Sho; Ozaki, Nobuhiko; Nakahama, Teruyuki; Oda, Hisaya; Ikeda, Naoki; Sugimoto, Yoshimasa

    2017-05-01

    We herein propose and verify an ultra-small near-infrared (NIR) multi-wavelength light source using a heterojunction photonic crystal waveguide (PC-WG) and quantum dots (QDs). A heterojunction two-dimensional PC-WG, which consists of multiple PC-WGs with sequentially shifted structural parameters, is fabricated on a GaAs-slab including InAs QDs. Spontaneous emission (SE) from embedded InAs QDs was enhanced at multiple wavelengths resonating with slow-light regions of the PC-WG modes. The enhanced SE was propagated and detected through the heterojunction PC-WG. These results indicate the feasibility of the proposed light source.

  19. A television display using acoustic deflection and modulation of coherent light.

    Science.gov (United States)

    Korpel, A; Adler, R; Desmares, P; Watson, W

    1966-10-01

    Bragg reflection of laser light by ultrasonic waves in water produces the horizontal deflection in a television display. The ultrasonic waves are frequency-modulated with a sawtooth function. Deflection angles are small but there are 200 resolvable positions; the constant rate of angular change which characterizes a television scan permits the use of a wide optical aperture, leading to a small spot size. Conventional optical magnification follows the horizontal deflection, rendering a 3 MHz video signal visible on the screen. Bragg reflection requires the acoustic wave front to be symmetrical with respect to the incident and diffracted light rays. Thus, as the Bragg angle is altered, the acoustic wavefront should rotate. This is accomplished by a phased array of transducer strips whose combined wavefront rotates as the frequency changes, providing excellent correction over a wide band (19 to 35 MHz in this experiment, corresponding to a +/-30 percent change in Bragg angle). Broadband electrical and acoustical matching techniques make it possible to diffract all the incident light with about one watt of electrical input. A second acoustic diffraction cell intensity-modulates the light. In an early experiment, the laser beam was constricted to a very small diameter before entering the modulator cell; even so, the finite beam size caused a significant loss of high-frequency response. An improved version uses an old principle (Scophony, 1939): the laser beam traversing the cell is made wide enough to encompass several picture elements, all traveling across the beam at sound velocity; the horizontal deflection system nullifies the apparent motion of these elements making them stand still on the screen while a fan of light sweeps over them. With this modulation system, spatial coherence is needed only across the vertical dimension of the laser. The tolerance on the orientation of the acoustic wavefronts, the improvement brought about by the phased array, and the amount

  20. Effects of incident short wavelength (UV) light on the morphology of MBE grown GaAs

    Science.gov (United States)

    Beaton, Daniel A.; Sanders, Charlotte; Alberi, Kirstin

    2014-03-01

    The exploration of novel semiconductor materials increasingly relies on growth techniques that operate far from equilibrium in order to overcome thermodynamic limitations to synthesis. As one example, low temperature molecular beam epitaxy (MBE) offers a pathway to enhance substitutional dopant incorporation over surface segregation but adatom mobility suffers as a consequence and leads to higher concentrations of lattice defects. We explore the use of external stimuli, namely incident UV light, as a means to influence adatom kinetics; UV light is absorbed in the first few atomic layers of the as-growing epitaxial film and the effects of the incident radiation predominantly effect only the surface adatoms. GaAs homoepitaxy by MBE is studied as a model case as a function of illumination conditions under broadband Xe and KrF excimer laser irradiation. In-situ reflective high energy electron diffraction analysis paired with ex-situ atomic force microscopy measurements yields insight into the effects of photon irradiation on surface adatom mobility, morphology and smoothing processes. This work was supported by the DOE Office of Science, Basic Energy Sciences under contract DE-AC36-08GO28308.

  1. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    Science.gov (United States)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  2. Numerical analysis of primary rainbows from a homogeneous cylinder and an optical fiber for incident low-coherent light

    Science.gov (United States)

    Świrniak, Grzegorz; Mroczka, Janusz

    2017-07-01

    This work provides a numerical study of the scattering of low-coherent light by an infinite right circular cylinder and various types of optical fiber (with step- and graded-index profiles) in the vicinity of primary rainbows, caused by light that has been subjected to one internal reflection. The scattered intensity is analyzed in terms of the Fourier transform as well as in the time domain (by examining the impulse response of a fiber) with the aim to obtain a detailed information about the scattering process. The analysis reveals a wealth of information about the scattering process that is not obvious when a fiber is illuminated by a temporally coherent light source. The results also provide an idea for the characterization of the core size of step-index optical fibers.

  3. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser

    Directory of Open Access Journals (Sweden)

    Youjun Zeng

    2017-01-01

    Full Text Available A fast surface plasmon resonance (SPR imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10−2 refractive index unit (RIU and 1.27 × 10−6 RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state.

  4. Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF.

    Science.gov (United States)

    Li, Yi-Cheng; Chi, Yu-Chieh; Cheng, Min-Chi; Lu, I-Cheng; Chen, Jason; Lin, Gong-Ru

    2013-07-15

    The coherent injection-locking and directly modulation of a long-cavity colorless laser diode with 1% end-facet reflectance and weak-resonant longitudinal modes is employed as an universal optical transmitter to demonstrated for optical 16-QAM OFDM transmission at 12 Gbit/s over 25 km in a DWDM-PON system. The optimized bias current of 30 mA (~1.5Ith) with corresponding extinction ratio (ER) of 6 dB and the external injection power of -9 dBm is (are) required for such a wavelength-locked universal transmitter to carry the 16-QAM and 122-subcarrier formatted OFDM and data-stream. By increasing external injection-locking from -9 dBm to 0 dBm, the peak-to-peak chirp of the OFDM data stream reduces from 7.7 to 5.4 GHz. The side mode suppression ratio (SMSR) of up to 50 dB is achieved with wider detuning range between -0.5 nm to 2.0 nm under an injection power of 0 dBm. By modulating such a colorless laser diode with an OFDM data stream of 122 subcarriers at a central carrier frequency of 1.5625 GHz and a total bandwidth of 3 GHz, the transmission data rate of up to 12 Gbit/s in standard single-mode fiber over 25 km is demonstrated to achieve an error vector magnitude (EVM) of 5.435%. Such a universal colorless DWDM-PON transmitter can deliver the optical OFDM data-stream at 12 Gbit/s QAM-OFDM data after 25-km transmission with a receiving power sensitivity of -7 dBm at BER of 3.6 × 10(-7) when pre-amplifying the OFDM data by 5 dB.

  5. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    Science.gov (United States)

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  6. Aerosol source apportionment based on multi-wavelength photoacoustic light absorption measurements: a simulation method for system's optimisation

    Science.gov (United States)

    Simon, Károly; Ajtai, Tibor; Kiss-Albert, Gergely; Utry, Noémi; Pintér, Máté; Szabó, Gábor; Bozóki, Zoltán

    2017-04-01

    Aerosol source apportionment is currently one of the outstanding challenges for environmental monitoring. In most cases atmospheric aerosol is a heterogeneous mixture as it typically originates from various sources. Consequently, each aerosol type has distinct chemical and physical properties. Contrary to chemical properties, optical absorption and size distribution of airborne particles can be measured in real time with high time resolution i.e. their measurement facilitates real time source apportionment (Favez et al (2009), Ajtai et al (2011), Favez et al (2010)). The wavelength dependency of the optical absorption coefficient (OAC) is usually characterised by the Absorption Angström Exponent (AAE). So far, the selection of light sources (lasers) into a photoacoustic aerosol measuring system was based on rule of thumb type estimations only. Recently, we proposed a simulation method that can be used to estimate the accuracy of aerosol source apportionment in case of a dual wavelength photoacoustic system (Simon et al., (2017)). This simulation is based on the assumption that the atmospheric aerosol load is dominated by two distinct sources and each of them is strongly light absorbing with specific AAE values. This is a typical scenario e.g. for urban measurements under wintry conditions when dominating aerosol sources are fossil fuel and wood burning with characteristic AAE 1 and 2, respectively. The wavelength pair of 405 and 1064 nm was found to be optimal for source apportionment in this case. In the presented study we investigated the situation when there are aerosol components with only slightly different AAE values and searched for a photoacoustic system which is optimal for distinguishing these components. Ajtai, T.; Filep, Á.; Utry, N.; Schnaiter, M.; Linke, C.; Bozóki, Z.; Szabó, G. and Leisner T. (2011) Journal of Aerosol Science 42, 859-866. Favez, O.; Cachier, H.; Sciare, J.; Sarda-Estève, R. and Martinon, L. (2009) Atmospheric Environment 43

  7. Design of a prototype precision positioning system for the undulators of the Linac Coherent Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Trakhtenberg, E.; Collins, J.; Den Hartog, P.; White, M.

    2005-01-01

    A precision positioning system has been designed for the Linac Coherent Light Source (LCLS) and a prototype system is being fabricated. The LCLS will use a beam-based alignment technique to precisely align all of the segments of the 131.52-m-long undulator line. The requirement for overlap between the electron beam and the x-ray beam, in order to develop and maintain lasing, demands that each quadrupole must be aligned within a tolerance of {+-} 7 {micro}m and that undulator axes must be positioned within 5 {micro}m vertically and 10 {micro}m horizontally. Five cam movers, each with an eccentricity of 1.2 mm, will allow adjustment of a cradle supporting the undulator, its vacuum chamber, a quadrupole, and a beam position monitor. An additional motion transverse to the beam axis allows removal of individual undulators from the beam path. Positioning feedback will be provided by a wire position monitor system and a hydrostatic leveling system.

  8. Coherent spin preparation, manipulation and read-out with light and microwaves in a quantum well and dot

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, H; Shigyou, H; Inagaki, T; Mitsumori, Y; Edamatsu, K [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Kutsuwa, T; Kuwahara, M [CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ono, K [Low Temperature Physics Laboratory, RIKEN, Saitama 351-0198 (Japan); Rikitake, Y [Department of Information Engineering, Sendai National College of Technology, Sendai 989-3128 (Japan); Yokoshi, N; Imamura, H, E-mail: kosaka@riec.tohoku.ac.j [Nanotechnology Research Institute, AIST, Tsukuba 305-8568 (Japan)

    2010-09-01

    Spin is a quantum property of electrons. For spin-based quantum information technology, preparation and read-out of the electron spin state should be spin coherent. We demonstrate that the polarization coherence of light can be transferred to the spin coherence of electrons in a semiconductor quantum nanostructure [1], and the prepared coherence of the electron spin can also be read out with light by the developed tomographic Kerr rotation method [2]. We also demonstrate that a single photon is efficiently converted ({approx}27%) into a single electron trapped in a gate-defined quantum dot, where the g-factor of electrons is tuned to zero, and the charge state is detected with an adjacent quantum point contact without destructing the spin state [3]. We further demonstrate that the spin coherence of a single electron trapped in one of double quantum dots is electrically manipulated with a microwave applied to the gate and read out via the Pauli spin blockade phenomenon [4]. These demonstrations were carried out in a condition where the up/down spin basis states of electrons remain ed degenerated under an in-plain magnetic field. As this condition ensures the energy conservation between photons and electrons, the entire Poincare sphere representing polarization states of photons can be mapped onto the Bloch sphere representing spin polarization states of electrons. We theoretically showed that relative spin coherence of two electrons can be also measured with the help of spin-flip tunneling of electrons between the dots [5]. Full Bell state measurement is also possible by the single -spin manipulation and Pauli spin blockade [6]. All of these functions are needed to build all semiconductor quantum repeaters and distributed quantum computers.

  9. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    Science.gov (United States)

    Bollati, Elena; Plimmer, Daniel; D’Angelo, Cecilia; Wiedenmann, Jörg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments. PMID:28677653

  10. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals.

    Science.gov (United States)

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, Jörg

    2017-07-04

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.

  11. Dual-Wavelength Interferometry and Light Emission Study for Experimental Support of Dual-Wire Ablation Experiments

    Science.gov (United States)

    Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John

    2017-10-01

    In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.

  12. Real-time display with large field of view on fourier domain optical coherence tomography at 1310 nm wavelength for dermatology

    Science.gov (United States)

    Xiao, Qing; Hou, Jue; Fu, Ling

    2012-06-01

    A Fourier domain optical coherence tomography (OCT) system with 1310 nm light was demonstrated to study inflammatory human skin and the skin coated with a moisturizer in vivo. By using a graphics processing unit (GPU), the display rate could reach 20 frames/s with 1000 A-scans contained in one image. The field of view (FOV) of the cross-sectional image is 7 mm in the lateral direction and the penetration depth is ˜1 mm in skin. The result shows that, in inflammatory skin, the epidermis became thicker and had a decreased scattering; furthermore, the region of the severe lesion present an uneven thickness of the epidermis compared with the peripheral area. For the result of a finger tip coated with the moisturizer, the antireflection effect was significant and the stratum corneum became more transparent. In this letter, we demonstrated that real-time display with a large FOV could enable screening of a large tissue area; thereby increasing the dermatologic diagnostic potential of the method by permitting a comparison of the lesion and the normal peripheral region.

  13. Surface plasmons modulate the spatial coherence of light in Young's interference experiment

    NARCIS (Netherlands)

    Gan, C. H.; Gbur, G.J.; Visser, T.D.

    2007-01-01

    It is shown how surface plasmons that travel between the slits in Young’s interference experiment can change the state of spatial coherence of the field that is radiated by the two apertures. Surprisingly, the coherence can both be increased and decreased, depending on the slit separation

  14. Correlations Among Near-Infrared and Short-Wavelength Autofluorescence and Spectral-Domain Optical Coherence Tomography in Recessive Stargardt Disease

    OpenAIRE

    Duncker, Tobias; Marsiglia, Marcela; Lee, Winston; Zernant, Jana; Tsang, Stephen H.; Allikmets, Rando; Greenstein, Vivienne C.; Sparrow, Janet R.

    2014-01-01

    In recessive Stargardt disease, areas of diminished near-infrared autofluorescence correlated with changes in spectral-domain optical coherence tomography images indicative of ongoing photoreceptor cell degeneration.

  15. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  16. Multi-wavelength lasers with suppressed spectral linewidth of 10 kHz.

    Science.gov (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Ge, Chunfeng

    2014-11-03

    High coherent multi-wavelength or multi-tone light source are in high demand for optical density wavelength division multiplexed (DWDM) networks as the telecommunication capacity expands exponentially. However the linewidths of commercial multi-wavelength semiconductor lasers are typically a few MHz which is not acceptable when the frequency spacing of the multi-tones is 10 GHz. In this paper, a novel and simple method to suppress the linewidths of the multi-wavelength from ~6 MHz to ~10 kHz using an all-optical approach is proposed and demonstrated. The linewidths of the multi-wavelength are suppressed by a factor of 600 and the noise level of the multi-wavelength is decreased by nearly 20 dB. Each wavelength of the multi-wavelength operates in single longitudinal mode. Finally, more than 8 wavelengths over 10 nm are suppressed simultaneously through the approach and scheme presented in this work.

  17. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    Directory of Open Access Journals (Sweden)

    Jung Ho Je

    2008-12-01

    Full Text Available The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis. By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  18. Imaging ischemic strokes in rodents using visible-light optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chen, Siyu; Liu, Qi; Shu, Xiao; Soetikno, Brian T.; Tong, Shanbao; Zhang, Hao F.

    2017-02-01

    Monitoring cortical hemodynamic response after ischemic stroke (IS) is essential for understanding the pathophysiological mechanisms behind IS-induced neuron loss. Functional optical coherence tomography (OCT) is an emerging technology that can fulfill the requirement, providing label-free, high-resolution 3D images of cerebral hemodynamics. Unfortunately, strong tissue scattering pose a significant challenge for existing OCT oximetry techniques, as they either ignore the effect or compensate it numerically. Here we developed a novel dual-depth sampling and normalization strategy using visible-light OCT (vis-OCT) angiograms that can provide robust and precise sO2 estimations within cerebral circulation. The related theoretical formulation were established, and its implication and limitations were discussed. We monitored mouse cortical hemodynamics using the newly-developed method. Focal ischemic stroke was induced through photothrombosis. The analysis on pre- and post-IS vis-OCT images revealed both vascular morphology and oxygenation altered substantially after the occlusion. First, the ischemic core could be clearly identified as angiographic intensity fell below the detection limit. In addition, vessel dilation presented universally in the penumbra region. Notably for pial arteriles, the percentage of increase demonstrated inverse relationship with their pre-occlusion, pre-dilation dimeter. Vis-OCT oxygenation maps on intact cortex revealed spatial sO2 variations within pial vessels. Specifically, sO2 in arterioles decreased as it bifurcated and plunged into deeper tissue. Similarly, venous sO2 was higher in the larger, more superficial pial brunches. However, such difference was no longer appreciable after photothrombosis. Averaged arteriole sO2 dropped to 64% - 67% in the penumbra region.

  19. Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Shangqi [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan Rengang; Kou Jun; Jiang Yun; Gao Jinyue [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China)

    2009-12-15

    We theoretically investigate the influence of a coherent pump field on the propagation of a weak light pulse of a probe field in a four-level atomic system. Due to the modulation of the pump field, the light pulse can be manipulated from subluminal to superluminal with negligible distortion. This scheme can be realized in both the ultracold and Doppler-broadened atomic systems. We also demonstrate that the spectral linewidth with an anomalous dispersion is reduced by thermal averaging; therefore, one can obtain a larger negative group refractive index in room-temperature vapor than the largest value achieved in ultracold atomic gas.

  20. Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish

    Science.gov (United States)

    Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael

    2013-01-01

    Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018

  1. The Phase Coherence of Light from Extragalactic Sources: Direct Evidence against First-Order Planck-Scale Fluctuations in Time and Space

    Science.gov (United States)

    Lieu, Richard; Hillman, Lloyd W.

    2003-03-01

    We present a method of directly testing whether time continues to have its usual meaning on scales of c5)1/2~5.4×10-44 s, the Planck time. According to quantum gravity, the time t of an event cannot be determined more accurately than a standard deviation of the form σt/t=a0(tP/t)α, where a0 and α are positive constants ~1 likewise, distances are subject to an ultimate uncertainty cσt, where c is the speed of light. As a consequence, the period and wavelength of light cannot be specified precisely; rather, they are independently subject to the same intrinsic limitations in our knowledge of time and space, so that even the most monochromatic plane wave must in reality be a superposition of waves with varying ω and k, each having a different phase velocity ω/k. For the entire accessible range of the electromagnetic spectrum this effect is extremely small, but it can cumulatively lead to a complete loss of phase information if the emitted radiation propagated a sufficiently large distance. Since, at optical frequencies, the phase coherence of light from a distant point source is a necessary condition for the presence of diffraction patterns when the source is viewed through a telescope, such observations offer by far the most sensitive and uncontroversial test. We show that the Hubble Space Telescope detection of Airy rings from the active galaxy PKS 1413+135, located at a distance of 1.2 Gpc, excludes all first-order (α=1) quantum gravity fluctuations with an amplitude a0>0.003. The same result may be used to deduce that the speed of light in vacuo is exact to a few parts in 1032.

  2. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser.

    Science.gov (United States)

    Stangner, Tim; Zhang, Hanqing; Dahlberg, Tobias; Wiklund, Krister; Andersson, Magnus

    2017-07-01

    Wide field-of-view imaging of fast processes in a microscope requires high light intensities motivating the use of lasers as light sources. However, due to their long spatial coherence length, lasers are inappropriate for such applications, as they produce coherent noise and parasitic reflections, such as speckle, degrading image quality. Therefore, we provide a step-by-step guide for constructing a speckle-free and high-contrast laser illumination setup using a rotating ground glass diffuser driven by a stepper motor. The setup is easy to build, cheap, and allows a significant light throughput of 48%, which is 40% higher in comparison to a single lens collector commonly used in reported setups. This is achieved by using only one objective to collect the scattered light from the ground glass diffuser. We validate our setup in terms of image quality, speckle contrast, motor-induced vibrations, and light throughput. To highlight the latter, we record Brownian motion of micro-particles using a 100× oil immersion objective and a high-speed camera operating at 2000 Hz with a laser output power of only 22 mW. Moreover, by reducing the objective magnification to 50×, sampling rates up to 10,000 Hz are realized. To help readers with basic or advanced optics knowledge realize this setup, we provide a full component list, 3D-printing CAD files, setup protocol, and the code for running the stepper motor.

  3. Discrimination between Doppler-shifted and non-shifted light in coherence domain path length resolved measurements of multiply scattered light.

    Science.gov (United States)

    Varghese, B; Rajan, V; van Leeuwen, T G; Steenbergen, W

    2007-10-01

    We show a novel technique to distinguish between Doppler shifted and unshifted light in multiple scattering experiments on mixed static and dynamic media. With a phase modulated low coherence Mach- Zehnder interferometer, optical path lengths of shifted and unshifted light and path length dependent Doppler broadening are measured in a two-layer tissue phantom, with a superficial static layer of different thickness covering a semi-infinite dynamic medium having identical optical properties. No Doppler broadening is observed until a certain optical path length depending on the thickness of the superficial static layer. From the minimum optical path length corresponding to the Doppler-shifted light the thickness of the static layer that overlies the dynamic layer can be estimated. Validation of the experimentally determined thickness of the static layer is done with the Doppler Monte Carlo technique. This approach has potential applications in discriminating between statically and dynamically scattered light in the perfusion signal and in determining superficial burn depths.

  4. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    OpenAIRE

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, J?rg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion i...

  5. Wavelength, beam size and type dependences of cerebral low-level light therapy: A Monte Carlo study on visible Chinese human

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Duan, Meixue; Sun, Yunlong; Li, Kai

    2014-02-01

    Low level light therapy (LLLT) has been clinically utilized for many indications in medicine requiring protection from cell/tissue death, stimulation of healing and repair of injuries, pain reduction, swelling and inflammation. Presently, use of LLLT to treat stroke, traumatic brain injury, and cognitive dysfunction is attracting growing interest. Near-infrared light can penetrate into the brain tissue, allowing noninvasive treatment to be carried out with few treatment-related adverse events. Optimization of LLLT treatment effect is one key issue of the field; however, only a few experimental tests on mice for wavelength selection have been reported. We addressed this issue by low-cost, straightforward and quantitative comparisons on light dosage distribution in Visible Chinese human head with Monte Carlo modeling of light propagation. Optimized selection in wavelength, beam type and size were given based on comparisons among frequently-used setups (i.e., wavelengths: 660 nm, 810 nm, 980 nm; beam type: Gaussian and flat beam; beam diameter: 2 cm, 4 cm, 6cm).This study provided an efficient way to guide optimization of LLLT setup and selection on wavelength, beam type and size for clinical brain LLLT.

  6. Topical aminolaevulinic acid- and aminolaevulinic acid methyl ester-based photodynamic therapy with red and violet light: influence of wavelength on pain and erythema.

    Science.gov (United States)

    Mikolajewska, P; Iani, V; Juzeniene, A; Moan, J

    2009-11-01

    Photodynamic therapy (PDT) is based on the combination of an exogenously administered precursor of photosensitizer [protoporphyrin IX (PpIX)] synthesis and exposure to light. Choosing the optimal wavelength is important. Red light penetrates deeper into tissue, while violet light is more efficient in activating PpIX but does not penetrate so deeply. We studied PpIX formation and the PDT effect after application to human skin of creams containing aminolaevulinic acid (ALA) and aminolaevulinic acid methyl ester (MAL). The aim of the study was to investigate whether the wavelength of the light used has an influence on pain sensations during topical PDT with the different prodrugs. ALA cream (10%) and MAL cream (10%) were topically applied on the skin of 10 healthy volunteers. After 24 h the application site was exposed to 8 mW cm(-2) violet laser or to 100 mW cm(-2) red laser light. The erythema index was monitored up to 24 h after light exposure. For the first time the pain during topical ALA- and MAL-PDT was assessed by measuring the time taken for pain to occur. Also, for the first time, the intensities of the light sources were calibrated so as to have the same relative quantum efficiency. Results The pain sensation during ALA-PDT with red light came 22 s sooner than during ALA-PDT with violet light, which is statistically significant (P red light gave stronger and more persistent erythema than ALA-PDT with violet light. ALA induced about three times more PpIX than MAL. No statistically significant differences were found for erythema, or for the time for pain to occur, in the case of MAL-PDT with red vs. violet light. Topical ALA-PDT with violet light allows longer exposure times before pain is induced and gives less erythema as compared with topical ALA-PDT with red light.

  7. Novel InN/InGaN multiple quantum well structures for slow-light generation at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, F.B.; Valdueza-Felip, S.; Gonzalez-Herraez, M. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Kandaswamy, P.K.; Lahourcade, L.; Calvo, V.; Monroy, E. [CEA-Grenoble, INAC/SP2M, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Martin-Lopez, S.; Corredera, P. [Departamento de Metrologia, Instituto de Fisica Aplicada (CSIC), 28006 Madrid (Spain)

    2010-01-15

    The third order susceptibility is responsible for a variety of optical non-linear phenomena - like self focusing, phase conjugation and four-wave mixing - with applications in coherent control of optical communication. InN is particularly attractive due to its near-IR bandgap and predicted high nonlinear effects. Moreover, the synthesis of InN nanostructures makes possible to taylor the absorption edge in the telecomunication spectral range and enhance nonlinear parameters thanks to carrier confinement. In this work, we assess the nonlinear optical behavior of InN/In{sub x}Ga{sub (1-x)}N (0.9 > x > 0.7) multiple-quantum-well (MQW) structures grown by plasma-assisted MBE on GaN-on-sapphire templates. Low-temperature (5 K) photoluminescence measurements show near-IR emission whose intensity increases with the In content in the barriers, which is explained in terms of the existence of piezoelectric fields in the structures. The nonlinear optical absorption coefficient, {alpha}{sub 2}, were measured at 1.55 {mu}m using the Z-scan method. We observe a strong dependence of the nonlinear absorption coefficient on the In content in the barriers. Saturable absorption is observed for the sample with x = 0.9, with {alpha}{sub 2} {proportional_to} -9 x 10{sub 3} cm/GW. For this sample, an optically controlled reduction of the speed of light by a factor S {proportional_to} 80 is obtained at 1.55 {mu}m (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2008-02-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach-Zehnder interferometer, at a high phase modulation angle. For dynamic turbid media this results in Doppler broadened phase modulation interference peaks at the modulation frequency and its multiples. The signal to noise ratio is increased by almost one order or magnitude for large modulation angles and the shape of the spectral peaks resulting from the interference of Doppler shifted sample waves and reference light is not changed. The path length dependent Doppler broadening is compared with the theoretical predictions in the single scattered and diffusive regimes. The experimentally measured optical path lengths are validated with the Monte Carlo technique.

  9. The Effects of Various LED Light Wavelengths to the Physiological and Morphological Parameters of Stevia (Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Esra UCAR

    2016-09-01

    Full Text Available In this study, it was investigated the growth of stevia (Stevia rebaudiana Bertoni under various wavelengths of LED lamp (Light Emitting Diodes, which can emit daylight (cool white; 400–700 nm, red (620–630 nm and blue (465–485 nm wavelengths of the light in the electromagnetic spectrum. In all applications, quantity of PAR (photosynthetically active radiation was adjusted as 150 µmol.m-2 s-1. Study had maintained in plant breeding cabin 16 hours light and 8 hours dark environment. Results demonstrated that while the highest plant height was determined in the “30% blue light+ 70% red light” application, the highest stem length was found in the “50% blue light + 50% red light” application. In addition, the number of the stems reached the highest value in the “70% blue light + 30% red light” application. Consequently, a correlation was observed between negative “a” value and the amount of chlorophyll. Because of the hereby obtained results, comparing to other applications, the “50% blue light + 50% red light” was found as the best light application to obtain optimum yield values of stevia.

  10. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    Science.gov (United States)

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design......We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  12. Quantification of Doppler broadening in path length resolved diffusive light scattering using phase modulated low-coherence interferometry

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-02-01

    We describe path length resolved Doppler measurements of the multiply scattered light in turbid media using phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. A Doppler broadened phase modulation interference peak observed at the modulation frequency shows an increase in the average Doppler shift with optical path length. The path length dependent Doppler broadening of scattered light due to the detection of multiple scattered light is measured from the Lorentzian linewidth and the results are compared with the predictions of Diffusive Wave Spectroscopy. For particles with small scattering anisotropy, the diffusion approximation shows good agreement with our experimental results. For anisotropic scatterers, the experimental results show deviations from the Diffusion theory. The optical path lengths are determined experimentally from the Zero order moment of the phase modulation peak around the modulation frequency and the results are validated with the Monte Carlo technique.

  13. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.

    Science.gov (United States)

    Yang, Chunyong; Xu, Chuang; Ni, Wenjun; Gan, Yu; Hou, Jin; Chen, Shaoping

    2017-10-16

    A novel scheme is proposed to mitigate the atmospheric turbulence effect in free space optical (FSO) communication employing orbital angular momentum (OAM) multiplexing. In this scheme, the Gaussian beam is used as an auxiliary light with a common-path to obtain the distortion information caused by atmospheric turbulence. After turbulence, the heterodyne coherent detection technology is demonstrated to realize the turbulence mitigation. With the same turbulence distortion, the OAM beams and the Gaussian beam are respectively utilized as the signal light and the local oscillation light. Then the turbulence distortion is counteracted to a large extent. Meanwhile, a phase matching method is proposed to select the specific OAM mode. The discrimination between the neighboring OAM modes is obviously improved by detecting the output photocurrent. Moreover, two methods of beam size adjustment have been analyzed to achieve better performance for turbulence mitigation. Numerical results show that the system bit error rate (BER) can reach 10-5 under strong turbulence in simulation situation.

  14. Atom Interferometer Gyroscope with Spin-Dependent Phase Shifts Induced by Light near a Tune-Out Wavelength

    CERN Document Server

    Trubko, Raisa; Germaine, Michael T St; Gregoire, Maxwell D; Holmgren, William F; Hromada, Ivan; Cronin, Alexander D

    2015-01-01

    Tune-out wavelengths measured with an atom interferometer are sensitive to laboratory rotation rates because of the Sagnac effect, vector polarizability, and dispersion compensation. We observed shifts in measured tune-out wavelengths as large as 213 pm with a potassium atom beam interferometer, and we explore how these shifts can be used for an atom interferometer gyroscope.

  15. Monte Carlo Green's function formalism for the propagation of partially coherent light.

    Science.gov (United States)

    Prahl, Scott A; Fischer, David G; Duncan, Donald D

    2009-07-01

    We present a Monte Carlo-derived Green's function for the propagation of partially spatially coherent fields. This Green's function, which is derived by sampling Huygens-Fresnel wavelets, can be used to propagate fields through an optical system and to compute first- and second-order field statistics directly. The concept is illustrated for a cylindrical f/1 imaging system. A Gaussian copula is used to synthesize realizations of a Gaussian Schell-model field in the pupil plane. Physical optics and Monte Carlo predictions are made for the first- and second-order statistics of the field in the vicinity of the focal plane for a variety of source coherence conditions. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. This formalism can be generally employed to treat the interaction of partially coherent fields with diffracting structures.

  16. Multi-Wavelength Spectroscopic Observations of a White Light Flare Produced Directly by Non-thermal Electrons

    Science.gov (United States)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David

    2017-08-01

    An X1.6 flare on 2014 October 22 was observed by multiple spectrometers in UV, EUV and X-ray (Hinode/EIS, IRIS, and RHESSI), and multi-wavelength imaging observations (SDO/AIA and HMI). We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. We calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3-7.7)x1010 erg cm-2 s-1 for a given low-energy cutoff of 30-40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg II subordinate line is about (4.6-6.7)×109 erg cm-2 s-1: ˜6%-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  17. Spatial interference of light: transverse coherence and Alford and Gold effect

    CERN Document Server

    Jefferson, Flórez; Omar, Calderón-Losada; Luis-José, Salazar-Serrano; Alejandra, Valencia

    2015-01-01

    We study the interference between two parallel-propagating Gaussian beams, originated from the same source, as their transverse separation is tuned. The interference pattern as a function of such separation lead us to determine the spatial coherence of the original beam, in a similar way that a Michelson-Morley interferometer can be employed to measure the temporal coherence of a transform limited pulse. Moreover, performing a Fourier transform of the two-beam transverse plane, we observe an intensity modulation in the transverse momentum variable. This observation resembles the Alford and Gold Effect reported in time and frequency variables so far.

  18. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  19. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... illustrate the different noise measurements and their impact on a state of the art UHR-OCT system producing images of skin. The sensitivity of the system was higher than 95 dB, with an axial resolution below 4μm....

  20. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source.

    Science.gov (United States)

    Turner, Joshua J; Dakovski, Georgi L; Hoffmann, Matthias C; Hwang, Harold Y; Zarem, Alex; Schlotter, William F; Moeller, Stefan; Minitti, Michael P; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G Ivan; Holmes, Michael

    2015-05-01

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm(-1) electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  1. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  2. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII.

    Science.gov (United States)

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-08-30

    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.

  3. Uncovering new thermal and mechanical behavior at the nanoscale using coherent extreme ultraviolet light

    Science.gov (United States)

    Hoogeboom-Pot, Kathleen Marie

    Tremendous recent progress in nanofabrication capabilities has made high-quality single-atomic layers and nanostructures with dimensions well below 50 nm commonplace, enabling unprecedented access to materials at the nanoscale. However, tools and techniques capable of characterizing the properties and function of nanosystems are still quite limited, leaving much of the fundamental physics that dominates material behavior in the deep nano-regime still unknown. Further understanding gained by studying nanoscale materials is critical both to fundamental science and to continued technological development. This thesis applies coherent extreme ultraviolet (EUV) light from tabletop high harmonic generation to study nanoscale systems on their intrinsic length and time scales (nanometers and femtoseconds, and above), specifically following thermal transport and acoustic dynamics. These studies have shown where and how nanostructured material properties can be quite different from their bulk counterparts. This has in turn allowed us to develop new theoretical descriptions to guide further work. By observing heat dissipation from the smallest nanostructure heat sources measured to date (at 20 nm in lateral size), this work uncovers a previously unobserved and unpredicted nanoscale thermal transport regime where both size and spacing of heat sources play a role in determining the heat dissipation effciency. Surprisingly, this shows that nanoscale heat sources can cool more quickly when spaced close together than when far apart. This discovery is significant to the engineering of thermal management in nanoscale systems and devices while also revealing new insight into the fundamental nature of thermal transport. Furthermore, we harness this new regime to demonstrate the first experimental measurement of the differential contributions of phonons with different mean free paths to thermal conductivity, down to mean free paths as short as 14 nm for the first time. The same

  4. In Vitro Bactericidal Effects of 625, 525, and 425 nm Wavelength (Red, Green, and Blue) Light-Emitting Diode Irradiation

    Science.gov (United States)

    Kim, SangWoo; Kim, JiSun; Lim, WonBong; Jeon, SangMi; Kim, OkSu; Koh, Jeong-Tae; Kim, Chang-Su; Choi, HongRan

    2013-01-01

    Abstract Objective: The purpose of this study was to evaluate the relationship of 625, 525, and 425 nm wavelengths, providing average power output and effects on three common pathogenic bacteria. Background data: Ultraviolet (UV) light kills bacteria, but the bactericidal effects of UV may not be unique, as 425 nm produces a similar effect. The bactericidal effects of light-emitting diode (LED) wavelengths such as 625 and 525 nm have not been described. Before conducting clinical trials, the appropriate wavelength with reasonable dose and exposure time should be established. Materials and methods: The bactericidal effects of 625, 525, and 425 nm wavelength LED irradiation were investigated in vitro for the anaerobic bacterium Porphyromonas gingivalis and two aerobes (Staphylococcus aureus and Escherichia coli DH5α). Average power output was 6 mW/cm2 for 1 h. The bacteria were exposed to LED irradiation for 1, 2, 4, and 8 h (21.6, 43.2, 86.4, and 172.8 J/cm2, respectively). LED irradiation was performed during growth on agar and in broth. Control bacteria were incubated without LED irradiation. Bacterial growth was expressed in colony-forming units (CFU) and at an optical density at 600 nm in agar and broth. Results: The bactericidal effect of LED phototherapy depended upon wavelength, power density, bacterial viable number, and bacteria species. The bactericidal effect of 425 and 525 nm irradiation varied depending upon the bacterial inoculation, compared with unirradiated samples and samples irradiated with red light. Especially, P. gingivalis and E. coli DH5α were killed by 425 nm, and S. aureus growth was inhibited by 525 nm. However, the wavelength of 625 nm was not bactericidal for P. gingivalis, E. coli DH5α, or S. aureus. Conclusions: Irradiation at 625 nm light was not bactericidal to S. aureus, E. coli, and P. gingivalis, whereas wavelengths of 425 and 525 nm had bactericidal effects. S. aureus was also killed at 525

  5. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  6. Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules.

    Science.gov (United States)

    Sharkey, Katherine M; Carskadon, Mary A; Figueiro, Mariana G; Zhu, Yong; Rea, Mark S

    2011-08-01

    We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age±SD=21.8±3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive "blue" (470nm, ∼225lux, n=12) or "dim" (<1lux, n=13) light for 1h after waking each day. Head-worn "Daysimeters" measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2×2 ANOVA. After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean±SD) were 1.5±1.1h in the dim light group and 1.4±0.7h in the blue light group. Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A comparison study of Riboflavin/UV-A and Rose-Bengal/Green light cross-linking of the rabbit corneas using optical coherence elastography

    Science.gov (United States)

    Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Kazemi, Tina; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    The biomechanical properties of the cornea are critical factors which determine its health and subsequent visual acuity. Keratoconus is a structural degeneration of the cornea which can diminish vision quality. Riboflavin/UV-A corneal collagen cross-linking (UV-CXL) is an emerging treatment that increases the stiffness of the cornea and improves its ability to resist further degeneration. While UV-CXL has shown great promise for effective therapy of the keratoconus, there are concerns associated with the UV irradiation, such as keratocyte cytotoxicity. Rose-bengal/green light corneal collagen cross-linking (RGX) has been proposed as an alternative to UV-CXL. Because of the high absorbance of the rose-bengal dye at green wavelengths, the treatment time is significantly shorter than with UV-CXL. Moreover, because green light is used in lieu of UV irradiation, there are no cytotoxic side-effects. In this study, noncontact optical coherence elastography (OCE) was used to compare the outcomes of UV-CXL and RGX treatment in rabbit cornea. Low-amplitude (micrometer scale) elastic waves were induced by a focused air-pulse loading system. The elastic wave propagation was then imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. The changes in the viscoelasticity of the corneas were quantified by a previously developed modified Rayleigh Lamb frequency model. The depth-resolved micro-scale phase-velocity distribution in the cornea was used to reveal the depth-wise heterogeneity before and after both cross-linking techniques. Our results show that UV-CXL and RGX increased the stiffness of the corneas by ~54% and ~5% while reducing the viscosity by ~42% and ~17%, respectively. The depth-wise phase velocities showed that UV-CXL affected the anterior ~1/3 of the corneas, while RGX only affected the anterior ~1/7 of the corneas.

  8. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  9. Quantum phase fluctuations of coherent and thermal light coupled to a non-degenerate parametric oscillator beyond rotating wave approximation

    Science.gov (United States)

    Alam, Mohosin; Mandal, Swapan; Wahiddin, Mohamed Ridza

    2017-09-01

    The essence of the rotating wave approximation (RWA) is to eliminate the non-conserving energy terms from the interaction Hamiltonian. The cost of using RWA is heavy if the frequency of the input radiation field is low (e.g. below optical region). The well known Bloch-Siegert effect is the out come of the inclusion of the terms which are normally neglected under RWA. We investigate the fluctuations of the quantum phase of the coherent light and the thermal light coupled to a nondegenerate parametric oscillator (NDPO). The Hamiltonian and hence the equations of motion involving the signal and idler modes are framed by using the strong (classical) pump condition. These differential equations are nonlinear in nature and are found coupled to each other. Without using the RWA, we obtain the analytical solutions for the signal and idler fields. These solutions are obtained up to the second orders in dimensionless coupling constants. The analytical expressions for the quantum phase fluctuation parameters due to Carruther's and Nieto are obtained in terms of the coupling constants and the initial photon numbers of the input radiation field. Moreover, we keep ourselves confined to the Pegg-Barnett formalism for measured phase operators. With and without using the RWA, we compare the quantum phase fluctuations for coherent and thermal light coupled to the NDPO. In spite of the significant departures (quantitative), the qualitative features of the phase fluctuation parameters for the input thermal light are identical for NDPO with and without RWA. On the other hand, we report some interesting results of input coherent light coupled to the NDPO which are substantially different from their RWA counterpart. In spite of the various quantum optical phenomena in a NDPO, we claim that it is the first effort where the complete analytical approach towards the solutions and hence the quantum phase fluctuations of input radiation fields coupled to it are obtained beyond rotating wave

  10. Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances

    Science.gov (United States)

    Peng, Pai; Liu, Yong-Chun; Xu, Da; Cao, Qi-Tao; Lu, Guowei; Gong, Qihuang; Xiao, Yun-Feng

    2017-12-01

    Quantum manipulation is challenging in localized-surface plasmon resonances (LSPRs) due to strong dissipations. To enhance quantum coherence, here we propose to engineer the electromagnetic environment of LSPRs by placing metallic nanoparticles (MNPs) in optical microcavities. An analytical quantum model is first built to describe the LSPR-microcavity interaction, revealing the significantly enhanced coherent radiation and the reduced incoherent dissipation. Furthermore, when a quantum emitter interacts with the LSPRs in the cavity-engineered environment, its quantum yield is enhanced over 40 times and the radiative power over one order of magnitude, compared to those in the vacuum environment. Importantly, the cavity-engineered MNP-emitter system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of quantum plasmonics, quantum information processing, precise sensing, and spectroscopy.

  11. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    CERN Document Server

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  12. Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths

    Science.gov (United States)

    Tao, Wei; Bao, Hongchun; Gu, Min

    2011-05-01

    Real-time monitoring the variation of chlorophyll distributions and cellular structures in leaves during plant growth provides important information for understanding the physiological statuses of plants. Two-photon-excited autofluorescence imaging and second harmonic generation imaging of leaves can be used for monitoring the nature intrinsic fluorophores distribution and cellular structures of leaves by the use of the near-infrared region of light which has minimal light absorption by endogenous molecules and thus increases tissue penetration. However, the two-photon absorption peak of intrinsic fluorophores of a ficus benjamina leaf is 50 nm away from the second harmonic generation excitation wavelength, which cannot be effectively excited by a femtosecond laser beam with one central wavelength. This paper shows that a highly polarized supercontinuum light generated from a birefringent nonlinear photonic crystal fiber with two zero-dispersion wavelengths can effectively excite two-photon autofluorescence as well as second harmonic generation signals for simultaneously monitoring intrinsic fluorophore distributions and non-centrosymmetric structures of leaves.

  13. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation.

    Science.gov (United States)

    Wang, X H; Li, J-G; Kamiyama, H; Moriyoshi, Y; Ishigaki, T

    2006-04-06

    Well-crystallized iron(III)-doped TiO2 nanopowders with controlled Fe3+ doping concentration and uniform dopant distribution, have been synthesized with plasma oxidative pyrolysis. The photocatalytic reactivity of the synthesized TiO2 nanopowders with a mean particle size of 50-70 nm was quantified in terms of the degradation rates of methyl orange (MO) in aqueous TiO2 suspension under UV (mainly 365 and 316 nm) and visible light irradiation (mainly 405 and 436 nm). The photodecomposition of MO over TiO2 nanopowders followed a distinct two-stage pseudo first order kinetics. Interestingly, the photocatalytic reactivity depends not only on the iron doping concentration but also on the wavelength of the irradiating light. Under UV irradiation, nominally undoped TiO2 had much higher reactivity than Fe3+ -doped TiO2, suggesting that Fe3+ doping (> 0.05 at. %) in TiO2 with a mean particle size of approximately 60 nm was detrimental to the photocatalytic decomposition of methyl orange. Whereas, under visible light irradiation, the Fe3+ -doped TiO2 with an intermediate iron doping concentration of approximately 1 at. % had the highest photocatalytic reactivity due to the narrowing of band gap so that it could effectively absorb the light with longer wavelength. A strategy for improving the photocatalytic reactivity of Fe3+ -doped TiO2 used in the visible light region is also proposed.

  14. Coherent and squeezed states of light in linear media with time-dependent parameters by Lewis-Riesenfeld invariant operator method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ryeol [Department of Physics and Advanced Materials Sciences, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2006-02-14

    We investigated coherent and squeezed states of light in linear media whose parameters are explicitly dependent on time by making use of the Lewis-Riesenfeld invariant operator method. Not only the field strengths but also the fluctuations of the fields both in coherent and in squeezed states are decayed with time. The relative noise of the field strengths are calculated in coherent state. Quantum statistical properties of the chaotic field are investigated. We applied our theory to a phenomenological model of the biophoton system and compared the corresponding result of the uncertainty product with that obtained from a previous report.

  15. High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography.

    Science.gov (United States)

    Motaghian Nezam, S M R

    2008-08-01

    A compact high-speed tuning laser source is demonstrated in two different configurations using a polygonal mirror scanner without a telescope. It is shown that the filter configuration finesse increases by utilizing multiple reflections from the polygon facet(s) and grating illumination(s). Theoretically, the free spectral range (FSR), the instantaneous linewidth, and the finesse of each filter configuration are derived. For single grating illumination, the measured coherence length, FSR, and power were 2.8 mm, 184 nm, and 40 mW at the scanning frequency of 50 kHz, respectively. Coherence length, FSR, and power of the second laser configuration were 6.2 mm, 117 nm, and 35 mW, respectively. Finally, images of a human finger were acquired in vivo using two proposed swept-source configurations.

  16. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  17. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP.

    Science.gov (United States)

    Gong, Wen-Liang; Yan, Jie; Zhao, Ling-Xi; Li, Chong; Huang, Zhen-Li; Tang, Ben Zhong; Zhu, Ming-Qiang

    2016-11-02

    Photoswitchable fluorophores are promising in single-molecule optical devices and super-resolution fluorescence imaging, especially in single-molecule photo-activated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). However, the scarcity of current photoswitchable fluorophores stimulates researchers to develop complicated optical systems and processing software, in accordance with the limited photoswitchable fluorescent proteins and organic fluorophores. Previous efforts to develop synthetic photoswitchable fluorophores have exhibited their promising potential in super-resolution fluorescence imaging. Here, we have designed and synthesized a fluorescence molecular switch with reversible green emission, a napthalimide-hexaarylbiimidazole conjugate (NI-N-HABI), which exhibits strong fluorescence in the emissive state, with fast thermal fading of the photochromism and spontaneous fluorescence recovery after photobleaching (FRAP) induced by blue-light. The photoswitchable fluorophore enables the red-edge wavelength of the optical response to red-shift from the initial near-UV region at less than 400 nm, to 500 nm. The relatively fast fading speed of NI-N-HABI and its sensitivity to longer blue-light irradiation (400-500 nm) have allowed simplification of the optical microscopic system from a two-wavelength laser source to a single-wavelength laser. We applied NI-N-HABI in single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for the self-assembly and solvent annealing of amphiphilic block polymers, with 50 nm of optical resolution. Single-wavelength-controlled dynamic super-resolution fluorescence imaging facilitates nanoscale optical visualization for the dynamic physical and chemical fluctuation processes of stimuli-responsive nanostructures.

  18. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  19. Impulsive Light Scattering by Coherent Phonons in LaAlO3: Disorder and Boundary Effects

    Science.gov (United States)

    Liu, Y.; Frenkel, A.; Garrett, G. A.; Whitaker, J. F.; Fahy, S.; Uher, C.; Merlin, R.

    1995-07-01

    Pump-probe measurements of coherent-phonon-induced changes of refractive index in LaAlO3 are dominated by normally weak boundary effects. Atomic displacements in the range 50-500 μÅ were generated and probed by femtosecond laser pulses through impulsive Raman scattering. The absence of a bulk contribution is ascribed to phase mismatch due to domain disorder. Selection rules are consistent with a Raman model considering reflection and transmission at interfaces. Intensities and phonon parameters as a function of temperature agree well with incoherent Raman data.

  20. Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system

    Science.gov (United States)

    Hang, Chao; Huang, Guoxiang

    2014-01-01

    We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.

  1. A telecom-wavelength conversion from near-infrared light based on a cold Rubidium atomic ensemble

    Science.gov (United States)

    Chang, Wei; Pu, Yunfei; Jiang, Nan; Li, Chang; Zhang, Sheng; Duan, Luming; Center for Quantum Information Lab4, IIIS, Tsinghua University Team

    2017-04-01

    Exponential photon transmission losses in fiber is a severe limitation to realize long-distance quantum communication. It's helpful to use telecom-wavelength photon transmission to mitigate these absorption losses. However, typical atomic electronic transition from ground-level is in visible wavelengths or near-infrared wavelengths, such as transitions based on Rubidium. Here we report our progress in telecom-wavelength conversion from 780nm to 1475nm and from 795nm to 1530nm in a cold optically thick gas of Rubidium. Both these two conversions are using a diamond configuration transition that we use 5S1/2-5P3/2-4D3/2 cascade transition for the 780nm to 1475nm route and 5S1/2-5P1/2-4D3/2 cascade transition for the 795nm to 1530nm route. This work was supported by the National Basic Research Program of China and the quantum information project from the Ministry of Education of China. LMD acknowledges in addition support from the IARPA MUSIQC program, the AFOSR and the ARO MURI program.

  2. Surfactant-free synthesis of Cu2O hollow spheres and their wavelength-dependent visible photocatalytic activities using LED lamps as cold light sources.

    Science.gov (United States)

    Wang, Yuxi; Huang, Da; Zhu, Xingzhong; Ma, Yujie; Geng, Huijuan; Wang, Ying; Yin, Guilin; He, Dannong; Yang, Zhi; Hu, Nantao

    2014-01-01

    A facile synthesis route of cuprous oxide (Cu2O) hollow spheres under different temperatures without the aid of a surfactant was introduced. Morphology and structure varied as functions of reaction temperature and duration. A bubble template-mediated formation mechanism was proposed, which explained the reason of morphology changing with reaction temperature. The obtained Cu2O hollow spheres were active photocatalyst for the degradation of methyl orange under visible light. A self-designed equipment of light emitting diode (LED) cold light sources with the wavelength of 450, 550, and 700 nm, respectively, was used for the first time in the photocatalysis experiment with no extra heat introduced. The most suitable wavelength for Cu2O to photocatalytic degradation is 550 nm, because the light energy (2.25 eV) is closest to the band gap of Cu2O (2.17 eV). These surfactant-free synthesized Cu2O hollow spheres would be highly attractive for practical applications in water pollutant removal and environmental remediation.

  3. Wavelength-specific lighted suction instrument for 5-aminolevulinic acid fluorescence-guided resection of deep-seated malignant glioma: technical note.

    Science.gov (United States)

    Morshed, Ramin A; Han, Seunggu J; Lau, Darryl; Berger, Mitchel S

    2017-06-30

    Surgery guided by 5-aminolevulinic acid (ALA) fluorescence has become a valuable adjunct in the resection of malignant intracranial gliomas. Furthermore, the fluorescence intensity of biopsied areas of a resection cavity correlates with histological identification of tumor cells. However, in the case of lesions deep within a resection cavity, light penetration may be suboptimal, resulting in less excitation of 5-ALA metabolites, leading to decreased fluorescence emission. To address this obstacle, the authors report on the use of a 400-nm wavelength fiber-optic lighted suction instrument that can be used both during resection of a tumor and to provide direct light to deeper areas of a resection cavity. In the presented case, this wavelength-specific lighted suction instrument improved the fluorescence intensity of patches of malignant tissue within the resection cavity. This technique may further improve the utility of 5-ALA in identifying tumor-infiltrated tissue for deep-seated lesions. Additionally, this tool may have implications for scoring systems that correlate 5-ALA fluorescence intensity with histological identification of malignant cells.

  4. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    Science.gov (United States)

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2015-09-18

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Coherent control of light transport in a dense and disordered atomic ensemble

    Science.gov (United States)

    Sheremet, A. S.; Kornovan, D. F.; Gerasimov, L. V.; Gouraud, B.; Laurat, J.; Kupriyanov, D. V.

    2015-05-01

    Light transport in a dense and disordered cold atomic ensemble, where the cooperation of atomic dipoles essentially modifies their coupling with the radiation modes, offers an alternative approach to light-matter interfacing protocols. Here, we show how the cooperativity and quasistatic dipole interaction affect the process of light propagation under the conditions of electromagnetically induced transparency (EIT). We perform comparative analysis of the self-consistent approach with ab initio microscopic calculations and emphasize the role of the interatomic interaction in the dipoles' dynamics. Our results show that in such a dense and strongly disordered system the EIT-based light storage protocol stays relatively insensitive to configuration variations and can be obtained with essentially fewer atoms than are normally needed for dilute systems.

  6. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    Science.gov (United States)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  7. Effect of high wavelengths low intensity light during dark period on physical exercise performance, biochemical and haematological parameters of swimming rats.

    Science.gov (United States)

    Beck, W; Gobatto, C

    2016-03-01

    Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; led to worse haematological and biochemical conditions, demonstrating that EI alone can influence physiological parameters and jeopardise result interpretation. SI promotes normal physiological conditions and greater aerobic tolerance than EI, showing the importance of a correct illumination pattern for all researchers that employ nocturnal rats for health/disease or sports performance experiments.

  8. Objective assessment of intensive targeted treatment for solar lentigines using intense pulsed light with wavelengths between 500 and 635 nm

    Science.gov (United States)

    Tsunemi, Yuichiro; Kawashima, Makoto

    2015-01-01

    Background and Objectives Solar lentigines are commonly found in sun‐exposed areas of the body including hands, neck, or face. This study evaluates the efficacy of an intense pulsed light (IPL) device, with wavelengths between 500 and 635 nm and delivered with a targeted tip, for the treatment of solar lentigines on Japanese skin. Study Design/Materials and Methods Forty Japanese patients with solar lentigines received one IPL treatment with a targeted treatment tip that emits wavelengths between 500 and 635 nm and contact cooling. Pulses were delivered through a targeted tip to each lentigo until mild swelling and a gray color were observed. Digital photographs and gray level histogram values were taken pre‐ and post‐treatment, and patient assessments were recorded post‐treatment. Results Significant improvement was observed for all patients in digital photographs and mean values of gray level histograms (P Wiley Periodicals, Inc. PMID:26462982

  9. Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry.

    Science.gov (United States)

    Varghese, B; Rajan, V; van Leeuwen, T G; Steenbergen, W

    2007-07-23

    We show experimental validation of a novel technique to measure optical path length distributions and path length resolved Doppler broadening in turbid media for different reduced scattering coefficients and anisotropies. The technique involves a phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. Water suspensions of Polystyrene microspheres with high scattering and low absorption levels are used as calibrated scattering phantoms. The path length dependent diffusion broadening or Doppler broadening of scattered light is shown to agree with Diffusive Wave Spectroscopy within 5%. The optical path lengths are determined experimentally from the zero order moment of the phase modulation peak around the modulation frequency in the power spectrum and the results are validated with Monte Carlo simulations.

  10. Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry

    Science.gov (United States)

    Varghese, B.; Rajan, V.; van Leeuwen, T. G.; Steenbergen, W.

    2007-07-01

    We show experimental validation of a novel technique to measure optical path length distributions and path length resolved Doppler broadening in turbid media for different reduced scattering coefficients and anisotropies. The technique involves a phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. Water suspensions of Polystyrene microspheres with high scattering and low absorption levels are used as calibrated scattering phantoms. The path length dependent diffusion broadening or Doppler broadening of scattered light is shown to agree with Diffusive Wave Spectroscopy within 5%. The optical path lengths are determined experimentally from the zero order moment of the phase modulation peak around the modulation frequency in the power spectrum and the results are validated with Monte Carlo simulations.

  11. X-ray optics design studies for the SLAC 1.5-15 A Linac Coherent Light Source (LCLS)

    CERN Document Server

    Tatchyn, R; Boyce, R; Fassò, A; Montgomery, J; Vylet, V; Walz, D; Yotam, R; Freund, A K; Howells, M

    1999-01-01

    In recent years, a number of systematic studies have been carried out on the design and R and D aspects of X-ray free-electron laser (XRFEL) schemes based on driving highly compressed electron bunches from a multi-GeV linac through long (30 m - 100+ m) undulators. These sources, when operated in the self-amplified spontaneous emission (SASE) mode, feature singularly high peak output power densities and frequently unprecedented combinations of phase-space and output-parameter values. This has led to correspondingly pivotal design challenges and opportunities for the optical materials, systems, components, and experimental configurations for transporting and utilizing this radiation. In this paper we summarize the design and R and D status of the X-ray optics section of the SLAC Linac Coherent Light Source (LCLS), a 1.5 Angstrom SASE FEL driven by the last kilometer of the SLAC 3-kilometer S-band linac.

  12. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Joshua J., E-mail: joshuat@slac.stanford.edu; Dakovski, Georgi L.; Hoffmann, Matthias C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hwang, Harold Y. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Staub, Urs [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Johnson, Steven [ETH Zurich, Institute for Quantum Electronics, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-11

    This paper describes new instrumentation developments at the LCLS for materials studies using THz laser excitation and resonant soft X-ray scattering. This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm{sup −1} electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  13. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  14. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  15. A calibrator based on the use of low-coherent light source straightness interferometer and compensation method.

    Science.gov (United States)

    Lin, Shyh-Tsong; Yeh, Sheng-Lih; Chiu, Chi-Shang; Huang, Mou-Shan

    2011-10-24

    A calibrator utilizing a low-coherent light source straightness interferometer and a compensation method is introduced for straightness measurements in this paper. Where the interference pattern, which is modulated by an envelope function, generated by the interferometer undergoes a shifting as the Wolaston prism of the interferometer experiences a lateral displacement, and the compensation method senses the displacement by driving the prism back to the position to restore the pattern. A setup, which is with a measurement sensitivity of 36.6°/μm, constructed for realizing the calibrator is demonstrated. The experimental results from the uses of the setup reveal that the setup is with a measurement resolution and stability of 0.019 and 0.08 μm, respectively, validate the calibrator, and confirm the calibrator's applicability of straightness measurements and advantage of extensible working distance. © 2011 Optical Society of America

  16. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.

    Science.gov (United States)

    Puvanathasan, Prabakar; Forbes, Peter; Ren, Zhao; Malchow, Doug; Boyd, Shelley; Bizheva, Kostadinka

    2008-11-01

    A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.

  17. Coherent effects in the relaxation dynamics of a multilevel quantum system excited by ultrashort light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Averbukh, I.Sh; Kovarsky, V.A.; Perelman, N.F.

    1989-05-22

    Interference effects in luminescence produced by short light pulse excitation of a single quantum level interacting with a quasi-continuum of background states have been considered. Different regimes of subsequent luminescence quenching are revealed and analytically studied in a unified way: radiationless decay controlled emission, multiple repetitions of the initial pulse form, anharmonic dephasing and following revival, etc. (orig.).

  18. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessme...

  19. A study of light scattering by wavelength-sized particles covered by much smaller grains using the superposition T-matrix method

    Directory of Open Access Journals (Sweden)

    J. M. Dlugach

    2011-09-01

    Full Text Available By using the results of a direct, numerically exact solution of the Maxwell equations we analyze the behavior of the light scattering characteristics for polydisperse spherical particles covered with a large number of smaller grains. We show that the effect of the presence of microscopic dust on the surfaces of wavelength-sized particles depends on the particle absorption and the relative size of irregularities. In our computations, a new parallel superposition T-matrix code developed for use on parallel computer clusters is applied.

  20. Coherent excitation transferring via dark state in light-harvesting process

    CERN Document Server

    Dong, H; Sun, C P

    2011-01-01

    We study the light absorption and energy transferring in a donor-acceptor system with a bionic structure. In the optimal case with uniform couplings, it is found that the quantum dynamics of this seemingly complicated system is reduced as a three-level system of $\\Lambda$-type. With this observation, we show that the dark state based electromagnetically-induced transparency (EIT) effect could enhance the energy transfer efficiency, through a quantum interference effect suppressing the excited population of the donors. We estimate the optimal parameters of the system to achieve the maximum output power. The splitting behavior of maximum power may be used to explain the phenomenon that the photosynthesis systems mainly absorb two colors of light.

  1. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane

    Science.gov (United States)

    Florence, James M.; Gale, Richard O.

    1988-01-01

    Attention is given to experimental results for a binary phase-only filter implementation's correlation operations, using the deformable mirror device (DMD) spatial light modulator as the Fourier plane filter. These results demonstrate the basic capabilities of the DMD in an image correlator system which, in combination with the potential 8-kHz frame rate for 128 x 128 DMDs, can constitute a very high speed pattern recognition system. The DMD has the further capability of operating in the analog mode.

  2. Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods.

    Science.gov (United States)

    Cao, Weixing; Wang, Xue; Sun, Shiqing; Hu, Changwei; Zhao, Yongjun

    2017-10-01

    In order to purify biogas slurry and biogas simultaneously, three different fungi, Pleurotus geesteranus (P. geesteranus), Ganoderma lucidum (G. lucidum), and Pleurotus ostreatus (P. ostreatus) were pelletized with Chlorella vulgaris (C. vulgaris). The results showed that the optimal light wavelength ratio for red:blue was 5:5 for these three different fungi-assisted C. vulgaris, resulting in higher specific growth rate as well as nutrient and CO 2 removal efficiency compared with other ratios. G. lucidum/C. vulgaris was screened as the best fungi-mialgae for biogas slurry purification and biogas upgrading with light/dark ratio of 14h:10h, which was also confirmed by the economic efficiency analysis of the energy consumptions. These results will provide a theoretical foundation for large-scale biogas slurry purifying and biogas upgrading using microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Holographic recording and characterization of photorefractive Bi{sub 2}TeO{sub 5} crystals at 633 nm wavelength light

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ivan de, E-mail: ivan@ft.unicamp.br [Grupo de Óptica e Modelagem Numérica (GOMNI)-Faculdade de Tecnologia/UNICAMP, Limeira-SP (Brazil); Carvalho, Jesiel F., E-mail: carvalho@if.ufg.br; Fabris, Zanine V. [Instituto de Física/Universidade Federal de Goiás, Goiânia-GO (Brazil); Frejlich, Jaime, E-mail: frejlich@ifi.unicamp.br [Instituto de Física “Gleb Wataghin”/UNICAMP, Campinas-SP (Brazil)

    2014-04-28

    We report on the holographic recording on photorefractive Bi{sub 2}TeO{sub 5} crystals using λ=633 nm wavelength light. We studied the behavior of this material under the action of this low photonic energy light and found out the presence of a fast and a slow hologram, both of photorefractive nature and exhibiting rather high diffraction efficiencies. The faster and the slower holograms are based on the excitation and diffusion of oppositely charged carriers (likely electrons and holes). Relevant parameters for the photoactive centers responsible for both kind of holograms were characterized using purely holographic techniques. No evidences of non-photosensitive ionic charge carriers being involved in the recording process at room temperature nor self-fixing effects were found.

  4. Coherent control of light-pulse propagation in a Raman induced grating

    Science.gov (United States)

    Arkhipkin, V. G.; Myslivets, S. A.

    2017-05-01

    We study light-pulse propagation in a dynamically controllable periodic structure (grating) resulting from Raman interaction of a weak probe pulse with a standing-wave pump and a second control laser field in N-type four-level atomic media. The grating is induced due to periodic spatial modulation of the Raman gain in a standing pump field (Raman gain grating). We show that it is possible to control both the probe pulse amplitude and the group velocity of the pulse from subluminal to superluminal by varying the pump or control field. Such a grating is of interest for all-optical switches and transistors.

  5. The effect of light-emitting diode irradiation at different wavelengths on calcification of osteoblast-like cells in 3D culture.

    Science.gov (United States)

    Chintavalakorn, Rochaya; Tanglitanont, Tatsanee; Khantachawana, Anak; Viravaidya-Pasuwat, Kwanchanok; Santiwong, Peerapong

    2015-08-01

    This study aimed to investigate the effect of four different light-emitting diode (LED) wavelengths on calcification and proliferation of osteoblast-like cells in vitro. MC3T3-E1 cells were seeded within three-dimensional collagen scaffolds and irradiated daily by LED light with peak emission wavelengths of 630-, 680-, 760- and 830-nm at constant fluency of 3.1 J/cm(2) (irradiance intensity 2 mW/cm(2)). Cultures were measured for calcium content at day 0, 7, 14, 21, 28, 35 and 42. The significant enhancement in calcium content was observed at the early stage of culture (days 7 and 14) (plight irradiation on osteoblastic cell calcification. Only 680-nm irradiated samples revealed a significant enhancement of calcium content until the late stages of culture (from days 21 to 42) (p<;0.001). The cyclin D mRNA expression that was investigated 3 hours after stimulation at day3 also show that the 680-nm LED irradiation can enhance cyclin D expression more than others. For enhancing bone mineralization, LED irradiation at the 680-nm is more effective than those at 630-, 760- and 830-nm. Further studies should be investigated in order to obtain the most effective parameters of LLLI on bone regeneration in clinical setting.

  6. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana.

    Science.gov (United States)

    Arias, J P; Zapata, K; Rojano, B; Arias, M

    2016-10-01

    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats

    NARCIS (Netherlands)

    Opperhuizen, Anneloes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, A.

    2017-01-01

    AIMS/HYPOTHESIS: Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse

  8. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats

    NARCIS (Netherlands)

    Opperhuizen, Anne-Loes; Stenvers, Dirk J.; Jansen, Remi D.; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-01-01

    Aims/hypothesis Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse

  9. Recent Developments in UV Optics for Ultra-Short, Ultra-Intense Coherent Light Sources

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2015-01-01

    Full Text Available With the advent of Free Electron Lasers and general UV ultra-short, ultra-intense sources, optics needed to transport such radiation have evolved significantly to standard UV optics. Problems like surface damage, wavefront preservation, beam splitting, beam shaping, beam elongation (temporal stretching pose new challenges for the design of beam transport systems. These problems lead to a new way to specify optics, a new way to use diffraction gratings, a search for new optical coatings, to tighter and tighter polishing requirements for mirrors, and to an increased use of adaptive optics. All these topics will be described in this review article, to show how optics could really be the limiting factor for future development of these new light sources.

  10. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    Science.gov (United States)

    Deana, A. M.; Jesus, S. H. C.; Koshoji, N. H.; Bussadori, S. K.; Oliveira, M. T.

    2013-07-01

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture.

  11. Various Wavelengths of Light-Emitting Diode Light Regulate the Proliferation of Human Dermal Papilla Cells and Hair Follicles via Wnt/β-Catenin and the Extracellular Signal-Regulated Kinase Pathways.

    Science.gov (United States)

    Joo, Hong Jin; Jeong, Kwan Ho; Kim, Jung Eun; Kang, Hoon

    2017-12-01

    The human dermal papilla cells (hDPCs) play an important role in regulation of hair cycling and growth. The aim of this study was to investigate the effect of different wavelengths of light-emitting diode (LED) irradiation on the proliferation of cultured hDPCs and on the growth of human hair follicles (HFs) in vitro. We examined the effect of LED irradiation on Wnt/β-catenin signaling and mitogen-activated protein kinase (MAPK) pathways in hDPCs. Anagen HFs were cultured with LED irradiation and elongation of each hair shaft was measured. The most potent wavelength in promoting the hDPC proliferation is 660 nm and 830 nm promoted hDPC proliferation to a lesser extent than 660 nm. Various wavelengths significantly increased β-catenin, Axin2, Wnt3a, Wnt5a and Wnt10b mRNA expression. LED irradiation significantly increased β-catenin and cyclin D expression, and the phosphorylation of MAPK and extracellular signal-regulated kinase (ERK). HFs irradiated with 415 nm and 660 nm grew longer than control. Our result suggests that LED has a potential to stimulate hDPC proliferation via the activation of Wnt/β-catenin signaling and ERK pathway. To our best knowledge, this is the first report which investigated that the effect of various wavelengths of LED on hDPC proliferation and the underlying mechanisms.

  12. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Directory of Open Access Journals (Sweden)

    Minako Kaido

    Full Text Available To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT dry eye (DE.Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years underwent functional visual acuity (VA examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio.The baseline mean values (logarithm of the minimum angle of resolution, logMAR of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05. The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05.Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  13. Effect of different wavelengths of light on the antioxidant and immunity status of juvenile rock bream, Oplegnathus fasciatus, exposed to thermal stress

    Science.gov (United States)

    Choe, Jong Ryeol; Shin, Yoon Sub; Choi, Ji Yong; Kim, Tae Hwan; Jung, Min-Min; Choi, Cheol Young

    2017-12-01

    We investigated the effect of light wavelengths on antioxidant and immunity parameters in juvenile rock bream, Oplegnathus fasciatus, exposed to thermal stress (25 and 30°C). We exposed the fish to light emitting diodes (LEDs) emitting green (520 nm) and red light (630 nm) of 0.25 and 0.5 W/m2 intensity, and measured the activity, and mRNA and protein expression levels of the antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. We also determined the levels of plasma hydrogen peroxide (H2O2), melatonin, and lysozyme. Furthermore, the mRNA and protein levels of caspase-3 were measured and terminal transferase dUTP nick end labeling (TUNEL) assays were performed. We observed that mRNA expression and activities of antioxidant enzymes and plasma H2O2 levels were significantly higher after exposure to high temperatures. However, increases in these parameters were significantly lower after exposure to green LED light. The plasma melatonin and lysozyme levels were significantly lower in the different groups after exposure to high temperatures; however, in groups exposed to green LED light, their levels were significantly higher than those in the control group. The expression pattern of caspase-3 mRNA was similar to that of H2O2. The TUNEL assay showed that apoptosis was markedly higher at higher water temperatures than that at 20°C. These results indicate that high water temperatures induce oxidative stress and decrease the immunity in juvenile rock bream but green LED light inhibits the rise in oxidative stress and combats the decrease in immunity and should, thus, be useful in the culture of rock bream.

  14. Effect of different wavelengths of light on the antioxidant and immunity status of juvenile rock bream, Oplegnathus fasciatus, exposed to thermal stress

    Science.gov (United States)

    Choe, Jong Ryeol; Shin, Yoon Sub; Choi, Ji Yong; Kim, Tae Hwan; Jung, Min-Min; Choi, Cheol Young

    2017-09-01

    We investigated the effect of light wavelengths on antioxidant and immunity parameters in juvenile rock bream, Oplegnathus fasciatus, exposed to thermal stress (25 and 30°C). We exposed the fish to light emitting diodes (LEDs) emitting green (520 nm) and red light (630 nm) of 0.25 and 0.5 W/m2 intensity, and measured the activity, and mRNA and protein expression levels of the antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. We also determined the levels of plasma hydrogen peroxide (H2O2), melatonin, and lysozyme. Furthermore, the mRNA and protein levels of caspase-3 were measured and terminal transferase dUTP nick end labeling (TUNEL) assays were performed. We observed that mRNA expression and activities of antioxidant enzymes and plasma H2O2 levels were significantly higher after exposure to high temperatures. However, increases in these parameters were significantly lower after exposure to green LED light. The plasma melatonin and lysozyme levels were significantly lower in the different groups after exposure to high temperatures; however, in groups exposed to green LED light, their levels were significantly higher than those in the control group. The expression pattern of caspase-3 mRNA was similar to that of H2O2. The TUNEL assay showed that apoptosis was markedly higher at higher water temperatures than that at 20°C. These results indicate that high water temperatures induce oxidative stress and decrease the immunity in juvenile rock bream but green LED light inhibits the rise in oxidative stress and combats the decrease in immunity and should, thus, be useful in the culture of rock bream.

  15. Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: A white-light biased external quantum efficiency study

    Science.gov (United States)

    Cowan, Sarah R.; Wang, Jian; Yi, Juan; Lee, Yun-Ju; Olson, Dana C.; Hsu, Julia W. P.

    2013-04-01

    Bimolecular recombination is often a major photogenerated charge carrier loss mechanism in organic photovoltaic (OPV) devices, resulting in lower fill factor (FF) compared to inorganic devices. The recombination parameter α can be obtained from the power law fitting of short-circuit current (Jsc) on illumination intensity (I), Jsc∝Iα, with α values less than unity taken as an indication of reduced photon-to-electron extraction efficiency and the presence of bimolecular recombination in OPV. Here, we show that this intensity-averaged measurement is inadequate. An external quantum efficiency (EQE) apparatus under constant white-light bias can be used to measure the recombination parameter (αEQE*) as a function of wavelength and carrier density (white-light intensity). Examining the dependence of α on background white-light bias intensity and excitation wavelength provides further understanding of photon-to-electron conversion loss mechanisms in P3HT:PCBM bulk heterojunction devices in standard and inverted architectures. In order to compare EQE and current-voltage (JV) measurements, we discuss the special case of devices exhibiting sub-linear intensity response (α method of measuring bimolecular recombination compared to existing methods, including sensitivity in probing intensity-dependent recombination compared to steady-state JV measurements, the correlation of αEQE* and FF in devices, elucidation of recombination mechanisms through spectral dependence of carrier loss, and the robustness of αEQE* obtained via integration over the entire absorption region. Furthermore, this technique for measuring recombination is immediately accessible to the vast majority of researchers as the EQE apparatus is ubiquitous in PV research laboratories.

  16. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  17. Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2015-06-01

    Full Text Available Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs as dislocation filter layers (DFLs to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates.

  18. Plasmonic color-graded nanosystems with achromatic sub-wavelength architectures for light filtering and advanced SERS detection

    KAUST Repository

    Proietti Zaccaria, Remo

    2016-03-09

    Plasmonic colour-graded systems are devices featuring a spatially variable plasmonic response over their surface. They are widely used as nanoscale colour filters; their typical size is small enough to allow integration with miniaturized electronic circuits paving the way to realize novel nanophotonic devices. Currently, most plasmonic colour-graded systems are intrinsically discrete, as their chromatic response exploits the tailored plasmon resonance of micro-architectures characterized by different size and/or geometry for each target colour. Here we report the realization of multifunctional plasmon-graded devices where continuously-graded chromatic response is achieved by smoothly tuning the composition of the resonator material while simultaneously maintaining an achromatic nanoscale geometry. The result is a new class of versatile materials: we show their application as plasmonic filters with a potential pixel size smaller than half of the exciting wavelength, but also as multiplexed surface-enhanced Raman spectroscopy (SERS) substrates. Many more implementations, like photovoltaic efficiency boosters or colour routers await, and will benefit from the low fabrication cost and intrinsic plasmonic flexibility of the presented systems.

  19. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    Science.gov (United States)

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  20. Numerical simulations of the hard X-ray pulse intensity distribution at the Linac Coherent Light Source.

    Science.gov (United States)

    Pardini, Tom; Aquila, Andrew; Boutet, Sébastien; Cocco, Daniele; Hau-Riege, Stefan P

    2017-07-01

    Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus are particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. We suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.

  1. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source

    Science.gov (United States)

    Zemella, Johann; Bane, Karl; Fisher, Alan; Guetg, Marc; Huang, Zhirong; Iverson, Richard; Krejcik, Patrick; Lutman, Alberto; Maxwell, Timothy; Novokhatski, Alexander; Stupakov, Gennady; Zhang, Zhen; Harrison, Mark; Ruelas, Marcos

    2017-10-01

    The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Here we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. This report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.

  2. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  3. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    Science.gov (United States)

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  4. Fabrication and performance of dual-wavelength white light-emitting diodes assisted with red-emitting nanocrystals

    Science.gov (United States)

    Chen, Hong-Shuo; Chen, Sheng-Shiun; Wang, Kuan-Wen; Chung, Shu-Ru

    2014-09-01

    An analysis of an optical-digital system based on the architecture of the Mach-Zehnder interferometer for recording holographic filters is presented. The holographic recording system makes use of one microscope objective in each interferometer arm. Moreover, the Gabor Wavelet Transform is implemented for the holographic reconstruction stage. The samples studied of this research are selected in order to test the retrieval algorithm and to characterize the resolution of the holographic recording system. In this last step, some sections of an USAF1951 resolution chart are used. These samples allow us to study the features of lighting in the recorded system. Additionally, some organic samples are used to proven the capabilities of the method because biological samples have much complex morphological composition than others. With this in mind, we can verify the frequencies recovered with each of the settings set in the retrieval method. Experimental results are presented.

  5. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2008-01-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase

  6. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  7. Far field photoluminescence imaging of single AlGaN nanowire in the sub-wavelength scale using confinement of polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Sivadasan, A.K.; Dhara, Sandip [Nanomaterials and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam (India); Sardar, Manas [Theoretical Studies Section, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-03-15

    Till now the nanoscale focusing and imaging in the sub-diffraction limit is achieved mainly with the help of plasmonic field enhancement by confining the light assisted with noble metal nanostructures. Using far field imaging technique, we have recorded polarized spectroscopic photoluminescence (PL) imaging of a single AlGaN nanowire (NW) of diameter ∝100 nm using confinement of polarized light. It is found that the PL from a single NW is influenced by the proximity to other NWs. The PL intensity is proportional to 1/(l x d), where l and d are the average NW length and separation between the NWs, respectively. We suggest that the proximity induced PL intensity enhancement can be understood by assuming the existence of reasonably long lived photons in the intervening space between the NWs. A nonzero non-equilibrium population of such photons may cause stimulated emission leading to the enhancement of PL emission with the intensity proportional to 1/(l x d). The enhancement of PL emission facilitates far field spectroscopic imaging of a single semiconductor AlGaN NW of sub-wavelength dimension. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synergetic effect of green tea on polymer gel dosimeter and determination of optimal wavelength to choose light source for optical computed tomography

    Directory of Open Access Journals (Sweden)

    Sathiya Raj

    2016-03-01

    Full Text Available Purpose: The ultimate aim of this study is to observe the effect of Green tea as a co-antioxidant in PAGAT gel dosimeter and evaluate the appropriate light source for scanning the PAGAT and NIPAM polymer gel.Methods: Both PAGAT (Poly Acrylamide Gelatin Tetrakis hydroxyl phosphonium chloride and NIPAM (N-Isopropyl acrylamide gel were prepared in normoxic condition. The green tea extract (GTE was prepared and tested only on PAGAT. Co-60 teletherapy machine has been used for irradiation purpose, and the gel samples were scanned using UV-Visible spectrophotometer. Water equivalency of the gel has been tested in terms of their electron density, effective atomic number and Ratio of oxygen and hydrogen (O/H. We have used NIST XCOM database to test the water equivalency.Results: In this study we found that the GTE added to the gel do not respond to the given doses. By adding sugar we can enhance the sensitivity of the gel. Further investigations are required to use Green tea as a co antioxidant concentration of THPC (Tetrakis hydroxymethyl phosphonium chloride. The optimal wavelength with different region for scanning the PAGAT is 450 to 480 nm (Blue region, for NIPAM it is 540 nm and 570 nm (Green and yellow region. The PAGAT and NIPAM showed better sensitivity at 510 nm. Both gels have their effective atomic number closer to water (NIPAM-7.2, PAGAT-7.379.Conclusion: As per our results, we concluded that GTE alone is not an effective co-antioxidant for polymer gels. When the GTE is combined with sugar and THPC, it protects the gel from pre-polymerization. This study strongly suggests that the blue light is an optimal source for scanning the PAGAT and green to yellow light for NIPAM gel. Though both gels were considered as water equivalent, the PAGAT is equivalent to water and the temporal stability of this gel is higher than NIPAM.

  9. Generation of Coherent Synchrotron Radiation from JAERI-ERL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishitani, T; Sawamura, M

    2005-01-01

    An electron beam with high-average current and short bunch length can be accelerated by energy-recovery linac. Coherent synchrotron radiation (CSR) from such an electron beam will be a useful light source around millimeter wavelength. We report results from a preliminary measurement of CSR emitted from a bending magnet of JAERI-ERL. Possible enhancement of CSR power by FEL micro-bunching is also discussed.

  10. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  11. Two-color surface-emitting lasers by a GaAs-based coupled multilayer cavity structure for coherent terahertz light sources

    Science.gov (United States)

    Lu, Xiangmeng; Ota, Hiroto; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro; Isu, Toshiro

    2017-11-01

    Two-color surface-emitting lasers were fabricated using a GaAs-based coupled multilayer cavity structure grown by molecular beam epitaxy. InGaAs/GaAs multiple quantum wells were introduced only in the upper cavity for two-mode emission in the near-infrared region. Two-color lasing of the device was successfully demonstrated under pulsed current operations at room temperature. We also observed good temporal coherence of the two-color laser light using a Michelson interferometer. A coherent terahertz source is expected when a wafer-bonded coupled cavity consisting of (0 0 1) and non-(0 0 1) epitaxial films is used for the two-color laser device, in which the difference-frequency generation can be enabled by the second-order nonlinear response in the lower cavity.

  12. Wavelength tuneable led light source

    DEFF Research Database (Denmark)

    2017-01-01

    Disclosed herein is an illumination system (200) for spectrally tuning in fluorescence imaging applications such as endoscopic applications in a body cavity comprising bodily fluids or microscopic applications....

  13. Photo-epilation results of axillary hair in dark-skinned patients by intense pulsed light: comparison between different wavelengths and pulse width.

    Science.gov (United States)

    Hee Lee, Jong; Huh, Chang Hun; Yoon, Ho Joon; Cho, Kwang Hyun; Chung, Jin Ho

    2006-02-01

    Recently, intense pulsed light (IPL) sources have been shown to provide long-term hair removal. This study examined the photo-epilatory effects of different wavelengths and pulse width application in the same IPL device and compared their efficiencies in Asian skin. Twenty-eight Korean women were treated using hair removal (HR) (600-950 nm filter) and 27 using HR-D (645-950 nm filter) in the axillary area. Four treatments were carried out at intervals of 4 to 6 weeks; follow-ups were conducted 8 months after the last treatment. Mean energy settings were 14.9 6 2.0 J/cm2 for HR and 17.1 6 0.6 J/cm2 for HR-D. Longer pulse widths were applied in case of HR-D treatment. Hair counts and photographic evaluation of skin sites were made at baseline and at the last follow-up. Final overall evaluations were performed by patients and clinicians. Average clearances of 52.8% and 83.4% were achieved by HR and HR-D, respectively. No significant adverse effects were reported after HR-D treatment. One case each of hypopigmentation and hyperpigmentation was reported for HR. An IPL source removing 45 nm of the emitted spectra and applying a longer pulse width was found to provide a safer and more effective means of photo-epilation in Asian patients.

  14. Accessible coherence and coherence distribution

    Science.gov (United States)

    Ma, Teng; Zhao, Ming-Jing; Zhang, Hai-Jun; Fei, Shao-Ming; Long, Gui-Lu

    2017-04-01

    The definition of accessible coherence is proposed. Through local measurement on the other subsystem and one-way classical communication, a subsystem can access more coherence than the coherence of its density matrix. Based on the local accessible coherence, the part that cannot be locally accessed is also studied, which we call it remaining coherence. We study how the bipartite coherence is distributed by partition for both l1 norm coherence and relative entropy coherence, and the expressions for local accessible coherence and remaining coherence are derived. We also study some examples to illustrate the distribution.

  15. Quantification of Optical Doppler broadening and optical path lengths of multiply scattered light with phase modulated low coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    We show experimental validation of a novel technique to measure optical path length distributions and path length resolved Doppler broadening in turbid media for different reduced scattering coefficients and anisotropies. The technique involves a phase modulated low coherence Mach-Zehnder

  16. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  17. Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light

    Science.gov (United States)

    Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.

    2017-12-01

    Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.

  18. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography

    OpenAIRE

    Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2016-01-01

    Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (?10 ?m) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source O...

  19. Quantifying the Coherence between Coherent States

    Science.gov (United States)

    Tan, Kok Chuan; Volkoff, Tyler; Kwon, Hyukjoon; Jeong, Hyunseok

    2017-11-01

    In this Letter, we detail an orthogonalization procedure that allows for the quantification of the amount of coherence present in an arbitrary superposition of coherent states. The present construction is based on the quantum coherence resource theory introduced by Baumgratz, Cramer, and Plenio and the coherence resource monotone that we identify is found to characterize the nonclassicality traditionally analyzed via the Glauber-Sudarshan P distribution. This suggests that identical quantum resources underlie both quantum coherence in the discrete finite dimensional case and the nonclassicality of quantum light. We show that our construction belongs to a family of resource monotones within the framework of a resource theory of linear optics, thus establishing deeper connections between the class of incoherent operations in the finite dimensional regime and linear optical operations in the continuous variable regime.

  20. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    Science.gov (United States)

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  1. Comparative study on a single treatment response to long pulse Nd:YAG lasers and intense pulse light therapy for hair removal on skin type IV to VI--is longer wavelengths lasers preferred over shorter wavelengths lights for assisted hair removal.

    Science.gov (United States)

    Goh, C L

    2003-12-01

    To investigate the safety and effectiveness of a long pulsed Nd:YAG (1064nm) laser compared to a shorter wavelength intense pulse light system for assisted hair removal in volunteers with skin type 1V, V and VI. Eleven patients of Fitzpatrick skin type IV-VI were recruited into the study. The area treated included the face (upper lips, chin and jaw area), axillae and legs. One half of the body was treated with the long pulse Nd:YAG laser and the other half was treated with the IPL system randomly under topical anesthesia. Degree of pain experienced during treatment, the treatment outcome and any complications were observed. Patients were reviewed at 2 weeks and 6 weeks post-treatment. Volunteers generally described pain from the IPL system as "prolonged burning sensation" but tolerable. Pain from Nd:YAG laser treatment was described as "pinprick" and more intense but tolerable. "Slowing of hair growth"was reported with IPL and Nd:YAG, but with a greater effect from Nd:YAG. Sixty-four percent and 73%(8/11) noticed hair reduction IPL and Nd:YAG treated side respectively (ns). Post-inflammatory pigmentation occurred in some volunteers on the IPL treated sides whereas this was not seen on any Nd:YAG treated side, and three of these patients experienced blistering, followed by post-inflammatory pigmentation. In our experience the long pulse width 1064 nm Nd:YAG laser, which can penetrate 5-7 mm into the dermis depths to reach the whole length of the hair follicle, would be expected to produce sufficient follicular injury with less epidermal damage in patients with darker skin type compared to shorter wavelength laser and light system.

  2. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  3. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  4. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  5. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons

    Directory of Open Access Journals (Sweden)

    N. Čutić

    2011-03-01

    Full Text Available We have demonstrated the generation of circularly polarized coherent light pulses at 66 nm wavelength by combining laser seeding at 263 nm of a 375 MeV relativistic electron bunch with subsequent coherent harmonic generation from an elliptical undulator of APPLE-II type. Coherent pulses at higher harmonics in linear polarization have been produced and recorded up to the sixth order (44 nm. The duration of the generated pulses depends on the temporal overlap of the initial seed laser pulse and the electron bunch and was on the order of 200 fs. Currently, this setup is the only source worldwide producing coherent fs-light pulses with variable polarization in the vacuum ultraviolet.

  6. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    OpenAIRE

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and de...

  7. Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640 ± 20 nm) on the repair of third-degree burns in rats.

    Science.gov (United States)

    Neves, Silvana Maria Véras; Nicolau, Renata Amadei; Filho, Antônio Luiz Martins Maia; Mendes, Lianna Martha Soares; Veloso, Ana Maria

    2014-01-01

    Recent studies have demonstrated the efficacy of coherent light therapy from the red region of the electromagnetic spectrum on the tissue-healing process. This study analysed the effect of non-coherent light therapy (light-emitting diode-LED) with or without silver sulfadiazine (sulpha) on the healing process of third-degree burns. In this study, 72 rats with third-degree burns were randomly divided into six groups (n = 12): Gr1 (control), Gr2 (non-contact LED), Gr3 (contact LED), Gr4 (sulfadiazine), Gr5 (sulfadiazine + non-contact LED) and Gr6 (sulfadiazine + contact LED). The groups treated with LED therapy received treatment every 48 h (λ = 640 ± 20 nm, 110 mW, 16 J/cm(2); 41 s with contact and 680 s without contact). The digital photometric and histomorphometric analyses were conducted after the burn occurred. The combination of sulpha and LED (contact or non-contact) improved the healing of burn wounds. These results demonstrate that the combination of silver sulfadiazine with LED therapy (λ = 640 ± 20 nm, 4 J/cm(2), without contact) improves healing of third-degree burn wounds, significantly reduces the lesion area and increases the granulation tissue, increases the number of fibroblasts, promotes collagen synthesis and prevents burn infections by accelerating recovery.

  8. Coherent perfect absorption in deeply subwavelength films in the single photon regime

    CERN Document Server

    Roger, Thomas; Bolduc, Eliot; Valente, Joao; Heitz, Julius J F; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay; Faccio, Daniele

    2016-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single photon regime is of great interest yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply sub-wavelength 50% absorber. We show that while absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, e.g. a localised plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications.

  9. Calculating light & lighting

    NARCIS (Netherlands)

    Nederhoff, E.M.; Marcelis, L.F.M.

    2010-01-01

    Lighting in a greenhouse is surrounded by questions. How much light to supply and when?. What intensity and light sum to aim for? Is it radiation, light growlight, PAR, photons or quanta? How much is joule, watt, lux?. What does wavelength, nanometer, spectrum, UV, IR and NIR mean?

  10. Effects of diurnal, lighting, and angle-of-incidence variation on anterior segment optical coherence tomography (AS-OCT) angle metrics.

    Science.gov (United States)

    Akil, Handan; Dastiridou, Anna; Marion, Kenneth; Francis, Brian A; Chopra, Vikas

    2017-03-23

    First reported study to assess the effect of diurnal variation on anterior chamber angle measurements, as well as, to re-test the effects of lighting and angle-of-incidence variation on anterior chamber angle (ACA) measurements acquired by time-domain anterior segment optical coherence tomography (AS-OCT). A total of 30 eyes from 15 healthy, normal subjects underwent anterior chamber imaging using a Visante time-domain AS-OCT according to an IRB-approved protocol. For each eye, the inferior angle was imaged twice in the morning (8 am - 10 am) and then again in the afternoon (3 pm - 5 pm), under light meter-controlled conditions with ambient room lighting 'ON' and lights 'OFF', and at 5° angle of incidence increments. The ACA metrics measured for each eye were: angle opening distance (AOD, measured 500 and 750 μm anterior from scleral spur), the trabecular-iris-space area (TISA, measured 500 and 750 μm anterior from scleral spur), and scleral spur angle. Measurements were performed by masked, certified Reading Center graders using the Visante's Internal Measurement Tool. Differences in measurements between morning and afternoon, lighting variations, and angle of incidence were compared. Mean age of the participants was 31.2 years (range 23-58). Anterior chamber angle metrics did not differ significantly from morning to afternoon imaging, or when the angle of incidence was offset by 5° in either direction away from the inferior angle 6 o'clock position. (p-value 0.13-0.93). Angle metrics at the inferior corneal limbus, 6 o'clock position (IC270), with room lighting 'OFF', showed a significant decrease (p angle-of-incidence, which gives confidence in being able to perform longitudinal studies in approximately the same area (plus/minus 5° of original scan location).

  11. Coherent control of polarization state rotation via Doppler broadening and Kerr nonlinearity in a spinning fast light medium

    Science.gov (United States)

    Rahman, Habibur; Hizbullah; Jabar, M. S. Abdul; Khan, Anwar Ali; Ahmad, Iftikhar; Amin Bacha, Bakht

    2014-11-01

    We propose a four-level experimental N-type atomic configuration to observe the propagation of a light pulse in a spinning dispersive medium. In this model a fast propagating light pulse is observed in which the polarization states of the light and their transmitted images are rotated in the opposite direction to the spinning medium. We investigate the effects of Doppler broadening and Kerr nonlinearity on fast light propagation in a spinning medium. Doppler broadening and Kerr nonlinearity strongly influence the rotation of the polarization states of the light and images of fast light in a spinning medium. A pulse of group velocity -c/2000.5 ms-1 is enhanced to -c/80000 ms-1 due to the the Kerr effect and a significant increase is observed in the rotation of the polarization states of the light and images. At a specific parameter, a 25% fraction change is observed due to the Kerr effect. These results provide different rotation states for image coding.

  12. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  13. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light.

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G; Steenbergen, Wiendelt

    2007-12-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological range.

  14. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-12-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological range.

  15. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography

    Science.gov (United States)

    Weatherbee, Andrew; Popov, Ivan; Vitkin, Alex

    2017-08-01

    The viscosity of turbid colloidal glucose solutions has been accurately determined from spectral domain optical coherence tomography (OCT) M-mode measurements and our recently developed OCT dynamic light scattering model. Results for various glucose concentrations, flow speeds, and flow angles are reported. The relative "combined standard uncertainty" uc(η) on the viscosity measurements was ±1% for the no-flow case and ±5% for the flow cases, a significant improvement in measurement robustness over previously published reports. The available literature data for the viscosity of pure water and our measurements differ by 1% (stagnant case) and 1.5% (flow cases), demonstrating good accuracy; similar agreement is seen across the measured glucose concentration range when compared to interpolated literature values. The developed technique may contribute toward eventual noninvasive glucose measurements in medicine.

  16. Wavelength Margin Analysis in Advanced Collinear Holography

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi; Li, Jun; Suzuki, Kenji

    2005-05-01

    The wavelength margin of advanced collinear holography, which utilizes co-axially aligned information and reference beams modulated by the same spatial light modulator simultaneously, is analyzed and compared that of conventional 2-axis holography. Being the large wavelength margin, a laser diode as a light source of the holography is possible.

  17. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength.

    Science.gov (United States)

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-04-03

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  18. Retinal Optical Coherence Tomography Imaging

    Science.gov (United States)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  19. Coherent Polariton Laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  20. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2016-03-01

    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  1. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  2. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Liu, Gangjun; Gordon, Andrew Y.; Gao, Simon S.; Pechauer, Alex D.; Stoddard, Jonathan; McGill, Trevor J.; Jayagopal, Ashwath; Huang, David

    2015-01-01

    We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro. PMID:25836459

  3. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography

    OpenAIRE

    Wijesundara, Kushal; Zdanski, Carlton; Kimbell, Julia; Price, Hillel; Iftimia, Nicusor; Oldenburg, Amy L.

    2014-01-01

    Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light sourc...

  4. Designing heterostructures with predefined value of light-hole g factor for coherent solid-state quantum receiver

    Science.gov (United States)

    Kiselev, A. A.; Kim, K. W.; Yablonovitch, E.

    2002-03-01

    In this paper, we give a consistent theoretical analysis of the in-plane Zeeman effect for quantum-confined light holes and evaluate possibilities to design structures with desired property of large g factor for these valence states. Numerical example is given for the technologically important InGaAs/InP both lattice-matched and strained heterosystems suitable for 1.3 and 1.55 μm optoelectronic applications.

  5. Recognition of spectral amplitude codes by frequency swept coherent detection for flexible optial label switching

    DEFF Research Database (Denmark)

    Cao, Yongsheng; Osadchiy, Alexey Vladimirovich; Xin, Xiangjun

    2010-01-01

    We propose a new method of recognizing spectral amplitude code by using optical coherent detection with a frequency swept local light source oscillator. Our proposed method offer a substantial simplification in terms of required components to built optical label processing units with enhanced...... flexibility to accomodate for wavelength tuneability and a large numer of labels. We present a performance analysis, comparison with conventional spectral codes recognition methods, based on computer simulation results. We consider a payload bit rate of 40 Gb/s....

  6. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; /SLAC; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  7. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography.

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R; Twa, Michael D; Larin, Kirill V

    2016-07-01

    The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. Corneas were then cross-linked by either of two methods: UV-A/riboflavin (UV-CXL) or rose-Bengal/green light (RGX). Phase velocities of the elastic waves were fitted to a previously developed modified Rayleigh-Lamb frequency equation to obtain the viscoelasticity of the corneas before and after the cross-linking treatments. Micro-scale depth-resolved phase velocity distribution revealed the depth-wise heterogeneity of both cross-linking techniques. Under standard treatment settings, UV-CXL significantly increased the stiffness of the corneas by ∼47% (P corneas, whereas RGX affected only the anterior ∼16% of the corneas. UV-CXL significantly strengthens the cornea, whereas RGX does not, and the effects of cross-linking by UV-CXL reach deeper into the cornea than cross-linking effects of RGX under similar conditions.

  8. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers.

    Science.gov (United States)

    Jirauschek, Christian; Huber, Robert

    2015-07-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.

  9. X-ray imaging by partially coherent synchrotron light. Application to metallic alloys, tooth dentin and natural rock

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, Simon Andreas

    2007-10-09

    The hard spectrum which is available on the BAMline at Berlin's synchrotron BESSY offers the rare opportunity to perform high-resolution X-ray imaging experiments with a partially coherent beam. This thesis work reports on the development of a new tomography system, including Fresnel-propagated imaging, and its application to three specific materials science problems from the fields of engineering materials, biology and earth science. Static and dynamic 2D and 3D images were recorded from a variety of aluminum-based alloys. Coarsening of particle agglomerates (at high solid volume fraction) in liquid solution, as well as rheological properties of semi-solid alloys are thus characterized. Dentin is characterized by a quasi-parallel arrangement of micrometer-sized tubules. This work shows how high-resolution 3D images of water-immersed tooth dentin are recorded, and detailed simulations of the optical wave propagation reveal that Fresnel-images contain additional information about the dense cuff of peritubular dentin surrounding the tubules. The cuff thickness can be extrapolated from the interference fringes that form the propagated images of tubules. Absorption and Fresnel-propagated X-ray tomography are applied to measure samples of different rocks before and after mechanical compression nondestructively. In a first approach, limestone and greywacke are investigated, representing two sedimentary rocks of different grain size. Basalt and granite are tested in a second approach to compare different rock types. Development of cracks is observed in all materials, leading to fracture when increasing mechanical load is applied. In this work, relatively small mm-sized samples are used in order to test a classical fracture model wherein micro-flaws initiate the formation of larger cracks. For the first time, Fresnel-propagated imaging is applied to rock samples, highlighting micrometer-sized intergranular porosity as well as different material phases. The latter is

  10. Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans : Evidence for adaptation

    NARCIS (Netherlands)

    Gimenez, Marina C.; Beersma, Domien G. M.; Bollen, Pauline; van der Linden, Matthijs L.; Gordijn, Marijke C. M.

    2014-01-01

    Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in

  11. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  12. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  13. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  14. Scattering of light by a periodic structure in the presence of ...

    Indian Academy of Sciences (India)

    The earlier prediction, before our technique was introduced, had placed the limit of detection, by intensity measurements alone, at (0/) ∼ 0.33, where 0 is the coherence length of light for scattering by the rough part of the surface and is the wavelength of the periodic part of the surface. In our earlier works we have ...

  15. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly...... modulated VCSEL transmitters at bit rates up to 10 Gbps in the C-band as well as in the O-band are presented. The broad linewidth and frequency chirp associated with directly modulated VCSELs are utilized in an envelope detection receiver scheme which is demonstrated digitally (off-line) as well as analog...... (real-time). Additionally, it is shown that in the optical front-end of a coherent receiver for access networks, the 90 ° hybrid can be replaced by a 3-dB coupler. The achieved results show that VCSELs are attractive light source candidates for transmitter as well as local oscillator for coherent...

  16. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    OpenAIRE

    Jacques Lalevée; Haifaa Mokbel; Jean-Pierre Fouassier

    2015-01-01

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under vario...

  17. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  18. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Directory of Open Access Journals (Sweden)

    Jacques Lalevée

    2015-04-01

    Full Text Available Photoinitiators (PI or photoinitiating systems (PIS usable in light induced cationic polymerization (CP and free radical promoted cationic polymerization (FRPCP reactions (more specifically for cationic ring opening polymerization (ROP together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  19. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  20. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  1. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  2. Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2016-01-01

    Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. Corneas were then cross-linked by either of two methods: UV-A/riboflavin (UV-CXL) or rose-Bengal/green light (RGX). Phase velocities of the elastic waves were fitted to a previously developed modified Rayleigh-Lamb frequency equation to obtain the viscoelasticity of the corneas before and after the cross-linking treatments. Micro-scale depth-resolved phase velocity distribution revealed the depth-wise heterogeneity of both cross-linking techniques. Results Under standard treatment settings, UV-CXL significantly increased the stiffness of the corneas by ∼47% (P < 0.05), but RGX did not produce statistically significant increases. The shear viscosities were unaffected by either cross-linking technique. The depth-wise phase velocities showed that UV-CXL affected the anterior ∼34% of the corneas, whereas RGX affected only the anterior ∼16% of the corneas. Conclusions UV-CXL significantly strengthens the cornea, whereas RGX does not, and the effects of cross-linking by UV-CXL reach deeper into the cornea than cross-linking effects of RGX under similar conditions. PMID:27409461

  3. Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Kun-Feng Lin

    2013-07-01

    Full Text Available This review paper describes the applications of dental optical coherence tomography (OCT in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.

  4. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  5. Optical noise and temporal coherence

    Science.gov (United States)

    Chavel, P.

    1980-08-01

    Previous articles have been devoted to the study of optical noise as a function of spatial coherence. The present one completes this study by considering temporal coherence. Noise arising from defects in the pupil plane and affecting the high spatial frequencies of an image is notably reduced by white-light illumination. Temporal coherence has little effect on noise arising from defects in the object plane. However, impulse noise due to small isolated defects is reduced in size. Physical arguments are presented to explain these phenomena and a mathematical study of partially coherent imaging in the presence of random defects is given.

  6. IMPACT OF COHERENT AND INCOHERENT CROSSTALKS AND POWER PENALTY ON THE OPTICAL CROSSCONNECTS

    Directory of Open Access Journals (Sweden)

    Suvarna S. Patil

    2011-12-01

    Full Text Available Optical cross-connects are one of the most important components in the dense wavelength division multiplexer based optical networks. The crossconnects suffer from crosstalk due to the different wavelength light path channels during the switching process leading to the deterioration in bit error rate (BER and hence in the system performance. This paper presents the study of impact of coherent and incoherent crosstalk and power penalty on the optical cross-connects in WDM Networks. The effect of accumulation of coherent crosstalk at different stages of crossconnect has been also investigated and analyzed for the blocking probabilities. Results of coherent and incoherent crosstalk are compared to identify their impact on the working of the cross-connect. The results show that the crosstalk increases with increase in either the number of wavelengths per fiber or the number of input fibers. The result also illustrates decrease in the interference penalty by correlating the crosstalk contributions with each other at the appropriate phase angle. We show that an acceptable blocking probability due to crosstalk is achievable for active wavelengths in the WDM network. The present study can be used to model the possible number of routing stages in such networks.

  7. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  8. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Gai, Shili; He, Fei; An, Guanghui; Dai, Yunlu; Lv, Ruichan; Yang, Piaoping

    2015-11-01

    Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high biocompatibility and an enhanced synergistic therapeutic effect superior to any single therapy, as verified by in vitro and in vivo assay. This image-guided therapy based on a metal-organic framework may stimulate interest in developing other kinds of metal-organic materials with multifunctionality for tumor diagnosis and therapy.Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high

  9. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  10. Optical wavelength conversion via optomechanical coupling in a silica resonator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunhua; Fiore, Victor; Kuzyk, Mark C.; Wang, Hailin [Department of Physics, University of Oregon, Eugene, OR (United States); Tian, Lin [University of California, Merced, CA (United States)

    2015-01-01

    In an optomechanical resonator, an optically active mechanical mode can couple to any of the optical resonances via radiation pressure. This unique property can enable a remarkable phenomenon: conversion of optical fields via optomechanical coupling between vastly different wavelengths. Here we expand an earlier experimental study [Science 338, 1609 (2012)] on classical wavelength conversion of coherent optical fields by coupling two optical modes to a mechanical breathing mode in a silica resonator. Heterodyne detection of the converted optical fields shows that the wavelength conversion process is coherent and bidirectional. The conversion efficiency obtained features a distinct saturation behavior that arises from optomechanical impedance matching. A measurement of the coherent mechanical excitation involved in the wavelength conversion process also provides additional insight on the underlying optomechanical interactions. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Laser wavelength metrology with color sensor chips.

    Science.gov (United States)

    Jones, Tyler B; Otterstrom, Nils; Jackson, Jarom; Archibald, James; Durfee, Dallin S

    2015-12-14

    We present a laser wavelength meter based on a commercial color sensor chip. The chip consists of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined. In addition to absorption in the filters, etalon effects add additional spectral features which improve the precision of the device. Comparing the measurements from the device to a commercial wavelength meter and to an atomic reference, we found that the device has picometer-level precision and picometer-scale drift over a period longer than a month.

  12. Low-level light stimulates excisional wound healing in mice.

    Science.gov (United States)

    Demidova-Rice, Tatiana N; Salomatina, Elena V; Yaroslavsky, Anna N; Herman, Ira M; Hamblin, Michael R

    2007-10-01

    Low levels of laser or non-coherent light, termed low-level light therapy (LLLT) have been reported to accelerate some phases of wound healing, but its clinical use remains controversial. A full thickness dorsal excisional wound in mice was treated with a single exposure to light of various wavelengths and fluences 30 minutes after wounding. Wound areas were measured until complete healing and immunofluorescence staining of tissue samples was carried out. Wound healing was significantly stimulated in BALB/c and SKH1 hairless mice but not in C57BL/6 mice. Illuminated wounds started to contract while control wounds initially expanded for the first 24 hours. We found a biphasic dose-response curve for fluence of 635-nm light with a maximum positive effect at 2 J/cm(2). Eight hundred twenty nanometer was found to be the best wavelength tested compared to 635, 670, and 720 nm. We found no difference between non-coherent 635+/-15-nm light from a lamp and coherent 633-nm light from a He/Ne laser. LLLT increased the number of alpha-smooth muscle actin (SMA)-positive cells at the wound edge. LLLT stimulates wound contraction in susceptible mouse strains but the mechanism remains uncertain. 2007 Wiley-Liss, Inc

  13. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  14. Nonlinear Optics and Wavelength Translation Via Cavity-Optomechanics

    Science.gov (United States)

    Hill, Jeffrey Thomas

    The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two. In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored. Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon

  15. Coherent control of high efficiency metasurface beam deflectors with a back partial reflector

    Directory of Open Access Journals (Sweden)

    Shota Kita

    2017-04-01

    Full Text Available Recently, coherent control of absorption in metallic metasurfaces has been demonstrated, and this phenomenon was applied to intriguing light-by-light switching operation. Here we experimentally demonstrate coherent control of beam deflection by high-efficiency metasurfaces for the first time. Although the beam deflection efficiency by a metasurface is generally small, high-efficiency metasurfaces, which consist of a single layer metasurface with a back reflector, are known to exhibit significantly high deflection efficiency. A key point of our study is to replace the back reflector with a partial reflector instead, which enables light-by-light control of a high-efficiency metasurface with a pair of counter-propagating coherent beam inputs. By adjusting the partial reflector thickness appropriately, the proposed device outperforms ones without a reflector, especially for the deflection efficiency. We finally experimentally demonstrate the expected operation of the fabricated device at a visible wavelength, which reveals that the deflection efficiency of 45% (49% in theory. This result demonstrates highly efficient light-by-light control of the beam deflection by a metasurface, which opens up possible applications to ultrathin photonic devices for linear all-optical switching and logic functions.

  16. Coherent Generation of Broadband Pulsed Light in the SWIR and Mwir Using AN all Polarization-Maintaining Fiber Frequency Comb Source

    Science.gov (United States)

    Hoogland, H.; Engelbrecht, M.; McRaven, C.; Holzwarth, R.; Thai, A.; Sánchez, D.; Cousin, S. L.; Hemmer, M.; Baudisch, M.; Zawilski, K.; Schunemann, P. G.; Biegert, J.

    2014-06-01

    We report on an all polarization-maintaining, modelocked, fiber laser system which generates coherent broadband pulses centered at 2.03 μm with a spectral FWHM bandwidth of 60 nm and 360 mW. Using this frequency comb source, we generate phase-coherent, ultra-broadband pulses centered at 6.5 μm and spanning 5.5 μm to 8 μm with DFG in CdSiP_2.

  17. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  18. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  19. NaCu(Ta1-yNby)4O11 solid solution: A tunable band gap spanning the visible-light wavelengths

    Science.gov (United States)

    Palasyuk, Olena; Maggard, Paul A.

    2012-07-01

    The new solid-solution NaCu(Ta1-yNby)4O11 (0≤y≤0.7) was synthesized by solid-state methods in the form of bulk powders that ranged from light-yellow to brown colored and were characterized by powder X-ray diffraction techniques (Space group R-3c (#167); Z=6; a=6.214(1)-6.218(1) Å and c=36.86(1)-36.94(1) Å). Full-profile Rietveld refinements confirmed a site-differentiated ordering of the Cu(I) and Na cations, i.e., occupying the 12c (linear environment) and 18d (seven-coordinate environment) crystallographic sites respectively. Conversely, a statistical mixture of Ta(V) and Nb(V) cations occurred over the 6b (octahedral environment) or the 18e (pentagonal-bipyramidal environment) crystallographic sites, without any preferential segregation. The UV-Vis diffuse reflectance spectra showed a significant red-shift of the optical bandgap size (indirect) from ˜2.70 eV to ˜1.80 eV across the solid solution with increasing Nb(V) content. Electronic-structure calculations using the tight-binding linear-muffin-tin-orbital approach showed that the reduction in bandgap size arises from the introduction of the lower-energy Nb 4d0 orbitals into the conduction band and consequently a lower energy of the conduction band edge. The lowest-energy bandgap transitions were found to be derived from electronic transitions between the filled Cu(I) and the empty Nb(V) d-orbitals, with a small amount of mixing with the O 2p orbitals. The resulting conduction and valence band energies are found to approximately bracket the redox potentials for water reduction and oxidation, and meeting the thermodynamic requirements for photocatalytic water-splitting reactions.

  20. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  1. INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT

    Directory of Open Access Journals (Sweden)

    N. L. Poyedinok

    2015-02-01

    Full Text Available The aim of the work was to study the induction of antimicrobial activity of macromycetes by low-intensity light of different wavelengths and coherence. The objects of investigation were the strains of Flammulina velutipes 3923, Pleurotus ostreatus 531, Ganoderma lucidum 1908 and G. applanatum 1552 from Mushrooms Collection of the Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, the test-cultures from Cultural Collections of the Gause Institute of New Antibiotics, All-Union Research Institute of Antibiotics and the All-Russian Collection of Industrial microorganisms. Helium-neon laser with a wavelength of 632.8 nm and an argon ion laser with wavelengths of 488.0 nm and 514.5 nm were used as a source of coherent visible light lasers. For obtaining incoherent light LEDs with emission at a wavelength of 490.0, 520.0 and 634.0 nm were used. It was found that short-term exposure of sowing mycelium by low intensity light with the energy density of 230 MJ/cm2 in the red and blue wavelength ranges reduced the cultivation period before the appearance of antimicrobial activity and induced the increasing of the culture fluid inhibitory activity against different test-cultures from 20 to 238%. Selected modes of antimicrobial activity photostimulation could be used in biotechnology of submerged cultivation of macromycetes for intensification of technological stages and increasing the yield of the final product.

  2. Range-Gated LADAR Coherent Imaging Using Parametric Up-Conversion of IR and NIR Light for Imaging with a Visible-Range Fast-Shuttered Intensified Digital CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; ZUTAVERN,FRED J.

    2000-12-20

    Research is presented on infrared (IR) and near infrared (NIR) sensitive sensor technologies for use in a high speed shuttered/intensified digital video camera system for range-gated imaging at ''eye-safe'' wavelengths in the region of 1.5 microns. The study is based upon nonlinear crystals used for second harmonic generation (SHG) in optical parametric oscillators (OPOS) for conversion of NIR and IR laser light to visible range light for detection with generic S-20 photocathodes. The intensifiers are ''stripline'' geometry 18-mm diameter microchannel plate intensifiers (MCPIIS), designed by Los Alamos National Laboratory and manufactured by Philips Photonics. The MCPIIS are designed for fast optical shattering with exposures in the 100-200 ps range, and are coupled to a fast readout CCD camera. Conversion efficiency and resolution for the wavelength conversion process are reported. Experimental set-ups for the wavelength shifting and the optical configurations for producing and transporting laser reflectance images are discussed.

  3. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  4. Spectral-domain optical coherence phase and multiphoton microscopy

    NARCIS (Netherlands)

    Joo, C.; Kim, K.I.; de Boer, J.F.

    2007-01-01

    We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate

  5. Generation of Coherent X-Ray Radiation through Modulation Compression

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; /LBL, Berkeley; Wu, Juhao; /SLAC

    2012-06-12

    In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  6. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  7. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  8. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  9. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  10. Modeling low-coherence enhanced backscattering using Monte Carlo simulation.

    Science.gov (United States)

    Subramanian, Hariharan; Pradhan, Prabhakar; Kim, Young L; Liu, Yang; Li, Xu; Backman, Vadim

    2006-08-20

    Constructive interference between coherent waves traveling time-reversed paths in a random medium gives rise to the enhancement of light scattering observed in directions close to backscattering. This phenomenon is known as enhanced backscattering (EBS). According to diffusion theory, the angular width of an EBS cone is proportional to the ratio of the wavelength of light lambda to the transport mean-free-path length l(s)* of a random medium. In biological media a large l(s)* approximately 0.5-2 mm > lambda results in an extremely small (approximately 0.001 degrees ) angular width of the EBS cone, making the experimental observation of such narrow peaks difficult. Recently, the feasibility of observing EBS under low spatial coherence illumination (spatial coherence length Lsc path lengths and thus resulting in an increase of more than 100 times in the angular width of low coherence EBS (LEBS) cones. However, a conventional diffusion approximation-based model of EBS has not been able to explain such a dramatic increase in LEBS width. We present a photon random walk model of LEBS by using Monte Carlo simulation to elucidate the mechanism accounting for the unprecedented broadening of the LEBS peaks. Typically, the exit angles of the scattered photons are not considered in modeling EBS in the diffusion regime. We show that small exit angles are highly sensitive to low-order scattering, which is crucial for accurate modeling of LEBS. Our results show that the predictions of the model are in excellent agreement with the experimental data.

  11. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms...

  12. All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks.

    Science.gov (United States)

    Rodes, Roberto; Jensen, Jesper Bevensee; Zibar, Darko; Neumeyr, Christian; Roenneberg, Enno; Rosskopf, Juergen; Ortsiefer, Markus; Monroy, Idelfonso Tafur

    2010-11-22

    We report on experimental demonstration of a digital coherent detection link fully based on vertical cavity surface emitting lasers (VCSELs) for the transmitter as well as for the local oscillator light source at the receiver side. We demonstrate operation at 5 Gbps at a 1550 nm wavelength with record receiver sensitivity of -36 dBm after transmission over 40 km standard single mode fiber. Digital signal processing compensates for frequency offset between the transmitter and the local oscillator VCSELs, and for chromatic dispersion. This system allows for uncooled VCSEL operation and fully passive fiber transmission with no use of optical amplification or optical dispersion compensation. The proposed system demonstrates the potential of multi-gigabit coherent passive optical networks with extended reach and increased capacity. Moreover, this is, to the best of our knowledge, the first demonstration of coherent optical transmission systems using a low-cost VCSEL as the local oscillator as well as for the transmitter.

  13. Ultrafast coherent nanoscopy

    Science.gov (United States)

    Chen, Xue-Wen; Mohammadi, Ahmad; Baradaran Ghasemi, Amir Hossein; Agio, Mario

    2013-10-01

    The dramatic advances of nanotechnology experienced in recent years enabled us to fabricate optical nanostructures or nano-antennas that greatly enhance the conversion of localised electromagnetic energy into radiation and vice versa. Nano-antennas offer the required improvements in terms of bandwidth, interaction strength and resolution for combining ultrafast spectroscopy, nano-optics and quantum optics to fundamentally push forward the possibility of the coherent optical access on individual nanostructures or even molecules above cryogenic temperatures, where dephasing processes typically occur at very short time scales. In this context, we discuss recent progress in the theoretical description of light-matter interaction at the nanoscale and related experimental findings. Moreover, we present concrete examples in support of our vision and propose a series of experiments that aim at exploring novel promising regimes of optical coherence and quantum optics in advanced spectroscopy. We envisage extensions to ultrafast and nonlinear phenomena, especially in the direction of multidimensional nanoscopy.

  14. Optical Coherence Microscopy

    Science.gov (United States)

    Gelikonov, Grigory V.; Gelikonov, Valentin M.; Ksenofontov, Sergey U.; Morosov, Andrey N.; Myakov, Alexey V.; Potapov, Yury P.; Saposhnikova, Veronika V.; Sergeeva, Ekaterina A.; Shabanov, Dmitry V.; Shakhova, Natalia M.; Zagainova, Elena V.

    This chapter presents the practical embodiment of two types of optical coherence microscope (OCM) modality that differ by probing method. The development and creation of a compact OCM device for imaging internal structures of biological tissue at the cellular level is presented. Ultrahigh axial resolution of 3.4 μm and lateral resolution of 3.9 μm within tissue was attained by combining broadband radiations of two spectrally shifted SLDs and implementing the dynamic focus concept, which allows in-depth scanning of a coherence gate and beam waist synchronously. This OCM prototype is portable and easy to operate; creation of a remote optical probe was feasible due to use of polarization maintaining fiber. The chapter also discusses the results of a theoretical investigation of OCM axial and lateral resolution degradation caused by light scattering in biological tissue. We demonstrate the first OCM images of biological objects using examples of plant and human tissue ex vivo.

  15. Interaction of super intense laser pulses with thin foil: Dopler transformation of coherent light into X-ray and gamma-ray bands

    OpenAIRE

    Cherepenin, Vladimir A.; Kulagin, Victor V.

    2001-01-01

    The formation of relativistic electron mirror produced via ionization of thin solid target by ultraintense femtosecond laser pulse is considered with the help of computer simulations. It is shown that the reflection of weak counter-propagating wave from such a mirror can produce the coherent radiation in X-ray and gamma-ray bands. The spectrum of up-conversed radiation is investigated.

  16. Propagating of partially coherent laser beam in the near-resonant atomic gas

    Science.gov (United States)

    Kong, Delong; Wang, Zhaoying; Fang, Feiyun; Shi, Congquan; Lin, Qiang

    2017-09-01

    The characteristics of the light with various degrees of spatial coherence traveling in near-resonant atomic gas are investigated both experimentally and theoretically. The experimental results show that the coherence of partially coherent beams can get better after interaction with atoms under some certain conditions compared with that before interaction. The experimental results are explained theoretically by the method of spectroscopy absorption. Furthermore, partially coherent light has a better environmental adaptability than fully coherent light.

  17. Enormous enhancements of the Kerr nonlinearity at C-band telecommunication wavelength in an Er3+-doped YAG crystal

    Science.gov (United States)

    Hamedi, Hamid Reza

    2014-06-01

    A novel solid configuration is proposed to achieve a giant Kerr nonlinearity with reduced absorption under conditions of slow light levels. It is shown that an enhanced Kerr nonlinearity accompanied with negligible absorption can be obtained just through the proper tuning of intensity of coherent driving field at C-band telecommunication wavelength which is practical for communication applications. Moreover, the impact of incoherent pump field as well as frequency detuning of coherent field on manipulating the linear and nonlinear optical properties of the yttrium-aluminum-garnet (YAG) crystal medium is discussed. The presented results may be of interest to researchers in the field of all-optical signal processing and solid-state quantum information science.

  18. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching: a numerical study.

    Science.gov (United States)

    Song, Weiye; Zhang, Lei; Ness, Steve; Yi, Ji

    2017-09-01

    In this paper, we present the first numerical study on full metrics of wavelength-dependent optical properties of melanosomes in retinal pigmented epithelial (RPE) cells. T-matrix method was used to simulate the spheroidal shapes of mature melanosomes, and the complex refractive index was calculated by a subtractive Kramers-Kronig relation for melanin. The validity of the method was first confirmed by Mie theory, and corroborated by a comparison between visible light and near infrared (NIR) optical coherence tomography (OCT) on human retinal imaging. We also studied the changes of melanosome optical properties due to melanin bleaching by numerically reducing the absorption of melanin. This study implies a unique approach to detect melanin changes specifically in RPE by a spectroscopic contrast of optical coherence tomography.

  19. Coherence Properties of the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Ocko, Samuel

    2010-08-25

    The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on the self amplified spontaneous emission principle, has recently come on-line. For many users it is desirable to have an idea of the level of transverse coherence of the X-Ray beam produced. In this paper, we analyze the output of GENESIS simulations of electrons traveling through the FEL. We first test the validity of an approach that ignores the details of how the beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coherence, predicts the level of transverse coherence simply through looking at the beam radius at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to calculating the degree of transverse coherence, which offers a {approx}100-fold speedup compared to the brute-force algorithm previously in use. We find the beam highly coherent. Using a similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.

  20. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  1. Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons.

    Science.gov (United States)

    Liao, Wen-Te; Pálffy, Adriana; Keitel, Christoph H

    2012-11-09

    The coherent storage and phase modulation of x-ray single-photon wave packets in the resonant scattering of light off nuclei is theoretically investigated. We show that by switching off and on again the magnetic field in the nuclear sample, phase-sensitive storage of photons in the keV regime can be achieved. Corresponding π phase modulation of the stored photon can be accomplished if the retrieving magnetic field is rotated by 180°. The development of such x-ray single-photon control techniques is a first step towards forwarding quantum optics and quantum information to shorter wavelengths and more compact photonic devices.

  2. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  3. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    examined is how activating of models of blended learning in undergraduate education for teacher and radiograph affects the knowledge development. This is approached by mixed methods. The empirical data consist of data from surveys as well as focus group interviews and some observation studies. These data...... are analyzed and interpreted through a critical hermeneutical process of prefiguration, configuration and re-figuration. The findings illustrate significantly importance of sense of coherence among participants as a condition for implementing new designs and new learning environments. It is revealed that sense...... of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms...

  4. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms......Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question...... examined is how activating of models of blended learning in undergraduate education for teacher and radiograph affects the knowledge development. This is approached by mixed methods. The empirical data consist of data from surveys as well as focus group interviews and some observation studies. These data...

  5. Optics, Diagnostics and Applications for Fourth-Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A; Barbee, T; Bionta, R; Chapman, H; Ditmire, T; Dyer, G; Kuba, J; Jankowski, A; London, R; Ryutov, R; Shepherd, R; Shlyaptsev, V; Toor, A

    2003-02-05

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), proposed for the Stanford Linear Accelerator Centre (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: (1) radiation field modeling, (2) experimental and theoretical material damage studies, (3) high resolution, high fluence-tolerant optical design, fabrication, and testing, (including material manufacturing), and (4) diagnostic design and testing.

  6. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR...

  7. Dual-wavelength InP quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shutts, S.; Smowton, P. M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Krysa, A. B. [EPSRC National Centre for III-V Technologies, Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2014-06-16

    We have demonstrated a two-section dual-wavelength diode laser incorporating distributed Bragg reflectors, with a peak-wavelength separation of 62.5 nm at 300 K. Each lasing wavelength has a different temperature dependence, providing a difference-tuning of 0.11 nm/K. We discuss the mechanisms governing the light output of the two competing modes and explain how the short wavelength can be relatively insensitive to output changes at the longer wavelength. Starting from an initial condition when the output at both wavelengths are equal, a 500% increase in the long wavelength output causes the short wavelength output to fall by only 6%.

  8. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  9. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YB a2C u3O6.6

    Science.gov (United States)

    Först, M.; Frano, A.; Kaiser, S.; Mankowsky, R.; Hunt, C. R.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Loew, T.; Le Tacon, M.; Keimer, B.; Hill, J. P.; Cavalleri, A.; Dhesi, S. S.

    2014-11-01

    We use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge-density wave correlations in underdoped YB a2C u3O6.6 . We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge-density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  10. Effect of non-coherent infrared light (LED, λ945 ± 20 nm) on bone repair in diabetic rats-morphometric and spectral analyses.

    Science.gov (United States)

    Diamantino, Alexandre Greca; Nicolau, Renata Amadei; Costa, Davidson Ribeiro; de Barros Almeida, Alessandra Paes; de Miranda Mato, Danila Xênia; de Oliveira, Marco Antonio; do Espírito Santo, Ana Maria

    2017-07-01

    Phototherapy using coherent light (lasers) and non-coherent light (light-emitting diodes (LEDs)) has been investigated for the purpose of biomodulation in biological tissues. Several effects can be expected, including pain moderation, biostimulation of cellular tropism, anti-inflammatory effects, regular circulatory stimulation, and tissue repair. The aim of this study was to evaluate the effect of LED (λ945 ± 20 nm, 48 mW) therapy on the regeneration process in femoral lesions of rats (Wistar). Seven irradiation sessions were held, with a 48-h interval between sessions. The animals were euthanised 14, 21, and 28 days after surgery. Bone samples were analysed by histomorphometry, micro X-ray fluorescence spectroscopy, scanning electron microscopy, and optical densitometry. The results demonstrated the effective positive influence of low-intensity LED therapy using the near-infrared region on the tissue repair process in diabetic animals, especially in the early stages of repair (14 and 21 days after surgery). It can be concluded that LED therapy positively influences bone formation in the early stages of the bone repair process in non-diabetic and diabetic animals, without causing changes in the optical density and volume of tissue in the final stages. No influence of LED therapy was observed on the percentage of calcium, percentage of phosphorus, Ca/P ratio, or optical mineral density in non-diabetic animals. However, increased mineral concentration was evident in the diabetic animals treated with the LED during the repair process.

  11. Metallic Colloid Wavelength-Ratiometric Scattering Sensors

    Science.gov (United States)

    Roll, David; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-01-01

    Gold and silver colloids display strong colors as a result of electron oscillations induced by incident light, which are referred to as the plasmon absorption. This absorption is dependent on colloid–colloid proximity, which has been the basis of absorption assays using colloids. We now describe a new approach to optical sensing using the light scattering properties of colloids. Colloid aggregation was induced by avidin–biotin interactions, which shifted the plasmon absorption to longer wavelengths. We found the spectral shift results in changes in the scattering at different incident wavelengths. By measuring the ratio of scattered intensities at two incident wavelengths, this measurement was made independent of the total colloid concentration. The high scattering efficiency of the colloids resulted in intensities equivalent to fluorescence when normalized by the optical density of the fluorophore and colloid. This approach can be used in a wide variety of assay formats, including those commonly used with fluorescence detection. PMID:14570195

  12. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T; Nemoto, K; Koga, J; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  13. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  14. Fourier ptychographic microscopy at telecommunication wavelengths using a femtosecond laser

    Science.gov (United States)

    Ahmed, Ishtiaque; Alotaibi, Maged; Skinner-Ramos, Sueli; Dominguez, Daniel; Bernussi, Ayrton A.; de Peralta, Luis Grave

    2017-12-01

    We report the implementation of the Fourier Ptychographic Microscopy (FPM) technique, a phase retrieval technique, at telecommunication wavelengths using a low-coherence ultrafast pulsed laser source. High quality images, near speckle-free, were obtained with the proposed approach. We demonstrate that FPM can also be used to image periodic features through a silicon wafer.

  15. Optical Coherence and Quantum Optics

    Science.gov (United States)

    Mandel, Leonard; Wolf, Emil

    1995-09-01

    The advent of lasers in the 1960s led to the development of many new fields in optical physics. This book is a systematic treatment of one of these fields--the broad area that deals with the coherence and fluctuation of light. The authors begin with a review of probability theory and random processes, and follow this with a thorough discussion of optical coherence theory within the framework of classical optics. They next treat the theory of photoelectric detection of light and photoelectric correlation. They then discuss in some detail quantum systems and effects. The book closes with two chapters devoted to laser theory and one on the quantum theory of nonlinear optics. The sound introduction to coherence theory and the quantum nature of light and the chapter-end exercises will appeal to graduate students and newcomers to the field. Researchers will find much of interest in the new results on coherence-induced spectral line shifts, nonclassical states of light, higher-order squeezing, and quantum effects of down-conversion. Written by two of the world's most highly regarded optical physicists, this book is required reading of all physicists and engineers working in optics.

  16. Ptychotomography at DLS Coherence Beamline I13

    Science.gov (United States)

    Kuppili, V. S. C.; Sala, S.; Chalkidis, S.; Wise, A. M.; Parsons, A. D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-06-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample.

  17. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting

    2016-01-01

    of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light...

  18. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    Here, we introduce the first experimental proof of coherent oscillation and coupling of photoswitchable molecules embedded randomly in a polymeric matrix and acting cooperatively upon illumination with UV light. In particular, we demonstrate the specular reflection and Brewster phenomenon...... alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity....... Our results enhance our fundamental understanding of coherent dipole radiation and open a new vein of research based on glassy disordered dipolar composites that act as macroscopic antenna with cooperative action; furthermore, these results have important implications for new design rules of tailored...

  19. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography.

    Science.gov (United States)

    Wijesundara, Kushal; Zdanski, Carlton; Kimbell, Julia; Price, Hillel; Iftimia, Nicusor; Oldenburg, Amy L

    2014-03-01

    Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light source, the system exhibited an SNR roll-off of endoscopy afforded by this system can aid in diagnosis, medical and surgical decision making, and predictive modeling of upper airway obstructive disorders.

  20. Current status and future perspectives of accelerator-based x-ray light sources

    Science.gov (United States)

    Tanaka, Takashi

    2017-09-01

    State-of-the-art x-ray light sources are nowadays based on large-scale electron accelerators, because the synchrotron radiation (SR) and x-ray free electron laser (XFEL) radiation generated by high-energy electron beams have many advantages over other alternatives in terms of the wavelength tunability, high brightness and flux, high coherence, flexible polarization states, and so on. This is the reason why SR and XFEL light sources have largely contributed to the evolution of x-ray science. This paper reviews the current status of such accelerator-based x-ray light source facilities and discusses their future perspectives.