WorldWideScience

Sample records for wavelength calibration errors

  1. UVIS G280 Wavelength Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Wavelength calibration of the UVIS G280 grism will be established using observations of the Wolf Rayet star WR14. Accompanying direct exposures will provide wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be obtained.

  2. New method for spectrofluorometer monochromator wavelength calibration.

    Science.gov (United States)

    Paladini, A A; Erijman, L

    1988-09-01

    A method is presented for wavelength calibration of spectrofluorometer monochromators. It is based on the distortion that the characteristic absorption bands of glass filters (holmium or didymium oxide), commonly used for calibration of spectrophotometers, introduce in the emitted fluorescence of fluorophores like indole, diphenyl hexatriene, xylene or rhodamine 6G. Those filters or a well characterized absorber with sharp bands like benzene vapor can be used for the same purpose. The wavelength calibration accuracy obtained with this method is better than 0.1 nm, and requires no modification in the geometry of the spectrofluorometer sample compartment.

  3. Suggested isosbestic wavelength calibration in clinical analyses.

    Science.gov (United States)

    Hoxter, G

    1979-01-01

    I recommend the use of isosbestic points for conveniently checking the wavelength scale of spectrophotometers in the ultraviolet and visible regions. Colorimetric pH indicators, hemoglobin derivatives, and other radiation-absorbing substances that are convertible into stable isomers of different absorption spectra provide a means for calibrating many different wavelengths by comparing the absorptivities of these isomers in equimolar solutions. The method requires no special precautions and results are independent of substance concentration and temperature between 4 and 45 degrees C. Isosbestic calibration may be important for (e.g.) coenzyme-dependent dehydrogenase activity determinations and in quality assurance programs.

  4. Regression calibration with heteroscedastic error variance.

    Science.gov (United States)

    Spiegelman, Donna; Logan, Roger; Grove, Douglas

    2011-01-01

    The problem of covariate measurement error with heteroscedastic measurement error variance is considered. Standard regression calibration assumes that the measurement error has a homoscedastic measurement error variance. An estimator is proposed to correct regression coefficients for covariate measurement error with heteroscedastic variance. Point and interval estimates are derived. Validation data containing the gold standard must be available. This estimator is a closed-form correction of the uncorrected primary regression coefficients, which may be of logistic or Cox proportional hazards model form, and is closely related to the version of regression calibration developed by Rosner et al. (1990). The primary regression model can include multiple covariates measured without error. The use of these estimators is illustrated in two data sets, one taken from occupational epidemiology (the ACE study) and one taken from nutritional epidemiology (the Nurses' Health Study). In both cases, although there was evidence of moderate heteroscedasticity, there was little difference in estimation or inference using this new procedure compared to standard regression calibration. It is shown theoretically that unless the relative risk is large or measurement error severe, standard regression calibration approximations will typically be adequate, even with moderate heteroscedasticity in the measurement error model variance. In a detailed simulation study, standard regression calibration performed either as well as or better than the new estimator. When the disease is rare and the errors normally distributed, or when measurement error is moderate, standard regression calibration remains the method of choice.

  5. Monitoring the stability of wavelength calibration of spectrophotometers.

    Science.gov (United States)

    Korzun, W J; Miller, W G

    1986-01-01

    The difference in absorbance (delta A) between equimolar acid and alkaline solutions of methyl red, at a wavelength near the isosbestic point of the indicator, is reproducible. Furthermore, this delta A is sensitive to changes in the wavelength calibration of the instrument used to make the measurement. The delta A of methyl red can be used to monitor wavelength accuracy in both manual and automated spectrophotometric instruments. Although this measurement does not establish wavelength calibration, it is useful for monitoring the wavelength accuracy of previously calibrated, automated spectrophotometers that do not easily lend themselves to calibration checks by conventional techniques.

  6. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    Science.gov (United States)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  7. 1% calibration errors in MQY magnets

    CERN Document Server

    Bach, T; Langner, A; Levinsen, Y; McAteer, M; Maclean, E H; Persson, T; Skowronski, P; Tomás, R; Todesco, E; White, S

    2013-01-01

    Errors in the range of 1% have been observed for the MQY magnets in beam-based measurements. Furthermore, inconsistencies have been observed when comparing previous magnetic measurements to the LHC LSA database. After a revision, new calibration data have been extracted and were compared to the optics corrections that have been obtained from beam-based measurements. In 27-11-2012 a MD session has been performed to test these calibration data. This paper reports on the experimental verification of the new calibration data for the MQY quadrupole magnets.

  8. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  9. Improving the automatic wavelength calibration of EMIR spectroscopic data

    Science.gov (United States)

    Cardiel, N.; Pascual, S.; Picazo, P.; Gallego, J.; Garzón, F.; Castro-Rodríguez, N.; González-Fernández, C.; Hammersley, P.; Insausti, M.; Manjavacas, E.; Miluzio, M.

    2017-03-01

    EMIR, the near-infrared camera-spectrograph operating in the near-infrared (NIR) wavelengths 0.9-2.5μm, is being commissioned at the Nasmyth focus of the Gran Telescopio CANARIAS. One of the most outstanding capabilities of EMIR will be its multi-object spectroscopic mode which, with the help of a robotic reconfigurable slit system, will allow to take around 53 spectra simultaneously. A data reduction pipeline, PyEmir, based on Python, is being developed in order to facilitate the automatic reduction of EMIR data taken in both imaging and spectroscopy mode. Focusing on the reduction of spectroscopic data, some critical manipulations include the geometric distortion correction and the wavelength calibration. Although usually these reductions steps are carried out separately, it is important to realise that these kind of manipulations involve data rebinning and interpolation, which in addition unavoidably lead to the increase of error correlation and to resolution degradation. In order to minimise these effects, it is possible to incorporate those data manipulations as a single geometric transformation. This approach is being used in the development of PyEmir. For this purpose, the geometric transformations available in the Python package Scikit-image are being used. This work was funded by the Spanish Programa Nacional de Astronomía y Astrofísica under grant AYA2013-46724-P.

  10. Study on the wavelength calibration of type III concave grating spectrometry system

    Institute of Scientific and Technical Information of China (English)

    Li Bai(白力); Ningfang Liao(廖宁放); Zhaojian Li(栗兆剑); Weiping Yang(杨卫平)

    2004-01-01

    We discuss and calibrate the spectrometry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem, three methods are put forward and discussed in detail with formulation calculation method, circular iteration method and interpolation. Interpolation is used to calibrate the concave reflection grating spectrometry system and the error is less than 1 nm. Four spectrum images that the system collected are given in this paper. The experimental results indicate that a spectrometry system can be based on concave reflection grating and be calibrated by interpolation.

  11. RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available Airborne laser scanning (ALS is a widely used technique for the sampling of the earth's surface. Nowadays a wide range of ALS sensor systems with different technical specifications can be found. One parameter is the laser wavelength which leads to a sensitivity for the wavelength dependent backscatter characteristic of sensed surfaces. Current ALS sensors usually record next to the geometric information additional information on the recorded signal strength of each echo. In order to utilize this information for the study of the backscatter characteristic of the sensed surface, radiometric calibration is essential. This paper focuses on the radiometric calibration of multi-wavelength ALS data and is based on previous work on the topic of radiometric calibration of monochromatic (single-wavelength ALS data. After a short introduction the theory and whole workflow for calibrating ALS data radiometrically based on in-situ reference surfaces is presented. Furthermore, it is demonstrated that this approach for the monochromatic calibration can be used for each channel of multi-wavelength ALS data. The resulting active multi-channel radiometric image does not have any shadows and from a geometric viewpoint the position of the objects on top of the terrain surface is not altered (the result is a multi-channel true orthophoto. Within this paper the approach is demonstrated by three different single-wavelength ALS data acquisition campaigns (532nm, 1064nm and 1550nm covering the area of the city Horn (Austria. The results and practical issues are discussed.

  12. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    Science.gov (United States)

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  13. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    Science.gov (United States)

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  14. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  15. Wavelength calibration for OSIRIS/GTC* tunable filters

    CERN Document Server

    Mendez-Abreu, J; Munoz-Tunon, C; Rodriguez-Espinosa, J M; Aguerri, J A L; Gonzalez, D Rosa; Mayya, Y D; Vega, O; Terlevich, R; Terlevich, E; Bertone, E; Rodriguez-Merino, L H

    2011-01-01

    OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interferometer working in collimated beam, the TF transmission wavelength depends on the position of the target with respect to the optical axis. This effect is non-negligible and must be accounted for in the data reduction. Our paper establishes a wavelength calibration for OSIRIS TF with the accuracy required for spectrophotometric measurements using the full field of view (FOV) of the instrument. The variation of the transmission wavelength $\\lambda(R)$ across the FOV is well described by $\\lambda(R)=\\lambda(0)/\\sqrt{1+(R/f_2)^2}$, where $\\lambda(0)$ is the central wavelength, $R$ represents the physical distance from the optical axis, and $f_2=185.70\\pm0.17\\,$mm is the effective focal length of the camera lens. This new empirical calibration yields an accuracy better...

  16. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  17. Rectifying calibration error of Goldmann applanation tonometer is easy!

    Directory of Open Access Journals (Sweden)

    Nikhil S Choudhari

    2014-01-01

    Full Text Available Purpose: Goldmann applanation tonometer (GAT is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn′t suffice. We followed the South East Asia Glaucoma Interest Group′s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively. Results: Twelve out of 29 (41.3% GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6% faulty instruments. Only one (8.3% faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  18. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA (United Kingdom)

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  19. Error Model and Accuracy Calibration of 5-Axis Machine Tool

    Directory of Open Access Journals (Sweden)

    Fangyu Pan

    2013-08-01

    Full Text Available To improve the machining precision and reduce the geometric errors for 5-axis machinetool, error model and calibration are presented in this paper. Error model is realized by the theory of multi-body system and characteristic matrixes, which can establish the relationship between the cutting tool and the workpiece in theory. The accuracy calibration was difficult to achieve, but by a laser approach-laser interferometer and laser tracker, the errors can be displayed accurately which is benefit for later compensation.

  20. Auto-calibration of Systematic Odometry Errors in Mobile Robots

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Andersen, Nils Axel

    1999-01-01

    This paper describes the phenomenon of systematic errors in odometry models in mobile robots and looks at various ways of avoiding it by means of auto-calibration. The systematic errors considered are incorrect knowledge of the wheel base and the gains from encoder readings to wheel displacement...... and experiments on a mobile robot....

  1. Calibrating Car-Following Model Considering Measurement Errors

    Directory of Open Access Journals (Sweden)

    Chang-qiao Shao

    2013-01-01

    Full Text Available Car-following model has important applications in traffic and safety engineering. To enhance the accuracy of model in predicting behavior of individual driver, considerable studies strive to improve the model calibration technologies. However, microscopic car-following models are generally calibrated by using macroscopic traffic data ignoring measurement errors-in-variables that leads to unreliable and erroneous conclusions. This paper aims to develop a technology to calibrate the well-known Van Aerde model. Particularly, the effect of measurement errors-in-variables on the accuracy of estimate is considered. In order to complete calibration of the model using microscopic data, a new parameter estimate method named two-step approach is proposed. The result shows that the modified Van Aerde model to a certain extent is more reliable than the generic model.

  2. Gemini Planet Imager Observational Calibrations IV: Wavelength Calibration and Flexure Correction for the Integral Field Spectrograph

    CERN Document Server

    Wolff, Schuyler G; Maire, Jérôme; Ingraham, Patrick J; Rantakyrö, Fredrik T; Hibon, Pascale

    2014-01-01

    We present the wavelength calibration for the lenslet-based Integral Field Spectrograph (IFS) that serves as the science instrument for the Gemini Planet Imager (GPI). The GPI IFS features a 2.7" x 2.7" field of view and a 190 x 190 lenslet array (14.3 mas/lenslet) operating in $Y$, $J$, $H$, and $K$ bands with spectral resolving power ranging from $R$ $\\sim$ 35 to 78. Due to variations across the field of view, a unique wavelength solution is determined for each lenslet characterized by a two-dimensional position, the spectral dispersion, and the rotation of the spectrum with respect to the detector axes. The four free parameters are fit using a constrained Levenberg-Marquardt least-squares minimization algorithm, which compares an individual lenslet's arc lamp spectrum to a simulated arc lamp spectrum. This method enables measurement of spectral positions to better than 1/10th of a pixel on the GPI IFS detector using Gemini's facility calibration lamp unit GCAL, improving spectral extraction accuracy compar...

  3. GOME total ozone and calibration error derived using Version 8 TOMS Algorithm

    Science.gov (United States)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-04-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local structure as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The 1b detector appears to be quite well behaved throughout this time period.

  4. Gafchromic film dosimetry: calibration methodology and error analysis

    CERN Document Server

    Crijns, Wouter; Heuvel, Frank Van den

    2011-01-01

    Purpose : To relate the physical transmittance parameters of the water equivalent Gafchromic EBT 2 Film with the delivered dose in a transparent absolute calibration protocol. The protocol should be easy to understand, easy to perform, and should be able to predict the residual dose error. Conclussions : The gafchromic EBT2 Films are properly calibrated with an accessible robust calibration protocol. The protocol largely deals with the uniformity problems of the Film. The proposed method allowed to relate the dose with the red channel transmittance using only T0, T_inf, and a dose scaling factor. Based on the local and global uniformity the red channel dose errors could be predicted to be smaller than 5%.

  5. Investigating short wavelength correlated errors on low resolution mode altimetry

    Science.gov (United States)

    Poisson, Jean-Christophe; Thibaut, Pierre; Dibarboure, Gérald; Labroue, Sylvie; Lasne, Yannick; Boy, François; Picot, Nicolas

    2013-04-01

    Although conventional radar altimetry products (Jason1, Jason2, LRM CRYOSAT2, etc) have a spatial resolution as high as 300 m, the observation of ocean scales smaller than 100 km is limited by the existence of a "spectral hump", i.e. a geographically coherent error. In the frame of the future altimetry missions (SAR for Cryosat -2 and Sentinel-3 missions and interferometry for the SWOT mission) it becomes crucial to investigate again and to better understand the signals obtained at small scales by conventional altimeter missions. Through an analysis of simulations, we show that heterogeneous backscattering scenes can result in the corruption of the altimeter waveforms and retracked parameters. The retrackers used in current ground processors cannot well fit the Brown model during backscattering events because this model has been designed for a homogeneous scene. The error is also propagated along-track because of the size and shape of the low resolution mode (LRM) disc-shaped footprint. The hump phenomenon is shown to be almost ubiquitous in the ocean, yet more intense at low latitudes and in the Indian Ocean and Western Pacific Ocean, where backscattering events are more frequent. Its overall signature could be a Gaussian-like random signal smooth for wavelengths smaller than 15 km, i.e. white noise on 1 Hz products. The analysis of current data from 5 altimetry missions highlights the influence of the instrument design and altitude, and the influence of the retracker used. The spectral hump is a systematic response to random events and it is possible to mitigate it with new processing. Simulations and geographically limited datasets from the synthetic aperture radar mode (SARM) of Cryosat-2 show that the thin stripe-shaped synthetic footprint of SARM might be less sensitive to the artifact.

  6. Alternative Data Reduction Procedures for UVES: Wavelength Calibration and Spectrum Addition

    CERN Document Server

    Thompson, Rodger I; Black, John H; Martins, C J A P

    2008-01-01

    This paper addresses alternative procedures to the ESO supplied pipeline procedures for the reduction of UVES spectra of two quasar spectra to determine the value of the fundamental constant mu = Mp/Me at early times in the universe. The procedures utilize intermediate product images and spectra produced by the pipeline with alternative wavelength calibration and spectrum addition methods. Spectroscopic studies that require extreme wavelength precision need customized wavelength calibration procedures beyond that usually supplied by the standard data reduction pipelines. An example of such studies is the measurement of the values of the fundamental constants at early times in the universe. This article describes a wavelength calibration procedure for the UV-Visual Echelle Spectrometer on the Very Large Telescope, however, it can be extended to other spectrometers as well. The procedure described here provides relative wavelength precision of better than 3E-7 for the long-slit Thorium-Argon calibration lamp ex...

  7. Calibration of parallel kinematics machine using generalized distance error model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing.Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.

  8. Application of variance components estimation to calibrate geoid error models.

    Science.gov (United States)

    Guo, Dong-Mei; Xu, Hou-Ze

    2015-01-01

    The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model.

  9. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths

    Science.gov (United States)

    Román, R.; Antón, M.; Cazorla, A.; de Miguel, A.; Olmo, F. J.; Bilbao, J.; Alados-Arboledas, L.

    2012-08-01

    This paper proposes a method to obtain spectral sky radiances, at three wavelengths (464, 534 and 626 nm), from hemispherical sky images. Images are registered with the All-Sky Imager installed at the Andalusian Center for Environmental Research (CEAMA) in Granada (Spain). The methodology followed in this work for the absolute calibration in radiance of this instrument is based on the comparison of its output measurements with modelled sky radiances derived from the LibRadtran/UVSPEC radiative transfer code under cloud-free conditions. Previously, in order to check the goodness of the simulated radiances, these are compared with experimental values recorded by a CIMEL sunphotometer. In general, modelled radiances are in agreement with experimental data, showing mean differences lower than 20% except for the pixels located next to the Sun position that show larger errors. The relationship between the output signal of the All-Sky Imager and the modelled sky radiances provides a calibration matrix for each image. The variability of the matrix coefficients is analyzed, showing no significant changes along a period of 5 months. Therefore, a unique calibration matrix per channel is obtained for all selected images (a total of 705 images per channel). Camera radiances are compared with CIMEL radiances, finding mean absolute differences between 2% and 15% except for pixels near to the Sun and high scattering angles. We apply these calibration matrices to three images in order to study the sky radiance distributions for three different sky conditions: cloudless, overcast and partially cloudy. Horizon brightening under cloudless conditions has been observed together with the enhancement effect of individual clouds on sky radiance.

  10. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths

    Directory of Open Access Journals (Sweden)

    R. Román

    2012-02-01

    Full Text Available This paper proposes a method to obtain spectral sky radiances, at three wavelengths (464, 534 and 626 nm, from hemispherical sky images. Images are registered with an All-Sky Imager installed at the Andalusian Center for Environmental Research (CEAMA in Granada (Spain. The methodology followed in this work for the absolute calibration in radiance of this instrument is based on the comparison of its output measurements with modelled sky radiances derived from the Libradtran/UVSPEC radiative transfer code under cloud-free conditions. Previously, in order to check the goodness of the simulated radiances, these are compared with experimental values recorded by a CIMEL sunphotometer. In general, modelled radiances are in agreement with experimental data, showing mean differences lower than 15% except for the pixels located next to the sun position that show larger errors.

    The comparison between the output signal of the All-Sky Imager and the modelled sky radiances provides a calibration matrix for each image. The variability of the matrix coefficients is analyzed, showing no significant changes along a period of 5 months. Therefore, a unique calibration matrix per channel is obtained for all selected images (a total of 705 images per channel. Camera radiances are compared with CIMEL radiances, finding mean absolute differences between 2% and 15% except for pixels near to the Sun and high zenith angles. We apply these calibration matrices to three images in order to study the sky radiance distributions for three different sky conditions: cloudless, overcast and partially cloudy. Horizon brightening under cloudless conditions has been observed together with the enhancement effect of individual clouds on sky radiance.

  11. Trace and Wavelength Calibrations of the UVIS G280 +1/-1 Grism Orders

    Science.gov (United States)

    Pirzkal, Norbert; Hilbert, Bryan; Rothberg, Barry

    2017-06-01

    We present new calibrations of the UVIS G280 grism dispersions for the -1 and +1 orders. The new calibration is based on in-flight observations of the star WR14 which was observed at multiple positions on the UVIS detector. This allowed us to derive a first estimate of the field dependence of the UVIS G280 dispersion. While previous, TV3 ground test based calibration, were only able to calibrate spectra obtained at the center of the UVIS CHIP1, our new solutions allow for the extraction and wavelength calibration of spectra over the entire UVIS field-of-view. We estimate the accuracy of the wavelength calibration using the new V2.0 dispersion solutions to be ± 7Å, or about half of a UVIS resolution element.

  12. The Mauna Kea Observatories Near-Infrared Filter Set. III. Isophotal Wavelengths and Absolute Calibration

    CERN Document Server

    Tokunaga, A T

    2005-01-01

    The isophotal wavelengths, flux densities, and AB magnitudes for Vega (alpha Lyr) are presented for the Mauna Kea Observatories near-infrared filter set. We show that the near-infrared absolute calibration for Vega determined by Cohen et al. and Megessier are consistent within the uncertainties, so that either absolute calibration may be used.

  13. Preliminary results of absolute wavelength calibration of imaging X-ray crystal spectrometer on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiayun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Wang, Fudi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Lyu, Bo, E-mail: blu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Yingying; Fu, Jia; Xu, Liqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Shi, Yuejiang [University of Science and Technology of China, Hefei 230026 (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Ye, Minyou [University of Science and Technology of China, Hefei 230026 (China); Wan, Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-10-15

    Highlights: • The absolute wavelength calibration method for X-ray crystal spectrometer using X-ray fluorescence of the appropriate materials was first tested on EAST, and the preliminary experimental results were obtained. • The experimental results were thoroughly discussed and suggestion for further improvements of the experimental arrangement was proposed. • Rotation calibration of X-ray crystal spectrometer on EAST using MHD frequency was presented when the absolute wavelength calibration method is unavailable currently. - Abstract: Imaging X-ray crystal spectrometers (XCS) are currently operating on several major tokamaks to provide profiles of ion temperature and rotation velocity. In order to acquire absolute rotation velocity, several indirect methods were pursued previously, however the direct and effective method is to use known X-ray lines for wavelength calibration. One way to produce standard spectral lines is X-ray fluorescence, which could be excited by X-rays from tokamak plasmas. As part of the upgrade of XCS system on EAST, wavelength calibration was studied using cadmium's L-shell lines, namely Lα{sub 1} line (3.9564 Å) and Lα{sub 2} line (3.9650 Å) as the reference wavelength. The Geant 4 code was used to optimize foil thickness to achieve a reasonable X-ray fluorescence intensity. The Cd foil was placed between the beryllium window and crystal and could be retracted to provide in situ wavelength calibration. The detailed arrangement and preliminary wavelength calibration results of imaging X-ray crystal spectrometer on EAST are presented, plus the calibration using MHD frequency.

  14. Stability study of standards used for calibration of the spectrophotometer wavelength scale

    Science.gov (United States)

    Debossan, L. F.; Carvalho, E. M. S.; Souza, M. A.; Gomes, J. F. S.

    2016-07-01

    The calibration of spectrophotometers is a procedure recommended by international standards to provide quality assurance of results and traceability. Due to its intrinsic properties, holmium oxide filters are indicated as reference standards for calibrating the wavelength scale of such equipment. This paper presents a study aiming to assess the repeatability and drift of holmium oxide standard filters calibrated in the Radiometry and Photometry Laboratory (Laraf) of Inmetro in order to verify their stability.

  15. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  16. An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry.

    Science.gov (United States)

    Travis, John C; Zwinkels, Joanne C; Mercader, Flora; Ruíz, Arquímedes; Early, Edward A; Smith, Melody V; Noël, Mario; Maley, Marissa; Kramer, Gary W; Eckerle, Kenneth L; Duewer, David L

    2002-07-15

    Commercial spectrophotometers typically use absorption-based wavelength calibration reference materials to provide wavelength accuracy for their applications. Low-mass fractions of holmium oxide (Ho2O3) in dilute acidic aqueous solution and in glass matrixes have been favored for use as wavelength calibration materials on the basis of spectral coverage and absorption band shape. Both aqueous and glass Ho2O3 reference materials are available commercially and through various National Metrology Institutes (NMIs). Three NMIs of the North American Cooperation in Metrology (NORAMET) have evaluated the performance of Ho3-(aq)-based Certified Reference Materials (CRMs) under "routine" operating conditions using commercial instrumentation. The study was not intended to intercompare national wavelength scales but to demonstrate comparability of wavelength measurements among the participants and between two versions of the CRMs. It was also designed to acquire data from a variety of spectrophotometers for use in a NIST study of wavelength assignment algorithms and to provide a basis for a possible reassessment of NIST-certified Ho3+(aq) band locations. The resulting data show a substantial level of agreement among laboratories, instruments, CRM preparations, and peak-location algorithms. At the same time, it is demonstrated that the wavelength comparability of the five participating instruments can actually be improved by calibrating all of the instruments to the consensus Ho3+(aq) band locations. This finding supports the value of absorption-based wavelength standards for calibrating absorption spectrophotometers. Coupled with the demonstrated robustness of the band position values with respect to preparation and measurement conditions, it also supports the concept of extending the present approach to additional NMIs in order to certify properly prepared dilute acidic Ho2O3 solution as an intrinsic wavelength standard.

  17. Wavelength Self-Calibration and Sky Subtraction for Fabry-Perot Interferometers: Applications to OSIRIS

    CERN Document Server

    Weinzirl, Tim; Bamford, Steven P; del Pino, Bruno Rodriguez; Gray, Meghan E; Chies-Santos, Ana L

    2015-01-01

    We describe techniques concerning wavelength calibration and sky subtraction to maximise the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument (OSIRIS) on the 10.4~m Gran Telescopio Canarias telescope, our discussion is generalisable to data from other tunable filter instruments. A key aspect of our methodology is a coordinate transformation to polar coordinates, which simplifies matters when the tunable filter data is circularly symmetric around the optical centre. First, we present a method for rectifying inaccuracies in the wavelength calibration using OH sky emission rings. Using this technique, we improve the absolute wavelength calibration from an accuracy of 5 Angstroms to 1 Angstrom, equivalent to ~7% of our instrumental resolution, for 95% of our data. Then, we discuss a new way to estimate the background sky emission by median filtering in polar coordinates. This met...

  18. A stable and inexpensive wavelength reference for precise wavelength calibration of radial velocity spectrographs

    Science.gov (United States)

    Feger, Tobias; Ireland, Michael J.; Bento, Joao; Bacigalupo, Carlos

    2014-08-01

    We present a stable, inexpensive wavelength reference, based on a white-light interferometer for the use on current and future (arrays of) diffraction-limited radial velocity (RV) spectrographs. The primary aim of using an interferometer is to obtain a dense sinusoidal wavelength reference with spectral coverage between 450-650 nm. Its basic setup consists of an unbalanced fiber Mach-Zehnder interferometer (FMZI) that creates an interference pattern in the spectral domain due to superposition of phase delayed light, set by a fixed optical path-length difference (OPD). To achieve long-term stability, the interferometer is actively locked to a stable atomic line. The system operates in closed-loop using a thermo-optic modulator as the phase feedback component. We conducted stability measurements by superimposing the wavelength reference with thorium-argon (ThAr) emission lines and found the differential RMS shift to be ~5 m s-1 within 30 minute bins in an experiment lasting 5 hours.

  19. The Algorithm for MODIS Wavelength On-Orbit Calibration Using the SRCA

    Science.gov (United States)

    Montgomery, Harry; Che, Nianzeng; Parker, Kirsten; Bowser, Jeff

    1998-01-01

    The Spectro-Radiometric Calibration Assembly (SRCA) provides on-orbit spectral calibration of the MODerate resolution Imaging Spectroradiometer (MODIS) reflected solar bands and this paper describes how it is accomplished. The SRCA has two adjacent exit slits: 1) Main slit and 2) Calibration slit. The output from the main slit is measured by a reference silicon photo-diode (SIPD) and then passes through the MODIS. The output from the calibration slit passes through a piece of didymium transmission glass and then it is measured by a calibration SIPD. The centroids of the sharp spectral peaks of a didymium glass are utilized as wavelength standards. After normalization using the reference SIPD signal to eliminate the effects of the illuminating source spectra, the calibration SIPD establishes the relationship between the peaks of the didymium spectra and the grating angle; this is accomplished through the grating equation. In the grating equation the monochromator parameters, Beta (half angle between the incident and diffractive beams) and Theta(sub off) (offset angle of the grating motor) are determined by matching, in a least square sense, the known centroid wavelengths of the didymium peaks and the calculated centroid grating angles from the calibration SIPD signals for the peaks. A displacement between the calibration SIPD and the reference SIPD complicates the signal processing.

  20. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  1. Two Error Models for Calibrating SCARA Robots based on the MDH Model

    Directory of Open Access Journals (Sweden)

    Li Xiaolong

    2017-01-01

    Full Text Available This paper describes the process of using two error models for calibrating Selective Compliance Assembly Robot Arm (SCARA robots based on the modified Denavit-Hartenberg(MDH model, with the aim of improving the robot's accuracy. One of the error models is the position error model, which uses robot position errors with respect to an accurate robot base frame built before the measurement commenced. The other model is the distance error model, which uses only the robot moving distance to calculate errors. Because calibration requires the end-effector to be accurately measured, a laser tracker was used to measure the robot position and distance errors. After calibrating the robot and, the end-effector locations were measured again compensating the error models' parameters obtained from the calibration. The finding is that the robot's accuracy improved greatly after compensating the calibrated parameters.

  2. The Absolute, Relative and Multi-Wavelength Calibration of the Pierre Auger Observatory Fluorescence Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Knapik, R.; Bauleo, P.; Becker, B.R.; Brack, J.; Caruso, R.; Fratte, C.Delle; Dorofeev, A.; Harton, J.; Insolia, A.; Matthews, J.A.J.; Menshikov, A.

    2007-08-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a 375 nm light source at the telescope aperture. This end-to-end technique accounts for the combined effects of all detector components in a single measurement. The relative response has been measured at wavelengths of 320, 337, 355, 380 and 405 nm, defining a spectral response curve which has been normalized to the absolute calibration. Before and after each night of data taking a relative calibration of the phototubes is performed. This relative calibration is used to track both short and long term changes in the detector's response. A cross check of the calibration in some phototubes is performed using an independent laser technique. Overall uncertainties, current results and future plans are discussed.

  3. Revised Wavelength and Spectral Response Calibrations for AKARI Near-Infrared Grism Spectroscopy: Cryogenic Phase

    CERN Document Server

    Baba, S; Shirahata, M; Isobe, N; Usui, F; Ohyama, Y; Onaka, T; Yano, K; Kochi, C

    2016-01-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to quantitatively correct for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5--5.0 micron with a spectral resolving power of 120 at 3.6 micron, is found to be contaminated by second-order light at wavelengths longer than 4.9 micron which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 micron compared with the revised wavelengths at 2.5--5.0 micron. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Second, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with dif...

  4. Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer

    Science.gov (United States)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2016-05-01

    The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.

  5. Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration

    Directory of Open Access Journals (Sweden)

    Haitao Chang

    2016-06-01

    Full Text Available One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity. A wavelength selection method based on simple-to-use interactive self-modeling mixture analysis minimizes the influence of noisy variables, and the most informative variables of the most similar samples are selected to build the multivariate calibration model based on partial least squares regression. To validate the performance of the proposed method, ultraviolet-visible absorbance spectra of mixed solutions of food coloring analytes in a concentration range of 20–200 µg/mL is measured. Experimental results show that the proposed method can not only enhance the prediction accuracy of the calibration model, but also greatly reduce its complexity.

  6. A Bayesian Estimator for Linear Calibration Error Effects in Thermal Remote Sensing

    CERN Document Server

    Morgan, J A

    2005-01-01

    The Bayesian Land Surface Temperature estimator previously developed has been extended to include the effects of imperfectly known gain and offset calibration errors. It is possible to treat both gain and offset as nuisance parameters and, by integrating over an uninformative range for their magnitudes, eliminate the dependence of surface temperature and emissivity estimates upon the exact calibration error.

  7. A Study of Wavelength Calibration of NEWSIPS High-Dispersion Spectra

    CERN Document Server

    Smith, M A

    2001-01-01

    In this study we cross-correlate many IUE echellograms of a variety of stars to evaluate systematic error sources in the wavelength zeropoint of all three cameras. We first evaluated differences between the final archived ("NEWSIPS") and the originally processed ("IUESIPS") spectra. These show a clear time dependence in zeropoint for the SWP camera due to revisions in the IUESIPS wavelength scale. Small IUESIPS - NEWSIPS differences are also found for the LWR camera. We also examined wavelength zeropoint disparities between data obtained both through the small and large entrance apertures and for observations made by different target acquisition modes for faint and bright stars. We found that velocities resulting from these alternative observing modes are nil. For large-aperture observations the dominant error source is the target position placement in the aperture. We searched for spurious trends with time, and found only a suggestion of time trends for faint stars observed with the SWP camera. We also disco...

  8. [Study of reference material for excitation spectrum wavelength calibration of fluorescence spectrophotometer].

    Science.gov (United States)

    Chen, Xiao-bo; Kang, Dong-guo; Zhao, Cheng-yi; Li, Song; Wu, Zheng-long; Ma, Hui; Liu, Zhong-min; Zheng, Zhe

    2005-07-01

    A reference material used for wavelength calibration of fluorescence spectrophotometer was found. The holmium doped oxide reference material GBW(E) 130112 is a kind of standard reference material for absorption spectrophotometer. It can emit 547.7 nm fluorescence when excited by xenon lamp light. The excitation spectrum of 547.7 nm fluorescence was measured. It was found that the measured peaks of excitation spectrum are positioned at 333.56, 360.43 and 418.39 nm, respectively, which are coincident with the true values 333.8, 360.9 and 418.5 nm of reference material certification. It was illustrated that the holmium doped oxide reference material GBW(E)130112 could be used as reference material for the excitation wavelength calibration of the fluorescence spectrophotometer. Its property could be enhanced very much if high luminescent efficiency material is selected as rare earth ion doped matrix, and the purity is enhanced to reduce the cross relaxation.

  9. Forward error correction supported 150 Gbit/s error-free wavelength conversion based on cross phase modulation in silicon

    DEFF Research Database (Denmark)

    Hu, Hao; Andersen, Jakob Dahl; Rasmussen, Anders

    2013-01-01

    We build a forward error correction (FEC) module and implement it in an optical signal processing experiment. The experiment consists of two cascaded nonlinear optical signal processes, 160 Gbit/s all optical wavelength conversion based on the cross phase modulation (XPM) in a silicon nanowire...... and subsequent 160 Gbit/s-to-10 Gbit/s demultiplexing in a highly nonlinear fiber (HNLF). The XPM based all optical wavelength conversion in silicon is achieved by off-center filtering the red shifted sideband on the CW probe. We thoroughly demonstrate and verify that the FEC code operates correctly after...... the optical signal processing, yielding truly error-free 150 Gbit/s (excl. overhead) optically signal processed data after the two cascaded nonlinear processes. © 2013 Optical Society of America....

  10. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    Science.gov (United States)

    Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  11. Stereo Matching in the Presence of Sub-Pixel Calibration Errors

    OpenAIRE

    Hirschmüller, Heiko; Gehrig, Stefan

    2009-01-01

    Stereo matching commonly requires rectified images that are computed from calibrated cameras. Since all under-lying parametric camera models are only approximations, calibration and rectification will never be perfect. Additionally, it is very hard to keep the calibration perfectly stable in application scenarios with large temperature changes and vibrations. We show that even small calibration errors of a quarter of a pixel are severely amplified on certain structures. We discuss a robotics ...

  12. An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration

    Science.gov (United States)

    Yun, Yong-Huan; Li, Hong-Dong; Wood, Leslie R. E.; Fan, Wei; Wang, Jia-Jun; Cao, Dong-Sheng; Xu, Qing-Song; Liang, Yi-Zeng

    2013-07-01

    Wavelength selection is a critical step for producing better prediction performance when applied to spectral data. Considering the fact that the vibrational and rotational spectra have continuous features of spectral bands, we propose a novel method of wavelength interval selection based on random frog, called interval random frog (iRF). To obtain all the possible continuous intervals, spectra are first divided into intervals by moving window of a fix width over the whole spectra. These overlapping intervals are ranked applying random frog coupled with PLS and the optimal ones are chosen. This method has been applied to two near-infrared spectral datasets displaying higher efficiency in wavelength interval selection than others. The source code of iRF can be freely downloaded for academy research at the website: http://code.google.com/p/multivariate-calibration/downloads/list.

  13. Inference on rare errors using asymptotic expansions and bootstrap calibration

    NARCIS (Netherlands)

    Helmers, R.

    1998-01-01

    The number of items in error in an audit population is usually quite small, whereas the error distribution is typically highly skewed to the right. For applications in statistical auditing, where line item sampling is appropriate, a new upper confidence limit for the total error amount in an audit p

  14. The northern European geoid: a case study on long-wavelength geoid errors

    DEFF Research Database (Denmark)

    Omang, O.C.D.; Forsberg, René

    2002-01-01

    The long-wavelength geoid errors on large-scale geoid solutions, and the use of modified kernels to mitigate these effects, are studied. The geoid around the Nordic area, from Greenland to the Ural mountains, is considered. The effect of including additional gravity data around the Nordic/Baltic ...

  15. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  16. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  17. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    Science.gov (United States)

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our

  18. Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2013-01-01

    Full Text Available In order to improve the precision of Strapdown Inertial Navigation System (SINS and reduce the complexity of the traditional calibration method, a novel calibration and compensation scheme is proposed. An optimization calibration method with four-direction rotations is designed to calculate all error coefficients of Ring Laser Gyroscope (RLG SINS in a series of constant temperatures. According to the actual working environment, the temperature errors of RLG SINS are compensated by a nonlinear interpolation compensation algorithm. The experimental results show that the inertial navigation errors of the proposed method are reduced.

  19. Ground-based Multi-object Spectroscopy of XO-2b using a Systematic Wavelength Calibration

    Science.gov (United States)

    Pearson, Kyle; Griffith, Caitlin Ann; Zellem, Robert Thomas

    2016-10-01

    Here we present multiple observations of the primary transit of the bright hot-Jupiter XO-2b with visible wavelength spectroscopy. Repeated observations of XO-2b record simulatenous measurements of both the exoplanet host star and one or more comparison stars. Ideally, the comparison star measures errors, such as airmass variations and telescope jitter. The hypothesis is that these errors can then be divided out from the target star to achieve higher SNR and improve estimation of the small transit signal. However, we find that the astrophysical signals are subject to time-varying translations along the spectroscopic dispersion axis that change according to wavelength. Improper alignment prior to dividing the astrophysical signals can result in spurious spectral features or inadequate removal of shared systematics. We showcase ways to check for inadequate alignment and offer corrections to such problems.

  20. The list of tantalum lines for wavelengths calibration of the Hamilton echelle-spectrograph

    CERN Document Server

    Pakhomov, Yu V

    2015-01-01

    We present solution of the problem of wavelength calibration for Hamilton Echelle spectrograph using hollow cathode lamp, which was operated at Lick Observatory Shane telescope before June 9, 2011. The spectrum of the lamp claimed to be thorium-argon, contains, in addition to the lines of thorium and argon, a number of the unrecognized lines identified by us with tantalum. Using atomic data for measured lines of tantalum and thorium, we estimated the temperature of the gas in the lamp as T=3120+/-60 K. From the atomic line database VALD3 we selected all lines of TaI and TaII which can be seen in the spectrum of the lamp and compiled a list for the use in the processing of spectral observations. We note a limitation of the accuracy of calibration due to the influence of the hyperfine line splitting.

  1. Force calibration using errors-in-variables regression and Monte Carlo uncertainty evaluation

    Science.gov (United States)

    Bartel, Thomas; Stoudt, Sara; Possolo, Antonio

    2016-06-01

    An errors-in-variables regression method is presented as an alternative to the ordinary least-squares regression computation currently employed for determining the calibration function for force measuring instruments from data acquired during calibration. A Monte Carlo uncertainty evaluation for the errors-in-variables regression is also presented. The corresponding function (which we call measurement function, often called analysis function in gas metrology) necessary for the subsequent use of the calibrated device to measure force, and the associated uncertainty evaluation, are also derived from the calibration results. Comparisons are made, using real force calibration data, between the results from the errors-in-variables and ordinary least-squares analyses, as well as between the Monte Carlo uncertainty assessment and the conventional uncertainty propagation employed at the National Institute of Standards and Technology (NIST). The results show that the errors-in-variables analysis properly accounts for the uncertainty in the applied calibrated forces, and that the Monte Carlo method, owing to its intrinsic ability to model uncertainty contributions accurately, yields a better representation of the calibration uncertainty throughout the transducer’s force range than the methods currently in use. These improvements notwithstanding, the differences between the results produced by the current and by the proposed new methods generally are small because the relative uncertainties of the inputs are small and most contemporary load cells respond approximately linearly to such inputs. For this reason, there will be no compelling need to revise any of the force calibration reports previously issued by NIST.

  2. Calibrating the measurement of wavelength-dependent second harmonic generation from biological tissues with a BaB₂O₄ crystal.

    Science.gov (United States)

    Shen, Mengzhe; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo

    2013-03-01

    Although second harmonic generation (SHG) imaging has emerged as a powerful tool for imaging biological tissues with submicron resolution, the excitation wavelength dependence of SHG intensity in biological tissues is an optical property that is not fully understood so far. We first calibrate system factors which may potentially affect the accuracy of the wavelength-dependent SHG measurement. Then our calibration is validated by measuring the wavelength dependence of SHG signal from a BaB₂O₄ crystal under different focusing conditions and comparing with the theoretical calculations. The good agreement between the experimental results and theoretical calculations demonstrates that we have established a reliable method to validate wavelength-dependent SHG measurement over a broad wavelength range. We also investigate the wavelength dependence of a 10-μm thick mouse tendon tissue in both forward and backward directions. It is found that SHG of mouse tendon tissue decreases monotonically for excitation from 750 to 950 nm.

  3. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  4. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  5. 3-PRS serial-parallel machine tool error calibration and parameter identification

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun-wei; DAI Jun; HUANG Jun-jie

    2009-01-01

    3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.

  6. Scalable in situ qubit calibration during repetitive error detection

    Science.gov (United States)

    Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Lucero, E.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, John M.

    2016-09-01

    We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates low on all physical qubits throughout the course of a computation. Our method is O (1 ) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.

  7. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    Science.gov (United States)

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  8. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  9. A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems

    Science.gov (United States)

    Zhang, Yanshun; Guo, Yajing; Yang, Tao; Li, Chunyu; Wang, Zhanqing

    2016-06-01

    The scale factor error δ C of the Doppler velocity log (DVL) and the heading angle error δ \\psi of a compass are so integrated in dead reckoning (DR) navigation systems that it is difficult to separate them. This paper aims to solve this problem by putting forward an online separation and calibration method for δ C and δ \\psi based on an ‘arc and linear’ trajectory. This method introduces the high-accuracy location information of a long base line (LBL) acoustic positioning system. At first, the relationship between the displacements on the ‘arc’ trajectory in directions of east and north, output by the LBL and DR systems, serves to judge the carrier direction and calibrate δ C . And then by compensating δ C , the displacement on the ‘linear’ trajectory is used to calibrate δ \\psi . Finally, a semi-physical simulation experiment is conducted to test and verify this calibration method to see how effective and accurate it is. Experimental results show that after calibration the residual error ratios of δ C and δ \\psi are 8.24% and 3.70% respectively. Therefore, online calibration of δ C and δ \\psi is realized effectively. What’s more, when the DR system is working alone in 400 s, this method reduces position error by up to 93.39%, from 18.91 m to 1.25 m.

  10. HERA Transverse Polarimeter absolute scale and error by rise-time calibration

    CERN Document Server

    Karibian, V

    2003-01-01

    We give the results of an analysis of some 18 rise-time calibrations which are based on data collected in 1996/97. Such measurements are used to determine the absolute polarization scale of the transverse electron beam polarimeter (TPOL) at HERA. The results of the 1996/97 calibrations are found to be in good agreement with earlier calibrations of the TPOL performed in 1994 with errors of 1.2% and 1.1%. Based on these calibrations and a comparison with measurements from the longitudinal polarimeter (LPOL) at HERA carried out over a two-months period in 2000, we obtain a mean LPOL/TPOL ratio of 1.018. Both polarimeters are found to agree with each other within their overall errors of about 2% each.

  11. Calibration-free wavelength modulation spectroscopy: symmetry approach and residual amplitude modulation normalization.

    Science.gov (United States)

    Behera, Amiya; Wang, Anbo

    2016-06-01

    This paper offers a simple, practical strategy to implement wavelength modulation spectroscopy (WMS) with a tunable diode laser. It eliminates the need to pre-characterize the laser intensity parameters or make any design changes to a conventional WMS system. Consequently, sensitivity and signal strength remain the same as what can be obtained from a traditional WMS setup at low modulation amplitude. Like previously proposed calibration-free approaches, this new method also yields an absolute absorption line shape function. To recover residual amplitude modulation (RAM) contributions present in the first and second harmonic signals of WMS, we exploited their even or odd symmetric nature. We then used these isolated RAM signals to estimate the absolute line shape function, thus removing the impact of optical intensity fluctuations on measurement. We have also discussed uncertainties and noises associated with the estimated absolute line shape function and the applicability of this new method to detect several gases in the near infrared region. We used measurements of the 1650.96 nm absorption line for 1% and 8% methane concentration in the 60-100 kPa pressure range to validate the efficacy of this new RAM recovery technique and demonstrated a calibration-free system. Because this approach has minimal dependency on diode laser operating conditions, it is more robust and suitable for harsh industrial environments.

  12. Using self-location to calibrate the errors of observer positions for source localization

    Institute of Scientific and Technical Information of China (English)

    Wanchun Li; Wanyi Zhang; Liping Li

    2014-01-01

    The uncertainty of observers’ positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers’ positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).

  13. Calibration/Validation Error Budgets, Uncertainties, Traceability and Their Importance to Imaging Spectrometry

    Science.gov (United States)

    Thome, K.

    2016-01-01

    Knowledge of uncertainties and errors are essential for comparisons of remote sensing data across time, space, and spectral domains. Vicarious radiometric calibration is used to demonstrate the need for uncertainty knowledge and to provide an example error budget. The sample error budget serves as an example of the questions and issues that need to be addressed by the calibrationvalidation community as accuracy requirements for imaging spectroscopy data will continue to become more stringent in the future. Error budgets will also be critical to ensure consistency between the range of imaging spectrometers expected to be launched in the next five years.

  14. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    Science.gov (United States)

    Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.

    2016-09-01

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major

  15. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm.

    Science.gov (United States)

    McCracken, Richard A; Depagne, Éric; Kuhn, Rudolf B; Erasmus, Nicolas; Crause, Lisa A; Reid, Derryck T

    2017-03-20

    A visible astrocomb spanning 555-890 nm has been implemented on the 10-m Southern African Large Telescope, delivering complete calibration of one channel of its high-resolution spectrograph and an accurate determination of its resolving power. A novel co-coupling method allowed simultaneous observation of on-sky, Th-Ar lamp and astrocomb channels, reducing the wavelength calibration uncertainty by a factor of two compared to that obtained using only Th-Ar lines. The excellent passive stability of the master frequency comb laser enabled broadband astrocomb generation without the need for carrier-envelope offset frequency locking, and an atomically referenced narrow linewidth diode laser provided an absolute fiducial marker for wavelength calibration. The simple astrocomb architecture enabled routine operation by non-specialists in an actual telescope environment. On-sky spectroscopy results are presented with direct calibration achieved entirely using the astrocomb.

  16. A New Calibration Method for Microphone Array with Gain, Phase, and Position Errors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microphone array can be used in sound source localization and separation. But gain, phase, and position errors can seriously influence the performance of localization algorithms such as multiple signal classification (MUSIC) algorithm. In this paper, a new calibration method for microphone array with gain, phase, and position errors is proposed. Unlike traditional calibration methods for antenna array, the proposed method can be used in the broadband and near-field signal model such as microphone array with arbitrary sensor geometries in one plane. Computer simulations are presented and simulation results show the new method having good performance.

  17. The impact of modelling errors on interferometer calibration for 21 cm power spectra

    Science.gov (United States)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Liu, Adrian; Hewitt, Jacqueline

    2017-09-01

    We study the impact of sky-based calibration errors from source mismodelling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogues is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky response (the 'wedge'). Thus, unmodelled foregrounds, below the confusion limit of many instruments, introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and estimate the impact of this bias on measurements of the 21 cm power spectrum during the epoch of reionization. Given our current precision in primary beam and foreground modelling, this noise will significantly impact the sensitivity of existing experiments that rely on sky-based calibration. Our formalism describes the scaling of calibration with array and sky-model parameters and can be used to guide future instrument design and calibration strategy. We find that sky-based calibration that downweights long baselines can eliminate contamination in most of the region outside of the wedge with only a modest increase in instrumental noise.

  18. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  19. A revised 5 minute gravimetric geoid and associated errors for the North Atlantic calibration area

    Science.gov (United States)

    Mader, G. L.

    1979-01-01

    A revised 5 minute gravimetric geoid and its errors were computed for the North Atlantic calibration area using GEM-8 potential coefficients and the latest gravity data available from the Defense Mapping Agency. This effort was prompted by a number of inconsistencies and small errors found in previous calculations of this geoid. The computational method and constants used are given in detail to serve as a reference for future work.

  20. Local error calibration of EGM08 geoid using GNSS/levelling data

    Science.gov (United States)

    Eshagh, Mehdi; Zoghi, Sedigheh

    2016-07-01

    The geoid error, computed from EGM08, is unrealistically large due to the continuation of the spherical harmonic coefficient errors down to the surface of the reference ellipsoid. In this study, we try to calibrate such an error by the differences between the EGM08 and GNSS/levelling geoids over Fennoscandia. We use the variance component estimation procedure through combined adjustments of the geoid and GNSS/levelling heights using corrector surfaces of 4-, 5- and 7-parameter. We also develop a simple iterative method to calibrate the geoid error from the a posteriori variance factor and the errors of GNSS/levelling geoid. Our numerical investigations show that performing the separate adjustment and variance component estimation for each country with a two-component stochastic model is more successful than performing it in the whole area with a five-component model. The number of GNSS/levelling data over Sweden and Norway are much larger than those in Denmark and Finland. This causes that the corrector surfaces are fitted better in these countries and consequently the estimated errors for the geoid become larger than what they should be in the others. Based on a 7-parameter corrector surface model, the average error of the EGM08 geoid becomes 12, 17, 51 and 34 mm, in Sweden, Denmark, Norway and Finland, respectively. If the two-component stochastic model is used in a combined adjustment over Fennoscandia this average error will be 48 mm.

  1. The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy.

    Science.gov (United States)

    Schofield, Jonathon S; Evans, Katherine R; Hebert, Jacqueline S; Marasco, Paul D; Carey, Jason P

    2016-03-21

    Force Sensitive Resistors (FSRs) are commercially available thin film polymer sensors commonly employed in a multitude of biomechanical measurement environments. Reasons for such wide spread usage lie in the versatility, small profile, and low cost of these sensors. Yet FSRs have limitations. It is commonly accepted that temperature, curvature and biological tissue compliance may impact sensor conductance and resulting force readings. The effect of these variables and degree to which they interact has yet to be comprehensively investigated and quantified. This work systematically assesses varying levels of temperature, sensor curvature and surface compliance using a full factorial design-of-experiments approach. Three models of Interlink FSRs were evaluated. Calibration equations under 12 unique combinations of temperature, curvature and compliance were determined for each sensor. Root mean squared error, mean absolute error, and maximum error were quantified as measures of the impact these thermo/mechanical factors have on sensor performance. It was found that all three variables have the potential to affect FSR calibration curves. The FSR model and corresponding sensor geometry are sensitive to these three mechanical factors at varying levels. Experimental results suggest that reducing sensor error requires calibration of each sensor in an environment as close to its intended use as possible and if multiple FSRs are used in a system, they must be calibrated independently.

  2. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies

    DEFF Research Database (Denmark)

    Tybjærg-Hansen, Anne

    2009-01-01

    Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of t...

  3. Calibration method of the time synchronization error of many data acquisition nodes in the chained system

    Science.gov (United States)

    Jiang, Jia-jia; Duan, Fa-jie; Chen, Jin; Zhang, Chao; Wang, Kai; Chang, Zong-jie

    2012-08-01

    Time synchronization is very important in a distributed chained seismic acquisition system with a large number of data acquisition nodes (DANs). The time synchronization error has two causes. On the one hand, there is a large accumulated propagation delay when commands propagate from the analysis and control system to multiple distant DANs, which makes it impossible for different DANs to receive the same command synchronously. Unfortunately, the propagation delay of commands (PDCs) varies in different application environments. On the other hand, the phase jitter of both the master clock and the clock recovery phase-locked loop, which is designed to extract the timing signal, may also cause the time synchronization error. In this paper, in order to achieve accurate time synchronization, a novel calibration method is proposed which can align the PDCs of all of the DANs in real time and overcome the time synchronization error caused by the phase jitter. Firstly, we give a quantitative analysis of the time synchronization error caused by both the PDCs and the phase jitter. Secondly, we propose a back and forth model (BFM) and a transmission delay measurement method (TDMM) to overcome these difficulties. Furthermore, the BFM is designed as the hardware configuration to measure the PDCs and calibrate the time synchronization error. The TDMM is used to measure the PDCs accurately. Thirdly, in order to overcome the time synchronization error caused by the phase jitter, a compression and mapping algorithm (CMA) is presented. Finally, based on the proposed BFM, TDMM and CMA, a united calibration algorithm is developed to overcome the time synchronization error caused by both the PDCs and the phase jitter. The simulation experiment results show the effectiveness of the calibration method proposed in this paper.

  4. Calibration of a neutron log in partially saturated media. Part II. Error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hearst, J.R.; Kasameyer, P.W.; Dreiling, L.A.

    1981-03-20

    Four sources or error (uncertainty) are studied in water content obtained from neutron logs calibrated in partially saturated media for holes up to 3 m. For this calibration a special facility was built and an algorithm for a commercial epithermal neutron log was developed that obtains water content from count rate, bulk density, and gap between the neutron sonde and the borehole wall. The algorithm contained errors due to the calibration and lack of fit, while the field measurements included uncertainties in the count rate (caused by statistics and a short time constant), gap, and density. There can be inhomogeneity in the material surrounding the borehole. Under normal field conditions the hole-size-corrected water content obtained from such neutron logs can have an uncertainty as large as 15% of its value.

  5. The Impact of Modeling Errors on Interferometer Calibration for 21 cm Power Spectra

    CERN Document Server

    Ewall-Wice, Aaron; Liu, Adrian; Hewitt, Jacqueline

    2016-01-01

    We study the impact of sky-based calibration errors from source mismodeling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogs is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky-response (the "wedge"). Thus, unmodeled foregrounds at the $\\approx 1$ mJy level introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and determine the impact of this bias on measurements of the 21 cm power spectrum during the Epoch of Reionization (EoR). Given our current precision in primary beam and foreground modeling, this noise will significantly impact the sensitivity of existing...

  6. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  7. On Inertial Body Tracking in the Presence of Model Calibration Errors.

    Science.gov (United States)

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-07-22

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments-the IMU-to-segment calibrations, subsequently called I2S calibrations-to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and

  8. Quantifying model structural error: Efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model

    Science.gov (United States)

    Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng

    2017-05-01

    Groundwater model structural error is ubiquitous, due to simplification and/or misrepresentation of real aquifer systems. During model calibration, the basic hydrogeological parameters may be adjusted to compensate for structural error. This may result in biased predictions when such calibrated models are used to forecast aquifer responses to new forcing. We investigate the impact of model structural error on calibration and prediction of a real-world groundwater flow model, using a Bayesian method with a data-driven error model to explicitly account for model structural error. The error-explicit Bayesian method jointly infers model parameters and structural error and thereby reduces parameter compensation. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models (based on machine learning techniques) as a substitute for the computationally expensive groundwater model. We demonstrate that with explicit treatment of model structural error, the Bayesian method yields parameter posterior distributions that are substantially different from those derived using classical Bayesian calibration that does not account for model structural error. We also found that the error-explicit Bayesian method gives significantly more accurate prediction along with reasonable credible intervals. Finally, through variance decomposition, we provide a comprehensive assessment of prediction uncertainty contributed from parameter, model structure, and measurement uncertainty. The results suggest that the error-explicit Bayesian approach provides a solution to real-world modeling applications for which data support the presence of model structural error, yet model deficiency cannot be specifically identified or corrected.

  9. Systematic Geometric Error Modeling for Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding Machine

    Institute of Scientific and Technical Information of China (English)

    Abdul Wahid Khan; Chen Wuyi

    2010-01-01

    A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine.This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process.Although its topology is RPPPR (P:prismatic;R:rotary),its design is quite distinct from the competitive machine tools.As error quantification is the only way to investigate,maintain and improve its accuracy,calibration is recommended for its performance assessment and acceptance testing.Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors ofworkpiece and cutting tool.39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume.Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.

  10. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  11. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  12. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-Line Calibration Sources

    CERN Document Server

    Mahadevan, Suvrath; Ramsey, Lawrence; Venditti, Nick

    2014-01-01

    Modal noise in optical fibers imposes limits on the signal to noise and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity (RV) spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high signal to noise. Many of these spectrographs plan to use highly coherent emission line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial mass planets. These high precision calibration sources often use single mode fibers or highly coherent sources. Coupling light from single mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf (COTS) solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to...

  13. 3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    CERN Document Server

    Agudo, Ivan; Wiesemeyer, Helmut; Molina, Sol N; Casadio, Carolina; Gomez, Jose L; Emmanoulopoulos, Dimitrios

    2012-01-01

    Context. A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. Aims. Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. Methods. Here we present the 3 and 1mm monitoring observations obtained between September 2006 and October 2011 with the XPOL polarimeter on the IRAM 30m Millimeter Telescope. Results. Our observations show that 3C 286 is a bright source of constant total flux with 3mm flux density S_3mm = (0.90 \\pm 0.02) Jy. ...

  14. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    Science.gov (United States)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  15. Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response

    Directory of Open Access Journals (Sweden)

    David Rodríguez-Navarro

    2016-04-01

    Full Text Available In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD, it is necessary to analyze and mitigate the factors that generate substantial errors in the system’s response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor’s optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR, suboptimal operational amplifier parameters, and analog to digital converter (ADC quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section.

  16. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  17. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    NARCIS (Netherlands)

    Agogo, G.O.; Voet, van der H.; Veer, van 't P.; Ferrari, P.; Leenders, M.; Muller, D.C.; Sánchez-Cantalejo, E.; Bamia, C.; Braaten, T.; Knüppel, S.; Johansson, I.; Eeuwijk, van F.A.; Boshuizen, H.C.

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference m

  18. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design : EPIC Case Study

    NARCIS (Netherlands)

    Agogo, George O; der Voet, Hilko van; Veer, Pieter Van't; Ferrari, Pietro; Leenders, Max; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference m

  19. Joint calibration algorithm for gain-phase and mutual coupling errors in uniform linear array

    Institute of Scientific and Technical Information of China (English)

    Li Weixing; Lin Jianzhi; Zhang Yue; Chen Zengping

    2016-01-01

    The effect of gain-phase perturbations and mutual coupling significantly degrades the performance of digital array radar (DAR). This paper investigates array calibration problems in the scenario where the true locations of auxiliary sources deviate from nominal values but the angle intervals are known. A practical algorithm is proposed to jointly calibrate gain-phase errors and mutual coupling errors. Firstly, a simplified model of the distortion matrix is developed based on its special structure in uniform linear array (ULA). Then the model is employed to derive the precise locations of the auxiliary sources by one-dimension search. Finally, the least-squares estimation of the distortion matrix is obtained. The algorithm has the potential of achieving considerable improvement in calibration accuracy due to the reduction of unknown parameters. In addition, the algorithm is feasible for practical applications, since it requires only one auxiliary source with the help of rotation platforms. Simulation results demonstrate the validity, robustness and high per-formance of the proposed algorithm. Experiments were carried out using an S-band DAR test-bed. The results of measured data show that the proposed algorithm is practical and effective in appli-cation.

  20. A nano/micro `meso' scale self-calibrating integrated optical wavelength and intensity meter

    Science.gov (United States)

    Caulfield, H. J.; Zavalin, A.

    2006-07-01

    Wavelength-division multiplexing has become the dominant approach to utilizing the massive bandwidth of optical fibers and integrated optics, including those based on a photonic crystal approach and recent nanotechnology achievements. For tunable sources and tunable receivers, it is desirable to measure the wavelength accurately and quickly. Unfortunately, current wavelength-measurement devices are not integrated and not fast enough to support 1 Gbit/s and higher requirements of the modern communication lines. We show here how to make an integrated optical system that results in an intensity-independent wavelength determination and a wavelength-independent intensity determination at ultra-short pulse duration or higher than ˜1-GHz bandwidth. The two output beams from a Mach-Zehnder interferometer, tuned to 3 dB at each output at the beginning of the wavelength-measurement range, provide all of the needed information. We show how a simple fast wavelength meter can be built into a silicon - or other - optical chip. It employs fuzzy metrology using both outputs of an integrated interferometer.

  1. Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability

    Science.gov (United States)

    Long, Jiale; Xi, Jiangtao; Zhang, Jianmin; Zhu, Ming; Cheng, Wenqing; Li, Zhongwei; Shi, Yusheng

    2016-09-01

    In a recent published work, we proposed a technique to recover the absolute phase maps of fringe patterns with two selected fringe wavelengths. To achieve higher anti-error capability, the proposed method requires employing the fringe patterns with longer wavelengths; however, longer wavelength may lead to the degradation of the signal-to-noise ratio (SNR) in the surface measurement. In this paper, we propose a new approach to unwrap the phase maps from their wrapped versions based on the use of fringes with three different wavelengths which is characterized by improved anti-error capability and SNR. Therefore, while the previous method works on the two-phase maps obtained from six-step phase-shifting profilometry (PSP) (thus 12 fringe patterns are needed), the proposed technique performs very well on three-phase maps from three steps PSP, requiring only nine fringe patterns and hence more efficient. Moreover, the advantages of the two-wavelength method in simple implementation and flexibility in the use of fringe patterns are also reserved. Theoretical analysis and experiment results are presented to confirm the effectiveness of the proposed method.

  2. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    Directory of Open Access Journals (Sweden)

    Shengli Zhou

    2014-08-01

    Full Text Available The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  3. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave Technologies (CADIFT), University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada); Guo, Xinxin [Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave Technologies (CADIFT), University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  4. A laser-lock concept to reach cm/s-precision in Doppler experiments with Fabry-Perot wavelength calibrators

    CERN Document Server

    Reiners, A; Ulbrich, R G

    2014-01-01

    State-of-the-art Doppler experiments require wavelength calibration with precision at the cm/s level. A low-finesse Fabry-Perot interferometer (FPI) can provide a wavelength comb with a very large bandwidth as required for astronomical experiments, but unavoidable spectral drifts are difficult to control. Instead of actively controlling the FPI cavity, we propose to passively stabilize the interferometer and track the time-dependent cavity length drift externally. A dual-finesse cavity allows drift tracking during observation. The drift of the cavity length is monitored in the high-finesse range relative to an external standard: a single narrow transmission peak is locked to an external cavity diode laser and compared to an atomic frequency. Following standard locking schemes, tracking at sub-mm/s precision can be achieved. This is several orders of magnitude better than currently planned high-precision Doppler experiments. It allows freedom for relaxed designs rendering this approach particularly interesting...

  5. On calibrating the sensor errors of a PDR-based indoor localization system.

    Science.gov (United States)

    Lan, Kun-Chan; Shih, Wen-Yuah

    2013-04-10

    Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared) to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR) for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope) are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user's moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user's step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user's change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user's walking distance, with an overall location error of about 0.48 m.

  6. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments.

    Science.gov (United States)

    Rieker, Gregory B; Jeffries, Jay B; Hanson, Ronald K

    2009-10-10

    We present a practical implementation of calibration-free wavelength-modulation spectroscopy with second harmonic detection (WMS-2f) for measurements of gas temperature and concentration in harsh environments. The method is applicable to measurements using lasers with synchronous wavelength and intensity modulation (such as injection current-tuned diode lasers). The key factors that enable measurements without the on-site calibration normally associated with WMS are (1) normalization of the WMS-2f signal by the first harmonic (1f) signal to account for laser intensity, and (2) the inclusion of laser-specific tuning characteristics in the spectral-absorption model that is used to compare with measured 1f-normalized, WMS-2f signals to infer gas properties. The uncertainties associated with the calibration-free WMS method are discussed, with particular emphasis on the influence of pressure and optical depth on the WMS signals. Many of these uncertainties are also applicable to calibrated WMS measurements. An example experimental setup that combines six tunable diode laser sources between 1.3 and 2.0 mum into one probe beam for measurements of temperature, H(2)O, and CO(2) is shown. A hybrid combination of wavelength and frequency demultiplexing is used to distinguish among the laser signals, and the optimal set of laser-modulation waveforms is presented. The system is demonstrated in the harsh environment of a ground-test scramjet combustor. A comparison of direct absorption and 1f-normalized, WMS-2f shows a factor of 4 increase in signal-to-noise ratio with the WMS technique for measurements of CO(2) in the supersonic flow. Multidimensional computational fluid-dynamics (CFD) calculations are compared with measurements of temperature and H(2)O using a simple method that accounts for the influence of line-of-sight (LOS) nonuniformity on the absorption measurements. The comparisons show the ability of the LOS calibration-free technique to gain useful information about

  7. Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors

    Science.gov (United States)

    Prabu, K.; Cheepalli, Shashidhar; Kumar, D. Sriram

    2014-08-01

    Free space optics (FSO) or wireless optical communication systems is an evolving alternative to the current radio frequency (RF) links due to its high and secure datarates, large license free bandwidth access, ease of installation, and lower cost for shorter range distances. These systems are largely influenced by atmospheric conditions due to wireless transmission; requirement of line of sight (LOS) propagation may lead to alignment problems in turn pointing errors. In this paper, we consider atmospheric turbulence and pointing errors are the major limitations. We tried to address these difficulties by considering polarization shift keying (PolSK) modulated FSO communication system with wavelength and time diversity. We derived the closed form expressions for estimation of the average bit error rate (BER) and outage probability, which are vital system performance metrics. Analytical results are shown considering different practical cases.

  8. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results

    Science.gov (United States)

    Janssen, M.A.; Lorenz, R.D.; West, R.; Paganelli, F.; Lopes, R.M.; Kirk, R.L.; Elachi, C.; Wall, S.D.; Johnson, W.T.K.; Anderson, Y.; Boehmer, R.A.; Callahan, P.; Gim, Y.; Hamilton, G.A.; Kelleher, K.D.; Roth, L.; Stiles, B.; Le, Gall A.

    2009-01-01

    The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere. ?? 2008 Elsevier Inc.

  9. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    Directory of Open Access Journals (Sweden)

    Wen-Yuah Shih

    2013-04-01

    Full Text Available Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user’s moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user’s step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user’s change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user’s walking distance, with an overall location error of about 0.48 m.

  10. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  11. The IMU Calibration Mathematical Modeling and Error Analysis%IMU标定数学建模及误差分析

    Institute of Scientific and Technical Information of China (English)

    赵桂玲; 姜雨含; 李松

    2016-01-01

    The calibration path design and data processing method for inertial measurement unit(IMU)depend on IMU calibration mathematical model. Installation error is an important factor in determining the IMU calibration model. According to the different installation forms of accelerometers and gyroscopes relative to the carrier ,an IMU calibration mathematical modeling method was proposed by coordinate transformation. The affects of IMU calibra⁃tion model error on angular rate and acceleration were derived. It analyzed the influence of IMU calibration model error on inertial navigation system navigation(SINS),and also designed calibration path and data processing meth⁃ods based on the position information provided by turntable. The simulation and turntable experiment results show that IMU calibration model error causes attitude error,velocity error and position error. Also,the expression form of installation error decides the navigation errors caused by IMU calibration model.%惯性测量单元(IMU)标定路径设计和数据处理方法取决于IMU标定数学模型,安装误差是决定IMU标定模型的重要因素。针对工程中加速度计和陀螺相对载体安装方式的不同,提出一种通过坐标系转换矩阵建立IMU标定数学模型的方法,推导IMU标定模型误差与载体角速度和加速度之间的关系,分析IMU标定模型误差对捷联惯性导航系统导航参数的影响,并利用转台提供的位置信息设计IMU标定路径和数据处理方法。仿真和转台实验结果表明:IMU标定数学模型误差引起捷联惯性导航系统速度误差、位置误差和姿态误差;安装误差的表现形式决定了IMU标定模型误差对系统导航精度的影响。

  12. A 14-bit 200-MS/s time-interleaved ADC with sample-time error calibration

    Institute of Scientific and Technical Information of China (English)

    Zhang Yiwen; Chen Chixiao; Yu Bei; Ye Fan; Ren Junyan

    2012-01-01

    Sample-time error between channels degrades the resolution of time-interleaved analog-to-digital converters (TIADCs).A calibration method implemented in mixed circuits with low complexity and fast convergence is proposed in this paper.The algorithm for detecting sample-time error is based on correlation and widely applied to wide-sense stationary input signals.The detected sample-time error is corrected by a voltage-controlled sampling switch.The experimental result of a 2-channel 200-MS/s 14-bit TIADC shows that the signal-to-noise and distortion ratio improves by 19.1 dB,and the spurious-free dynamic range improves by 34.6 dB for a 70.12-MHz input after calibration.The calibration convergence time is about 20000 sampling intervals.

  13. Error-free 5.1 Tbit/s data generation on a single-wavelength channel using a 1.28 Tbaud symbol rate

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2009-01-01

    We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER......We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER...

  14. Estimation of SNR Including Quantization Error of Multi-Wavelength Lidar Receiver

    Directory of Open Access Journals (Sweden)

    Zena A. Abed

    2013-01-01

    Full Text Available This paper comprises the design and operation of mono-static backscatter lidar station based on a pulsed Nd: YAG laser that operates at multiple wavelengths. The three-color lidar laser transmitter is based on the collinear fundamental 1064 nm, second harmonic 532 nm and a third harmonic 355nm output of a Nd:YAG laser. The most important parameter of lidar especially daytime operations is the signal-to-noise ratio (SNR which gives some instructions in designing of lidar and it is often limit the effective range. The reason is that noises or interferences always badly affect the measured results. The inversion algorithms have been developed for the study of atmospheric aerosols. Signal-to-noise ratio (SNR of three-color channel receivers were presented while averaging together 1, 20, 50 and 100 lidar returns and combined to the signal to noise ratio associated with the quantization process for each channel.

  15. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    Science.gov (United States)

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  16. Comparison of Error Estimations by DERs in One-Port S and SLO Calibrated VNA Measurements and Application

    CERN Document Server

    Yannopoulou, Nikolitsa

    2011-01-01

    In order to demonstrate the usefulness of the only one existing method for systematic error estimations in VNA (Vector Network Analyzer) measurements by using complex DERs (Differential Error Regions), we compare one-port VNA measurements after the two well-known calibration techniques: the quick reflection response, that uses only a single S (Short circuit) standard, and the time-consuming full one-port, that uses a triple of SLO standards (Short circuit, matching Load, Open circuit). For both calibration techniques, the comparison concerns: (a) a 3D geometric representation of the difference between VNA readings and measurements, and (b) a number of presentation figures for the DERs and their polar DEIs (Differential Error Intervals) of the reflection coefficient, as well as, the DERs and their rectangular DEIs of the corresponding input impedance. In this paper, we present the application of this method to an AUT (Antenna Under Test) selected to highlight the existence of practical cases in which the time ...

  17. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    Science.gov (United States)

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

  18. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration

    Science.gov (United States)

    Accurate robot-world, hand-eye calibration is crucial to automation tasks. In this paper, we discuss the robot-world, hand-eye calibration problem which has been modeled as the linear relationship AX equals ZB, where X and Z are the unknown calibration matrices composed of rotation and translation ...

  19. SU-E-T-550: Range Effects in Proton Therapy Caused by Systematic Errors in the Stoichiometric Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London, London (United Kingdom); Massachusetts General Hospital, Boston, MA (United States); Dias, M [Massachusetts General Hospital, Boston, MA (United States); Dipartamento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano (Italy); Collins Fekete, C [Massachusetts General Hospital, Boston, MA (United States); Departement de physique, de genie physique et d' optique et Centre de recherche sur le cancer, Universite Laval, Quebec (Canada); Seco, J [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: The procedure for proton treatment planning involves the conversion of the patient's X-ray CT from Hounsfield units into relative stopping powers (RSP), using a stoichiometric calibration curve (Schneider 1996). In clinical practice a 3.5% margin is added to account for the range uncertainty introduced by this process and other errors. RSPs for real tissues are calculated using composition data and the Bethe-Bloch formula (ICRU 1993). The purpose of this work is to investigate the impact that systematic errors in the stoichiometric calibration have on the proton range. Methods: Seven tissue inserts of the Gammex 467 phantom were imaged using our CT scanner. Their known chemical compositions (Watanabe 1999) were then used to calculate the theoretical RSPs, using the same formula as would be used for human tissues in the stoichiometric procedure. The actual RSPs of these inserts were measured using a Bragg peak shift measurement in the proton beam at our institution. Results: The theoretical calculation of the RSP was lower than the measured RSP values, by a mean/max error of - 1.5/-3.6%. For all seven inserts the theoretical approach underestimated the RSP, with errors variable across the range of Hounsfield units. Systematic errors for lung (average of two inserts), adipose and cortical bone were - 3.0/-2.1/-0.5%, respectively. Conclusion: There is a systematic underestimation caused by the theoretical calculation of RSP; a crucial step in the stoichiometric calibration procedure. As such, we propose that proton calibration curves should be based on measured RSPs. Investigations will be made to see if the same systematic errors exist for biological tissues. The impact of these differences on the range of proton beams, for phantoms and patient scenarios, will be investigated. This project was funded equally by the Engineering and Physical Sciences Research Council (UK) and Ion Beam Applications (Louvain-La-Neuve, Belgium)

  20. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions

    Science.gov (United States)

    Demissie, Yonas K.; Valocchi, Albert J.; Minsker, Barbara S.; Bailey, Barbara A.

    2009-01-01

    SummaryPhysically-based groundwater models (PBMs), such as MODFLOW, contain numerous parameters which are usually estimated using statistically-based methods, which assume that the underlying error is white noise. However, because of the practical difficulties of representing all the natural subsurface complexity, numerical simulations are often prone to large uncertainties that can result in both random and systematic model error. The systematic errors can be attributed to conceptual, parameter, and measurement uncertainty, and most often it can be difficult to determine their physical cause. In this paper, we have developed a framework to handle systematic error in physically-based groundwater flow model applications that uses error-correcting data-driven models (DDMs) in a complementary fashion. The data-driven models are separately developed to predict the MODFLOW head prediction errors, which were subsequently used to update the head predictions at existing and proposed observation wells. The framework is evaluated using a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study includes structural, parameter, and measurement uncertainties. In terms of bias and prediction uncertainty range, the complementary modeling framework has shown substantial improvements (up to 64% reduction in RMSE and prediction error ranges) over the original MODFLOW model, in both the calibration and the verification periods. Moreover, the spatial and temporal correlations of the prediction errors are significantly reduced, thus resulting in reduced local biases and structures in the model prediction errors.

  1. A Preliminary Calibration of the RR Lyrae Period-Luminosity Relation at Mid-Infrared Wavelengths: WISE Data

    CERN Document Server

    Madore, Barry F; Freedman, Wendy L; Kollmeier, Juna A; Monson, Andy; Persson, S Eric; Rich, Jeff A; Scowcroft, Victoria; Seibert, Mark

    2013-01-01

    Using time-resolved, mid-infrared data from WISE and geometric parallaxes from HST for four Galactic RR Lyrae variables, we derive the following Population II Period-Luminosity (PL) relations for the WISE [W1], [W2] and [W3] bands at 3.4, 4.6 & 12 um, respectively: M[W1] = -2.44 (+/- 0.95) x logP - 1.26 (+/- 0.25) sigma = 0.10 M[W2] = -2.55 (+/- 0.89) x logP - 1.29 (+/- 0.23) sigma = 0.10 M[W3] = -2.58 (+/- 0.97) x logP - 1.32 (+/- 0.25) sigma = 0.10 The slopes and the scatter around the fits are consistent with a smooth extrapolation of those same quantities from previously-published K-band observations at 2.2 um, where the asymptotic (long-wavelength) behavior is consistent with a Period-Radius relation having a slope of 0.5. No obvious correlation with metallicity (spanning 0.4 dex in [Fe/H]) is found in the residuals of the four calibrating RR Lyrae stars about the mean PL regression line.

  2. In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy

    Science.gov (United States)

    Qu, Zhechao; Schmidt, Florian M.

    2015-04-01

    The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 µm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/ 1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7 × 10-5 cm-1 Hz-1/2, the system is applicable down to an H2O concentration of 0.1 % at 1,000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded laboratory-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to real time in situ measurements of H2O concentration and temperature time histories (0.25-s time resolution) in the hot gases 2-11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1,200 and 1,600 K and H2O concentrations up to 40 % were detected above the biofuels.

  3. Developing Calibration Weights and Standard-Error Estimates for a Survey of Drug-Related Emergency-Department Visits

    Directory of Open Access Journals (Sweden)

    Kott Phillip S.

    2014-09-01

    Full Text Available This article describes a two-step calibration-weighting scheme for a stratified simple random sample of hospital emergency departments. The first step adjusts for unit nonresponse. The second increases the statistical efficiency of most estimators of interest. Both use a measure of emergency-department size and other useful auxiliary variables contained in the sampling frame. Although many survey variables are roughly a linear function of the measure of size, response is better modeled as a function of the log of that measure. Consequently the log of size is a calibration variable in the nonresponse-adjustment step, while the measure of size itself is a calibration variable in the second calibration step. Nonlinear calibration procedures are employed in both steps. We show with 2010 DAWN data that estimating variances as if a one-step calibration weighting routine had been used when there were in fact two steps can, after appropriately adjusting the finite-population correct in some sense, produce standard-error estimates that tend to be slightly conservative.

  4. The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System

    Science.gov (United States)

    Lin, M.

    2016-12-01

    Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line

  5. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function

    Science.gov (United States)

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall-runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error-based weighting of observation and prior information data, local sensitivity analysis, and single-objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  6. Analysis of Calibration Errors for Both Short and Long Stroke White Light Experiments

    Science.gov (United States)

    Pan, Xaiopei

    2006-01-01

    This work will analyze focusing and tilt variations introduced by thermal changes in calibration processes. In particular the accuracy limits are presented for common short- and long-stroke experiments. A new, simple, practical calibration scheme is proposed and analyzed based on the SIM PlanetQuest's Micro-Arcsecond Metrology (MAM) testbed experiments.

  7. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters-Part II: Observability/Estimability Analysis.

    Science.gov (United States)

    Silva, Felipe O; Hemerly, Elder M; Leite Filho, Waldemar C

    2017-02-23

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions.

  8. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    Directory of Open Access Journals (Sweden)

    Felipe O. Silva

    2017-02-01

    Full Text Available This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC problem of strapdown inertial navigation systems (SINS. The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions.

  9. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo - Markov Chain sampling.

    Science.gov (United States)

    Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2017-01-25

    The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time.

  10. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  11. Electricity Price Forecast Using Combined Models with Adaptive Weights Selected and Errors Calibrated by Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Da Liu

    2013-01-01

    Full Text Available A combined forecast with weights adaptively selected and errors calibrated by Hidden Markov model (HMM is proposed to model the day-ahead electricity price. Firstly several single models were built to forecast the electricity price separately. Then the validation errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to build the HMM, obtaining a transmission matrix and an emission matrix, representing the forecasting ability state of the individual models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland (PJM, USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector machine (SVM, generalized regression neural networks (GRNN, day-ahead modeling, and self-organized map (SOM similar days modeling.

  12. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors

    Science.gov (United States)

    Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim

    2012-12-01

    This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.

  13. Determination of optimal samples for robot calibration based on error similarity

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2015-06-01

    Full Text Available Industrial robots are used for automatic drilling and riveting. The absolute position accuracy of an industrial robot is one of the key performance indexes in aircraft assembly, and can be improved through error compensation to meet aircraft assembly requirements. The achievable accuracy and the difficulty of accuracy compensation implementation are closely related to the choice of sampling points. Therefore, based on the error similarity error compensation method, a method for choosing sampling points on a uniform grid is proposed. A simulation is conducted to analyze the influence of the sample point locations on error compensation. In addition, the grid steps of the sampling points are optimized using a statistical analysis method. The method is used to generate grids and optimize the grid steps of a Kuka KR-210 robot. The experimental results show that the method for planning sampling data can be used to effectively optimize the sampling grid. After error compensation, the position accuracy of the robot meets the position accuracy requirements.

  14. Galaxy-galaxy weak lensing in SDSS: intrinsic alignments and shear calibration errors

    CERN Document Server

    Hirata, C M; Seljak, U; Guzik, J; Padmanabhan, N; Blake, C; Brinkmann, J; Budavari, T; Connolly, A; Csabai, I; Scranton, R; Szalay, A S; Hirata, Christopher M.; Mandelbaum, Rachel; Seljak, Uros; Guzik, Jacek; Padmanabhan, Nikhil; Blake, Cullen; Brinkmann, Jonathan; Budavari, Tamas; Connolly, Andrew; Csabai, Istvan; Scranton, Ryan; Szalay, Alexander S.

    2004-01-01

    Galaxy-galaxy lensing has emerged as a powerful probe of the dark matter haloes of galaxies, but is subject to contamination if intrinsically aligned satellites of the lens galaxy are used as part of the source sample. We present a measurement of this intrinsic shear using 200,747 lens galaxies from the Sloan Digital Sky Survey (SDSS) spectroscopic sample and a sample of satellites selected using photometric redshifts. The mean intrinsic shear at transverse separations of 30--446$h^{-1}$ kpc is constrained to be $-0.0062<\\Delta\\gamma<+0.0066$ (99.9 per cent confidence, including identified systematics), which limits contamination of the galaxy-galaxy lensing signal to at most $\\sim 15$ per cent on these scales. We present these limits as a function of transverse separation and lens luminosity. We furthermore investigate shear calibration biases in the SDSS and conclude that the shear amplitude is calibrated to better than 18 per cent. This includes noise-induced calibration biases in the ellipticity, wh...

  15. A spectral synthesis method to suppress aliasing and calibrate for delay errors in Fourier transform correlators

    CERN Document Server

    Kaneko, Tak

    2008-01-01

    Context: Fourier transform (or lag) correlators in radio interferometers can serve as an efficient means of synthesising spectral channels. However aliasing corrupts the edge channels so they usually have to be excluded from the data set. In systems with around 10 channels, the loss in sensitivity can be significant. In addition, the low level of residual aliasing in the remaining channels may cause systematic errors. Moreover, delay errors have been widely reported in implementations of broadband analogue correlators and simulations have shown that delay errors exasperate the effects of aliasing. Aims: We describe a software-based approach that suppresses aliasing by oversampling the cross-correlation function. This method can be applied to interferometers with individually-tracking antennas equipped with a discrete path compensator system. It is based on the well-known property of interferometers where the drift scan response is the Fourier transform of the source's band-limited spectrum. Methods: In this p...

  16. Use of two-part regression calibration model to correct for measurement error in episodically consumed foods in a single-replicate study design: EPIC case study.

    Directory of Open Access Journals (Sweden)

    George O Agogo

    Full Text Available In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model.

  17. Expected linking error resulting from item parameter drift among the common Items on Rasch calibrated tests.

    Science.gov (United States)

    Miller, G Edward; Gesn, Paul Randall; Rotou, Jourania

    2005-01-01

    In state assessment programs that employ Rasch-based common item linking procedures, the linking constant is usually estimated with only those common items not identified as exhibiting item difficulty parameter drift. Since state assessments typically contain a fixed number of items, an item classified as exhibiting parameter drift during the linking process remains on the exam as a scorable item even if it is removed from the common item set. Under the assumption that item parameter drift has occurred for one or more of the common items, the expected effect of including or excluding the "affected" item(s) in the estimation of the linking constant is derived in this article. If the item parameter drift is due solely to factors not associated with a change in examinee achievement, no linking error will (be expected to) occur given that the linking constant is estimated only with the items not identified as "affected"; linking error will (be expected to) occur if the linking constant is estimated with all common items. However, if the item parameter drift is due solely to change in examinee achievement, the opposite is true: no linking error will (be expected to) occur if the linking constant is estimated with all common items; linking error will (be expected to) occur if the linking constant is estimated only with the items not identified as "affected".

  18. A Note on NCOM Temperature Forecast Error Calibration Using the Ensemble Transform

    Science.gov (United States)

    2009-01-01

    spatial distributions of the E Coelhn et a\\. ,’journal of Marine Systems 78 (2009) S272-S281 S27S t e IS ii 15 If ii .i s 51 s^ I! i| 1* 2 3...International Conference on Mathematics and Continuum Mechanics. Pub. Centro Internacional de Matematica (C1M). ISBN: 978-989-95011- 2-6, pp. 207-217. Porto...Hagerdorn. R., Palmer, T.N., 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting - II . Calibration and combination

  19. The solar vector error within the SNPP Common GEO code, the correction, and the effects on the VIIRS SDR RSB calibration

    Science.gov (United States)

    Fulbright, Jon; Anderson, Samuel; Lei, Ning; Efremova, Boryana; Wang, Zhipeng; McIntire, Jeffrey; Chiang, Kwofu; Xiong, Xiaoxiong

    2014-11-01

    Due to a software error, the solar and lunar vectors reported in the on-board calibrator intermediate product (OBC-IP) files for SNPP VIIRS are incorrect. The magnitude of the error is about 0.2 degree, and the magnitude is increasing by about 0.01 degree per year. This error, although small, has an effect on the radiometric calibration of the reflective solar bands (RSB) because accurate solar angles are required for calculating the screen transmission functions and for calculating the illumination of the Solar Diffuser panel. In this paper, we describe the error in the Common GEO code, and how it may be fixed. We present evidence for the error from within the OBC-IP data. We also describe the effects of the solar vector error on the RSB calibration and the Sensor Data Record (SDR). In order to perform this evaluation, we have reanalyzed the yaw-maneuver data to compute the vignetting functions required for the on-orbit SD RSB radiometric calibration. After the reanalysis, we find effect of up to 0.5% on the shortwave infrared (SWIR) RSB calibration.

  20. Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration

    DEFF Research Database (Denmark)

    Christensen, Steen; Doherty, John

    2008-01-01

    over the model area. Singular value decomposition (SVD) of the (possibly weighted) sensitivity matrix of the pilot point based model produces eigenvectors of which we pick a small number corresponding to significant eigenvalues. Super parameters are defined as factors through which parameter...... conditions near an inflow boundary where data is lacking and which exhibit apparent significant nonlinear behavior. It is shown that inclusion of Tikhonov regularization can stabilize and speed up the parameter estimation process. A method of linearized model analysis of predictive uncertainty...... nonlinear functions. Recommendations concerning the use of pilot points and singular value decomposition in real-world groundwater model calibration are finally given. (c) 2008 Elsevier Ltd. All rights reserved....

  1. 光栅型光谱仪波长准确度校准方法%Calibration for Wavelength Linearity of Grating Spectrometer

    Institute of Scientific and Technical Information of China (English)

    王少水; 朱兴邦; 孙权社; 赵发财

    2014-01-01

    The spectrum power of low-pressure mercury is weak, and the spectral lines cannot be traceable to national standard. Using SHG and FHG technique, the laser at 532nm and 266nm was obtained based on 1064nm single solid-state ring laser. Using modulation transfer spectroscopy, the frequency of the 532nm laser was stabilized at 10 hyperfine Spectra of 127I R (56)32-0. The wavelength accuracy of grating spectrograph was calibrated. The experiment results prove that the wavelengths of frequency stabilized wavelength source have strict multiple relationship, and the wavelength accuracy of grating spectrograph can be calibrated accurately and effectively. So this technique has good application value.%针对低压汞灯谱线能量弱且量值无法溯源的难题,本文以1064 nm单块固体环形激光器作为基频光,经过两次倍频分别得到532 nm、266 nm激光,通过调制转移光谱技术将532 nm激光频率锁定在碘分子超精细谱线上,以此为基础对光栅型光谱仪的波长准确度进行校准。实验结果表明,稳频波长源输出的三波长具有严格的倍数关系,能够准确有效地对光栅型光谱仪波长准确度进行校准,具有很好的实际应用价值。

  2. Calibration of symmetric and non-symmetric errors for interferometry of ultra-precise imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Phillion, D W; Sommargren, G E; Johnson, M A; Decker, T A; Taylor, J S; Gomie, Y; Kakuchi, O; Takeuchi, S

    2005-06-29

    The azimuthal Zernike coefficients for shells of Zernike functions with shell numbers nerrors would then be known. Physically, the measurements in circles A and B are accomplished by rotating each pinhole aligner about an aligned axis, then about an oblique axis. Absolute measurement accuracies better than 0.2 nm were achieved.

  3. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire; Sagnes, Isabelle; Raj, Rama [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Lenglé, Kevin; Gay, Mathilde; Bramerie, Laurent [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France); CNRS-Foton Laboratory (UMR 6082), Enssat, BP 80518, 22305 Lannion Cedex (France); Braive, Rémy; Raineri, Fabrice, E-mail: fabrice.raineri@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Université Paris Diderot, Sorbonne Paris Cité, 75207 Paris Cedex 13 (France)

    2014-01-06

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  4. Magnetic Compass Error Analysis and Calibration for Rotorcraft Flying Robot%旋翼飞行机器人磁罗盘误差分析及校准

    Institute of Scientific and Technical Information of China (English)

    戴磊; 齐俊桐; 吴冲; 韩建达

    2012-01-01

    以旋翼飞行机器人组合导航系统为研究背景,针对电子磁罗盘的误差校准方法进行研究.通过分析其测量原理和误差来源,总结出影响磁罗盘航向解算精度的5个主要误差因素,对于上述误差因素,提出了软件和硬件解决办法.考虑到旋翼飞行机器人平台的特殊性,提出了硬磁罗差和标度因数误差的简化校准实现方法,简化后的磁罗盘校准方法,免去了校准过程中将载体竖起的步骤,且不降低校准精度.实际的磁罗盘校准测试表明,本文提出的方法能避免将大尺寸的载体竖起,降低校磁操作的难度.该方法可以有效地修正原始磁场测量值的椭球分布,从而提高组台导航系统航向解算精度.%With the research background of the rotorcraft flying robot's integrated navigation system, an error calibration method for electric magnetic compass is proposed. Based on the analysis of the magnetic compass's measurement theory and error sources, 5 main factors which affect the heading angle calculation precision of the magnetic compass, are summarized. In response to the mentioned error factors, software and hardware solutions are proposed. Considering the specialties of rotorcraft flying robot, a simplified calibration method for magnetic compass is proposed to calibrate the hard magnetism errors and scale factor errors. The simplified magnetic compass calibration method can avoid sticking up the robot during calibration process, but its calibration precision is not decreased. The actual calibration test of the magnetic compass shows that the proposed calibration method can effectively correct the measurements' ellipsoidal distribution of the original magnetic field, and it also can improve the heading angle calculation precision of integrated navigation system. This method can simplify the calibration process and avoid to stick up the huge robot.

  5. Use of Balance Calibration Certificate to Calculate the Errors of Indication and Measurement Uncertainty in Mass Determinations Performed in Medical Laboratories

    Directory of Open Access Journals (Sweden)

    Adriana VÂLCU

    2011-09-01

    Full Text Available Based on the reference document, the article proposes the way to calculate the errors of indication and associated measurement uncertainties, by resorting to the general information provided by the calibration certificate of a balance (non-automatic weighing instruments, shortly NAWI used in medical field. The paper may be also considered a useful guideline for: operators working in laboratories accredited in medical (or other various fields where the weighing operations are part of their testing activities; test houses, laboratories, or manufacturers using calibrated non-automatic weighing instruments for measurements relevant for the quality of production subject to QM requirements (e.g. ISO 9000 series, ISO 10012, ISO/IEC 17025; bodies accrediting laboratories; accredited laboratories for the calibration of NAWI. Article refers only to electronic weighing instruments having maximum capacity up to 30 kg. Starting from the results provided by a calibration certificate it is presented an example of calculation.

  6. Error Calibration of Fluxgate Magnetometers in Arbitrary Attitude Situation%任意姿态变化下的磁通门传感器误差校正

    Institute of Scientific and Technical Information of China (English)

    庞鸿锋; 罗诗途; 陈棣湘; 潘孟春; 张琦

    2011-01-01

    三轴磁通门传感器随着姿态变化存在空间转向差,主要原因为轴间非正交性、各轴刻度因子误差和零偏误差,需要研究校正方法,提高测量准确度.选择稳定的磁场环境,对德国的一款DM系列高精度三轴磁通门传感器进行标定.研究了传感器姿态在空间中任意变化;提出采用最小二乘法对磁通门传感器校正参数进行准确估计并校正该点转向差;传感器在验证点姿态任意变化,采用已获取的校正权值抑制验证点转向差.实验结果表明,校正点和验证点的转向差经过校正后分别从106 nT和89 nT减少到27 nT和23nT,转向差明显得到抑制,说明了校正权值在姿态任意变化情况下校正效果良好.%Diversionary error of three-axis fluxgate magnetometer can not be avoided when its attitude changes. The main reasons are non-orthogonality between axes and different amplification of each axis. So, it is necessary to research calibration method and improve measurement precision. A stable magnetic circumstance is selected to calibrate a Germany DM-series three-axis fluxgate magnetometer. Firstly, the magnetometer attitude changes arbitrary. Secondly, the least squares method is used to estimate calibration parameters, and then, diversionary error is suppressed. Lastly, with the magnetometer attitude changing arbitrary at the validation place, the calibration parameters are used to reduce diversionary error. Experimental results show that the diversionary error at the calibration place and the validation place are suppressed from 106 nT and 89 nT to 27 nT and 23 nT, respectively. Diversionary errors are reduced greatly, which demonstrates that the calibration performance is effective.

  7. Pipeline Analog-Digital Converters Dynamic Error Modeling for Calibration : Integral Nonlinearity Modeling, Pipeline ADC Calibration, Wireless Channel K-Factor Estimation

    OpenAIRE

    Medawar, Samer

    2012-01-01

    This thesis deals with the characterization, modeling and calibration of pipeline analog-digital converters (ADC)s. The integral nonlinearity (INL) is characterized, modeled and the model is used to design a post-correction block in order to compensate the imperfections of the ADC. The INL model is divided into: a dynamic term designed by the low code frequency (LCF) component depending on the output code k and the frequency under test m, and a static term known as high code frequency (HCF) c...

  8. 精密离心机误差对石英加速度计误差标定精度分析%Relationship between Calibration Accuracy of Error Model Coefficients of Accelerometer and Errors of Precision Centrifuge

    Institute of Scientific and Technical Information of China (English)

    王世明; 任顺清

    2012-01-01

    In this paper, error sources of the precision centrifuge are analyzed at first, and a homogeneous transformation method is used to accurately calculate the centripetal acceleration, as well as components of the centripetal acceleration, the acceleration of gravity, and the Coriolis acceleration in the input, the output and the pendulum axes of the tested accelerometer. Then the error model of quartz pendulous accelerometer to be tested on the centrifuge is given, the calculated specific forces acting on three axes of the accelerometer are substituted into the error model, then the relationship between the calibration errors and the errors of the centrifuge is established. Finally, the correspondences between the calibration accuracy of each error model coefficient of accelerometer and some error sources of centrifuge are determined by using simulation results, thus laying a theoretical foundation for the determination of centrifuge accuracy according to the demand for calibration accuracy of accelerometer.%分析了离心机各个误差源,用齐次变换法精确地计算了产生的向心加速度,给出了向心加速度、重力加速度和哥氏加速度在加速度计坐标系下的分量,推导了被试加速度计输入加速度的精确表达式.在给出石英摆式加速度计在精密离心机上标定时的误差模型的基础上,着重讨论了误差模型系数的计算值与离心机误差之间的关系.根据仿真结果找出了某些离心机误差对加速度计误差系数标定的影响关系,为按照加速度计的标定精度来确定离心机的精度打下了理论基础.

  9. Error estimates for ocean surface winds: Applying Desroziers diagnostics to the Cross-Calibrated, Multi-Platform analysis of wind speed

    Science.gov (United States)

    Hoffman, Ross N.; Ardizzone, Joseph V.; Leidner, S. Mark; Smith, Deborah K.; Atlas, Robert M.

    2013-04-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind project [Atlas et al., 2011] generates high-quality, high-resolution, vector winds over the world's oceans beginning with the 1987 launch of the SSM/I F08, using Remote Sensing Systems (RSS) microwave satellite wind retrievals, as well as in situ observations from ships and buoys. The variational analysis method [VAM, Hoffman et al., 2003] is at the center of the CCMP project's analysis procedures for combining observations of the wind. The VAM was developed as a smoothing spline and so implicitly defines the background error covariance by means of several constraints with adjustable weights, and does not provide an explicit estimate of the analysis error. Here we report on our research to develop uncertainty estimates for wind speed for the VAM inputs and outputs, i.e., for the background (B), the observations (O) and the analysis (A) wind speed, based on the Desroziers et al. [2005] diagnostics (DD hereafter). The DD are applied to the CCMP ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed error standard deviations vary with latitude in the range 0.7-1.5 m/s and that the cross-calibrated Remote Sensing Systems (RSS) wind speed retrievals standard deviations are in the range 0.5-0.8 m/s. Further the estimated CCMP analysis wind speed standard deviations are in the range 0.2-0.4 m/s. The results suggests the need to revise the parameterization of the errors due to the FGAT (first guess at the appropriate time) procedure. Errors for wind speeds S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, A cross-calibrated, multi-platform ocean surface wind velocity product for meteorological and oceanographic applications, Bull. Am. Meteorol. Soc., 92, 157-174, 2011, doi:10.1175/2010BAMS2946.1. Desroziers, G., L. Berre, B. Chapnik, and P. Poli

  10. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Oak Ridge National Laboratory (ORNL), One Bethel Valley Road, Oak Ridge, TN (United States); Burr, Tom [International Atomic Energy Agency (IAEA), Vienna (Austria); Favalli, Andrea [Los Alamos National Laboratory (LANL), MS E540, Los Alamos, NM 87545 (United States); Nicholson, Andrew [Oak Ridge National Laboratory (ORNL), One Bethel Valley Road, Oak Ridge, TN (United States)

    2016-03-01

    The declared linear density of {sup 238}U and {sup 235}U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of {sup 235}U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  11. Calibration Error of Robotic Vision System of 3D Laser Scanner%机器人三维激光扫描视觉系统标定误差

    Institute of Scientific and Technical Information of China (English)

    齐立哲; 汤青; 贠超; 王京; 甘中学

    2011-01-01

    The 3D laser scanner is widely applied in industry robot vision system, but the calibration error of positional relationship between the scanner and the robot has important influence on the application of robot vision system. It is presented systematically how the scanning results are influenced by the robotic vision calibration position and orientation errors and how the workpiece positioning process is affected by the scanning result and then it is concluded that the position calibration of vision system is not necessary in the robot workpiece positioning system when there is no variation of robot scanning posture no matter whether the workpiece has posture variation or not. The validity of the theoretical analysis conclusion is verified by tests, thus providing the theoretical basis for explaining the influence of calibration error of vision system on the scanning result and for simplifying the calibration process of the vision system.%基于三维激光扫描仪的工业机器人视觉系统应用越来越广泛,而扫描仪与机器人之间位姿关系标定精度对于机器人视觉系统的应用有重要的影响.介绍基于三维激光扫描仪的机器人视觉系统的相关原理,然后在此基础上系统分析机器人视觉系统位置和姿态标定误差对工件扫描结果和根据扫描结果对工件进行定位过程的影响,得出在工件无姿态变化或有姿态变化但机器人扫描姿态不变情况下的机器人工件定位系统中无须进行视觉系统位置标定的结论,并试验验证了理论分析结论的有效性,为解释视觉系统标定误差对扫描结果的影响情况及简化视觉系统标定过程提供了理论依据.

  12. Calibration and errors in the detection of heavy metals in fresh and sea waters by PIXE in the ppb-ppm range

    Science.gov (United States)

    Aprilesi, Giancarlo; Cecchi, Rodolfo; Ghermandi, Grazia; Magnoni, Gaetano; Santangelo, Renato

    1984-04-01

    A methodology for the simultaneous detection of several heavy metals in water samples will be described in detail. Targets are chemically prepared by preconcentration of the metals. Characteristics of the proton beam and X-ray detection are summarized. The concentration is obtained by using an internal standard in the range ppb-ppm. The method has been tested by calibration with samples of known concentration. The subtraction of background and the data processing are discussed. The error in each concentration is evaluated. Values of the sensitivity are quoted. The method has been extended to marine samples.

  13. Measurement error in the explanatory variable of a binary regression: regression calibration and integrated conditional likelihood in studies of residential radon and lung cancer.

    Science.gov (United States)

    Fearn, T; Hill, D C; Darby, S C

    2008-05-30

    In epidemiology, one approach to investigating the dependence of disease risk on an explanatory variable in the presence of several confounding variables is by fitting a binary regression using a conditional likelihood, thus eliminating the nuisance parameters. When the explanatory variable is measured with error, the estimated regression coefficient is biased usually towards zero. Motivated by the need to correct for this bias in analyses that combine data from a number of case-control studies of lung cancer risk associated with exposure to residential radon, two approaches are investigated. Both employ the conditional distribution of the true explanatory variable given the measured one. The method of regression calibration uses the expected value of the true given measured variable as the covariate. The second approach integrates the conditional likelihood numerically by sampling from the distribution of the true given measured explanatory variable. The two approaches give very similar point estimates and confidence intervals not only for the motivating example but also for an artificial data set with known properties. These results and some further simulations that demonstrate correct coverage for the confidence intervals suggest that for studies of residential radon and lung cancer the regression calibration approach will perform very well, so that nothing more sophisticated is needed to correct for measurement error.

  14. Colorimetric calibration of coupled infrared simulation system

    Science.gov (United States)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  15. On the Photometric Error Calibration for the Differential Light Curves of Point-like Active Galactic Nuclei

    Indian Academy of Sciences (India)

    Arti Goyal; Mukul Mhaskey; Gopal-Krishna; Paul J. Wiita; C. S. Stalin; Ram Sagar

    2013-09-01

    It is important to quantify the underestimation of rms photometric errors returned by the commonly used APPHOT algorithm in the IRAF software, in the context of differential photometry of point-like AGN, because of the crucial role it plays in evaluating their variability properties. Published values of the underestimation factor, , using several different telescopes, lie in the range 1.3–1.75. The present study aims to revisit this question by employing an exceptionally large data set of 262 differential light curves (DLCs) derived from 262 pairs of non-varying stars monitored under our ARIES AGN monitoring program for characterizing the intra-night optical variability (INOV) of prominent AGN classes. The bulk of these data were taken with the 1-m Sampurnanad Telescope (ST). We find = 1.54 ± 0.05 which is close to our recently reported value of = 1.5. Moreover, this consistency holds at least up to a brightness mismatch of 1.5 mag between the paired stars. From this we infer that a magnitude difference of at least up to 1.5 mag between a point-like AGN and comparison star(s) monitored simultaneously is within the same CCD chip acceptable, as it should not lead to spurious claims of INOV.

  16. Vetting Galactic Leavitt Law Calibrators Using Radial Velocities: On the Variability, Binarity, and Possible Parallax Error of 19 Long-period Cepheids

    Science.gov (United States)

    Anderson, R. I.; Casertano, S.; Riess, A. G.; Melis, C.; Holl, B.; Semaan, T.; Papics, P. I.; Blanco-Cuaresma, S.; Eyer, L.; Mowlavi, N.; Palaversa, L.; Roelens, M.

    2016-10-01

    We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period ({P}{puls} ≳ 10 days) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using over 1600 high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on ≲5 year timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to 10 years) variations in pulsation-averaged velocity v γ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen’s orbital signature. Further (mostly tentative) evidence of time-variable v γ is found for SS CMa, VY Car, SZ Cyg, and X Pup. We briefly discuss considerations regarding a vetting process of Galactic Leavitt law calibrators and show that light contributions by companions are insignificant for most distance scale applications.

  17. The Uncertainty Evaluation of Value Error by Mine Anemometer Calibrating Device%矿用风速表示值误差的测量不确定度评定

    Institute of Scientific and Technical Information of China (English)

    赵镇川

    2013-01-01

      通过矿用风速表检定装置对风速表示值误差进行不确定度评定。%  It processed uncertainty evaluation of wind speed value error through mine anemometer calibrating device.

  18. Calibration of gyro error model coefficients on precision centrifuge with counter-rotating platform%《中国惯性技术学报》征稿简则

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In order to accurately calibrate the gyro drift coefficients, a coordinate system was set up based on the precision centrifuge with counter-rotating platform, and the attitude relationship between two adjacent coordinate systems were analyzed in consideration of the error sources. Precise angular velocity input for each axis of gyro was derived by using direction cosine matrices, and the nominal value of each specific force input was given as well. Combined with the gyro's static error model, various harmonic amplitude expressions were deduced including gyro drift coefficients. By using centrifuge to provide two different harmonic accelerations, and sampling the output of gyro at each sampling time, the amplitudes of 0-2nd harmonics were obtained through Fourier analysis. The drift coefficients were identified by least square method based on the relationship between harmonic amplitude expressions and drift coefficients. The test simulation results show that the calibration of the gyro drift coefficients on centrifuge with counter-rotating platform can effectively avoid some of the centrifuge errors, and other centrifuge errors only have significant impacts on D1, Ds, DIO and DOs whose accurate calibration can be achieved by compensating the centrifuge errors.

  19. High-throughput Accurate-wavelength Lens-based Visible Spectrometera

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Belll and Filippo Scotti

    2010-06-04

    A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm-1 grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arcsec, corresponding to a wavelength error ≤ 0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature and pressure are monitored between the time of calibration and the time of measurement to insure a persistent wavelength calibration

  20. Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440-6810 A in the gamma Vel cluster, and calibration of spectral indices

    CERN Document Server

    Damiani, F; Micela, G; Randich, S; Gilmore, G; Drew, J E; Jeffries, R D; Frémat, Y; Alfaro, E J; Bensby, T; Bragaglia, A; Flaccomio, E; Lanzafame, A C; Pancino, E; Recio-Blanco, A; Sacco, G G; Smiljanic, R; Jackson, R J; de Laverny, P; Morbidelli, L; Worley, C C; Hourihane, A; Costado, M T; Jofré, P; Lind, K; Maiorca, E

    2014-01-01

    We study spectral diagnostics available from optical spectra with R=17000 obtained with the VLT/Giraffe HR15n setup, using observations from the Gaia-ESO Survey, on the gamma Vel young cluster, in order to determine the fundamental parameters of these stars. We define a set of spectroscopic indices, sampling TiO bands, H-alpha core and wings, and many temperature- and gravity-sensitive lines. Combined indices tau (gamma) are also defined as Teff (log g) indicators over a wide spectral-type range. H-alpha emission-line indices are also chromospheric activity or accretion indicators. A metallicity-sensitive index is also defined. These indices enable us to find a clear difference between gravities of main-sequence and pre-main-sequence stars (as well as giant stars): the (gamma,tau) diagram is thus argued to be a promising distance-independent age measurement tool for young clusters. Our indices were quantitatively calibrated by means of photometry and literature reference spectra (from UVES-POP and ELODIE 3.1 ...

  1. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model

    Science.gov (United States)

    Bennett, James C.; Wang, Q. J.; Li, Ming; Robertson, David E.; Schepen, Andrew

    2016-10-01

    We present a new streamflow forecasting system called forecast guided stochastic scenarios (FoGSS). FoGSS makes use of ensemble seasonal precipitation forecasts from a coupled ocean-atmosphere general circulation model (CGCM). The CGCM forecasts are post-processed with the method of calibration, bridging and merging (CBaM) to produce ensemble precipitation forecasts over river catchments. CBaM corrects biases and removes noise from the CGCM forecasts, and produces highly reliable ensemble precipitation forecasts. The post-processed CGCM forecasts are used to force the Wapaba monthly rainfall-runoff model. Uncertainty in the hydrological modeling is accounted for with a three-stage error model. Stage 1 applies the log-sinh transformation to normalize residuals and homogenize their variance; Stage 2 applies a conditional bias-correction to correct biases and help remove negative forecast skill; Stage 3 applies an autoregressive model to improve forecast accuracy at short lead-times and propagate uncertainty through the forecast. FoGSS generates ensemble forecasts in the form of time series for the coming 12 months. In a case study of two catchments, FoGSS produces reliable forecasts at all lead-times. Forecast skill with respect to climatology is evident to lead-times of about 3 months. At longer lead-times, forecast skill approximates that of climatology forecasts; that is, forecasts become like stochastic scenarios. Because forecast skill is virtually never negative at long lead-times, forecasts of accumulated volumes can be skillful. Forecasts of accumulated 12 month streamflow volumes are significantly skillful in several instances, and ensembles of accumulated volumes are reliable. We conclude that FoGSS forecasts could be highly useful to water managers.

  2. THE METHOD OF DETERMINATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. Part 3. The dependence of the radiation beam characteristics

    Directory of Open Access Journals (Sweden)

    E. V. Titovich

    2016-01-01

    Full Text Available To ensure the radiation protection of oncology patients is needed to provide the constancy of functional characteristics of the medical linear accelerators, which affect the accuracy of dose delivery. For this purpose, their quality control procedures are realized including calibration of radiation output of the linac, so the error in determining the dose reference value during this procedure must not exceed 2 %. The aim is to develop a methodology for determining the error in determining this value, depending on the characteristics of the radiation beam. Dosimetric measurements of Trilogy S/N 3567 linac dose distributions have been carried out for achievement of the objectives, on the basis of which dose errors depending on the dose rate value, the accuracy of the beam quality and output factors determination, the symmetry and uniformity of the radiation field, the angular dependence of the linac radiation output were obtained. It was found that the greatest impact on the value of the error has the error in the output factors determination (up to 5.26 % for both photon energy. Dose errors caused by changing dose rate during treatment were different for two photon energies, and reached 1.6 % for 6 MeV and 1.4 % for 18 MeV. Dose errors caused by inaccuracies of the beam quality determination were different for two photon energies, and reached 1.1 % for 18 MeV and –0.3 % for 6 MeV. Errors caused by the remaining of the characteristic do not exceed 1 %. Thus, there is a possibility to express the results of periodic quality control of the linear accelerator in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation on the basis of the calibration of radiation output.

  3. Digital cameras and measurement error in close-range photogrammetry calibration%数字近景摄影测量中相机与测量误差校准

    Institute of Scientific and Technical Information of China (English)

    薛冰融; 李斌兵

    2013-01-01

      随着科学技术的发展,数码相机被应用到了数字近景摄影测量技术之中,数码相机在使用前必须要对误差进行校准,对此,本文分析数字近景摄影测量中相机与测量误差校准,为有关工作提供借鉴。%With the development of science and technology,digital cameras are applied to digital close-range photogrammetric technique,digital cameras have to errors in calibration before use,for which this analysis in digital close-range photogrammetric camera calibration and measurement error,to provide work experience.

  4. Calibration of Angular Systematic Errors for High Resolution Satellite Imagery%高分辨率卫星遥感影像姿态角系统误差检校

    Institute of Scientific and Technical Information of China (English)

    袁修孝; 余翔

    2012-01-01

    The object positioning accuracy from high resolution satellite imagery is strongly relevant to image attitude data accuracy, but the attitude data have generally systematic errors and the object location becomes unreliable. The angular systematic error calibration model is stricter than constant angular error calibration model, based on the rigorous geometric processing model of high resolution satellite remote sensing imagery. The calibration model was tested on SPOT-5 and CBERS-02B images and both have proved its correctness. After compensating the angular systematic errors of images, the direct georeferencing accuracy can reach ±(2-3) pixels, which is much better than results of constant angular calibration.%简要介绍高分辨率卫星遥感影像的严格几何处理模型,提出较为严密的影像姿态角系统误差检校模型。通过对SPOT-5、CBERS-02B两种卫星遥感影像的试验证实模型的正确性和方法的有效性。对影像姿态角系统误差进行补偿后,可明显提高卫星遥感影像对地目标定位的精度,且优于影像姿态角常差检校的效果,目标点平面定位精度达到了±(2-~3)像素的水平。

  5. 液位传感器校准装置几何误差模型及不确定度评定%Geometric Error Model and Uncertainty Evaluation on Calibration Device of Cryogenic Liquid Level Sensor

    Institute of Scientific and Technical Information of China (English)

    于航; 李东升; 王梅宝; 马豪; 张晓丹; 王颖

    2016-01-01

    立足于接触式低温液位传感器的校准需求,设计并研制了液位传感器动态校准装置,以实现在常温及低温条件下对测量范围为1800 mm、极限误差为±2 mm的电容式传感器的校准。采用齐次坐标变换原理,从导轨直线度误差、定位误差、各连结链空间角度误差、液面波动误差等方面入手,建立了低温液位传感器校准装置的几何误差模型。对低温液位传感器校准装置的测量不确定度进行了评定,结果表明:扩展不确定度为U=0.53 mm ( k=2),满足低温液位传感器的校准精度要求。%Based on the need of calibrating the liquid level sensor , dynamic calibration device was designed and developed for liquid level sensor which applied to capacitive sensors ( measuring range is 1 800 mm, and limiting error is ±2 mm) in both normal and low temperature conditions .The principle of homogeneous coordinate transformation was used to establish geometric error model for the calibration device , which mainly contained the rail straightness error , positioning error , spatial angle error of each chain and level fluc-tuation error, and other aspects.Moreover, the uncertainty of calibration device was evaluated .The results show that the expanded un-certainty is U=0.53 mm ( k=2) , which meets the specifications of calibration accuracy of the cryogenic liquid level sensor .

  6. Statistical errors and systematic biases in the calibration of the convective core overshooting with eclipsing binaries. A case study: TZ Fornacis

    Science.gov (United States)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2017-03-01

    Context. Recently published work has made high-precision fundamental parameters available for the binary system TZ Fornacis, making it an ideal target for the calibration of stellar models. Aims: Relying on these observations, we attempt to constrain the initial helium abundance, the age and the efficiency of the convective core overshooting. Our main aim is in pointing out the biases in the results due to not accounting for some sources of uncertainty. Methods: We adopt the SCEPtER pipeline, a maximum likelihood technique based on fine grids of stellar models computed for various values of metallicity, initial helium abundance and overshooting efficiency by means of two independent stellar evolutionary codes, namely FRANEC and MESA. Results: Beside the degeneracy between the estimated age and overshooting efficiency, we found the existence of multiple independent groups of solutions. The best one suggests a system of age 1.10 ± 0.07 Gyr composed of a primary star in the central helium burning stage and a secondary in the sub-giant branch (SGB). The resulting initial helium abundance is consistent with a helium-to-metal enrichment ratio of ΔY/ ΔZ = 1; the core overshooting parameter is β = 0.15 ± 0.01 for FRANEC and fov = 0.013 ± 0.001 for MESA. The second class of solutions, characterised by a worse goodness-of-fit, still suggest a primary star in the central helium-burning stage but a secondary in the overall contraction phase, at the end of the main sequence (MS). In this case, the FRANEC grid provides an age of Gyr and a core overshooting parameter , while the MESA grid gives 1.23 ± 0.03 Gyr and fov = 0.025 ± 0.003. We analyse the impact on the results of a larger, but typical, mass uncertainty and of neglecting the uncertainty in the initial helium content of the system. We show that very precise mass determinations with uncertainty of a few thousandths of solar mass are required to obtain reliable determinations of stellar parameters, as mass errors

  7. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  8. Calibrating an interferometric laser frequency stabilization to MHz precision

    CERN Document Server

    Brachmann, Johannes F S; Dieckmann, Kai; 10.1364/AO.51.005517

    2012-01-01

    We report on a calibration procedure that enhances the precision of an interferometer based frequency stabilization by several orders of magnitude. For this purpose the frequency deviations of the stabilization are measured precisely by means of a frequency comb. This allows to implement several calibration steps that compensate different systematic errors. The resulting frequency deviation is shown to be less than $5.7 $MHz (rms $1.6 $MHz) in the whole wavelength interval $750 - 795 $nm. Wide tuning of a stabilized laser at this exceptional precision is demonstrated.

  9. The calibration of PIXIE

    Science.gov (United States)

    Fixsen, D. J.; Chuss, D. T.; Kogut, Alan; Mirel, Paul; Wollack, E. J.

    2016-07-01

    The FIRAS instrument demonstrated the use of an external calibrator to compare the sky to an instrumented blackbody. The PIXIE calibrator is improved from -35 dB to -65 dB. Another significant improvement is the ability to insert the calibrator into either input of the FTS. This allows detection and correction of additional errors, reduces the effective calibration noise by a factor of 2, eliminates an entire class of systematics and allows continuous observations. This paper presents the design and use of the PIXIE calibrator.

  10. TECHNIQUE OF ESTIMATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. Part 2. Dependence on the characteristics of collimator, optical sourse-distance indicator, treatment field, lasers and treatment couch

    Directory of Open Access Journals (Sweden)

    Y. V. Tsitovich

    2016-01-01

    Full Text Available To ensure the safety of radiation oncology patients needed to provide consistent functional characteristics of the medical linear accelerators, which affect the accuracy of dose delivery. To this end, their quality control procedures, which include the calibration of radiation output of the linac, the error in determining the dose reference value during which must not exceed 2 %, is provided. The aim is to develop a methodology for determining the error (difference between a measured value of quantity and its true value in determining this value, depending on the characteristics of the collimator, the source to surface distance pointer, lasers, radiation field and treatment table. To achieve the objectives have been carried out dosimetric measurements of Trilogy S/N 3567 linac dose distributions, on the basis of which dose errors depending on the accuracy setting the zero position of the collimator, the deviation of the collimator rotation isocenter, the sourcesurface distance pointer accuracy, field size accuracy, the accuracy of lasers and treatment table positioning were obtained. It was found that the greatest impact on the value of the error has the error in the optical SSD indication and the error in the lasers position in the plane perpendicular to the plane of incidence of the radiation beam (up to 3.64 % for the energy of 6 MV. Dose errors caused by error in the field size were different for two photon energies, and reached 2.54 % for 6 MeV and 1.33% for 18 MeV. Errors caused by the rest of the characteristic do not exceed 1 %. Thus, it is possible to express the results of periodic quality control of these devices integrated in linac in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation on the basis of the calibration of radiation output in case of development of techniques that allow to analyze the influence dosimetric

  11. 微小型无人机三轴磁强计现场误差校正方法%In-suit Error Calibration of Three-axis Magnetometer for Unmanned Aerial Vehicle

    Institute of Scientific and Technical Information of China (English)

    吴永亮; 王田苗; 梁建宏

    2011-01-01

    详细分析微小型无人机导航用三轴磁强计的误差来源,建立三轴磁强计的等效误差模型,提出基于两步估计算法和圆约束非对准误差估计算法的三轴磁强计现场误差校正方法.在充分考虑地磁场偏转和倾斜特性的基础上,提出适合微小型无人机应用的现场数据采样策略,能够在较少的旋转操作下获得较好的采样数据.仿真表明:在所有磁场误差都存在的情况下,使用三轴磁强计现场误差校正方法对三轴磁强计输出进行校正后推算所得的航向角误差小于1.2°,仅相当于使用工程上常用的极大极小值法校正后所得的航向角误差的8%,校正精度提升92%.基于三轴磁强计实测数据的分析也验证了三轴磁强计现场误差校正方法的有效性和实用性.%The error sources of a three-axis magnetometer are systematically analyzed, and a uniform error model specially for calibration is established. An in-suit three-axis magnetometer calibration method for micro and mini unmanned aerial vehicle (UAV)based on the two-step estimation algorithm and circle restricted misalignment calibration algorithm is proposed.Taking into full consideration the inclination and declination of the earth's magnetic vector, the proposed in-suit data sampling strategy can obtain excellent sphere coverage by using the fewest rotations. The simulation results indicate that in spite of all error sources existing, including strong hard iron and soft iron disturbances, the standard deviation of the magnetic heading error obtained by the calibrated magnetic data using the in-suit three-axis magnetometer calibration method is less than 1.2°, which is a mere 8 % of the result obtained by using the usual industrial maximum and minimum calibration method.The precision is improved by 92%. The calibration result based on the real measurement data from a three-axis magnetometer also validates the effectiveness of the in-suit three

  12. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Ferrari, P.; Roddam, A.; Fahey, M. T.; Jenab, M.; Bamia, C.; Ocke, M.; Amiano, P.; Hjartaker, A.; Biessy, C.; Rinaldi, S.; Huybrechts, I.; Tjonneland, A.; Dethlefsen, C.; Niravong, M.; Clavel-Chapelon, F.; Linseisen, J.; Boeing, H.; Oikonomou, E.; Orfanos, P.; Palli, D.; de Magistris, M. Santucci; Bueno-de-Mesquita, H. B.; Peeters, P. H. M.; Parr, C. L.; Braaten, T.; Dorronsoro, M.; Berenguer, T.; Gullberg, B.; Johansson, I.; Welch, A. A.; Riboli, E.; Bingham, S.; Slimani, N.

    2009-01-01

    Objectives: Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, the performance of 24-h dietary recall (24-HDR) measurements as reference measurements in a linear regression calibration model is evaluated critically at the individual (within-centre) and aggregate

  13. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Ferrari, P.; Roddam, A.; Fahey, M. T.; Jenab, M.; Bamia, C.; Ocke, M.; Amiano, P.; Hjartaker, A.; Biessy, C.; Rinaldi, S.; Huybrechts, I.; Tjonneland, A.; Dethlefsen, C.; Niravong, M.; Clavel-Chapelon, F.; Linseisen, J.; Boeing, H.; Oikonomou, E.; Orfanos, P.; Palli, D.; de Magistris, M. Santucci; Bueno-de-Mesquita, H. B.; Peeters, P. H. M.; Parr, C. L.; Braaten, T.; Dorronsoro, M.; Berenguer, T.; Gullberg, B.; Johansson, I.; Welch, A. A.; Riboli, E.; Bingham, S.; Slimani, N.

    2009-01-01

    Objectives: Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, the performance of 24-h dietary recall (24-HDR) measurements as reference measurements in a linear regression calibration model is evaluated critically at the individual (within-centre) and aggregate (b

  14. An economic Fabry-Perot wavelength reference

    Science.gov (United States)

    Fżrész, Gábor; Glenday, Alex; Latham, Christian

    2014-07-01

    Precision radial velocity (PRV) measurements are key in studying exoplanets, and so are wavelength calibrators in PRV instruments. ThAr lamps offer an affordable but somewhat limited solution for the visible passband. Laser frequency combs are ideal calibrators, except the (still) narrow wavelength coverage and large price tag. White light Fabry-Perot (FP) calibrators offer frequency-comb like properties in a more affordable and less complicated package1. Using a commercial solid FP etalon and off-the shelf components we have constructed an economic FP calibrator suitable for observatories on a smaller budget.

  15. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    Science.gov (United States)

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  16. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  17. 8-position calibrating method for system error of digital magnetometer%一种八位置数字磁强计系统误差标定方法

    Institute of Scientific and Technical Information of China (English)

    林恒; 魏莹莹; 李保国

    2011-01-01

    Among the factors affecting the system error of digital magnetometer, the contributor comes from the precision variance of the production of the digital magnetometer and installation. Through a careful analysis and calculation of system error of digital magnetometer,a simple and effective method for system error compensation is presented which is the 8-position calibrating method. Experiments are done to verify the method. The result shows that the system error of digital magnetometer can be compensated and the heading measure precision can be improved validly by using this method.%由于数字磁强计本身制作和生产安装的精度差异,产生了数字磁强计的系统误差.通过对数字磁强计的系统误差进行详细分析和理论计算,建立了误差方程,并提出了一种简单有效的系统误差补偿方法--八位置标定方法,并对此方法进行了实验验证.实验结果表明:该方法可以较好地补偿数字磁强计的系统误差,提高航向测量精度.

  18. TECHNIQUE OF ESTIMATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. PART 1. DEPENDANCE OF THE MECHANICAL PARAMETERS OF LINAC’S GANTRY

    Directory of Open Access Journals (Sweden)

    Y. V. Tsitovich

    2015-01-01

    Full Text Available To ensure the safety of radiation oncology patients needed to provide a consistent functional characteristics of the medical linear electron accelerators, which affect the accuracy of dose delivery. To this end, their quality control procedures, which include the calibration of radiation output of the linear accelerator, the error in determining the dose reference value during which must not exceed 2 %, is provided. The aim is to develop a methodology for determining the error in determining this value, depending on the mechanical charachteristics of the linac’s gantry. To achieve the objectives have been carried out dosimetric measurements of Trilogy S/N 3567 linac dose distributions, on the basis of which dose errors depending on the accuracy setting the zero position of the gantry and the deviation of the gantry rotation isocenter were obtained. It was found that the greatest impact on the value of the error has gantry rotation isocenter deviation in a plane perpendicular to the plane of incidence of the radiation beam (up to 3,64% for the energy of 6 MeV. Dose errors caused by tilting the gantry and its isocenter deviation in the plane of incidence of the beam were highest for 18 MeV energy and reached –0,7 % and –0,9 % respectively. Thus, it is possible to express the results of periodic quality control of the linear accelerator ganty in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation in case of development of techniques that allow to analyze the influence of the rest of its technical and dosimetric parameters for error in dose.

  19. Measurement Error Analysis and Calibration Technique of NTC- Based Body Temperature Sensor%一种基于NTC的体温传感器测量误差分析及校准技术

    Institute of Scientific and Technical Information of China (English)

    邓迟; 胡巍; 刁盛锡; 林福江; 钱大宏

    2015-01-01

    A NTC thermistor-based wearable body temperature sensor was designed. This paper described the design principles and realization method of the NTC-based body temperature sensor. In this paper the temperature measurement error sources of the body temperature sensor were analyzed in detail. The automatic measurement and calibration method of ADC error was given. The results showed that the measurement accuracy of calibrated body temperature sensor is better than±0.04oC. The temperature sensor has high accuracy, smal size and low power consumption advantages.%该文设计了一款基于NTC热敏电阻的可穿戴式体温传感器,阐述了基于NTC的体温传感器的设计原理及实现方法。文中对体温传感器的温度测量误差来源进行了详细分析,给出了ADC误差自动测量和校准的方法。实验结果表明,经校准后的体温传感器其测量精度误差小于±0.04 oC。该体温传感器具有精度高、体积小和功耗低的优点。

  20. Calibration methods of angle measurement error of 360° laser scanner%360°激光扫描仪测角误差检校方法探讨

    Institute of Scientific and Technical Information of China (English)

    张艳亭; 马东洋; 马浩; 关艳玲

    2011-01-01

    This paper first analyzed the influence factors of angle measurement error of laser scanner, and mainly studied and discussed two calibration methods of angle measurement error of 360 ° vehicle-based laser scanner, one is dynamic method and the other is static one; then, the paper processed the point cloud data with TerraScan software and matlab and conducted a detailed analysis of the testing results; finally, it concluded that the laser scanner calibration techniques and methods would become more mature and perfect in the future.%本文在分析激光扫描仪测角误差影响因素基础上,探讨360°车载激光扫描仪测角误差的2种检校方法,即动态法和静态法;并结合TerraScan软件和matlab处理点云数据,设计数学模型对误差进行改正;最后对试验结果进行了详细分析.

  1. Error-landscape-based multi-objective calibration of the Smagorinsky eddy-viscosity using high-Reynolds-number decaying turbulence data

    NARCIS (Netherlands)

    Meyers, Johan; Meneveau, Charles; Geurts, Bernard J.

    2010-01-01

    A suite of large-eddy simulation(LESs) of decaying homogeneous isotropic turbulence at high Reynolds numbers is performed and compared to wind-tunnel experiments in the tradition of Comte-Bellot and Corrsin. The error-landscape approach is used for the evaluation of the Smagorinsky model, and the re

  2. Evaluation of a two-part regression calibration to adjust for dietary exposure measurement error in the Cox proportional hazards model

    NARCIS (Netherlands)

    Agogo, George O.; Voet, van der Hilko; Veer, van 't Pieter; Eeuwijk, van Fred A.; Boshuizen, Hendriek C.

    2016-01-01

    Dietary questionnaires are prone to measurement error, which bias the perceived association between dietary intake and risk of disease. Short-term measurements are required to adjust for the bias in the association. For foods that are not consumed daily, the short-term measurements are often char

  3. 基于高斯牛顿迭代算法的三轴磁强计校正%Error calibration of three axis magnetometer based on Gauss-Newton iteration algorithm

    Institute of Scientific and Technical Information of China (English)

    庞鸿锋; 潘孟春; 王伟; 张琦; 罗诗途

    2013-01-01

    In three axis magnetometers,scale factor,bias and non-orthogonality errors of the axes exist,so it is important to study its calibration method.The magnetometer calibration model is deduced based on scalar calibration method,and a magnetometer calibration method based on Gauss-Newton algorithm is proposed.A high precision proton magnetometer is used to provide the magnetic field intensity reference value.A nonmagnetic turntable is used to rotate the magnetometer,and during the rotation process the magnetometer records sample data continuously,which makes the measurement data more applicable and representative.Simulation results show that the magnetometer error is reduced from 162.135 nT to 1.467 nT.Experiment results show that,after calibration,the measurement errors of the magnetometer rotating three axes are reduced from 1133.887 nT,1317.554 nT,1303.994 nT to 36.964 nT,20.922 nT,15.664 nT,respectively,which shows that the proposed method can effectively reduce the measurement error of the magnetometer and obviously improve the precision of the three axis magnetometers.%三轴磁强计存在各轴刻度因子、零偏和轴间非正交性误差,需要研究其校正方法.基于标量校正法思想,对磁强计校正模型进行了推导,提出基于高斯牛顿迭代法的磁强计校正方法.采用高精度质子磁力仪提供磁场基准值.借助无磁转台转动磁强计,转动过程中磁强计连续采样,测量数据更具代表性和实用性.仿真结果表明,磁强计误差从162.135 nT降低到1.467 nT.实验结果表明,校正后,磁强计绕3个轴转动的测量值误差分别从1133.887 nT、1317.554 nT、1303.994 nT降低到36.964nT、20.922nT、15.664 nT.表明该方法能有效降低磁强计测量误差,磁强计精度明显得到提高.

  4. Error calibration of three axis magnetometer based on UKF and equipment%基于无迹卡尔曼滤波和设备的三轴磁强计校正

    Institute of Scientific and Technical Information of China (English)

    庞鸿锋; 潘孟春; 陈棣湘; 罗诗途; 罗飞路

    2012-01-01

    The model parameter estimation method based on unscented Kalman filter ( UKF) is proposed to calibrate the scalar and vector errors of three axis magnetometer. A high precision proton magnetometer is used to measure the true value of the magnetic field scalar; a nonmagnetic turntable is used to rotate the magnetometer omni-directionally and the calibration model parameters are estimated after rotation. Using this method, the parameters of a DM-050 magnetometer are estimated, and these estimated parameters are used to calibrate its scalar and vector errors. Simulation results show that the estimated parameters are consistent with the actual parameters. After calibration, the scalar error is reduced from 427.9 nT to 2.06 nT; the vector errors of X, Y, Z axes are reduced to 1.84 nT, 1.96 nT and 1.72 nT, respectively. In addition, the method using UKF to estimate magnetometer model parameters is proved to have good repeatability; and the influence of noise on the UKF performance is discussed. Experiment results show that the magnetometer error is reduced from 114. 94 nT to 14. 47 nT, which indicates that the proposed method can improve the precision of three axis magnetometer.%采用无迹卡尔曼滤波(unscented Kalman filter,UKF)磁强计模型参数估计方法,提出对三轴磁强计的总量及分量误差进行校正.采用高精度质子磁力仪提供磁场基准值,借助无磁转台实现磁强计全方位转动,对一款DM-050三轴磁强计进行了参数估计,并将参数估计值运用到总量和分量校正.仿真结果表明,参数估计值与磁强计实际参数值一致.校正后,磁强计总量误差从427.9 nT减少到2.06nT;X、Y、Z轴分量误差分别减少到1.84nT、1.96 nT、1.72 nT.而且证明了UKF对磁强计模型参数估计的重复性良好,并研究了噪声幅度大小对UKF的性能影响程度.实验结果表明,磁强计误差从114.94 nT减少到14.47 nT,表明该方法能有效提高磁强计测量精度.

  5. 炮口测速装置测速误差合格判别方法探讨%Discussion on Calibration and Judging Method of Allowable Velocity Error for Muzzle Velocity Measurement Device

    Institute of Scientific and Technical Information of China (English)

    张国平; 王茂林; 于斌

    2014-01-01

    在科研和生产过程中,炮口测速装置要在弹道炮和战斗炮上进行初速标定和测速误差检测,两个平台上初速标定系数的一致性问题、测速误差合格判断问题、合理的检测样本大小问题,应用概率论和数理统计理论及方法、语言去解释和处理。从炮口测速装置的工作原理出发,分析了影响测速误差的主要因素,确定了初速标定系数一致性判别准则和测速误差合格判别准则,在给定置信水平条件下,确定合理的检测样本大小,分析方法和思路对火炮其他试验(如初速检测、立靶密集度试验、弹药运输前后弹道一致性试验等)数据处理、指标合格判定具有借鉴作用。%In process of scientific research and production,muzzle velocity measurement device must be calibrated and the measured velocity error must be checked at the ballistic simulation gun and the combat gun.The check consistency of muzzle velocity calibration coefficients in the both guns,acceptability j udgment of measured velocity error and reasonable test sample size must be interpreted and solved by use of the probability theory and mathematical statistical method as well as the language in terms of probability and statistics.From the point view of the principle of muzzle velocity measurement device,the main factors that have influence on the measured velocity error were found out and analyzed.Judge criterion for consistency of calibra-ting coefficients and measured velocity acceptability at different guns were determined.Under the condition of the given confidence level,a reasonable test sample size was acquired.Some a-nalysis methods and resolved problem process may provide the reference for data processing and acceptability j udge of the other tests,such as muzzle velocity test,dispersion test with vertical target,consistency test of ammunition performance before and after transportation etc.

  6. [Full-field and automatic methodology of spectral calibration for PGP imaging spectrometer].

    Science.gov (United States)

    Sun, Ci; Bayanheshig; Cui, Ji-cheng; Pan, Ming-zhong; Li, Xiao-tian; Tang, Yu-guo

    2014-08-01

    In order to analyze spectral data quantitatively which is obtained by prism-grating-prism imaging spectrometer, spectral calibration is required in order to determine spectral characteristics of PGP imaging spectrometer, such as the center wavelength of every spectral channel, spectral resolution and spectral bending. A spectral calibration system of full field based on collimated monochromatic light method is designed. Spherical mirror is used to provide collimated light, and a freely sliding and rotating folding mirror is adopted to change the angle of incident light in order to realize full field and automatic calibration of imaging spectrometer. Experiments of spectral calibration have been done for PGP imaging spectrometer to obtain parameters of spectral performance, and accuracy analysis combined with the structural features of the entire spectral calibration system have been done. Analysis results indicate that spectral calibration accuracy of the calibration system reaches 0.1 nm, and the bandwidth accuracy reaches 1.3%. The calibration system has merits of small size, better commonality, high precision and so on, and because of adopting the control of automation, the additional errors which are caused by human are avoided. The calibration system can be used for spectral calibration of other imaging spectrometers whose structures are similar to PGP.

  7. Vetting Galactic Leavitt Law Calibrators using Radial Velocities: On the Variability, Binarity, and Possible Parallax Error of 19 Long-period Cepheids

    CERN Document Server

    Anderson, R I; Riess, A G; Melis, C; Holl, B; Semaan, T; Papics, P I; Blanco-Cuaresma, S; Eyer, L; Mowlavi, N; Palaversa, L; Roelens, M

    2016-01-01

    We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period ($P_{\\rm{puls}} \\gtrsim 10$ d) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using $>1600$ high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on $\\lesssim 5$ yr timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to $ 10$ yr) variations in pulsation-averaged velocity $v_\\gamma$ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen's orbital signature. Further (mostly tentative) evidence of time-variable $v_\\gamma$ is found for...

  8. An Optimal Calibration Method for a MEMS Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2014-02-01

    Full Text Available An optimal calibration method for a micro-electro-mechanical inertial measurement unit (MIMU is presented in this paper. The accuracy of the MIMU is highly dependent on calibration to remove the deterministic errors of systematic errors, which also contain random errors. The overlapping Allan variance is applied to characterize the types of random error terms in the measurements. The calibration model includes package misalignment error, sensor-to-sensor misalignment error and bias, and a scale factor is built. The new concept of a calibration method, which includes a calibration scheme and a calibration algorithm, is proposed. The calibration scheme is designed by D-optimal and the calibration algorithm is deduced by a Kalman filter. In addition, the thermal calibration is investigated, as the bias and scale factor varied with temperature. The simulations and real tests verify the effectiveness of the proposed calibration method and show that it is better than the traditional method.

  9. Ge well detector calibration by means of a trial and error procedure using the dead layers as a unique parameter in a Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Courtine, Fabien; Pilleyre, Thierry; Sanzelle, Serge [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, F-63177 Aubiere Cedex (France); Miallier, Didier [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, F-63177 Aubiere Cedex (France)], E-mail: miallier@clermont.in2p3.fr

    2008-11-01

    The project aimed at modelling an HPGe well detector in view to predict its photon-counting efficiency by means of the Monte Carlo simulation code GEANT4. Although a qualitative and quantitative description of the crystal and housing was available, uncertainties were associated to parameters controlling the detector response. This induced poor agreement between the efficiency calculated on the basis of nominal data and the actual efficiency experimentally measured with a {sup 137}Cs point source. It was then decided to improve the model, by parameterization of a trial and error method. The distribution of the dead layers was adopted as a unique parameter, in order to explore the possibilities and pertinence of this parameter. In the course of the work, it appeared necessary to introduce the possibility that the thickness of the dead layers was not uniform for a given surface. At the end of the process, the results allowed to conclude that the approach was able to give a model adapted to practical application with a satisfactory precision in the calculated efficiency. The pattern of the 'dead layers' that was obtained is characterized by a variable thickness which seems to be physically relevant. It implicitly and partly accounts for effects that are not originated from actual dead layers, such as incomplete charge collection. But, such effects, which are uneasily accounted for, can, in a first approximation, be represented by 'dead layers'; this is an advantage of the parameterization that was adopted.

  10. Wavelength Converters

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Wolfson, David;

    1999-01-01

    at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of ~6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced ~8 dB. Obviously, the power reduction allows for longer spans between....... It is predicted that jitter accumulation can be minimised by using a 9-10 dB ratio between the signal and CW power also assuring a high extinction ratio. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only ~20 ps of accumulated jitter...... and an extinction ratio of ~10 dB.The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s, where the noise redistribution and improvement of the signal-to-noise ratio clearly is demonstrated by controlling the input power to an EDFA. In a similar experiment...

  11. A Careful Consideration of the Calibration Concept

    Science.gov (United States)

    Phillips, S. D.; Estler, W. T.; Doiron, T.; Eberhardt, K. R.; Levenson, M. S.

    2001-01-01

    This paper presents a detailed discussion of the technical aspects of the calibration process with emphasis on the definition of the measurand, the conditions under which the calibration results are valid, and the subsequent use of the calibration results in measurement uncertainty statements. The concepts of measurement uncertainty, error, systematic error, and reproducibility are also addressed as they pertain to the calibration process. PMID:27500027

  12. Backscatter nephelometer to calibrate scanning lidar

    Science.gov (United States)

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  13. 基于激光跟踪仪的 Delta 并联机构运动学误差标定%Calibration of Delta Parallel Robot Kinematic Errors Based on Laser Tracker

    Institute of Scientific and Technical Information of China (English)

    张文昌; 梅江平; 刘艺; 张新

    2013-01-01

    The kinematics error model of Delta parallel robot was established first,and then the geometric errors affecting the precision of the end-effector were analyzed and simplified to 18 ones. By taking a laser tracker as meas-urement tool,a stepping iterative method is proposed to identify the geometric errors. Considering the non-linear mapping from the actuated variables in joint space to the pose of the end-effector in Cartesian space,the geometric errors were iterated by using the residual errors of the distances between every two measuring points as optimization index,and then the kinematic model of the robot was modified. The precision of the end effector is dramatically im-proved to the order of 0.1,mm from 1.0,mm after calibration,thus verifies the effectiveness and generality of this method.%  以 Delta 并联机构为研究对象,建立了 Delta 并联机构的运动学误差模型,对影响其末端精度的几何误差源进行了分析,并指出这些几何误差源可简化为18项.以激光跟踪仪作为测量工具,提出一种步进迭代的误差参数辨识方法,该方法利用 Delta 并联机构操作空间与关节空间之间的映射关系,通过优化多个检测点相互之间的理论距离与实际距离的残差,计算出 Delta 并联机构的各项几何误差参数,进而修正 Delta 并联机构的运动学模型,标定后机构末端精度由1.0,mm 数量级提高至0.1,mm 数量级,实验结果表明了文中所述方法的有效性和普遍性.

  14. Calibration of Vector Magnetogram with the Nonlinear Least-squares Fitting Technique

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Su; Hong-Qi Zhang

    2004-01-01

    To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station(HSOS),we scanned the FeIλ5324.19 A line over the wavelength interval from 150mA redward of the line center to 150mA blueward,in steps of 10mA.With the technique of analytic inversion of Stokes profiles via nonlinear least-squares,we present the calibration coefficients for the HSOS vector magnetic magnetogram.We obtained the theoretical calibration error with linear expressions derived from the Unno-Becker equation under weak-field approximation.

  15. Radiation calibration and error analysis for a large-aperture infrared opto-electric system%大口径红外光电系统辐射定标及误差分析

    Institute of Scientific and Technical Information of China (English)

    杨词银; 曹立华

    2011-01-01

    为了实现对大口径红外光电系统的辐射定标,建立了基于大面源黑体的辐射定标系统以及基于红外单色照明光管的光谱定标系统.利用腔型黑体、连续可变滤光片CVF和平行光管组成红外单色照明光管,对红外系统进行光谱定标,确定系统归一化相对光谱响应函数.利用大面源黑体覆盖红外系统入瞳和视场,对红外系统进行辐射定标,确定系统绝对辐射亮度响应度α.对α的误差源进行了分析计算:α的不确定度主要来自于红外系统输出数码值、大面源黑体辐射、光谱定标和背景辐射的不确定度,经测量和计算分别为0.4%、4.9%、2.5%、1.9%.计算结果表明,响应度α的不确定度为6.1%,满足红外系统10%定标精度的要求.%To perform radation calibration on infrared opto-electric system with a large-aperture, a radiation calibration system based on extended area blackbody and a spectral calibration system based on infrared monochroic collimator were established. The infrared monochroic collimator was composed of a cavity blackbody, a circular variable filter (CVF) and a collimator. It was used to calibrate the infrared opto-electric system spectrally in order to determine its normalized relative spectral response function. A large extended area blackbody, which covered the input pupil and the view field of the infrared opto-electric system, was used to perform radiation calibration on the infrared system in order to determine its absolute radiance responsivity. Analysis on error sources of the radiance responsivity was performed, and the uncertainty of the responsivity came from uncertainties for the output value of the infrared opto-electric system, radiation emitting from the extended area blackbody, the spectral calibration and the background radiation, which were 0.4% 、4.9% ,2.5% 、 1.9% respectively after measuring and calculating. The calculation results show that the uncertainty of the

  16. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    CERN Document Server

    Li, T S; Marshall, J L; Tucker, D; Kessler, R; Annis, J; Bernstein, G M; Boada, S; Burke, D L; Finley, D A; James, D J; Kent, S; Lin, H; Marriner, J; Mondrik, N; Nagasawa, D; Rykoff, E S; Scolnic, D; Walker, A R; Wester, W; Abbott, T M C; Allam, S; Benoit-Lévy, A; Bertin, E; Brooks, D; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Doel, P; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Goldstein, D A; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; Kuehn, K; Kuropatkin, N; Maia, M A G; Melchior28, P; Miller, C J; Miquel, R; Mohr, J J; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thomas, D; Vikram, V

    2016-01-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example...

  17. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  18. SDSS-IV/MaNGA: Spectrophotometric Calibration Technique

    Science.gov (United States)

    Yan, Renbin; Tremonti, Christy; Bershady, Matthew A.; Law, David R.; Schlegel, David J.; Bundy, Kevin; Drory, Niv; MacDonald, Nicholas; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Cherinka, Brian; Eigenbrot, Arthur; Gunn, James E.; Harding, Paul; Hogg, David W.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Wake, David A.; Weijmans, Anne-Marie; Xiao, Ting; Zhang, Kai

    2016-01-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600-10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.

  19. SDSS-IV/MaNGA: SPECTROPHOTOMETRIC CALIBRATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Renbin; Sánchez-Gallego, José R. [Department of Physics and Astronomy, University of Kentucky, 505 Rose St., Lexington, KY 40506-0057 (United States); Tremonti, Christy; Bershady, Matthew A.; Eigenbrot, Arthur; Wake, David A. [Department of Astronomy, University of Winsconsin-Madison, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Law, David R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Schlegel, David J. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8160 (United States); Bundy, Kevin [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); MacDonald, Nicholas [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, sunspot, NM 88349 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cherinka, Brian [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Gunn, James E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Sánchez, Sebastian F., E-mail: yanrenbin@uky.edu [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); and others

    2016-01-15

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.

  20. Improving Langley calibrations by reducing diurnal variations of aerosol Ångström parameters

    Directory of Open Access Journals (Sweden)

    A. Kreuter

    2013-01-01

    Full Text Available Errors in the sun photometer calibration constant lead to artificial diurnal variations, symmetric around solar noon, of the retrieved aerosol optical depth (AOD and the associated Ångström exponent α and its curvature γ. We show in simulations that within the uncertainty of state-of-the-art Langley calibrations, these diurnal variations of α and γ can be significant in low AOD conditions, while those of AOD are negligible. We implement a weighted Monte Carlo method of finding an improved calibration constant by minimizing the diurnal variations in α and γ and apply the method to sun photometer data of a clear day in Innsbruck, Austria. The results show that our method can be used to improve the calibrations in two of the four wavelength channels by up to a factor of 3.6.

  1. Improving Langley calibrations by reducing diurnal variations of aerosol Ångström parameters

    Directory of Open Access Journals (Sweden)

    A. Kreuter

    2012-09-01

    Full Text Available Errors in the sun photometer calibration constant lead to artificial diurnal variations, symmetric around solar noon, of the retrieved Aerosol Optical Depth (AOD and the associated Ångström exponent α and its curvature γ. We show in simulations that within the uncertainty of state-of-the-art Langley calibrations, these diurnal variations of α and γ can be significant in low AOD conditions, while those of AOD are negligible. We implement a weighted Monte-Carlo method of finding an improved calibration constant by minimizing the diurnal variations in α and γ and apply the method to sun photometer data of a clear day in Innsbruck, Austria. The results show that our method can be used to improve the calibrations in two of the four wavelength channels by up to a factor of 3.6.

  2. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  3. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...

  4. Selection of efficient wavelengths in NIR spectrum for determination of dry matter in kiwi fruit

    Directory of Open Access Journals (Sweden)

    Cai Jianrong

    2010-04-01

    Full Text Available The feasibility of using efficient wavelengths in the near-infrared (NIR spectrum for the rapid determination of the dry matter (DM in kiwi fruit was investigated. Partial least squares (PLS, synergy interval PLS (siPLS and genetic algorithm siPLS (GA-siPLS were comparatively performed to calibrate regression models. The number of wavelengths and the number of PLS components were optimised as per the root mean square error of cross-validation (RMSECV in the calibration set. The performance of the final model was evaluated by the root mean square error of prediction (RMSEP and the correlation coefficient (r in the prediction set. Results indicate that the performance of GA-siPLS model is the best one compared to PLS and siPLS models. The optimal model was achieved with r = 0.9020 and RMSEP = 0.5315 in the prediction set. This work shows that it is feasible to determine DM in kiwi fruit using NIR spectroscopy and that GA-siPLS algorithm is most suitable in solving the problem of selection of efficient wavelengths.

  5. FPGA-based data processing module design of on-board radiometric calibration in visible/near infrared bands

    Science.gov (United States)

    Zhou, Guoqing; Li, Chenyang; Yue, Tao; Liu, Na; Jiang, Linjun; Sun, Yue; Li, Mingyan

    2015-12-01

    FPGA technology has long been applied to on-board radiometric calibration data processing however the integration of FPGA program is not good enough. For example, some sensors compressed remote sensing images and transferred to ground station to calculate the calibration coefficients. It will affect the timeliness of on-board radiometric calibration. This paper designs an integrated flow chart of on-board radiometric calibration. Building FPGA-based radiometric calibration data processing modules uses system generator. Thesis focuses on analyzing the calculation accuracy of FPGA-based two-point method and verifies the feasibility of this method. Calibration data was acquired by hardware platform which was built using integrating sphere, CMOS camera (canon 60d), ASD spectrometers and light filter (center wavelength: 690nm, bandwidth: 45nm). The platform can simulate single-band on-board radiometric calibration data acquisition in visible/near infrared band. Making an experiment of calibration coefficients calculation uses obtained data and FPGA modules. Experimental results show that: the camera linearity is above 99% meeting the experimental requirement. Compares with MATLAB the calculation accuracy of two-point method by FPGA are as follows: the error of gain value is 0.0053%; the error of offset value is 0.00038719%. Those results meet experimental accuracy requirement.

  6. LOW FLYING HEIGHT MEASUREMENT WITH MULTI-WAVELENGTH INTERFEROMETRY

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LAI Wuxing; SHI Tielin; TAO Wei; CHENG Xinjian

    2008-01-01

    A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT II), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the requirement of magnetic heads manufacturing.

  7. Systematic error revisited

    Energy Technology Data Exchange (ETDEWEB)

    Glosup, J.G.; Axelrod, M.C.

    1996-08-05

    The American National Standards Institute (ANSI) defines systematic error as An error which remains constant over replicative measurements. It would seem from the ANSI definition that a systematic error is not really an error at all; it is merely a failure to calibrate the measurement system properly because if error is constant why not simply correct for it? Yet systematic errors undoubtedly exist, and they differ in some fundamental way from the kind of errors we call random. Early papers by Eisenhart and by Youden discussed systematic versus random error with regard to measurements in the physical sciences, but not in a fundamental way, and the distinction remains clouded by controversy. The lack of a general agreement on definitions has led to a plethora of different and often confusing methods on how to quantify the total uncertainty of a measurement that incorporates both its systematic and random errors. Some assert that systematic error should be treated by non- statistical methods. We disagree with this approach, and we provide basic definitions based on entropy concepts, and a statistical methodology for combining errors and making statements of total measurement of uncertainty. We illustrate our methods with radiometric assay data.

  8. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  9. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  10. SIRTF Focal Plane Survey: A Pre-flight Error Analysis

    Science.gov (United States)

    Bayard, David S.; Brugarolas, Paul B.; Boussalis, Dhemetrios; Kang, Bryan H.

    2003-01-01

    This report contains a pre-flight error analysis of the calibration accuracies expected from implementing the currently planned SIRTF focal plane survey strategy. The main purpose of this study is to verify that the planned strategy will meet focal plane survey calibration requirements (as put forth in the SIRTF IOC-SV Mission Plan [4]), and to quantify the actual accuracies expected. The error analysis was performed by running the Instrument Pointing Frame (IPF) Kalman filter on a complete set of simulated IOC-SV survey data, and studying the resulting propagated covariances. The main conclusion of this study is that the all focal plane calibration requirements can be met with the currently planned survey strategy. The associated margins range from 3 to 95 percent, and tend to be smallest for frames having a 0.14" requirement, and largest for frames having a more generous 0.28" (or larger) requirement. The smallest margin of 3 percent is associated with the IRAC 3.6 and 5.8 micron array centers (frames 068 and 069), and the largest margin of 95 percent is associated with the MIPS 160 micron array center (frame 087). For pointing purposes, the most critical calibrations are for the IRS Peakup sweet spots and short wavelength slit centers (frames 019, 023, 052, 028, 034). Results show that these frames are meeting their 0.14" requirements with an expected accuracy of approximately 0.1", which corresponds to a 28 percent margin.

  11. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  12. UVIS G280 Flux Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Flux calibration, image displacement, and spectral trace of the UVIS G280 grism will be established using observations of the HST flux standard start GD71. Accompanying direct exposures will provide the image displacement measurements and wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be derived.

  13. Parallel Calibration for Sensor Array Radio Interferometers

    CERN Document Server

    Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J

    2016-01-01

    In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.

  14. Accurate estimation of TOA and calibration of synchronization error for multilateration%多点定位TOA精确估计及同步误差校正算法

    Institute of Scientific and Technical Information of China (English)

    王洪; 金尔文; 刘昌忠; 吴宏刚

    2013-01-01

    提出了S模式信号的数学模型,讨论了脉冲上升沿测量到达时间(time of arrival,TOA)的精度、统计方法估计TOA的最优值和最优估计的实现方法.然后,提出了一种先解码后测量TOA的改进方法,从脉冲积累的角度导出了改进方法的理论精度,与单脉冲测量的精度相比较有明显提高.针对硬件实现的问题,分析了采样对TOA测量的影响和解决方法.最后,讨论了多点定位的同步问题,将TOA的精确估计值应用于多点定位系统多部接收机之间的同步误差校正.%A mathematical model of mode S signals is built. Accuracy of time of arrival (TOA) measurements by pulse rise edge and best statistical estimation methods are discussed. The way to realize the best estimation is also introduced. Then a novel method is proposed to measure the TOA of mode S signals, in which the measurement is performed after the decoding of mode S signals. The accuracy of the proposed method is improved significantly compared with the single pulse measurement, which can be derived from pulse integration. The influence of sampling on TOA measurement is analyzed and the corresponding solving method is introduced. Finally, synchronization in a multilateration system is discussed and the accurate TOA of signals is used for calibration of synchronization errors among receivers.

  15. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  16. Simultaneous spectrophotometric calibration of wavelength and absorbance in an interlaboratory survey using holmium oxide (Ho2O3) in perchloric acid as reference, compared with p-nitrophenol and cobaltous sulphate solutions (1978-1984).

    Science.gov (United States)

    Jansen, A P; van Kampen, E J; Steigstra, H; van der Ploeg, P H; Zwart, A

    1986-02-01

    The wavelength accuracy of ten different types of spectrophotometer was tested with holmium perchlorate solutions. It was found to be good, with mean deviations from the literature values of maximally 0.3 nm. Standard deviations over the entire spectral range were within 0.75 nm. The absorbance accuracy for different types of instruments was generally within 5%, except in the 287 nm range where higher deviations were found. The sharpness of the holmium peaks, in combination with band width and sensitivity of the instruments, troubled the majority of the participants. 150 spectrophotometers were involved in the surveys. Linearity of the spectrophotometers was tested with p-nitrophenol and cobaltous sulphate and found to be satisfactory.

  17. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  18. Photometric Calibrations for the SIRTF Infrared Spectrograph

    CERN Document Server

    Morris, P W; Herter, T L; Armus, L; Houck, J; Sloan, G

    2002-01-01

    The SIRTF InfraRed Spectrograph (IRS) is faced with many of the same calibration challenges that were experienced in the ISO SWS calibration program, owing to similar wavelength coverage and overlapping spectral resolutions of the two instruments. Although the IRS is up to ~300 times more sensitive and without moving parts, imposing unique calibration challenges on their own, an overlap in photometric sensitivities of the high-resolution modules with the SWS grating sections allows lessons, resources, and certain techniques from the SWS calibration programs to be exploited. We explain where these apply in an overview of the IRS photometric calibration planning.

  19. Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1

    CERN Document Server

    Accadia, T; Antonucci, F; Aoudia, S; Arun, K G; Astone, P; Ballardin, G; Barone, F; Barsuglia, M; Bauer, Th S; Beker, M G; Belletoile, A; Bigotta, S; Birindelli, S; Bitossi, M; Bizouard, M A; Blom, M; Boccara, C; Bondu, F; Bonelli, L; Bonnand, R; Bosi, L; Braccini, S; Bradaschia, C; Brillet, A; Brisson, V; Budzynski, R; Bulik, T; Bulten, H J; Buskulic, D; Buy, C; Cagnoli, G; Calloni, E; Campagna, E; Canuel, B; Carbognani, F; Cavalier, F; Cavalieri, R; Cella, G; Cesarini, E; Chassande-Mottin, E; Chincarini, A; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Corsi, A; Coulon, J -P; Cuoco, E; D'Antonio, S; Dari, A; Dattilo, V; Davier, M; Day, R; De Rosa, R; del Prete, M; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Dietz, A; Drago, M; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Freise, A; Galimberti, M; Gammaitoni, L; Garufi, F; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Gouaty, R; Granata, M; Greverie, C; Guidi, G M; Heitmann, H; Hello, P; Hild, S; Huet, D; Jaranowski, P; Kowalska, I; Krolak, A; Leroy, N; Letendre, N; Li, T G F; Lorenzini, M; Loriette, V; Losurdo, G; Mackowski, J M; Majorana, E; Maksimovic, I; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Michel, C; Milano, L; Minenkov, Y; Mohan, M; Moreau, J; Morgado, N; Morgia, A; Mosca, S; Moscatelli, V; Mours, B; Neri, I; Nocera, F; Pagliaroli, G; Palladino, L; Palomba, C; Paoletti, F; Pardi, S; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Pichot, M; Piergiovanni, F; Pietka, M; Pinard, L; Poggiani, R; Prato, M; Prodi, G A; Punturo, M; Puppo, P; Rabaste, O; Rabeling, D S; Rapagnani, P; Re, V; Regimbau, T; Ricci, F; Robinet, F; Rocchi, A; Rolland, L; Romano, R; Rosinska, D; Ruggi, P; Sassolas, B; Sentenac, D; Sturani, R; Swinkels, B; Toncelli, A; Tonelli, M; Torre, O; Tournefier, E; Travasso, F; Trummer, J; Vajente, G; Brand, J F J van den; van der Putten, S; Vavoulidis, M; Vedovato, G; Verkindt, D; Vetrano, F; Vicere, A; Vinet, J -Y; Vocca, H; Was, M; Yvert, M

    2010-01-01

    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitationnal wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and ...

  20. Optimal Calibration Accuracy for Gravitational Wave Detectors

    CERN Document Server

    Lindblom, Lee

    2009-01-01

    Calibration errors in the response function of a gravitational wave detector degrade its ability to detect and then to measure the properties of any detected signals. This paper derives the needed levels of calibration accuracy for each of these data-analysis tasks. The levels derived here are optimal in the sense that lower accuracy would result in missed detections and/or a loss of measurement precision, while higher accuracy would be made irrelevant by the intrinsic noise level of the detector. Calibration errors affect the data-analysis process in much the same way as errors in theoretical waveform templates. The optimal level of calibration accuracy is expressed therefore as a joint limit on modeling and calibration errors: increased accuracy in one reduces the accuracy requirement in the other.

  1. HIRDLS monochromator calibration equipment

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Djotni, Karim; Whitney, John G.; Bracken, Justain N.; Wolfenden, Roger; Row, Frederick; Palmer, Christopher W. P.; Watkins, Robert E. J.; Knight, Rodney J.; Gray, Peter F.; Hammond, Geoffory

    2003-11-01

    A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.

  2. In-Flight Pitot-Static Calibration

    Science.gov (United States)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  3. Radio Interferometric Calibration Using The SAGE Algorithm

    CERN Document Server

    Kazemi, S; Zaroubi, S; de Bruyn, A G; Koopmans, L V E; Noordam, J

    2010-01-01

    The aim of the new generation of radio synthesis arrays such as LOFAR and SKA is to achieve much higher sensitivity, resolution and frequency coverage than what is available now. To accomplish this goal, the accuracy of the calibration techniques used is of considerable importance. Moreover, since these telescopes produce huge amounts of data, speed of convergence of calibration is a major bottleneck. The errors in calibration are due to system noise (sky and instrumental) as well as the estimation errors introduced by the calibration technique itself, which we call "solver noise". We define solver noise as the "distance" between the optimal solution, the true value of the unknowns corrupted by the system noise, and the solution obtained by calibration. We present the Space Alternating Generalized Expectation Maximization (SAGE) calibration technique, which is a modification of the Expectation Maximization algorithm, and compare its performance with the traditional Least Squares calibration based on the level...

  4. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    CERN Document Server

    Whitmore, J B

    2014-01-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium--argon calibration can be tracked with $\\sim$10\\,m\\,s$^{-1}$ precision over the entire optical wavelength range on scales of both echelle orders ($\\sim$50--100\\,\\AA) and entire spectrographs arms ($\\sim$1000--3000\\,\\AA). Using archival spectra from the past 20 years we have probed the supercalibration history of the VLT--UVES and Keck--HIRES spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically $\\pm$200\\,m\\,s$^{-1}$\\,per 1000\\,\\AA. We apply a simple model of these distortions to simulated spectra which characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the ...

  5. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  6. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  7. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  8. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  9. DECal: A Spectrophotometric Calibration System For DECam

    CERN Document Server

    Marshall, J L; DePoy, D L; Prochaska, Travis; Allen, Richard; Behm, Tyler W; Martin, Emily C; Veal, Brannon; Villanueva,, Steven; Williams, Patrick; Wise, Jason

    2013-01-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (about 1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 < lambda < 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determ...

  10. An error prediction framework for interferometric SAR data

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Merryman Boncori, John Peter

    2008-01-01

    Three of the major error sources in interferometric synthetic aperture radar measurements of terrain elevation and displacement are baseline errors, atmospheric path length errors, and phase unwrapping errors. In many processing schemes, these errors are calibrated out by using ground control poi...

  11. Investigation of optimum wavelengths for oximetry

    Science.gov (United States)

    Huong, Audrey K. C.; Stockford, Ian M.; Crowe, John A.; Morgan, Stephen P.

    2009-07-01

    An evaluation of the optimum choice of wavelengths, when using the 'Modified Lambert-Beer law' to estimate blood oxygen saturation, that minimises the mean error across a range of oxygen saturation values is presented. The stability of this approach and its susceptibility to noise are also considered.

  12. Calibration of ACS Prism Slitless Spectroscopy Modes

    CERN Document Server

    Larsen, S S; Walsh, J R

    2005-01-01

    The Advanced Camera for Surveys is equipped with three prisms in the Solar Blind (SBC) and High Resolution (HRC) Channels, which together cover the 1150 - 3500 A range, albeit at highly non-uniform spectral resolution. We present new wavelength- and flux calibrations of the SBC (PR110L and PR130L) and HRC (PR200L) prisms, based on calibration observations obtained in Cycle 13. The calibration products are available to users via the ST-ECF/aXe web pages, and can be used directly with the aXe package. We discuss our calibration strategy and some caveats specific to slitless prism spectroscopy.

  13. CALIBRATION OF THE INFRARED OPTOMETER

    Science.gov (United States)

    An infrared optometer for measuring the absolute status of accommodation is subject to a constant error not associated with chromatic aberration or...on optometer accuracy as long as the pupil does not vignette the optometer beam. A modification is described for calibrating the infrared optometer ...for an individual subject without using trial lenses or a subjective optometer . (Author)

  14. Calibration of shaft alignment instruments

    Science.gov (United States)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  15. 计算机辅助外科中手术与计划空间标定以及视觉空间的误差校正%Calibration Between Operation Space and Plan Space and Error Correction of Visual Space in Computer-aided Surgery

    Institute of Scientific and Technical Information of China (English)

    郭锥; 周宇; 席文明

    2012-01-01

    In computer-aided surgery (CAS) system,many space integrates in together,in order to improve the precision of the system operation,the effective calibration method to correct the error between the space is needed. Using the robot characteristics motion errors in visual space of navigation system to establish the mapping of visual space and robot space,and to recursion correction the local transformation matrix of visual space and robot space. Using local transformation matrix to establish optimization equatipn.and then obtaining global optimal transformation matrix. This method for all the static and dynamic error correction. According to the coupling error exists in the operation and plan space,using the designed special structure force sensor and calibration piece of decoupling to calibration its error, and according to the transformation matrix to adjust the objects position and orientation in the plan space to ensure that the objects in the plan space have the same pose with it in the operation space. The experimental results show that the dynamic calibration method can make the visual space global error reduced to 5 pixels,and the force control calibration method can make the position error is reduced to 0. 25 mm and the posture error reduced to 0. 1%计算机辅助外科(CAS)系统中,多空间集成在一起,为了提高系统的操作精度,需要有效的标定方法校正空间之间的误差.利用机器人上特征在导航系统中视觉空间的运动误差,建立视觉空间与机器人空间的映射关系,递归校正两空间之间的局部转换矩阵.利用局部转换矩阵建立优化方程,求取全局最优转换矩阵.该方法对所有动态、静态误差进行校正.针对手术与计划空间中存在的耦合误差,利用设计的特殊结构力传感器和标定块解耦标定其误差,并根据求取的转换矩阵,调整计划空间中对象的位姿,保证计划空间与手术空间中的对象位姿一致.实验结果表明,动

  16. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    Science.gov (United States)

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  17. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  18. The Swift-UVOT ultraviolet and visible grism calibration

    CERN Document Server

    Kuin, N P M; Breeveld, A A; Page, M J; James, C; Lamoureux, H; Mehdipour, M; Still, M; Yershov, V; Brown, P J; Carter, M; Mason, K O; Kennedy, T; Marshall, F; Roming, P W A; Siegel, M; Oates, S; Smith, P J; De Pasquale, M

    2015-01-01

    We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The...

  19. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  20. Calibration-free wavelength modulated TDLAS under high absorbance conditions.

    Science.gov (United States)

    Zhimin, Peng; Yanjun, Ding; Lu, Che; Xiaohang, Li; Kangjie, Zheng

    2011-11-07

    Currently, the method that uses a first-order Taylor series to approximate laser transmission has seriously affected the gas concentration measurement accuracy of tunable diode laser-absorption spectroscopy (TDLAS). This paper employs a second-order Taylor series to approximate laser transmission, and a high-precision second-order algorithm has been established that can determine the gas concentration directly. Then, this algorithm is used to test the NH₃ mole fraction in a cell with NH₃-Air mixtures. Experimental results show that the second-order algorithm not only effectively improves the measurement accuracy of gas concentration but also greatly broadens the scope of TDLAS.

  1. Calibration-free wavelength modulated TDLAS under high absorbance conditions

    National Research Council Canada - National Science Library

    Zhimin, Peng; Yanjun, Ding; Lu, Che; Xiaohang, Li; Kangjie, Zheng

    2011-01-01

    Currently, the method that uses a first-order Taylor series to approximate laser transmission has seriously affected the gas concentration measurement accuracy of tunable diode laser-absorption spectroscopy (TDLAS...

  2. Camera calibration correction in shape from inconsistent silhouette

    Science.gov (United States)

    The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...

  3. Cascaded wavelength division multiplexing for byte-wide optical interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J.; Garrett, H. E.; Germelos, S.; Haigh,R. E.; Henderer, B. D.; Lowry, M. E.; Walker, J.D.

    1997-11-17

    We demonstrate a wavelength division multiplexing approach for byte-wide optical interconnects over multimode fiber optic ribbon cable using filters based on common plastic ferrules. A dual wavelength link with eight cascaded filter stages exhibits bit error rates {le}l0{sup -l4}.

  4. A Precision Optical Calibration Module (POCAM for IceCube-Gen2

    Directory of Open Access Journals (Sweden)

    Jurkovič M.

    2016-01-01

    Full Text Available We present here a new concept of an in-situ self-calibrated isotropic light source for the future IceCube-Gen2 neutrino detector called the Precision Optical Calibration Module (POCAM. IceCube-Gen2 will be a matrix of light sensors buried deep in the ice at the geographic South Pole. The timing, the location, and the amount of Cherenkov light deposited by the secondary charged particles are used to reconstruct the properties of the incident neutrinos. The reconstruction relies on a detailed detector model that includes the response of optical modules to the Cherenkov light, as well as the optical properties of the detector medium – the natural Antarctic ice. To understand these properties, both natural, and artificial light sources are already used for calibration. New calibration devices are being developed in order to improve the precision of these measurements, and reduce systematic errors. The POCAM concept is based on the principle of an inverted integrating sphere. The main components are LEDs emitting light at several wavelengths and solid-state light sensors e.g. calibrated photodiode or silicon photomultipliers to monitor the emitted light intensity. We report on the current status of the POCAM R&D.

  5. 基于辅助阵元的方位依赖幅相误差最大似然自校正:针对确定信号模型%Maximum likelihood self-calibration for direction-dependent gain-phase errors with carry-on instrumental sensors:case of deterministic signal model

    Institute of Scientific and Technical Information of China (English)

    王鼎; 潘苗; 吴瑛

    2011-01-01

    Aim at the self-calibration of direction-dependent gm-phase errors in case of deterministic signal model, the maximum likelihood method(MLM) for calibrating the direction-dependent gain-phase errors with carry-on instrumental sensors was presented. In order to maximize the high-dimensional nonlinear cost function appearing in the MLM, an improved alternative projection iteration algorithm, which could optimize the azimuths and direc6on-dependent gain-phase errors was proposed. The closed-form expressions of the Cramér-Rao bound(CRB) for azimuths and gain-phase errors were derived. Simulation experiments show the effectiveness and advantage of the novel method.%针对确定信号模型条件下方位依赖幅相误差的自校正问题,给出了一种基于辅助阵元的方位依赖幅相误差最大似然自校正方法;针对最大似然估计器中出现的高维非线性优化问题,推导了一种改进型交替投影迭代算法,从而实现了信号方位和方位依赖幅相误差的优化计算.此外,还推导了信号方位和方位依赖幅相误差的无偏克拉美罗界(CRB).仿真实验结果验证了新方法的有效性和优越性.

  6. Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths.

    Science.gov (United States)

    Dam, J S; Pedersen, C B; Dalgaard, T; Fabricius, P E; Aruna, P; Andersson-Engels, S

    2001-03-01

    We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 x 7 calibration matrix of Intralipid-dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0-0.3/cm for the absorption coefficient and 6-16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements.

  7. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    Science.gov (United States)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to

  8. Self-calibrating phase measurement based on diffraction theory and numerical simulation experiments

    Science.gov (United States)

    Zhou, Liao; Qi, Qiu; Hao, Xian

    2015-02-01

    To achieve a full-aperture, diffraction-limited image, a telescope's segmented primary mirror must be properly phased. Furthermore, it is crucial to detect the piston errors between individual segments with high accuracy. Based on the diffraction imaging theory, the symmetrically shaped aperture with an arbitrarily positioned entrance pupil would focus at the optical axis with a symmetrical diffraction pattern. By selecting a single mirror as a reference mirror and regarding the diffraction image's center as the calibration point, a function can be derived that expresses the relationship between the piston error and the distance from the center of the inference image to the calibration point is linearity within one-half wavelength. These theoretical results are shown to be consistent with the results of a numerical simulation. Using this method, not only the piston error, but also the tip-tilt error can be detected. This method is simple and effective; it yields high-accuracy measurements and requires less computation time.

  9. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3% (486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, Band M5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250

  10. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S. [et al.

    2016-05-27

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  11. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-area Sky Surveys

    Science.gov (United States)

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; Tucker, D.; Kessler, R.; Annis, J.; Bernstein, G. M.; Boada, S.; Burke, D. L.; Finley, D. A.; James, D. J.; Kent, S.; Lin, H.; Marriner, J.; Mondrik, N.; Nagasawa, D.; Rykoff, E. S.; Scolnic, D.; Walker, A. R.; Wester, W.; Abbott, T. M. C.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Vikram, V.; DES Collaboration

    2016-06-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%-2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for

  12. Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV-Vis spectrometry combined with wavelength selection and partial least squares regression.

    Science.gov (United States)

    Xu, Deng; Fan, Wei; Lv, Huiying; Liang, Yizeng; Shan, Yang; Li, Gaoyang; Yang, Zhenyu; Yu, Ling

    2014-04-05

    The use of wavelength selection before partial least squares regression (PLSR) for simultaneous determination of divalent metal ions, cadmium, zinc and cobalt by UV-Vis spectrometry was investigated in this paper. The number of wavelengths selected by competitive adaptive reweighted sampling (CARS) for cadmium, zinc, and cobalt were 21, 13 and 7, respectively, from the 916 original wavelength points. The analytical system was based on the formation of the complexes with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in surfactant media. Compared with the results of full spectra calibration, the root mean squared error of prediction (RMSEP) reduced to 0.0110, 0.0098 and 0.0031 for cadmium, zinc and cobalt, respectively. Moreover, by using the selective wavelengths instead of the 916 original wavelengths, the latent variables of PLS models reduced to 3, 3 and 4. The results indicated that the PLS model established by selected wavelength could be used for simultaneous determination of divalent metal ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A FAST FOREGROUND DIGITAL CALIBRATION TECHNIQUE FOR PIPELINED ADC

    Institute of Scientific and Technical Information of China (English)

    Wang Yu; Yang Haigang; Cheng Xin; Liu Fei; Yin Tao

    2012-01-01

    Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs).This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs.This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time.Finally,a 10 bit,100 Ms/s pipelined ADC is implemented and calibrated.The simulation results show that the digital calibration technique has its efficiency with fewem operation cycles.

  14. Calibrating transport lines using LOCO techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yves Roblin

    2011-09-01

    With the 12GeV upgrade underway at CEBAF, there is a need to re-characterize the beamlines after the modifications made to it to accommodate running at higher energies. We present a linear perturbation approach to calibrating the optics model of transport lines. This method is adapted from the LOCO method in use for storage rings. We consider the effect of quadrupole errors, dipole construction errors as well as beam position monitors and correctors calibrations. The ideal model is expanded to first order in Taylor series of the quadrupole errors. A set of difference orbits obtained by exciting the correctors along the beamline is taken, yielding the measured response matrix. An iterative procedure is invoked and the quadrupole errors as well as beam position monitors and corrector calibration factors are obtained. Here we present details of the method and results of first measurements at CEBAF in early 2011.

  15. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary.

    Science.gov (United States)

    Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen

    2017-05-26

    Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers.

  16. Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the parameters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Physical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.

  17. White light spectral interferometry as a spectrometer calibration tool.

    Science.gov (United States)

    de la Fuente, Raúl

    2014-01-01

    For this paper, we used a white light interferometer in combination with spectral lamps to perform the wavelength calibration of a dispersive spectrometer. Illuminating the spectrometer with suitable spectral lamps gives the wavelength-pixel number relationship at discrete positions of the spectrometer detector array, and the wavelength-dependent phase difference at the output of the white light interferometer allows for a complete spectral calibration at any point on the detector (i.e., for every wavelength in the spectral range of the spectrometer). The details of this new calibration procedure are discussed, and two practical examples exhibiting the robustness of the method are presented. In addition, certain issues relating to minimizing the number of spectral lines used in the calibration procedure are examined.

  18. Calibrating echelle spectrographs with Fabry-Perot etalons

    CERN Document Server

    Bauer, Florian F; Reiners, Ansgar

    2015-01-01

    Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and less dynamic range problems. Fabry-Perot interferometers provide a regular and dense grid of lines and homogeneous amplitudes making them good candidates for next generation calibrators. We investigate the usefulness of Fabry-Perot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution and examine potential problems. The quasi periodic pattern of Fabry-Perot lines is used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We test our method with the HARPS spectrograph and compare our wavelength solution to the one derived from a laser frequency comb. The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelengt...

  19. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  20. Herschel SPIRE FTS Relative Spectral Response Calibration

    CERN Document Server

    Fulton, Trevor; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan

    2014-01-01

    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose n...

  1. AFFTC Standard Airspeed Calibration Procedures

    Science.gov (United States)

    1981-06-01

    25x0UIXQXQ Results of groundLpeed course calibration are normally pre- sented in the following plots: 1. .AvP vs Vi Ŗ. All vs V ic 3. AMPC vs Mic .4...8217Average AfPeavgpo, tion correction AM /AH 10-5 per and figure V 9 PC PC feet . fu V AYpc" x q3 @ , Average position avg corred ion (AM @ AMPC /AVPC...instrument error 0 M ic From and 0), Mach number p Chart 8.5 in reference’l (AFTR 6273) (DO AMPPacer poqition error calibra- Pc tion at9 S( AMpc /’,HpC)p

  2. Calibration concepts for the MUSE integral field

    Science.gov (United States)

    Kelz, Andreas; Bauer, Svend M.; Roth, Martin M.

    2006-06-01

    The phase-A design study of the Calibration Unit (CU) for the Multi-Unit Spectroscopic Explorer (MUSE) is presented. MUSE is an integral-field spectrograph for the 2nd generation of VLT instruments and offers a relative wide integral-field, adaptive-optics assisted spatial resolution, and a wavelength coverage between 465 and 930 nm. MUSE is a project of seven European institutes and is led by the Centre de Recherche Atronomique de Lyon (CRAL). Amongst other work-packages, the Astrophysical Institute Potsdam (AIP) is responsible for the Calibration Unit. The paper describes the calibration requirements, including issues related to spectral, image quality, and geometrical calibration. The opto-mechanical layout of the calibration unit is presented and the use of focal plane masks to evaluate image distortions and PSF degradations is explained.

  3. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...

  4. Lambertian nature of tissue phantoms for use as calibrators in near infrared fluorescence imaging

    Science.gov (United States)

    Litorja, Maritoni; Lorenzo, Simón; Zhu, Banghe; Sevick Muraca, Eva

    2016-03-01

    The use of tissue phantoms as calibrators to transfer SI-referenced scale to an imager offers convenience, compared to other methods of calibration. The tissue phantoms are calibrated separately for radiance at emission wavelength per irradiance at excitation wavelength. This calibration is only performed at a single geometric configuration, typically with the detector normal to the sample. In the clinic however, the imager can be moved around, resulting in a geometric configuration different from the calibration configuration. In this study, radiometric measurements are made at different sample-imager angles to test whether the tissue phantoms are Lambertian and the angular limits to which the calibration values hold true.

  5. Refractive Errors

    Science.gov (United States)

    ... does the eye focus light? In order to see clearly, light rays from an object must focus onto the ... The refractive errors are: myopia, hyperopia and astigmatism [See figures 2 and 3]. What is hyperopia (farsightedness)? Hyperopia occurs when light rays focus behind the retina (because the eye ...

  6. Medication Errors

    Science.gov (United States)

    ... Proprietary Names (PDF - 146KB) Draft Guidance for Industry: Best Practices in Developing Proprietary Names for Drugs (PDF - 279KB) ... or (301) 796-3400 druginfo@fda.hhs.gov Human Drug ... in Medication Errors Resources for You Agency for Healthcare Research and Quality: ...

  7. Nonlinear Observers for Gyro Calibration

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  8. Systematic error mitigation in multiple field astrometry

    CERN Document Server

    Gai, Mario

    2011-01-01

    Combination of more than two fields provides constraints on the systematic error of simultaneous observations. The concept is investigated in the context of the Gravitation Astrometric Measurement Experiment (GAME), which aims at measurement of the PPN parameter $\\gamma$ at the $10^{-7}-10^{-8}$ level. Robust self-calibration and control of systematic error is crucial to the achievement of the precision goal. The present work is focused on the concept investigation and practical implementation strategy of systematic error control over four simultaneously observed fields, implementing a "double differential" measurement technique. Some basic requirements on geometry, observing and calibration strategy are derived, discussing the fundamental characteristics of the proposed concept.

  9. Simple transfer calibration method for a Cimel Sun-Moon photometer: calculating lunar calibration coefficients from Sun calibration constants.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane

    2016-09-20

    The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.

  10. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  11. Sensor Calibration Design Based on D-Optimality Criterion

    Directory of Open Access Journals (Sweden)

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  12. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  13. Doppler calibration method for Spectral Domain OCT spectrometers

    NARCIS (Netherlands)

    D.J. Faber; T.G. van Leeuwen

    2009-01-01

    We present a calibration method for SD-OCT domain spectrometers based on the M-scan of a moving mirror. This method allows determination of the wavenumber sampling increment which determines the depth axis assigned to the structural image. It also allows wavelength calibration of individual pixels w

  14. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  15. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  16. Calibration of sound calibrators: an overview

    Science.gov (United States)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  17. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  18. Geometric Calibration and Accuracy Verification of the GF-3 Satellite.

    Science.gov (United States)

    Zhao, Ruishan; Zhang, Guo; Deng, Mingjun; Xu, Kai; Guo, Fengcheng

    2017-08-29

    The GF-3 satellite is the first multi-polarization synthetic aperture radar (SAR) imaging satellite in China, which operates in the C band with a resolution of 1 m. Although the SAR satellite system was geometrically calibrated during the in-orbit commissioning phase, there are still some system errors that affect its geometric positioning accuracy. In this study, these errors are classified into three categories: fixed system error, time-varying system error, and random error. Using a multimode hybrid geometric calibration of spaceborne SAR, and considering the atmospheric propagation delay, all system errors can be effectively corrected through high-precision ground control points and global atmospheric reference data. The geometric calibration experiments and accuracy evaluation for the GF-3 satellite are performed using ground control data from several regions. The experimental results show that the residual system errors of the GF-3 SAR satellite have been effectively eliminated, and the geometric positioning accuracy can be better than 3 m.

  19. Error Analysis and On-Board Calibration of Magnetometer in Space Environment Exploration Satellite%空间环境探测卫星用磁强计误差分析及在线标定

    Institute of Scientific and Technical Information of China (English)

    杨照华; 余远金; 祁振强

    2012-01-01

    A magnetometer used in the sun-earth space exploration satellite is usually assembled at the tip of the boom by the action of space disturbance torque and maneuver, the installation matrix magnetometer of varies dramatically, which may lead to the low attitude determination accuracy. Based on the analysis of the magnetometer attitude determination errors, a 19 state high-fidelity measurement model of magnetometer is proposed. Combined with satellite attitude dynamics and kinematics, a 19 state Extended Kalman Filter is adopted to estimate installation matrix on-board and compensate magnetometer measurement. Then the innovative magnetometer measurement model is used to estimate satellite attitude. Finally the algorithm is validated by using the turntable experiment. Results of turntable experiment show that this method can estimate installation matrix errors under the computational requirement of On-board Computer and dramatically improve the accuracy of attitude determination and magnetometer error estimation.%用于探测日地空间磁环境的磁强计多数安装在伸杆的末端,长期受太阳辐射等空间环境干扰力矩以及机动等影响,磁强计安装矩阵随时间发生较大的变化,从而导致卫星定姿精度下降.为此,在分析空间环境干扰力矩和磁强计定姿误差特性的基础上,建立了19维高精度的磁强计误差模型,结合卫星的运动学和姿态动力学特性,采用EKF滤波方法对安装矩阵进行实时估计与修正补偿,并利用该磁强计模型实现卫星的姿态确定,最后利用实验进行验证.实验结果表明,该方法能够在满足星载计算机的计算量要求的同时,在线估计安装矩阵误差,显著提高了磁强计的误差估计精度与定姿精度.

  20. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  1. Exploration of new multivariate spectral calibration algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Haaland, David Michael; Melgaard, David Kennett; Martin, Laura Elizabeth; Wehlburg, Christine Marie; Pell, Randy J. (The Dow Chemical Company, Midland, MI); Guenard, Robert D. (Merck & Co. Inc., West Point, PA)

    2004-03-01

    A variety of multivariate calibration algorithms for quantitative spectral analyses were investigated and compared, and new algorithms were developed in the course of this Laboratory Directed Research and Development project. We were able to demonstrate the ability of the hybrid classical least squares/partial least squares (CLSIPLS) calibration algorithms to maintain calibrations in the presence of spectrometer drift and to transfer calibrations between spectrometers from the same or different manufacturers. These methods were found to be as good or better in prediction ability as the commonly used partial least squares (PLS) method. We also present the theory for an entirely new class of algorithms labeled augmented classical least squares (ACLS) methods. New factor selection methods are developed and described for the ACLS algorithms. These factor selection methods are demonstrated using near-infrared spectra collected from a system of dilute aqueous solutions. The ACLS algorithm is also shown to provide improved ease of use and better prediction ability than PLS when transferring calibrations between near-infrared calibrations from the same manufacturer. Finally, simulations incorporating either ideal or realistic errors in the spectra were used to compare the prediction abilities of the new ACLS algorithm with that of PLS. We found that in the presence of realistic errors with non-uniform spectral error variance across spectral channels or with spectral errors correlated between frequency channels, ACLS methods generally out-performed the more commonly used PLS method. These results demonstrate the need for realistic error structure in simulations when the prediction abilities of various algorithms are compared. The combination of equal or superior prediction ability and the ease of use of the ACLS algorithms make the new ACLS methods the preferred algorithms to use for multivariate spectral calibrations.

  2. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  3. Robust radio interferometric calibration using the t-distribution

    NARCIS (Netherlands)

    Kazemi, S.; Yatawatta, S.

    2013-01-01

    A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data

  4. Multivariate regression and discreminant calibration models for a novel optical non-invasive blood glucose measurement method named pulse glucometry.

    Science.gov (United States)

    Yamakoshi, Yasuhiro; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tamura, Toshiyo; Yamakoshi, Ken-ichi

    2009-01-01

    A novel optical non-invasive in vivo blood glucose concentration (BGL) measurement technique, named "Pulse Glucometry", was combined with a kernel method; support vector machines. The total transmitted radiation intensity (I(lambda)) and the cardiac-related pulsatile changes superimposed on I(lambda) in human adult fingertips were measured over the wavelength range from 900 to 1700 nm using a very fast spectrophotometer, obtaining a differential optical density (DeltaOD(lambda)) related to the blood component in the finger tissues. Subsequently, a calibration model using paired data of a family of DeltaOD(lambda)s and the corresponding known BGLs was constructed with support vector machines (SVMs) regression instead of using calibration by a conventional primary component regression (PCR) and partial least squares regression (PLS). Secondly, SVM method was applied to make a nonlinear discriminant calibration model for "Pulse glucometry." Our results show that the regression calibration model based on the support vector machines can provide a good regression for the 101 paired data, in which the BGLs ranged from 89.0-219 mg/dl (4.94-12.2 mmol/l). The resultant regression was evaluated by the Clarke error grid analysis and all data points fell within the clinically acceptable regions (region A: 93%, region B: 7%). The discriminant calibration model using SVMs also provided a good result for classification (accuracy rate 84% in the best case).

  5. Research on self-calibration error ratio method of infrared thermometer%红外线测温仪自校准误差比对方法的研究

    Institute of Scientific and Technical Information of China (English)

    肖艳红

    2012-01-01

    红外线测温仪由于长期用于生产一线进行现场测试,使用环境恶劣,以及日常维护保养不当,可能导致栓定有效期内的红外线测温仪不能准确测量甚至设备故障,导致测量失准,影响电网安全稳定运行。根据红外测温原理研究了运行中的红外线测温仪自校准方法,使用者可用简易自制设备随时对红外线测温仪进行定性测试分析,方法简单易行。确保红外线测温仪处于良好工作状态,准确测量,减少安全隐患。%Infrared thermometer is usually used for testing in the production field. Because of harsh environment as well as improper maintenance, the Infrared thermometer in the test within the validity period can not be accurately measured , even equipment failure and measurement inaccurate , the power grid security and stabilityoperation are also affected. The operation of the infrared thermometer calibration method based on its principle is researched. It can be qualitatively tested and analysed in simple homemade device at any time. It make sure that the infrared thermometer is in good working condition and accurately measuring. The security risks are reduced.

  6. Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-04-01

    Full Text Available Accuracy evaluation of cross calibration through band-to-band data comparison for visible and near infrared radiometers which onboard earth observation satellites is conducted. The conventional cross calibration for visible to near infrared radiometers onboard earth observation satellites is conducted through comparisons of band-to-band data of which spectral response functions are overlapped mostly. There are the following major error sources due to observation time difference, spectral response function difference in conjunction of surface reflectance and atmospheric optical depth, observation area difference. These error sources are assessed with dataset acquired through ground measurements of surface reflectance and optical depth. Then the accuracy of the conventional cross calibration is evaluated with vicarious calibration data. The results show that cross calibration accuracy can be done more precisely if the influences due to the aforementioned three major error sources are taken into account.

  7. A Laser Calibrator-Compensator to Upgrade The Long-Term Accuracy of A Commercial Laser Interferometer

    Science.gov (United States)

    Grace, William H.

    1980-10-01

    This Calibrator-Compensator System was developed at Farrand Controls to satisfy a need for a practical measuring system with a long term accuracy of a few parts in ten million over distances up to 1.9 meters (75 inches). The inherent high accuracy of laser interferometers is limited by changes in the wavelength of light as a function of atmospheric temperature, pressure, and composition. The errors can exceed 13 PPM in air under constant temperature conditions. The best commercially available automatic compensator measures atmospheric variations with separate transducers, digitizes the data, and calculates the required correction factor. Since the remaining errors, typically 3 PPM, did not meet requirements, an improved compensation technique had to be developed. A reference optical path of known fixed length is used to determine the initial wavelength and to track changes in wavelength as they occur. The true wavelength of light is determined by evacuating the optical path to a modest vacuum and measuring the apparent path length change. The same optical path, open to the atmosphere, monitors the aggregate effect of all atmospheric changes without the use of separate transducers. The relative velocity of light is servoed to the reference path length, and the outputs of all axes of an Option 450 Hewlett-Packard laser interferometer are corrected. There is no cumulative error, and full accuracy is maintained over indefinitely extended intervals. Test runs of 50 to 90 hours have consistently shown total errors less than 3 parts in 10 million over path lengths of 0.25 to 1.9 meters (10 to 75 inches).

  8. Vicarious Calibration of Beijing-1 Multispectral Imagers

    Directory of Open Access Journals (Sweden)

    Zhengchao Chen

    2014-02-01

    Full Text Available For on-orbit calibration of the Beijing-1 multispectral imagers (Beijing-1/MS, a field calibration campaign was performed at the Dunhuang calibration site during September and October of 2008. Based on the in situ data and images from Beijing-1 and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS, three vicarious calibration methods (i.e., reflectance-based, irradiance-based, and cross-calibration were used to calculate the top-of-atmosphere (TOA radiance of Beijing-1. An analysis was then performed to determine or identify systematic and accidental errors, and the overall uncertainty was assessed for each individual method. The findings show that the reflectance-based method has an uncertainty of more than 10% if the aerosol optical depth (AOD exceeds 0.2. The cross-calibration method is able to reach an error level within 7% if the images are selected carefully. The final calibration coefficients were derived from the irradiance-based data for 6 September 2008, with an uncertainty estimated to be less than 5%.

  9. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  10. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  11. An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Nikhil; Schlegel, D.J.; Finkbeiner, D.P.; Barentine, J.C.; Blanton, M.R.; Brewington, H.J.; Gunn, J.E.; Harvanek, M.; Hogg, D.W.; Ivezic, Z.; Johnston, D.; /LBL, Berkeley /Princeton U. /Harvard-Smithsonian Ctr. Astrophys. /Texas U., Astron. Dept. /Apache Point Observ. /New York U. /Washington U., Seattle, Astron. Dept. /Caltech, JPL

    2007-03-01

    We present an algorithm to photometrically calibrate wide field optical imaging surveys, that simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of ''relative'' calibrations from that of ''absolute'' calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the Sloan Digital Sky Survey imaging data, we achieve {approx}1% relative calibration errors across 8500 deg{sup 2} in griz; the errors are {approx}2% for the u band. These errors are dominated by unmodeled atmospheric variations at Apache Point Observatory.

  12. Strictly Transparent Wavelength Conversion Using Multi-Wavelength Signal Generation

    Institute of Scientific and Technical Information of China (English)

    Eiichi; Yamada; Hiroaki; Sanjoh; Yuzo; Yoshikuni

    2003-01-01

    We succeeded in strictly transparent wavelength conversion by means of channel selection from multi-wavelength signals generated by sinusoidal modulation of input signal. Modulation-format-independent and bit-rate-independent wavelength conversion is achieved with small power penalty.

  13. Calibrating page sized Gafchromic EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F. [Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Department ESAT/PSI-Medical Image Computing, Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittance values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal

  14. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...... in emissivity using similar materials can be reduced to 0.5-1% by optimizing the coating process and the surface geometry. Results are discussed and an equation for calculation of the equivalent blackbody surface temperature from FTIR spectra is presented, including reflected ambient radiation. It is in most...... cases necessary to correct temperature calibration results for calibrators calibrated at 8-14 mu m to obtain absolute accuracies of 0.1-1 degrees C in other spectral regions depending on the temperature. Uncertainties are discussed and equations are given for the correction of measured radiation...

  15. Luminosity monitoring and calibration of BLM

    Institute of Scientific and Technical Information of China (English)

    XUE Zhen; CAI Xiao; YU Bo-Xiang; FANG Jian; SUN Xi-Lei; SHI Feng; WANG Zhi-Gang; AN Zheng-Hua; SUN Li-Jun; LIU Hong-Bang; ZHANG Ai-Wu; XU Zi-Zong; WANG Xiao-Dong; WANG Xiao-Lian; HU Tao; WANG Zhi-Yong; FU Cheng-Dong; YAN Wen-Biao; L(U) Jun-Guang; ZHOU Li

    2011-01-01

    The BEPCⅡLuminosity Monitor(BLM)monitors relative luminosity per bunch.The counting rates of gamma photons,which are proportional to the luminosities from the BLM at the center of mass system energy of the ψ(3770)resonance,are obtained with a statistical error of 0.01% and a systematic error of 4.1%.Absolute luminosities are also determined by the BESⅢ End-cap Electro-Magnetic Calorimeter(EEMC)using Bhabha events with a statistical error of 2.3% and a systematic error of 3.5%.The calibration constant between the luminosities obtained with the EEMC and the counting rates of the BLM are found to be 0.84±0.03(x1026 cm-2·count-1).With the calibration constant,the counting rates of the BLM can be scaled up to absolute luminosities.

  16. Laser wavelength comparison by high resolution interferometry.

    Science.gov (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  17. Analysis of Lard in Lipstick Formulation Using FTIR Spectroscopy and Multivariate Calibration: A Comparison of Three Extraction Methods.

    Science.gov (United States)

    Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul

    2016-01-01

    Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm(-1) with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R(2)) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.

  18. In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Glenday, Alexander G; Benedick, Andrew J; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X; Korzennik, Sylvain; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2010-06-07

    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

  19. \\emph{In-situ} determination of astro-comb calibrator lines to better than 10 cm s$^{-1}$

    CERN Document Server

    Li, C -H; Benedick, A J; Chang, G; Chen, L -J; Cramer, C; Fendel, P; Furesz, G; Kärtner, F; Korzennik, S; Phillips, D; Sasselov, D; Szentgyorgyi, A; Walsworth, R

    2010-01-01

    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-P\\'erot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an \\emph{in-situ} technique to determine the systematic shifts of astro-comb lines due to finite Fabry-P\\'erot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy...

  20. Multi-wavelength Laser Photoacoustics

    Science.gov (United States)

    2012-09-01

    Multi-wavelength Laser Photoacoustics by Kristan P. Gurton, Melvin Felton, and Richard Tober ARL-TR-6147 September 2012...2012 Multi-wavelength Laser Photoacoustics Kristan P. Gurton and Melvin Felton Computational and Information Sciences Directorate, ARL...REPORT TYPE Final 3. DATES COVERED (From - To) June 1, 2012 4. TITLE AND SUBTITLE Multi-wavelength Laser Photoacoustics 5a. CONTRACT NUMBER

  1. Calibration of Nanopositioning Stages

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  2. Automated intraoperative calibration for prostate cancer brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor [Queen' s University, Kingston, Ontario K7L 3N6 (Canada); University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Acoustic MedSystems, Inc., Champaign, Illinois 61820-3979 (United States); Queen' s University, Kingston, Ontario K7L 3N6 (Canada) and Johns Hopkins University, Baltimore, Maryland 21218-2682 (United States)

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  3. Effect of calibration method on Tekscan sensor accuracy.

    Science.gov (United States)

    Brimacombe, Jill M; Wilson, David R; Hodgson, Antony J; Ho, Karen C T; Anglin, Carolyn

    2009-03-01

    Tekscan pressure sensors are used in biomechanics research to measure joint contact loads. While the overall accuracy of these sensors has been reported previously, the effects of different calibration algorithms on sensor accuracy have not been compared. The objectives of this validation study were to determine the most appropriate calibration method supplied in the Tekscan program software and to compare its accuracy to the accuracy obtained with two user-defined calibration protocols. We evaluated the calibration accuracies for test loads within the low range, high range, and full range of the sensor. Our experimental setup used materials representing those found in standard prosthetic joints, i.e., metal against plastic. The Tekscan power calibration was the most accurate of the algorithms provided with the system software, with an overall rms error of 2.7% of the tested sensor range, whereas the linear calibrations resulted in an overall rms error of up to 24% of the tested range. The user-defined ten-point cubic calibration was almost five times more accurate, on average, than the power calibration over the full range, with an overall rms error of 0.6% of the tested range. The user-defined three-point quadratic calibration was almost twice as accurate as the Tekscan power calibration, but was sensitive to the calibration loads used. We recommend that investigators design their own calibration curves not only to improve accuracy but also to understand the range(s) of highest error and to choose the optimal points within the expected sensing range for calibration. Since output and sensor nonlinearity depend on the experimental protocol (sensor type, interface shape and materials, sensor range in use, loading method, etc.), sensor behavior should be investigated for each different application.

  4. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  5. Synchronous two-wavelength temporal interferometry

    Science.gov (United States)

    Zhang, Xiaoqiong; Gao, Zhan; Qin, Jie; Li, Guangyu; Feng, Ziang; Wang, Shengjia

    2016-09-01

    Interferometry is an optical measuring method with the character of non-destructive, high sensitivity and high accuracy. However, its measurement range is limited by the phase ambiguity. Hence the method with two separate different wavelengths light source is introduced to enlarge the measurement range. As for the two-wavelength interferometry case, phase shifting is the traditional way to acquire the phase map, it needs to repeat the measurement twice, which means the measurement cannot be accomplished in real time. Hence to solve the problem, a temporal sequence interferometry has been used. This method can obtain the desired phase information in real time by using the Fourier transform methods of the interferogram recorded in a sequence while the object is being deformed. But, it is difficult to retrieve the phase information directly due to the multi extreme points in one period of the cosine function. In this paper, an algorithm based on the wavelet ridge analysis is adopted to retrieve the two wavelength phase fluctuation caused by the displacement simultaneously. The preliminary experiment is conducted and the results are compared with theoretical simulations to validate the proposed approach. The laser emits light with two wavelengths 532 nm and 473 nm, two separated interference patterns in time sequence are detected by the CCD camera in the same time. The overlapped interferograms of two colors are analyzed by this algorithm and the corresponding phase information are obtained. The maximum error value between the simulation and theory is 0.03 um and the relative error is 0.33%.

  6. An improved outdoor calibration procedure for broadband ultraviolet radiometers.

    Science.gov (United States)

    Cancillo, M L; Serrano, A; Antón, M; García, J A; Vilaplana, J M; de la Morena, B

    2005-01-01

    This article aims at improving the broadband ultraviolet radiometer's calibration methodology. For this goal, three broadband radiometers are calibrated against a spectrophotometer of reference. Three different one-step calibration models are tested: ratio, first order and second order. The latter is proposed in order to adequately reproduce the high dependence on the solar zenith angle shown by the other two models and, therefore, to improve the calibration performance at high solar elevations. The proposed new second-order model requires no additional information and, thus, keeps the operational character of the one-step methodology. The models are compared in terms of their root mean square error and the most qualified is subsequently validated by comparing its predictions with the spectrophotometer measurements within an independent validation data subset. Results show that the best calibration is achieved by the second-order model, with a mean bias error and mean absolute bias error lower than 2.2 and 6.7%, respectively.

  7. Comets at radio wavelengths

    CERN Document Server

    Crovisier, Jacques; Colom, Pierre; Biver, Nicolas

    2016-01-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nan\\c{c}ay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

  8. A self-calibration method for tri-axis rotational inertial navigation system

    Science.gov (United States)

    Gao, Pengyu; Li, Kui; Wang, Lei; Liu, Zengjun

    2016-11-01

    The navigation accuracy of the rotational inertial navigation system (RINS) could be greatly improved by periodically rotating the inertial measurement unit (IMU) with gimbals. However, error parameters in RINS should be effectively calibrated and compensated. In this paper, a self-calibration method is proposed for tri-axis RINS using attitude errors and velocity errors as measurements. The proposed calibration scheme is designed as three separate steps, and a certain gimbal rotates continuously in each step. All the error parameters in the RINS are calibrated when the whole scheme finishes. The separate calibration steps reduce the correlations between error parameters, and the observability of errors in this method is clear to demonstrate according to the relations between navigation errors and error parameters when gimbals rotate. Each calibration step only lasts 12 min, thus gyro drifts and accelerometers biases could be regarded as constant. The proposed calibration scheme is tested in both simulation and actual tri-axis RINS, and simulation and experimental results show that all 23 error parameters could be well estimated in tri-axis RINS. A long-term vehicle navigation experiment results show that after calibration and compensation, the navigation performance has doubled approximately, and the velocity accuracy is less than 2 m s-1 while the position accuracy is less than 1500 m, fully illustrating the significance of the proposed self-calibration method in improving the navigation performance of RINS.

  9. System modeling based measurement error analysis of digital sun sensors

    Institute of Scientific and Technical Information of China (English)

    WEI; M; insong; XING; Fei; WANG; Geng; YOU; Zheng

    2015-01-01

    Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.

  10. [Characteristic wavelengths selection of soluble solids content of pear based on NIR spectral and LS-SVM].

    Science.gov (United States)

    Fan, Shu-xiang; Huang, Wen-qian; Li, Jiang-bo; Zhao, Chun-jiang; Zhang, Bao-hua

    2014-08-01

    To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40). Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis. A combination of genetic algorithm (GA) and successive projections algorithm (SPA) was proposed to select most effective wavelengths after uninformative variable elimination (UVE) from original spectra, SNV pretreated spectra and MSC pretreated spectra respectively. The selected variables were used as the inputs of least squares-support vector machine (LS-SVM) model to build models for de- termining the SSC of pear. The results indicated that LS-SVM model built using SNVE-UVE-GA-SPA on 30 characteristic wavelengths selected from full-spectrum which had 3112 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.956, 0.271 for SSC. The model is reliable and the predicted result is effective. The method can meet the requirement of quick measuring SSC of pear and might be important for the development of portable instruments and online monitoring.

  11. Landsat TM and ETM+ thermal band calibration

    Science.gov (United States)

    Barsi, J.A.; Schott, J.R.; Palluconi, F. D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G.; O'Donnell, E. M.

    2003-01-01

    Landsat-5 has been imaging the Earth since March 1984, and Landsat-7 was added to the series of Landsat instruments in April 1999. The Landsat Project Science Office and the Landsat-7 Image Assessment System have been monitoring the on-board calibration of Landsat-7 since launch. Additionally, two separate university teams have been evaluating the on-board thermal calibration of Landsat-7 through ground-based measurements since launch. Although not monitored as closely over its lifetime, a new effort is currently being made to validate the calibration of Landsat-5. Two university teams are beginning to collect ground truth under Landsat-5, along with using other vicarious calibration methods to go back into the archive to validate the history of the calibration of Landsat-5. This paper considers the calibration efforts for the thermal band, band 6, of both the Landsat-5 and Landsat-7 instruments. Though stable since launch, Landsat-7 had an initial calibration error of about 3 K, and changes were made to correct for this beginning 1 October 2000 for data processed with the National Landsat Archive Production System (NLAPS) and beginning 20 December 2000 for data processed with the Landsat Product Generation System (LPGS). Recent results from Landsat-5 vicarious calibration efforts show an offset of –0.7 K over the lifetime of the instrument. This suggests that historical calibration efforts may have been detecting errors in processing systems rather than changes in the instrument. A correction to the Landsat-5 processing has not yet been implemented but will be in the near future.

  12. 1550-nm wavelength-tunable HCG VCSELs

    Science.gov (United States)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  13. Three-point bridge calibration with one resistor

    Science.gov (United States)

    Harrison, D. R.; Brown, R. M.

    1974-01-01

    Method calibrates transducer bridge curing unbalanced condition and line resistance errors are negligible. Series resistance method can be automated easily and controlled by 2-bit information source which provide 4 states for switches.

  14. Investigating the Performance of Four Empirical Cross-Calibration Methods for the Proposed SWOT Mission

    Directory of Open Access Journals (Sweden)

    Gerald Dibarboure

    2014-05-01

    leakages from oceanic variability or measurement errors, by maximizing overlap zones and by minimizing the temporal variability with one-day to three-day image differences. To that extent, SWOT’s proposed “contingency orbit” is an attractive risk reduction asset: the one-day sub-cycle overlaps of adjoining swaths would provide a good, continuous, and self-sufficient (no need for external nadirs calibration scheme. The benefit is however essentially located at mid to high-latitudes and it is substantial only for wavelengths longer than 100 km.

  15. Calibration of the fluxgate CSC vector magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Risbo, Torben; Primdahl, Fritz

    1995-01-01

    sensor giving an error corresponding to 5 to 10 nT in full scale field. It rotates as well the CSC sensor axes. In principle this is due to the presence of soft magnetic material. No remanent magnetization has been observed. Hermann Luehr has ratified this fact and recommended a final calibration...

  16. Phase calibration scheme for a ``T'' array

    Science.gov (United States)

    Ramesh, R.; Subramanian, K. R.; Sastry, Ch. V.

    1999-10-01

    A calibration scheme based on closure and redundancy techniques is described for correcting the phase errors in the complex visibilities observed with a T-shaped radio interferometer array. Practical details of the scheme are illustrated with reference to the Gauribidanur radioheliograph (GRH).

  17. Novel calibration algorithm for a three-axis strapdown magnetometer.

    Science.gov (United States)

    Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo

    2014-05-14

    A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method.

  18. Cumulative sum quality control for calibrated breast density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heine, John J.; Cao Ke; Beam, Craig [Cancer Prevention and Control Division, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612 (United States); Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, Illinois 60612 (United States)

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  19. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  20. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  1. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  2. SIM-Lite Mission Spectral Calibration Sensitivities and Refinements

    Science.gov (United States)

    Zhai, C.; An, X.; Goullioud, R.; Nemati, B.; Shao, M.; Shen, J.; Wehmeier, U.; Wang, X.; Weiler, M.; Werne, T.; Wu, J.

    2010-01-01

    SIM-Lite missions will perform astrometry at microarcsecond accuracy using star light interferometry. For typical baselines that are shorter than 10 meters, this requires to measure optical path difference (OPD) accurate to tens of picometers calling for highly accurate calibration. A major challenge is to calibrate the star spectral dependency in fringe measurements -- the spectral calibration. Previously, we have developed a spectral calibration and estimation scheme achieving picometer level accuracy. In this paper, we present the improvements regarding the application of this scheme from sensitivity studies. Data from the SIM Spectral Calibration Development Unit (SCDU) test facility shows that the fringe OPD is very sensitive to pointings of both beams from the two arms of the interferometer. This sensitivity coupled with a systematic pointing error provides a mechanism to explain the bias changes in 2007. Improving system alignment can effectively reduce this sensitivity and thus errors due to pointing errors. Modeling this sensitivity can lead to further improvement in data processing. We then investigate the sensitivity to a model parameter, the bandwidth used in the fringe model, which presents an interesting trade between systematic and random errors. Finally we show the mitigation of calibration errors due to system drifts by interpolating instrument calibrations. These improvements enable us to use SCDU data to demonstrate that SIM-Lite missions can meet the 1pm noise floor requirement for detecting earth-like exoplanets.

  3. A New Technique for CCD Camera Auto-Calibration

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel feature-round-based coplanar drone for the CCD camera auto-calibration is designed. Based on the ellipse similarity, an ellipse recognition algorithm is proposed. The experiment indicates the calibration error is less than 0.4 pixel.

  4. Wavelength-conserving grating router for intermediate wavelength density

    Science.gov (United States)

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  5. Further investigation on MODIS solar diffuser screen vignetting function and its implementation in RSB calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong; Barnes, Williams L.

    2011-10-01

    The MODIS high-gain ocean color bands (B8-B16) are calibrated with its solar diffuser screen (SDS) closed to avoid saturation so that the vignetting function (VF) of SDS is necessary for the calculation of the gain coefficients of these detectors. Since there was no pre-launch system level characterization of the VF, a series of yaw maneuvers were carried out at the mission beginning for both Terra and Aqua to enable its on-orbit characterization. Current VF was derived from the low-gain bands (B1-B7 & B17-B19) data and applied to high-gain ocean color bands calibration, with the assumption that all bands and detectors should share the same VF since it is wavelength independent. As expected, error exists and it was carried over into the calibrated gain coefficients of those bands that use the SDS for their on-orbit calibration. In this paper, an improved VF calculation approach, still using the yaw data as input, is presented. The new approach takes the frame-level mismatch between different detector's footprints on the solar diffuser (SD) into account so that a proper SD image frame adjustment is made when the VF of the low-gain bands is translated into high-gain bands VF. A new set of band-and-detector dependent VFs can be derived using this approach. The implementation of the new VF into calibration of high-gain bands gain coefficient has effectively reduced the undesired seasonal oscillations in its trending from up to Terra's 0.6% and Aqua's 1.0% to nearly 0.2%.

  6. Error handling strategies in multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  7. Absolute calibration of a multilayer-based XUV diagnostic

    CERN Document Server

    Stuik, R; Tümmler, J; Bijkerk, F

    2002-01-01

    A portable, universal narrowband XUV diagnostic suitable for calibration of various XUV light sources, was built, tested and fully calibrated. The diagnostic allows measurement of the absolute XUV energy and average power in two selected wavelength bands, at 11.4 and 13.4 nm. In addition, the pulse-to-pulse and long-term XUV stability of the source can be assessed, as well as the contamination of multilayer XUV optics exposed to the source. This paper describes the full calibration procedure: all optical elements were calibrated at the wavelength of operation by Physikalisch-Technische Bundesanstalt at the storage ring Bessy II, a full analysis of geometrical factors was done, and the influence of the spectral emissivity of the source on the calibration was analyzed in detail. The calibration was performed both for the centroid wavelength as for the full bandwidth of the diagnostic. The total uncertainty in the absolute calibration allowed measurement of source characteristics with an uncertainty of less than...

  8. Laser system with wavelength converter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode...... laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first...... wavelength interval. Further, the invention relates to a method of optically pumping a target laser (14) in a laser system, the laser system comprising a laser source providing radiation at a first frequency, the laser source being optically connected to an input of a frequency converter, the frequency...

  9. Calibration and monitoring of spectrometers and spectrophotometers.

    Science.gov (United States)

    Frings, C S; Broussard, L A

    1979-06-01

    We have delineated some of the factors affecting the performance of spectrometers and spectrophotometers in the clinical laboratory and have presented some of the methods for verifying that these instruments are functioning properly. At a minimum, every laboratory should perform periodic inspections of spectrometric functions to check wavelength calibration, linearity of detector response, and stray radiation. Only through such an inspection program can a laboratory ensure that these instruments are not contributing to inaccurate analytical results.

  10. Process analytical technology case study: part II. Development and validation of quantitative near-infrared calibrations in support of a process analytical technology application for real-time release.

    Science.gov (United States)

    Cogdill, Robert P; Anderson, Carl A; Delgado, Miriam; Chisholm, Robert; Bolton, Raymond; Herkert, Thorsten; Afnan, Ali M; Drennen, James K

    2005-10-06

    This article is the second of a series of articles detailing the development of near-infrared (NIR) methods for solid dosage-form analysis. Experiments were conducted at the Duquesne University Center for Pharmaceutical Technology to demonstrate a method for developing and validating NIR models for the analysis of active pharmaceutical ingredient (API) content and hardness of a solid dosage form. Robustness and cross-validation testing were used to optimize the API content and hardness models. For the API content calibration, the optimal model was determined as multiplicative scatter correction with Savitsky-Golay first-derivative preprocessing followed by partial least-squares (PLS) regression including 4 latent variables. API content calibration achieved root mean squared error (RMSE) and root mean square error of cross validation (RMSECV) of 1.48 and 1.80 mg, respectively. PLS regression and baseline-fit calibration models were compared for the prediction of tablet hardness. Based on robustness testing, PLS regression was selected for the final hardness model, with RMSE and RMSECV of 8.1 and 8.8 N, respectively. Validation testing indicated that API content and hardness of production-scale tablets is predicted with root mean square error of prediction of 1.04 mg and 8.5 N, respectively. Explicit robustness testing for high-flux noise and wavelength uncertainty demonstrated the robustness of the API concentration calibration model with respect to normal instrument operating conditions.

  11. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke;

    1996-01-01

    Wavelength division multiplexed (WDM) networks are currently subject to an immense interest because of the extra capacity and flexibility they provide together with the possibilities for graceful system upgrades. For full network flexibility it is very attractive to be able to translate the chann...... wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  12. Calibrating Photometric Redshifts of Luminous Red Galaxies

    CERN Document Server

    Padmanabhan, N; Schlegel, D J; Bridges, T J; Brinkmann, J; Cannon, R; Connolly, A J; Croom, S M; Csabai, I; Drinkwater, M; Eisenstein, D J; Hewett, P C; Loveday, J; Nichol, R C; Pimbblet, K A; De Propris, R; Schneider, D P; Scranton, R; Seljak, U; Shanks, T; Szapudi, I; Szalay, A S; Wake, D; Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan; Cannon, Russell; Connolly, Andrew J.; Croom, Scott M.; Csabai, Istvan; Drinkwater, Michael; Eisenstein, Daniel J.; Hewett, Paul C.; Loveday, Jon; Nichol, Robert C.; Pimbblet, Kevin A.; Propris, Roberto De; Schneider, Donald P.; Scranton, Ryan; Seljak, Uros; Shanks, Tom; Szapudi, Istvan; Szalay, Alexander S.; Wake, David

    2004-01-01

    We discuss the construction of a photometric redshift catalogue of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue -- (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, (iii) and estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF spectroscopic surveys, we find that the photometric redshift accuracy is $\\sigma \\sim 0.03$ for redshifts less than 0.55 and worsens at higher redshift ($\\sim 0.06$). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves, and photometric zeropoints. We also parametrize the photometric redshift error distribution with a sum of Gaussians, and use this model to deconvolve the errors from the measured photometric redshift distribution to est...

  13. Analysis of errors in forensic science

    Directory of Open Access Journals (Sweden)

    Mingxiao Du

    2017-01-01

    Full Text Available Reliability of expert testimony is one of the foundations of judicial justice. Both expert bias and scientific errors affect the reliability of expert opinion, which in turn affects the trustworthiness of the findings of fact in legal proceedings. Expert bias can be eliminated by replacing experts; however, it may be more difficult to eliminate scientific errors. From the perspective of statistics, errors in operation of forensic science include systematic errors, random errors, and gross errors. In general, process repetition and abiding by the standard ISO/IEC:17025: 2005, general requirements for the competence of testing and calibration laboratories, during operation are common measures used to reduce errors that originate from experts and equipment, respectively. For example, to reduce gross errors, the laboratory can ensure that a test is repeated several times by different experts. In applying for forensic principles and methods, the Federal Rules of Evidence 702 mandate that judges consider factors such as peer review, to ensure the reliability of the expert testimony. As the scientific principles and methods may not undergo professional review by specialists in a certain field, peer review serves as an exclusive standard. This study also examines two types of statistical errors. As false-positive errors involve a higher possibility of an unfair decision-making, they should receive more attention than false-negative errors.

  14. Atmospheric visibility estimation and image contrast calibration

    Science.gov (United States)

    Hermansson, Patrik; Edstam, Klas

    2016-10-01

    A method, referred to as contrast calibration, has been developed for transforming digital color photos of outdoor scenes from the atmospheric conditions, illumination and visibility, prevailing at the time of capturing the image to a corresponding image for other atmospheric conditions. A photo captured on a hazy day can, for instance, be converted to resemble a photo of the same scene for good visibility conditions. Converting digital color images to specified lightning and transmission conditions is useful for image based assessment of signature suppression solutions. The method uses "calibration objects" which are photographed at about the same time as the scene of interest. The calibration objects, which (indirectly) provide information on visibility and lightning conditions, consist of two flat boards, painted in different grayscale colors, and a commercial, neutral gray, reference card. Atmospheric extinction coefficient and sky intensity can be determined, in three wavelength bands, from image pixel values on the calibration objects and using this information the image can be converted to other atmospheric conditions. The image is transformed in contrast and color. For illustration, contrast calibration is applied to sample images of a scene acquired at different times. It is shown that contrast calibration of the images to the same reference values of extinction coefficient and sky intensity results in images that are more alike than the original images. It is also exemplified how images can be transformed to various other atmospheric weather conditions. Limitations of the method are discussed and possibilities for further development are suggested.

  15. Landsat-7 ETM+ radiometric calibration status

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R.; Haque, Md. Obaidul

    2016-09-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  16. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  17. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  18. Calibrators and control samples for bilirubinometers.

    Science.gov (United States)

    Blijenberg, B G; Brügmann, G; Geilenkeuser, W J; Kusyschyn, R; Röhle, G; Schlebusch, H; Schneider, C

    1993-06-01

    The different matrix properties of neonatal serum and commercial control samples can lead to considerable errors in the calibration and control of bilirubinometers. These difficulties can be avoided by calibration with serum from healthy adults which is supplemented with unconjugated bilirubin. But this procedure is impracticable for most routine laboratories. Under certain preconditions, control samples, with bilirubin concentrations determined with correctly calibrated bilirubinometers or spectrophotometers, are also suitable as calibrators. This was established by determination of the bilirubin concentration of 16 different control samples, using both the reference method and correctly calibrated bilirubinometers or spectrophotometers in three or four specialist laboratories. This was also confirmed in several interlaboratory surveys, some involving up to 72 laboratories. The results of these investigations show that a control sample should be used for the calibration of a bilirubinometer only if it meets the following preconditions: 1. There should be no significant difference between the bilirubin values determined with the reference method and with a correctly calibrated spectrophotometer or bilirubinometer. 2. The bilirubin concentration should lie in the range 230-300 mumol/l. The photometric response of bilirubinometers has a limited linear range, so that analytical results greater than 300 mumol/l must be rated as basically unreliable.

  19. Performance Evaluation of Wavelength Routed Optical Network with Wavelength Conversion

    CERN Document Server

    Gond, Vitthal J

    2010-01-01

    The rapid development of telecommunication networks is driven by user demands for new applications and advances in technologies. The explosive growth of the internet traffic is due to its use for collecting the information, communication, multimedia application, entertainment, etc. These applications are imposing a tremendous demand for bandwidth capacity on telecommunication network. The introduction of fiber optics had proved to meet the huge demand of bandwidth. These requirement can be meet by all optical network which is capable of transmitting enormous data at very high speed, around 50 Tera bits per seconds (Tbps) A wavelength conversion technique is addressed in this paper to reduced the blocking probability in wavelength routed networks. It is seen that the blocking probability of traffic requests decreases as the wavelength conversion factor increases. We explode the possibility for network with different size with variation in wavelength per link. In this work the evaluation of wavelength routed op...

  20. Underdense radiation sources: Moving towards longer wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A.; Kilkenny, J.D. [General Atomics, San Diego, California (United States); Seely, J.F.; Weaver, J.L. [Naval Research Laboratory, Washington, DC (United States); Feldman, U. [Artep Inc., Ellicott City, MD (United States); Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A. [Lawrence Livermore National Laboratory, California (United States); Tillack, M. [U. C. San Diego, La Jolla, CA (United States)

    2006-06-15

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO{sub 2} aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  1. Consequences of Secondary Calibrations on Divergence Time Estimates.

    Directory of Open Access Journals (Sweden)

    John J Schenk

    Full Text Available Secondary calibrations (calibrations based on the results of previous molecular dating studies are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.

  2. A Novel Calibrator for Electronic Transformers Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Baoxiang PAN

    2013-01-01

    Full Text Available It is necessary for electronic transformer to make calibration before putting it into practice. To solve the problems in actual calibration process, a novel electronic transformer calibrator is designed. In principle, this system adopts both the direct method and the difference method, which are two popular methods for electronic transformer calibration, by this way the application of the system is extended with its reliability improved. In the system design, based on virtual instrument technology, LabVIEW and WinPCap toolkit are used to develop the application software, and it is able to calibrate those electronic transformers following the standard of IEC 61850. In the calculation of ratio and phase error based on fast Fourier transform, a new window function is introduced, and thus the accuracy of calibration, influenced by the frequency vibration, is improved. This research provides theoretic support and practical reference to the development of intelligent calibrator for electronic transformers.

  3. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  4. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  5. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  6. Auroral meridian scanning photometer calibration using Jupiter

    Science.gov (United States)

    Jackel, Brian J.; Unick, Craig; Creutzberg, Fokke; Baker, Greg; Davis, Eric; Donovan, Eric F.; Connors, Martin; Wilson, Cody; Little, Jarrett; Greffen, M.; McGuffin, Neil

    2016-10-01

    Observations of astronomical sources provide information that can significantly enhance the utility of auroral data for scientific studies. This report presents results obtained by using Jupiter for field cross calibration of four multispectral auroral meridian scanning photometers during the 2011-2015 Northern Hemisphere winters. Seasonal average optical field-of-view and local orientation estimates are obtained with uncertainties of 0.01 and 0.1°, respectively. Estimates of absolute sensitivity are repeatable to roughly 5 % from one month to the next, while the relative response between different wavelength channels is stable to better than 1 %. Astronomical field calibrations and darkroom calibration differences are on the order of 10 %. Atmospheric variability is the primary source of uncertainty; this may be reduced with complementary data from co-located instruments.

  7. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  8. Design of the ERIS calibration unit

    Science.gov (United States)

    Dolci, Mauro; Valentini, Angelo; Di Rico, Gianluca; Esposito, Simone; Ferruzzi, Debora; Riccardi, Armando; Spanò, Paolo; Antichi, Jacopo

    2016-08-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is a new-generation instrument for the Cassegrain focus of the ESO UT4/VLT, aimed at performing AO-assisted imaging and medium resolution spectroscopy in the 1-5 micron wavelength range. ERIS consists of the 1-5 micron imaging camera NIX, the 1-2.5 micron integral field spectrograph SPIFFIER (a modified version of SPIFFI, currently operating on SINFONI), the AO module and the internal Calibration Unit (ERIS CU). The purpose of this unit is to provide facilities to calibrate the scientific instruments in the 1-2.5 micron and to perform troubleshooting and periodic maintenance tests of the AO module (e.g. NGS and LGS WFS internal calibrations and functionalities, ERIS differential flexures) in the 0.5 - 1 μm range. The ERIS CU must therefore be designed in order to provide, over the full 0.5 - 2.5 μm range, the following capabilities: 1) illumination of both the telescope focal plane and the telescope pupil with a high-degree of uniformity; 2) artificial point-like and extended sources onto the telescope focal plane, with high accuracy in both positioning and FWHM; 3) wavelength calibration; 4) high stability of these characteristics. In this paper the design of the ERIS CU, and the solutions adopted to fulfill all these requirements, is described. The ERIS CU construction is foreseen to start at the end of 2016.

  9. Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments.

    Science.gov (United States)

    Yan, Ying; Yi, Grace Y

    2016-07-01

    Covariate measurement error occurs commonly in survival analysis. Under the proportional hazards model, measurement error effects have been well studied, and various inference methods have been developed to correct for error effects under such a model. In contrast, error-contaminated survival data under the additive hazards model have received relatively less attention. In this paper, we investigate this problem by exploring measurement error effects on parameter estimation and the change of the hazard function. New insights of measurement error effects are revealed, as opposed to well-documented results for the Cox proportional hazards model. We propose a class of bias correction estimators that embraces certain existing estimators as special cases. In addition, we exploit the regression calibration method to reduce measurement error effects. Theoretical results for the developed methods are established, and numerical assessments are conducted to illustrate the finite sample performance of our methods.

  10. A new Cassegrain calibration lamp unit for the Blanco Telescope

    Science.gov (United States)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  11. The Long Wavelength Array

    Science.gov (United States)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  12. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    Hyperspectral imaging with a spatial resolution of a few mm2 has proved to have a great potential within crop and weed classification and also within nutrient diagnostics. A commonly used hyperspectral imaging system is based on the Prism-Grating-Prism(PGP) principles produced by Specim Ltd....... Finland. One of the novel systems based on the PGP spectrograph (VTTVIS) was build by The Department of Agricultural Sciences, AgroTechnology, KVL, Denmark, in 1995. Several other agricultural institutions havenow implemented the technology in their research. None of these has published any thoroughly...

  13. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    Directory of Open Access Journals (Sweden)

    Minho Song

    2008-10-01

    Full Text Available The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  14. Design of a wavelength frame multiplication system using acceptance diagrams

    CERN Document Server

    Nekrassov, D; Lieutenant, K

    2013-01-01

    The concept of Wavelength Frame Multiplication (WFM) was developed to extend the usable wavelength range on long pulse neutron sources for instruments using pulse shaping choppers. For some instruments, it is combined with a pulse shaping double chopper, which defines a constant wavelength resolution, and a set of frame overlap choppers that prevent spurious neutrons from reaching the detector thus avoiding systematic errors in the calculation of wavelength from time of flight. Due to its complexity, the design of such a system is challenging and there are several criteria that need to be accounted for. In this work, the design of the WFM chopper system for the potential future liquids reflectometer at the European Spallation Source (ESS) is presented, which makes use of acceptance diagrams. They prove to be a powerful tool for understanding the work principle of the system and recognizing potential problems. The authors assume that the presented study can be useful for design or upgrade of further instrument...

  15. [Application of PSO algorithm in wavelength detection of FBG sensors].

    Science.gov (United States)

    Ding, Hui; Wu, Xiang-Nan; Liang, Jian-Qi; Li, Xian-Li

    2010-02-01

    In order to improve the measurement accuracy of FBG sensing system, particle swarm optimization (PSO) algorithm combined with reference FBGs array was applied to investigate the nonlinearity and hysteresis character of Fabry-Parot filter (FPF). A method of modeling the wavelength-voltage relationship of FPF online in each FPF scanning cycle was proposed in the present paper. The feature of particle swarm optimization algorithm such as fast convergence and simple implementation makes the process of modeling wavelength-voltage relationship of FPF be completed with low computing cost and high accuracy. With the set-up model, the absolute error in wavelength detection of FBG sensors was demonstrated by experiments to be as low as 0.03 nm. The structure of the system is compact and the proposed modeling approach has important meaning in FBG sensors system when FPF is used as wavelength demodulator.

  16. Interference comparator for laser diode wavelength and wavelength instability measurement

    Science.gov (United States)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  17. Skew redundant MEMS IMU calibration using a Kalman filter

    Science.gov (United States)

    Jafari, M.; Sahebjameyan, M.; Moshiri, B.; Najafabadi, T. A.

    2015-10-01

    In this paper, a novel calibration procedure for skew redundant inertial measurement units (SRIMUs) based on micro-electro mechanical systems (MEMS) is proposed. A general model of the SRIMU measurements is derived which contains the effects of bias, scale factor error and misalignments. For more accuracy, the effect of lever arms of the accelerometers to the center of the table are modeled and compensated in the calibration procedure. Two separate Kalman filters (KFs) are proposed to perform the estimation of error parameters for gyroscopes and accelerometers. The predictive error minimization (PEM) stochastic modeling method is used to simultaneously model the effect of bias instability and random walk noise on the calibration Kalman filters to diminish the biased estimations. The proposed procedure is simulated numerically and has expected experimental results. The calibration maneuvers are applied using a two-axis angle turntable in a way that the persistency of excitation (PE) condition for parameter estimation is met. For this purpose, a trapezoidal calibration profile is utilized to excite different deterministic error parameters of the accelerometers and a pulse profile is used for the gyroscopes. Furthermore, to evaluate the performance of the proposed KF calibration method, a conventional least squares (LS) calibration procedure is derived for the SRIMUs and the simulation and experimental results compare the functionality of the two proposed methods with each other.

  18. Improved photon counting efficiency calibration using superconducting single photon detectors

    Science.gov (United States)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  19. Computer Generated Hologram System for Wavefront Measurement System Calibration

    Science.gov (United States)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  20. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    Science.gov (United States)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  1. Shear calibration biases in weak lensing surveys

    CERN Document Server

    Hirata, C M; Hirata, Christopher M.; Seljak, Uros

    2003-01-01

    We investigate biases induced by the conversion between the observed image shape to shear distortion in current weak lensing analysis methods. Such overall calibration biases cannot be detected by the standard tests such as E/B decomposition or calibration with stars. We find that the non-Gaussianity of point spread function has a significant effect and can lead to up to 15 per cent error on the linear amplitude of fluctuations sigma_8 depending on the method of analysis. This could explain some of the discrepancies seen in recent amplitude determinations from weak lensing. Using an elliptical Laguerre expansion method we develop a re-Gaussianization method which reduces the error to calibration error of order 1 per cent even for poorly resolved galaxies. We also discuss a new type of shear selection bias which results in up to roughly 8 percent underestimation of the signal. It is expected to scale with redshift, inducing errors in the growth factor extraction if not properly corrected for. Understanding and...

  2. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  3. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  4. SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Directory of Open Access Journals (Sweden)

    G. Lichtenberg

    2006-01-01

    Full Text Available The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1 Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2 Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3 Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues.

  5. [Survey in hospitals. Nursing errors, error culture and error management].

    Science.gov (United States)

    Habermann, Monika; Cramer, Henning

    2010-09-01

    Knowledge on errors is important to design safe nursing practice and its framework. This article presents results of a survey on this topic, including data of a representative sample of 724 nurses from 30 German hospitals. Participants predominantly remembered medication errors. Structural and organizational factors were rated as most important causes of errors. Reporting rates were considered low; this was explained by organizational barriers. Nurses in large part expressed having suffered from mental problems after error events. Nurses' perception focussing on medication errors seems to be influenced by current discussions which are mainly medication-related. This priority should be revised. Hospitals' risk management should concentrate on organizational deficits and positive error cultures. Decision makers are requested to tackle structural problems such as staff shortage.

  6. A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)

    Science.gov (United States)

    Ruchti, G. R.; Feltzing, S.; Lind, K.; Caffau, E.; Korn, A. J.; Schnurr, O.; Hansen, C. J.; Koch, A.; Sbordone, L.; de Jong, R. S.

    2016-09-01

    The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extragalactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions.

  7. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants

    Directory of Open Access Journals (Sweden)

    Lalowski Maciej

    2005-08-01

    Full Text Available Abstract Background Peptide Mass Fingerprinting (PMF is a widely used mass spectrometry (MS method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from http://www.bioconductor.org. Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%.

  8. Calibration of rings using multi-step and reversal

    DEFF Research Database (Denmark)

    Savio, Enrico; Tosello, Guido; De Chiffre, Leonardo

    2003-01-01

    This work concerns the application of multi-orientation techniques on CMMs for form error calibration of high accuracy workpieces. The form measurement capability of commercial CMMs is typically limited to some micrometer, e.g. for the inspection of roundness. The method presented herein deals...... with achieving sub-micrometer uncertainties in the calibration of rings on CMMs. The method is based on: i) systematic error separation using multi-step and reversal measurements, and ii) gaussian filtering of random errors. Validation of the method was provided through investigations on uncertainty contribution...

  9. On-Orbit Performance of MODIS On-Board Calibrators

    Science.gov (United States)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  10. Distributed Radio Interferometric Calibration

    CERN Document Server

    Yatawatta, Sarod

    2015-01-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...

  11. Influence of camera calibration conditions on the accuracy of 3D reconstruction.

    Science.gov (United States)

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-02-01

    For stereoscopic systems designed for metrology applications, the accuracy of camera calibration dictates the precision of the 3D reconstruction. In this paper, the impact of various calibration conditions on the reconstruction quality is studied using a virtual camera calibration technique and the design file of a commercially available lens. This technique enables the study of the statistical behavior of the reconstruction task in selected calibration conditions. The data show that the mean reprojection error should not always be used to evaluate the performance of the calibration process and that a low quality of feature detection does not always lead to a high mean reconstruction error.

  12. Low-penalty Raman-assisted XPM wavelength conversion at 320 Gb/s

    DEFF Research Database (Denmark)

    Galili, Michael; Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo

    2007-01-01

    We report on an experimental demonstration and optimization of cross-phase modulation-based wavelength conversion at 320 Gb/s assisted by Raman gain. Error free operation is demonstrated with low penalty.......We report on an experimental demonstration and optimization of cross-phase modulation-based wavelength conversion at 320 Gb/s assisted by Raman gain. Error free operation is demonstrated with low penalty....

  13. 320 Gbit/s DQPSK all-optical wavelength conversion using four wave mixing

    DEFF Research Database (Denmark)

    Galili, Michael; Huettl, B.; Schmidt-Langhorst, C.

    2007-01-01

    In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK......In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK...

  14. Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements....

  15. Accuracy Analysis and Calibration of Gantry Hybrid Machine Tool

    Institute of Scientific and Technical Information of China (English)

    唐晓强; 李铁民; 尹文生; 汪劲松

    2003-01-01

    The kinematic accuracy is a key factor in the design of parallel or hybrid machine tools. This analysis improved the accuracy of a 4-DOF (degree of freedom) gantry hybrid machine tool based on a 3-DOF planar parallel manipulator by compensating for various positioning errors. The machine tool architecture was described with the inverse kinematic solution. The control parameter error model was used to analyze the accuracy of the 3-DOF planar parallel manipulator and to develop a kinematic calibration method. The experimental results prove that the calibration method reduces the cutter nose errors from ±0.50 mm to ±0.03 mm for a horizontal movement of 600 mm by compensating for errors in the slider home position, the guide way distance and the extensible strut home position. The calibration method will be useful for similar types of parallel kinematic machines.

  16. Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer ($FIRAS$)

    CERN Document Server

    Mather, J C; Shafer, R A; Mosier, C; Wilkinson, D T

    1999-01-01

    The photometric errors of the external calibrator for the FIRAS instrument on the COBE are smaller than the measurement errors on the cosmic microwave background (CMBR) spectrum (typically 0.02 MJy/sr, 1 sigma), and smaller than 0.01% of the peak brightness of the CMBR. The calibrator is a re-entrant cone, shaped like a trumpet mute, made of Eccosorb iron-loaded epoxy. It fills the entire beam of the instrument and is the source of its accuracy. Its known errors are caused by reflections, temperature gradients, and leakage through the material and around the edge. Estimates and limits are given for all known error sources. Improvements in understanding the temperature measurements of the calibrator allow an improved CMBR temperature determination of 2.725 +/- 0.002 K.

  17. The Science of Calibration

    Science.gov (United States)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  18. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  19. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  20. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn;

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  1. Wavelength dimensioning for wavelength-routed WDM satellite network

    Institute of Scientific and Technical Information of China (English)

    Liu Zhe; Guo Wei; Deng Changlin; Hu Weisheng

    2016-01-01

    Internet and broadband applications driven by data traffic demand have become key dri-vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter-satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi-sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net-work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol-ogy generated by LAS-PMM could be reduced by 24.8%and 12.4%, respectively.

  2. Spectral responsivity calibration of the reference radiation thermometer at KRISS by using a super-continuum laser-based high-accuracy monochromatic source

    Science.gov (United States)

    Yoo, Yong Shim; Kim, Gun Jung; Park, Seongchong; Lee, Dong-Hoon; Kim, Bong-Hak

    2016-12-01

    We report on the calibration of the relative spectral responsivity of the reference radiation thermometer, model LP4, which is used for the experimental realisation of the international temperature scale of 1990 above 960 °C at the Korea Research Institute of Standards and Science. The relative spectral responsivity of LP4 is measured by using a monochromatic source consisting of a super-continuum laser and a double-grating monochromator. By monitoring the wavelength of the output beam directly with a calibrated wavelength-meter, we achieved a high-accuracy measurement of spectral responsivity with a maximum wavelength error of less than 3 pm, a narrow spectral bandwidth of less than 0.4 nm, and a high dynamic range over 8 decades. We evaluated the contributions of various uncertainty components of the spectral responsivity measurement to the uncertainty of the temperature scale based on a practical estimation approach, which numerically calculates the maximal effects of the variations of each component. As a result, we evaluate the uncertainty contribution from the spectral responsivity measurement to the temperature scale to be less than 64 mK (k  =  1) in a range from 660 °C to 2749 °C for the LP4 with a filter at 650 nm.

  3. Camera calibration for multidirectional flame chemiluminescence tomography

    Science.gov (United States)

    Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun

    2017-04-01

    Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.

  4. INFLUENCE OF MECHANICAL ERRORS IN A ZOOM CAMERA

    Directory of Open Access Journals (Sweden)

    Alfredo Gardel

    2011-05-01

    Full Text Available As it is well known, varying the focus and zoom of a camera lens system changes the alignment of the lens components resulting in a displacement of the image centre and field of view. Thus, knowledge of how the image centre shifts may be important for some aspects of camera calibration. As shown in other papers, the pinhole model is not adequate for zoom lenses. To ensure a calibration model for these lenses, the calibration parameters must be adjusted. The geometrical modelling of a zoom lens is realized from its lens specifications. The influence on the calibration parameters is calculated by introducing mechanical errors in the mobile lenses. Figures are given describing the errors obtained in the principal point coordinates and also in its standard deviation. A comparison is then made with the errors that come from the incorrect detection of the calibration points. It is concluded that mechanical errors of actual zoom lenses can be neglected in the calibration process because detection errors have more influence on the camera parameters.

  5. Error measuring system of rotary Inductosyn

    Science.gov (United States)

    Liu, Chengjun; Zou, Jibin; Fu, Xinghe

    2008-10-01

    The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).

  6. Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts

    Science.gov (United States)

    Saide, P. E.; Carmichael, G. R.; Liu, Z.; Schwartz, C. S.; Lin, H. C.; da Silva, A. M.; Hyer, E.

    2013-10-01

    An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from the WRF-Chem optical properties module, providing consistency with the forecast. GSI tools such as recursive filters and weak constraints are used to provide correlation within aerosol size bins and upper and lower bounds for the optimization. The system is used to perform assimilation experiments with fine vertical structure and no data thinning or re-gridding on a 12 km horizontal grid over the region of California, USA, where improvements on analyses and forecasts is demonstrated. A first set of simulations was performed, comparing the assimilation impacts of using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) dark target retrievals to those using observationally constrained ones, i.e., calibrated with AERONET (Aerosol RObotic NETwork) data. It was found that using the observationally constrained retrievals produced the best results when evaluated against ground based monitors, with the error in PM2.5 predictions reduced at over 90% of the stations and AOD errors reduced at 100% of the monitors, along with larger overall error reductions when grouping all sites. A second set of experiments reveals that the use of fine mode fraction AOD and ocean multi-wavelength retrievals can improve the representation of the aerosol size distribution, while assimilating only 550 nm AOD retrievals produces no or at times degraded impact. While assimilation of multi-wavelength AOD shows positive impacts on all analyses performed, future work is needed to generate observationally constrained multi-wavelength retrievals, which when assimilated will generate size

  7. Application of composite small calibration objects in traffic accident scene photogrammetry.

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    Full Text Available In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.

  8. Angular diameter estimation of interferometric calibrators - Example of lambda Gruis, calibrator for VLTI-AMBER

    CERN Document Server

    Cruzalebes, P; Sacuto, S; Bonneau, D; 10.1051/0004-6361/200913686

    2010-01-01

    Context. Accurate long-baseline interferometric measurements require careful calibration with reference stars. Small calibrators with high angular diameter accuracy ensure the true visibility uncertainty to be dominated by the measurement errors. Aims. We review some indirect methods for estimating angular diameter, using various types of input data. Each diameter estimate, obtained for the test-case calibrator star lambda Gru, is compared with the value 2.71 mas found in the Bord\\'e calibrator catalogue published in 2002. Methods. Angular size estimations from spectral type, spectral index, in-band magnitude, broadband photometry, and spectrophotometry give close estimates of the angular diameter, with slightly variable uncertainties. Fits on photometry and spectrophotometry need physical atmosphere models with "plausible" stellar parameters. Angular diameter uncertainties were estimated by means of residual bootstrapping confidence intervals. All numerical results and graphical outputs presented in this pap...

  9. HJ-1A HSI on-orbit radiometric calibration and validation research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.

  10. Comparative study of camera calibration algorithms with application to spacecraft navigation

    Science.gov (United States)

    Poelzleitner, Wolfgang; Ulm, Michael

    1994-10-01

    This paper deals with the problem of camera calibration based on 3D feature measurements. It occurs in industrial 3D measurement systems, as well as in autonomous navigation systems, where the estimation of motion parameters is required. We have selected the problem of extrinsic calibration (exterior orientation) of a camera that is looking at flat or almost flat surfaces (or terrain). This situation causes numerical and stability problems to many of the known calibration methods. To study the impact of flatness of the reference surface (or calibration target) on the calibration errors we have done a comparative study using sixteen available calibration procedures. The major emphasis was on robustness with respect to 3D measurement errors and sensitivity to flatness. A new calibration method is also investigated, which can be used independently of whether the calibration reference surface is flat, almost flat, or rugged.

  11. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    Science.gov (United States)

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  12. CCD camera automatic calibration technology and ellipse recognition algorithm

    Institute of Scientific and Technical Information of China (English)

    Changku Sun; Xiaodong Zhang; Yunxia Qu

    2005-01-01

    A novel two-dimensional (2D) pattern used in camera calibration is presented. With one feature circle located at the center, an array of circles is photo-etched on this pattern. An ellipse recognition algorithm is proposed to implement the acquisition of interest calibration points without human intervention. According to the circle arrangement of the pattern, the relation between three-dimensional (3D) and 2D coordinates of these points can be established automatically and accurately. These calibration points are computed for intrinsic parameters calibration of charge-coupled device (CCD) camera with Tsai method. A series of experiments have shown that the algorithm is robust and reliable with the calibration error less than 0.4 pixel. This new calibration pattern and ellipse recognition algorithm can be widely used in computer vision.

  13. Handheld temperature calibrator

    National Research Council Canada - National Science Library

    Martella, Melanie

    2003-01-01

    ... you sign on. What are you waiting for? JOFRA ETC Series dry-block calibrators from AMETEK Test & Calibration Instruments, Largo, FL, are small enough to be handheld and feature easy-to-read displays, multiple bore blocks, programmable test setup, RS-232 communications, and software. Two versions are available: the ETC 125A that ranges from -10[degrees]C to 125[d...

  14. OLI Radiometric Calibration

    Science.gov (United States)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  15. Sentinel-2 diffuser on-ground calibration

    Science.gov (United States)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  16. WFPC2 Polarization Calibration

    Science.gov (United States)

    Biretta, J.; McMaster, M.

    1997-12-01

    We derive a detailed calibration for WFPC2 polarization data which is accurate to about 1.5%. We begin by computing polarizer flats, and show how they are applied to data. A physical model for the polarization effects of the WFPC2 optics is then created using Mueller matricies. This model includes corrections for the instrumental polarization (diattenuation and phase retardance) of the pick-off mirror, as well as the high cross-polarization transmission of the polarizer filter. We compare this model against the on-orbit observations of polarization calibrators, and show it predicts relative counts in the different polarizer/aperture settings to 1.5% RMS accuracy. We then show how this model can be used to calibrate GO data, and present two WWW tools which allow observers to easily calibrate their data. Detailed examples are given illustrationg the calibration and display of WFPC2 polarization data. In closing we describe future plans and possible improvements.

  17. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  18. Precision Calibration of Infrared Synchrotron Radiation Detectors

    CERN Document Server

    Maltsev, A A; Maslova, M V

    2003-01-01

    The technique of calibration of synchrotron radiation precision detectors on a tungsten source based on similarity (close similarity) of character of spectral distributions of synchrotron and thermal radiations is given. The characteristics of various commonly used lamps, used as "standard" ones, are given. The errors of measurements are analyzed. The detectors are intended for absolute measurements of the number of electrons in a ring-shaped bunch.

  19. Probe Error Modeling Research Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan

    2015-01-01

    Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.

  20. Landsat-7 EMT+ On-Orbit Radiometric Calibration

    Science.gov (United States)

    Markham, Brian L.; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    1999-01-01

    Landsat-7 was launched on April 15, 1999 and completed its on orbit initialization and verification period on June 28, 1999. The ETM+ payload is similar to the TM sensors on previous Landsat satellites and incorporates two new devices to improve its absolute radiometric calibration. The Full Aperture Solar Calibrator (FASC) is a deployable diffuser panel. This device has been deployed 9 times to date, with a normal deployment schedule of once per month. The initial analysis of the FASC data has given absolute calibration results within 5% of the prelaunch integrating sphere calibrations and a range of variation of 2% between dates. The Partial Aperture Solar Calibrator (PASC), is a set of auxiliary optics that allows the ETM+ to view the sun through a reduced aperture. Data have normally been acquired on a daily basis with the PASC. Initial results with the PASC were encouraging, despite some unexpected saturation in the shortest wavelength band. The response of the ETM+ short wavelength (silicon) bands to the PASC increased initially and has begun to decrease in some of these bands. The longer wavelength (InSb) bands have shown up to 30% oscillations that vary between detectors within the band. Studies are ongoing to better characterize the response to the PASC. The ETM+ also incorporates an internal calibrator (IC), a shutter that oscillates in front of the focal plane that directs light from the internal calibrator lamps to the focal plane. The responses to this device are also varying, though differently than the PASC results. Both the IC and PASC results are attributable to the calibration devices as opposed to the ETM+ itself.

  1. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  2. Calibration of atmospheric hydrogen measurements

    Directory of Open Access Journals (Sweden)

    A. Jordan

    2011-03-01

    Full Text Available Interest in atmospheric hydrogen (H2 has been growing in recent years with the prospect of H2 being a potential alternative to fossil fuels as an energy carrier. This has intensified research for a quantitative understanding of the atmospheric hydrogen cycle and its total budget, including the expansion of the global atmospheric measurement network. However, inconsistencies in published observational data constitute a major limitation in exploring such data sets. The discrepancies can be mainly attributed to difficulties in the calibration of the measurements. In this study various factors that may interfere with accurate quantification of atmospheric H2 were investigated including drifts of standard gases in high pressure cylinders. As an experimental basis a procedure to generate precise mixtures of H2 within the atmospheric concentration range was established. Application of this method has enabled a thorough linearity characterization of the commonly used GC-HgO reduction detector. We discovered that the detector response was sensitive to the composition of the matrix gas. Addressing these systematic errors, a new calibration scale has been generated defined by thirteen standards with dry air mole fractions ranging from 139–1226 nmol mol−1. This new scale has been accepted as the official World Meteorological Organisation's (WMO Global Atmospheric Watch (GAW H2 mole fraction scale.

  3. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  4. Classification of Spreadsheet Errors

    OpenAIRE

    Rajalingham, Kamalasen; Chadwick, David R.; Knight, Brian

    2008-01-01

    This paper describes a framework for a systematic classification of spreadsheet errors. This classification or taxonomy of errors is aimed at facilitating analysis and comprehension of the different types of spreadsheet errors. The taxonomy is an outcome of an investigation of the widespread problem of spreadsheet errors and an analysis of specific types of these errors. This paper contains a description of the various elements and categories of the classification and is supported by appropri...

  5. Robust PLS Prediction Model for Saikosaponin A in Bupleurum chinense DC. Coupled with Granularity-Hybrid Calibration Set

    Directory of Open Access Journals (Sweden)

    Zhisheng Wu

    2015-01-01

    Full Text Available This study demonstrated particle size effect on the measurement of saikosaponin A in Bupleurum chinense DC. by near infrared reflectance (NIR spectroscopy. Four types of granularity were prepared including powder samples passed through 40-mesh, 65-mesh, 80-mesh, and 100-mesh sieve. Effects of granularity on NIR spectra were investigated, which showed to be wavelength dependent. NIR intensity was proportional to particle size in the first combination-overtone and combination region. Local partial least squares model was constructed separately for every kind of samples, and data-preprocessing techniques were performed to optimize calibration model. The 65-mesh model exhibited the best prediction ability with root mean of square error of prediction (RMSEP = 0.492 mg·g−1, correlation coefficient RP=0.9221, and relative predictive determinant (RPD = 2.58. Furthermore, a granularity-hybrid calibration model was developed by incorporating granularity variation. Granularity-hybrid model showed better performance than local model. The model performance with 65-mesh samples was still the most accurate with RMSEP = 0.481 mg·g−1, RP=0.9279, and RPD = 2.64. All the results presented the guidance for construction of a robust model coupled with granularity-hybrid calibration set.

  6. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...... calibration with lidars does not comply with the standard. However, the measurements are carried out following the guidelines of IEC 61400-12-1 where possible, but with some deviations presented in the following chapters....

  7. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  8. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  9. Measurement error in longitudinal film badge data

    CERN Document Server

    Marsh, J L

    2002-01-01

    Initial logistic regressions turned up some surprising contradictory results which led to a re-sampling of Sellafield mortality controls without the date of employment matching factor. It is suggested that over matching is the cause of the contradictory results. Comparisons of the two measurements of radiation exposure suggest a strongly linear relationship with non-Normal errors. A method has been developed using the technique of Regression Calibration to deal with these in a case-control study context, and applied to this Sellafield study. The classical measurement error model is that of a simple linear regression with unobservable variables. Information about the covariates is available only through error-prone measurements, usually with an additive structure. Ignoring errors has been shown to result in biased regression coefficients, reduced power of hypothesis tests and increased variability of parameter estimates. Radiation is known to be a causal factor for certain types of leukaemia. This link is main...

  10. High Resolution Spectroscopy of Halo Stars in the Near UV and Blue Region I. Spectra in the Wavelength Region 3550-5000(A)

    Institute of Scientific and Technical Information of China (English)

    V. G. Klochkova; Gang Zhao; S. V. Ermakov; V. E. Panchuk

    2006-01-01

    An atlas of high resolution (R = 60 000) CCD-spectra in the wavelength range 3500-5000(A) is presented for four objects in metallicity range -3.0 < [Fe/H] < -0.6,temperature range 4750 < Teff < 5900K, and surface gravity range 1.6 < lgg < 5.0.We describe the calibration of the stellar atmospheric parameters using Alonso's formula based on the method of infrared flux and outline the determination of the abundances of a total number of 25 chemical elements. An analysis of the abundance determination errors for different chemical elements is carried out, and a method is provided for the observations and reduction of spectral material. Properties of the method of producing an atlas of spectra and line identifications are described.

  11. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  12. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  13. Wavelength Filters in Fibre Optics

    CERN Document Server

    Venghaus, Herbert

    2006-01-01

    Wavelength filters constitute an essential element of fibre-optic networks. This book gives a comprehensive account of the principles and applications of such filters, including their technological realisation. After an introductory chapter on wavelength division multiplexing in current and future fibre optic networks follows a detailed treatment of the phase characteristics of wavelength filters, a factor frequently neglected but of significant importance at high bit rates. Subsequent chapters cover three-dimensional reflection of gratings, arrayed waveguide gratings, fibre Bragg gratings, Fabry-Perot filters, dielectric multilayer filters, ring filters, and interleavers. The book explains the relevant performance parameters, the particular advantages and shortcomings of the various concepts and components, and the preferred applications. It also includes in-depth information on the characteristics of both commercially available devices and those still at the R&D stage. All chapters are authored by inter...

  14. A Black Hole Mass-Variability Time Scale Correlation at Submillimeter Wavelengths

    CERN Document Server

    Bower, Geoffrey C; Markoff, Sera; Gurwell, Mark A; Rao, Ramprasad; McHardy, Ian

    2015-01-01

    We analyze the light curves of 413 radio sources at submillimeter wavelengths using data from the Submillimeter Array calibrator database. The database includes more than 20,000 observations at 1.3 and 0.8 mm that span 13 years. We model the light curves as a damped random walk and determine a characteristic time scale $\\tau$ at which the variability amplitude saturates. For the vast majority of sources, primarily blazars and BL Lac objects, we find only lower limits on $\\tau$. For two nearby low luminosity active galactic nuclei, M81 and M87, however, we measure $\\tau=1.6^{+3.0}_{-0.9}$ days and $\\tau=45^{+61}_{-24}$ days, respectively ($2\\sigma$ errors). Including the previously measured $\\tau=0.33\\pm 0.16$ days for Sgr A*, we show an approximately linear correlation between $\\tau$ and black hole mass for these nearby LLAGN. Other LLAGN with spectra that peak in the submm are expected to follow this correlation. These characteristic time scales are comparable to the minimum time scale for emission processes...

  15. Toward chromium speciation in solids using wavelength dispersive X-ray fluorescence spectrometry Cr Kβ lines.

    Science.gov (United States)

    Malherbe, J; Claverie, F

    2013-04-22

    The determination of chromium speciation in solid samples is critical for environmental and industrial purposes. Several analytical methods exist to perform such a determination either directly in solid state or liquid state after an extraction step, each of them having some limitations. In this study, the use of a high-resolution wavelength-dispersive X-ray fluorescence spectrometer to determine and quantify chromium species is investigated by looking at the differences in the Kβ transition profiles between Cr(0), Cr(III) and Cr(VI) compounds. Three different approaches were tested and compared to determine the Cr(VI) fraction of known mixtures: relative height and peak fitting using calibration mixtures, partial least square regression (PLS) of pure compounds, and principal component regression (PCR) of pure compounds. The accuracy of these methods was found to be about the same with an average relative error in the range of 15%. However, PLS and PCR can be easily implemented in an automated way contrary to peak fitting which can be sometimes perceived as analyst-dependant. Another advantage of using PLS and PCR is that information concerning the other oxidation states present in the sample can be retrieved. Finally, PLS and the peak height approach can be used up to 0.5% total chromium which make the XRF an alternative technique to X-ray induced photoelectron spectroscopy (XPS) for chromium speciation in solid state.

  16. Optimum linear array for aperture synthesis imaging based on redundant spacing calibration

    Science.gov (United States)

    Liu, Li; He, Yuntao; Zhang, Jianguo; Jia, Huayu; Ma, Jun

    2014-05-01

    Aperture synthesis imaging has been proved to be attractive in surveillance and detection applications. Such an imaging process is inevitably subject to aberrations introduced by instrument defects and/or turbulent media. Redundant spacing calibration (RSC) technique allows continuous calibration of these errors at any electromagnetic wavelength. However, it is based on specially designed array, in which just enough redundancy is included to permit the successful implementation of RSC. A new design criterion for linear RSC array is described, which introduces coverage efficiency and redundancy efficiency factors, aiming to find the perfect configurations, which have as complete uv-plane coverage as possible while containing required redundancy. Optimum linear arrays for N (number of subapertures) up to 10 are listed based on simulated annealing algorithm. The comparisons with existing linear RSC arrays with equivalent subaperture number are implemented. Results show that the optimized arrays have better performance of both optical transfer function, point spread function, and object reconstruction with reasonable value of the matrix condition number. After that, linear arrays are used to construct two-dimensional (2-D) pseudo-Y-shaped RSC arrays, which give a way to design 2-D RSC arrays without exhaustive searches.

  17. Two-wavelength LIDAR Thomson scattering for ITER core plasma

    Science.gov (United States)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-07-01

    Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

  18. Photonic digital-to-analog conversion based on wavelength multiplexing

    Science.gov (United States)

    Yang, Shuna; Hu, Miao; Chi, Hao; Li, Qiliang

    2017-10-01

    A novel photonic digital-to-analog conversion (PDAC) scheme, which is based on optical intensity weighting and multiplexing/summing of different wavelengths, is proposed. The employment of wavelength multiplexing in the system, which conducts the function of modulated light intensity summation, greatly simplifies the system complexity and improves the conversion speed/accuracy limited by large-area photo-detectors and associated electronics. A 4-bit PDAC with a conversion speed of 10 GS/s demonstrates the feasibility of the proposed scheme. In addition, the performance degradation induced by the limited extinction ratios of the applied electro-optic modulators, the synchronization errors among different wavelength channels, and the bit resolutions of the built system is also discussed.

  19. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  20. An Improved Photometric Calibration of the Sloan Digital SkySurvey Imaging Data

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Nikhil; Schlegel, David J.; Finkbeiner, Douglas P.; Barentine, J.C.; Blanton, Michael R.; Brewington, Howard J.; Gunn, JamesE.; Harvanek, Michael; Hogg, David W.; Ivezic, Zeljko; Johnston, David; Kent, Stephen M.; Kleinman, S.J.; Knapp, Gillian R.; Krzesinski, Jurek; Long, Dan; Neilsen Jr., Eric H.; Nitta, Atsuko; Loomis, Craig; Lupton,Robert H.; Roweis, Sam; Snedden, Stephanie A.; Strauss, Michael A.; Tucker, Douglas L.

    2007-09-30

    We present an algorithm to photometrically calibrate widefield optical imaging surveys, that simultaneously solves for thecalibration parameters and relative stellar fluxes using overlappingobservations. The algorithm decouples the problem of "relative"calibrations from that of "absolute" calibrations; the absolutecalibration is reduced to determining a few numbers for the entiresurvey. We pay special attention to the spatial structure of thecalibration errors, allowing one to isolate particular error modes indownstream analyses. Applying this to the SloanDigital Sky Survey imagingdata, we achieve ~;1 percent relative calibration errors across 8500sq.deg/ in griz; the errors are ~;2 percent for the u band. These errorsare dominated by unmodelled atmospheric variations at Apache PointObservatory. These calibrations, dubbed ubercalibration, are now publicwith SDSS Data Release 6, and will be a part of subsequent SDSS datareleases.

  1. Calibration of a cw infrared Doppler lidar.

    Science.gov (United States)

    Schwiesow, R L; Cupp, R E

    1980-09-15

    A moving scattering target used as a transfer standard allows absolute calibration of the response of a cw Doppler lidar to an atmospheric target. The lidar in this study operated at a 10.6-microm wavelength. Consideration of the distribution of radiant energy density near the focus of the lidar transceiver permits measurement of a backscatter coefficient from a distributed array of scatterers, such as atmospheric aerosols, based on the diffuse reflectance of the surface of the transfer standard. The minimum detectable signal for our system with a 5-sec averaging time corresponds to a backscatter coefficient of 2.4 x 10(-12) m (-1) sr (-1) +/- 2.5 dB, which is ~ 9 dB greater than the theoretical threshold. Calibration shows that the lidar response is 5+/-1 dB less than the ideal limit for signal powers well above the minimum detectable signal.

  2. The MIRI Medium Resolution Spectrometer calibration pipeline

    CERN Document Server

    Labiano, A; Bailey, J I; Beard, S; Dicken, D; García-Marín, M; Geers, V; Glasse, A; Glauser, A; Gordon, K; Justtanont, K; Klaassen, P; Lahuis, F; Law, D; Morrison, J; Müller, M; Rieke, G; Vandenbussche, B; Wright, G

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.

  3. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam...

  4. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  5. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  6. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  7. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  8. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  9. [Calibration transfer between two FTNIR spectrophotometers using SVR].

    Science.gov (United States)

    Zhao, Long-lian; Li, Jun-hui; Zhang, Wen-juan; Wang, Jian-cai; Zhang, Lu-da

    2008-10-01

    In the present research, a set of maize powder samples was used to study the calibration transfer between two fourier transform near-infrared (FTNIR) spectrophotometers, and a method of moving window support vector regression machines (SVR) was used to correct the differences between the two instruments. Bruker Vector 22/N was referred to as "master" on which the maize protein calibration model was built. Bruker MPA was referred to as "slave" instrument. A transformation matrix was constructed based on the spectra of a sample set (for calibration transfer) measured on both instruments. After transfer, NIR spectra acquired on "slave" will appear as if they were measured on master instrument. The calibration model available for the master can then be used to predict the transformed spectra measured on the slave. The transfer parameters were computed as follows. For wavelength i, the absorbance vector obtained on the master instrument was regressed against the corresponding absorbance matrix of a spectral window obtained on the slave instrument. Method of SVR was used for regression Moving the wavelength i and corresponding window, the transfer parameter for each wavelength can be obtained. For the two FTNIR spectrophotometers, a window size of 31 wavelengths and a subset of 15 transfer samples were chosen to establish the SVR regression model between "master" and "slave". Applying the calibration model to the prediction samples after being corrected by the transfer parameters, a good transfer performance can be achieved. The correlation coefficient (r) is 0.9434, while the relative standard deviation (RSD) is 4.23%. These results suggest that the SVR method can be used to successfully transfer the calibration model for protein of maize developed on a FTNIR spectrophotometer to another.

  10. Calibrating nacelle lidars

    OpenAIRE

    Courtney, Michael

    2013-01-01

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail.The first of these is a line of sight...

  11. Scanner calibration revisited.

    Science.gov (United States)

    Pozhitkov, Alexander E

    2010-07-01

    Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  12. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  13. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    box calibrator with unknown but constant total delay during a calibration tour Total Delay: The total electrical delay from the antenna phase center...to the UTCp including all the devices/cables that the satellite and clock signals pass through. It numerically equals the sum of all the sub-delays...PTB. To average out the dimnal effects and measurement noise , 5-7 days of continuous measurements is required. 3 Setups at the Lab(k) The setup

  14. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  15. Laser Phase Errors in Seeded FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  16. The effect of uncertainty and systematic errors in hydrological modelling

    Science.gov (United States)

    Steinsland, I.; Engeland, K.; Johansen, S. S.; Øverleir-Petersen, A.; Kolberg, S. A.

    2014-12-01

    The aims of hydrological model identification and calibration are to find the best possible set of process parametrization and parameter values that transform inputs (e.g. precipitation and temperature) to outputs (e.g. streamflow). These models enable us to make predictions of streamflow. Several sources of uncertainties have the potential to hamper the possibility of a robust model calibration and identification. In order to grasp the interaction between model parameters, inputs and streamflow, it is important to account for both systematic and random errors in inputs (e.g. precipitation and temperatures) and streamflows. By random errors we mean errors that are independent from time step to time step whereas by systematic errors we mean errors that persists for a longer period. Both random and systematic errors are important in the observation and interpolation of precipitation and temperature inputs. Important random errors comes from the measurements themselves and from the network of gauges. Important systematic errors originate from the under-catch in precipitation gauges and from unknown spatial trends that are approximated in the interpolation. For streamflow observations, the water level recordings might give random errors whereas the rating curve contributes mainly with a systematic error. In this study we want to answer the question "What is the effect of random and systematic errors in inputs and observed streamflow on estimated model parameters and streamflow predictions?". To answer we test systematically the effect of including uncertainties in inputs and streamflow during model calibration and simulation in distributed HBV model operating on daily time steps for the Osali catchment in Norway. The case study is based on observations from, uncertainty carefullt quantified, and increased uncertainties and systmatical errors are done realistically by for example removing a precipitation gauge from the network.We find that the systematical errors in

  17. A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)

    CERN Document Server

    Ruchti, G R; Lind, K; Caffau, E; Korn, A J; Schnurr, O; Hansen, C J; Koch, A; Sbordone, L; de Jong, R S

    2016-01-01

    The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extra-galactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, includin...

  18. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  19. (abstract) A VLBI Test of Tropospheric Delay Calibration with WVRs

    Science.gov (United States)

    Linfield, R. P.; Teitelbaum, L. P.; Keihm, S. J.; Resch, G. M.; Mahoney, M. J.; Treuhaft, R. N.

    1994-01-01

    Dual frequency (S/X band) very long baseline interferometry (VLBI) observations were used to test troposphere calibration by water vapor radiometers (WVRs). Comparison of the VLBI and WVR measurements show a statistical agreement (specifically, their structure functions agree) on time scales less than 700 seconds. On longer time scales, VLBI instrumental errors become important. The improvement in VLBI residual delays from WVR calibration was consistent with the measured level of tropospheric fluctuations.

  20. An attempt to calibrate the UHF strato-tropospheric radar at Arecibo using NexRad radar and disdrometer data

    Directory of Open Access Journals (Sweden)

    P. Kafando

    2004-12-01

    Full Text Available The goal of this paper is to present a methodology to calibrate the reflectivity of the UHF Strato-Tropospheric (ST radar located at NAIC in Puerto Rico. The UHF lower relevant altitude is at 5.9km, the melting layer being at around 4.8km. The data used for the calibration came from the observations of clouds, carried out with Strato-Tropospheric dual-wavelength (UHF and VHF radars and a disdrometer; those instruments being located on the NAIC site in Arecibo, Puerto Rico. The National Weather Service operates other instruments like the radiosondes and the NexRad Radar in other sites.

    The proposed method proceeds in two steps. The first consists of the comparison between the NexRad reflectivity and the reflectivity computed from the drop size distributions measured by the disdrometer for one day with a noticeable rainfall rate. In spite of the distance of both instruments, the agreement between the reflectivities of both instruments is enough good to be used as a reference for the UHF ST radar. The errors relative at each data set is found to be 2.75dB for the disdrometer and 4dB for the NexRad radar, following the approach of Hocking et al. (2001. The inadequacy between the two sampled volume is an important contribution in the errors.

    The second step consists of the comparison between the NexRad radar reflectivity and the UHF non-calibrated reflectivity at the 4 altitudes of common observations during one event on 15 October 1998. Similar features are observed and a coefficient is deduced. An offset around 4.7dB is observed and the correlation factor lies between 0.628 and 0.730. According to the errors of the data sets, the precision on the calibration is of the order of 2dB. This method works only when there are precipitation hydrometeors above the NAIC site. However, the result of the calibration could be applied to other data obtained during the campaign, the only

  1. Wavelength-shifted Cherenkov radiators

    Science.gov (United States)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  2. An integrating sphere radiometer as a solution for high power calibrations in fibre optics

    Science.gov (United States)

    Carrasco-Sanz, Ana; Rodríguez-Barrios, Félix; Corredera, Pedro; Martín-López, Sonia; González-Herráez, Miguel; Hernanz, María Luisa

    2006-04-01

    This paper describes the design, characterization and calibration of a high power transfer standard for optical power measurements in optical fibres based on an integrating sphere radiometer. This radiometer, based on two detectors (Si and InGaAs), can measure powers between 100 nW and 10 W within the wavelength range of (400-1700) nm. The radiometer has been calibrated over the total spectral range of use against an electrically calibrated pyroelectric radiometer and different fibre laser diodes and ion lasers. The total uncertainty obtained is lower than ±1.5% for these wavelengths and power ranges (excluding the water absorption region).

  3. Landsat-8 Operational Land Imager Radiometric Calibration and Stability

    Directory of Open Access Journals (Sweden)

    Brian Markham

    2014-12-01

    Full Text Available The Landsat-8 Operational Land Imager (OLI was radiometrically calibrated prior to launch in terms of spectral radiance, using an integrating sphere source traceable to National Institute of Standards and Technology (NIST standards of spectral irradiance. It was calibrated on-orbit in terms of reflectance using diffusers characterized prior to launch using NIST traceable standards. The radiance calibration was performed with an uncertainty of ~3%; the reflectance calibration to an uncertainty of ~2%. On-orbit, multiple calibration techniques indicate that the sensor has been stable to better than 0.3% to date, with the exception of the shortest wavelength band, which has degraded about 1.0%. A transfer to orbit experiment conducted using the OLI’s heliostat-illuminated diffuser suggests that some bands increased in sensitivity on transition to orbit by as much as 5%, with an uncertainty of ~2.5%. On-orbit comparisons to other instruments and vicarious calibration techniques show the radiance (without a transfer to orbit adjustment, and reflectance calibrations generally agree with other instruments and ground measurements to within the uncertainties. Calibration coefficients are provided with the data products to convert to either radiance or reflectance units.

  4. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    Science.gov (United States)

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  5. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Eliasson, Anna; Olsson, Lisbeth

    2004-01-01

    -wavelength culture fluorescence. The excitation wavelength ranged from 270 to 550 nm with 20 nm steps and the emission wavelength range was from 310 to 590 nm also with 20 nm steps. The obtained spectra were analysed chemometrically with the multi-way technique, parallel factor analysis (PARAFAC), resulting...... in a decomposition of the multivariate fluorescent landscape, whereby underlying spectra of the individual intrinsic fluorophors present in the cell mass were estimated. Furthermore, gravimetrically determined cell mass concentration was used together with the fluorescence spectra for calibration and validation......-line monitoring of culture fluorescence can be used for estimation of the cell mass concentration during cultivations....

  6. Predictive error analysis for a water resource management model

    Science.gov (United States)

    Gallagher, Mark; Doherty, John

    2007-02-01

    SummaryIn calibrating a model, a set of parameters is assigned to the model which will be employed for the making of all future predictions. If these parameters are estimated through solution of an inverse problem, formulated to be properly posed through either pre-calibration or mathematical regularisation, then solution of this inverse problem will, of necessity, lead to a simplified parameter set that omits the details of reality, while still fitting historical data acceptably well. Furthermore, estimates of parameters so obtained will be contaminated by measurement noise. Both of these phenomena will lead to errors in predictions made by the model, with the potential for error increasing with the hydraulic property detail on which the prediction depends. Integrity of model usage demands that model predictions be accompanied by some estimate of the possible errors associated with them. The present paper applies theory developed in a previous work to the analysis of predictive error associated with a real world, water resource management model. The analysis offers many challenges, including the fact that the model is a complex one that was partly calibrated by hand. Nevertheless, it is typical of models which are commonly employed as the basis for the making of important decisions, and for which such an analysis must be made. The potential errors associated with point-based and averaged water level and creek inflow predictions are examined, together with the dependence of these errors on the amount of averaging involved. Error variances associated with predictions made by the existing model are compared with "optimized error variances" that could have been obtained had calibration been undertaken in such a way as to minimize predictive error variance. The contributions by different parameter types to the overall error variance of selected predictions are also examined.

  7. Beowulf - Beta-Gamma Detector Calibration Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.

    2009-09-21

    Pacific Northwest National Laboratory (PNNL) has demonstrated significant advancement in using beta-gamma coincidence detectors to detect a wide range of radioxenon isotopes. To obtain accurate activities with the detector it must be properly calibrated by measuring a series of calibration gas samples. The data is analyzed to create the calibration block used in the International Monitoring System file format. Doing the calibration manually has proven to be tedious and prone to errors, requiring a high degree of expertise. The Beowulf graphical user interface (GUI) is a software application that encompasses several components of the calibration task and generates a calibration block, as well as, a detailed report describing the specific calibration process used. This additional document can be used as a Quality assurance certificate to assist in auditing the calibration. This paper consists of two sections. Section 1 will describe the capabilities of Beowulf and section 2 will be a representative report generated or the 137Cs calibration and quality assurance source.

  8. New in-situ, non-intrusive calibration

    Science.gov (United States)

    Zunino, Heather; Adrian, Ronald; Ding, Liuyang; Prestridge, Kathy

    2014-11-01

    Tomographic particle image velocimetry (PIV) experiments require precise and accurate camera calibration. Standard techniques make assumptions about hard-to-measure camera parameters (i.e. optical axis angle, distortions, etc.)-reducing the calibration accuracy. Additionally, vibrations and slight movements after calibration may cause significant errors-particularly for tomographic PIV. These problems are exacerbated when a calibration target cannot be placed within the test section. A new PIV camera calibration method has been developed to permit precise calibration without placing a calibration target inside the test section or scanning the target over a volume. The method is capable of correcting for dynamic calibration changes occurring between PIV laser pulses. A transparent calibration plate with fine marks on both sides is positioned on the test section window. Dual-plane mapping makes it possible to determine a mapping function containing both position and angular direction of central rays from particles. From this information, central rays can be traced into the test section with high accuracy. Image distortion by the lens and refraction at various air-glass-liquid interfaces are accounted for, and no information about the position or angle of the camera(s) is required.

  9. Outdoor relative radiometric calibration method using gray scale targets

    Institute of Scientific and Technical Information of China (English)

    DUAN; YiNi; YAN; Lei; YANG; Bin; JING; Xin; CHEN; Wei

    2013-01-01

    The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale targets. In this method, the idea of two substitutions is adopted. Sunlight is used to replace the integrating sphere light source, and gray scale targets are used to re-place the diffuser. In this way, images at different radiance levels obtained outdoors can calculate the relative radiometric cali-bration coefficients using the least square method. The characteristics of this method are as follows. Firstly, compared with la-boratory calibration, it greatly reduces the complexity of the calibration method and the test cost. Secondly, compared with the existing outdoor relative radiometric calibration of a single radiance level, it uses test images of different radiance levels to re-duce errors. Thirdly, it is easy to operate with fewer environmental requirements, has obvious advantages in the rapid calibra-tion of airborne remote sensors before or after flight and is practical in engineering. This paper theoretically and experimental-ly proves the feasibility of this method. Calibration experiments were conducted on the wide-view multispectral imager (WVMI) using this method, and the precision of this method was evaluated by analyzing the corrected images of large uniform targets on ground. The experiment results have demonstrated that the new method is effective and its precision meets the re-quirement of the absolute radiometric calibration.

  10. Effective Calibration of Low-Cost Soil Water Content Sensors

    Directory of Open Access Journals (Sweden)

    Heye Reemt Bogena

    2017-01-01

    Full Text Available Soil water content is a key variable for understanding and modelling ecohydrological processes. Low-cost electromagnetic sensors are increasingly being used to characterize the spatio-temporal dynamics of soil water content, despite the reduced accuracy of such sensors as compared to reference electromagnetic soil water content sensing methods such as time domain reflectometry. Here, we present an effective calibration method to improve the measurement accuracy of low-cost soil water content sensors taking the recently developed SMT100 sensor (Truebner GmbH, Neustadt, Germany as an example. We calibrated the sensor output of more than 700 SMT100 sensors to permittivity using a standard procedure based on five reference media with a known apparent dielectric permittivity (1 < Ka < 34.8. Our results showed that a sensor-specific calibration improved the accuracy of the calibration compared to single “universal” calibration. The associated additional effort in calibrating each sensor individually is relaxed by a dedicated calibration setup that enables the calibration of large numbers of sensors in limited time while minimizing errors in the calibration process.

  11. Reducing medication errors.

    Science.gov (United States)

    Nute, Christine

    2014-11-25

    Most nurses are involved in medicines management, which is integral to promoting patient safety. Medicines management is prone to errors, which depending on the error can cause patient injury, increased hospital stay and significant legal expenses. This article describes a new approach to help minimise drug errors within healthcare settings where medications are prescribed, dispensed or administered. The acronym DRAINS, which considers all aspects of medicines management before administration, was devised to reduce medication errors on a cardiothoracic intensive care unit.

  12. Calibration of PIXE yields using binary thin films on Si

    Energy Technology Data Exchange (ETDEWEB)

    Meersschaut, J., E-mail: Johan.Meersschaut@imec.be [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Carbonel, J.; Popovici, M. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Zhao, Q.; Vantomme, A. [IKS, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Vandervorst, W. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); IKS, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2014-07-15

    We describe the use of binary thin films on Si to calibrate the yields in proton-induced X-ray emission (PIXE) measurements. Besides of the element to be calibrated, the standards also contain a common reference element. The incorporation of a common reference element allows one to eliminate errors in the accumulated beam charge during the calibration of the PIXE set-up. The binary calibration standards allow us to determine the response function with an accuracy close to 1%. As an example, we will perform the calibration for Fe and Co, and we will determine the Co concentration in Fe{sub 1−x}Co{sub x} thin films.

  13. A HistogramBased Static Error Correction Technique for Flash ADCs: Implementation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we focus on practical issues in implementing a calibration technique for medium-resolution, highspeed flash analogtodigital converters (ADCs). In [1], we theoretically describ the calibration technique and perform a behaviorallevel simulation to test its functionality [1]. In this work, we discuss some issues in transistorlevel implementation. The predominant factors that contribute to static errors such as reference generator mismatch and trackandhold (T/H) gain error can be treated as inputreferred offsets of each comparator. Using the proposed calibration technique, these errors can be calibrated with minimal detriment to the dynamic performance of the converter. We simulate a transistorlevel implementation of a 5-bit, 1 GHz ADC in a 1.2 V, 65 nm CMOS process. The results show that DNL can be improved from 2.5 LSB to below 0.7 LSB after calibration, and INL can be improved from 1.6 LSB to below 0.6 LSB after calibration.

  14. Controlled calibration method for laser induced breakdown spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Chijian Zhang; Yuan Feng

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) is a potential technique for rapid analysis of samples present in solids, gases and liquids. In the last two decades it was an object of extensive studies. Controlled calibration method used to analysis the LIBS spectra is investigated. Compared with the inner calibration and calibration-free (CF) methods, this new method overcomes "matrix effect", and demonstrates a better ability to cope with the spectra. It is used to analyze natural soil, and errors of the concentration are decreased about 5%. The result shows that the new method is feasible and accurate.

  15. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  16. Demand Forecasting Errors

    OpenAIRE

    Mackie, Peter; Nellthorp, John; Laird, James

    2005-01-01

    Demand forecasts form a key input to the economic appraisal. As such any errors present within the demand forecasts will undermine the reliability of the economic appraisal. The minimization of demand forecasting errors is therefore important in the delivery of a robust appraisal. This issue is addressed in this note by introducing the key issues, and error types present within demand fore...

  17. When errors are rewarding

    NARCIS (Netherlands)

    Bruijn, E.R.A. de; Lange, F.P. de; Cramon, D.Y. von; Ullsperger, M.

    2009-01-01

    For social beings like humans, detecting one's own and others' errors is essential for efficient goal-directed behavior. Although one's own errors are always negative events, errors from other persons may be negative or positive depending on the social context. We used neuroimaging to disentangle br

  18. Accurate and simple calibration of DLP projector systems

    Science.gov (United States)

    Wilm, Jakob; Olesen, Oline V.; Larsen, Rasmus

    2014-03-01

    Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now available which require only a small number of calibration targets. The problem of obtaining these parameters for light projectors has not been studied as extensively and most current methods require a camera and involve feature extraction from a known projected pattern. In this work we present a novel calibration technique for DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination of parameters including lens distortion. Our implementation acquires printed planar calibration scenes in less than 1s. This makes our method both fast and convenient. We evaluate our method in terms of reprojection errors and structured light image reconstruction quality.

  19. Picometer Precision Measurements of Fringe Phase and Wavelengths in MAM

    Science.gov (United States)

    Pan, X.; Shao, M.; Goullioud, R.

    2004-12-01

    The Space Interferometry Mission (SIM), a micro-arcsecond astrometry mission, is the only mission, either operational or in planning, that will be capable of measuring the mass of extra-solar planets, mass being the fundamental property that determines whether the planet is capable of holding an Earth-like atmosphere. One of the SIM testbeds at JPL, the Micro-Arcsecond Metrology (MAM) testbed, addresses how to measure interferometer fringe phase and wavelengths accurately at the level of picometers (10-12 m). The MAM testbed uses a pathlength modulation scheme for fringe detection, using ten samples per stroke, with stroke-length close to the wavelength of a spectral channel. The MAM testbed has demonstrated the measurement of optical pathlength delays to picometer precision. Longer strokes (tens of microns) enable both fringe and modulation envelope to be detected, yielding accurate wavelength measurements at the picometer level for the first time. This paper describes the fundamental principles of a new technique for calibration and measurement of fringes for targets that have various spectra, in which effective wavelength varies significantly for different spectral channels. Test results and variations with time are analyzed. Conformation of measurenet accuracy and stability are described in this paper.

  20. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  1. Relevance of ellipse eccentricity for camera calibration

    Science.gov (United States)

    Mordwinzew, W.; Tietz, B.; Boochs, F.; Paulus, D.

    2015-05-01

    Plane circular targets are widely used within calibrations of optical sensors through photogrammetric set-ups. Due to this popularity, their advantages and disadvantages are also well studied in the scientific community. One main disadvantage occurs when the projected target is not parallel to the image plane. In this geometric constellation, the target has an elliptic geometry with an offset between its geometric and its projected center. This difference is referred to as ellipse eccentricity and is a systematic error which, if not treated accordingly, has a negative impact on the overall achievable accuracy. The magnitude and direction of eccentricity errors are dependent on various factors. The most important one is the target size. The bigger an ellipse in the image is, the bigger the error will be. Although correction models dealing with eccentricity have been available for decades, it is mostly seen as a planning task in which the aim is to choose the target size small enough so that the resulting eccentricity error remains negligible. Besides the fact that advanced mathematical models are available and that the influence of this error on camera calibration results is still not completely investigated, there are various additional reasons why bigger targets can or should not be avoided. One of them is the growing image resolution as a by-product from advancements in the sensor development. Here, smaller pixels have a lower S/N ratio, necessitating more pixels to assure geometric quality. Another scenario might need bigger targets due to larger scale differences whereas distant targets should still contain enough information in the image. In general, bigger ellipses contain more contour pixels and therefore more information. This supports the target-detection algorithms to perform better even at non-optimal conditions such as data from sensors with a high noise level. In contrast to rather simple measuring situations in a stereo or multi-image mode, the impact

  2. Photometric calibrations for 21st century science

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen; /Fermilab; Kaiser, Mary Elizabeth; /Johns Hopkins U.; Deustua, Susana E.; /Baltimore, Space Telescope Sci.; Smith, J.Allyn; /Austin Peay State U.; Adelman, Saul; /Citadel Military Coll.; Allam, Sahar S.; /Fermilab; Baptista, Brian; /Indiana U.; Bohlin, Ralph C.; /Baltimore, Space Telescope Sci.; Clem, James L.; /Louisiana State U.; Conley, Alex; /Colorado U.; Edelstein, Jerry; /UC, Berkeley, Space Sci. Dept. /NOAO, Tucson

    2009-02-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of

  3. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    Science.gov (United States)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  4. Monochromator-Based Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  5. Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    CERN Document Server

    Maire, Jérôme; De Rosa, Robert J; Perrin, Marshall D; Rajan, Abhijith; Savransky, Dmitry; Wang, Jason J; Ruffio, Jean-Baptiste; Wolff, Schuyler G; Chilcote, Jeffrey K; Doyon, René; Graham, James R; Greenbaum, Alexandra Z; Konopacky, Quinn M; Larkin, James E; Macintosh, Bruce A; Marois, Christian; Millar-Blanchaer, Max; Patience, Jennifer; Pueyo, Laurent A; Sivaramakrishnan, Anand; Thomas, Sandrine J; Weiss, Jason L

    2014-01-01

    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 $\\mu$m. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measur...

  6. A New Indicator for Optimal Preprocessing and Wavelengths Selection of Near-Infrared Spectra

    NARCIS (Netherlands)

    Skibsted, E.; Boelens, H.F.M.; Westerhuis, J.A.; Witte, D.T.; Smilde, A.K.

    2004-01-01

    Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing

  7. A New Indicator for Optimal Preprocessing and Wavelengths Selection of Near-Infrared Spectra

    NARCIS (Netherlands)

    Skibsted, E.; Boelens, H.F.M.; Westerhuis, J.A.; Witte, D.T.; Smilde, A.K.

    2004-01-01

    Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing tec

  8. A New Indicator for Optimal Preprocessing and Wavelengths Selection of Near-Infrared Spectra

    NARCIS (Netherlands)

    E. Skibsted; H.F.M. Boelens; J.A. Westerhuis; D.T. Witte; A.K. Smilde

    2004-01-01

    Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing tec

  9. A self-calibrating led-based solar test platform

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Sylvester-Hvid, Kristian O.; Jørgensen, Mikkel

    2011-01-01

    , it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED-based illumination system provides an alternative to light-biased incident photon-to-current efficiency measurement to be performed which we demonstrate. Both......A compact platform for testing solar cells is presented. The light source comprises a multi-wavelength high-power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range...... wavelengths intensities up to 10 suns is possible, and for a few wavelengths up to 30 suns can be reached. The setup is equipped with reference diodes and an optical fibre coupling enabling calibration, monitoring and control of the light impinging on the sample. Through a computer controlled interface...

  10. The Absolute Calibration of the EUV Imaging Spectrometer on Hinode

    CERN Document Server

    Warren, Harry P; Landi, Enrico

    2013-01-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. We also use ultra-deep (>10^5s) exposures of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  11. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  12. Wavelength-multiplexed entanglement distribution

    Science.gov (United States)

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2010-08-01

    The realization of an entanglement distribution optical fiber network connecting multiple parties would permit implementation of many information security applications such as entanglement-based quantum key distribution and quantum secret sharing. However, due to material absorption and scattering in optical fiber, photons that are the carriers of quantum entanglement experience loss during propagation and the overall photon arrival rate can be very low in such a network. One way to increase photon arrival rate is to make full use of the available transmission bandwidth of optical fiber and this is achievable via wavelength-multiplexing. We review our recent work on wavelength-multiplexed entanglement distribution and discuss system design considerations from a telecommunication engineering perspective.

  13. Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  14. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  15. A New Wavelength Selective Photoreceiver

    Institute of Scientific and Technical Information of China (English)

    LIU Kai; HUANG Yongqing; REN Xiaomin; LI Jianxin; GUO Wei

    2000-01-01

    A new kind of wavelength selective photoreceiver is proposed. It was constructed by a Fabry-Perot (F-P) etalon filter and a resonant cavity enhanced (RCE) photodetector. The photoreceiver′s spectral response is determined by the F-P etalon filter with a FWHM of less than 4 nm. Moreover, with such a photoreceiver, the transmission loss of the F-P etalon filter can be compensated to some extent. And this will benefit its applications.

  16. Miniaturized hyperspectral imager calibration and UAV flight campaigns

    Science.gov (United States)

    Saari, Heikki; Pölönen, Ilkka; Salo, Heikki; Honkavaara, Eija; Hakala, Teemu; Holmlund, Christer; Mäkynen, Jussi; Mannila, Rami; Antila, Tapani; Akujärvi, Altti

    2013-10-01

    VTT Technical Research Centre of Finland has developed Tunable Fabry-Perot Interferometer (FPI) based miniaturized hyperspectral imager which can be operated from light weight Unmanned Aerial Vehicles (UAV). The concept of the hyperspectral imager has been published in the SPIE Proc. 7474, 8174 and 8374. This instrument requires dedicated laboratory and on-board calibration procedures which are described. During summer 2012 extensive UAV Hyperspectral imaging campaigns in the wavelength range 400 - 900 nm at resolution range 10 - 40 nm @ FWHM were performed to study forest inventory, crop biomass and nitrogen distributions and environmental status of natural water applications. The instrument includes spectral band limiting filters which can be used for the on-board wavelength scale calibration by scanning the FPI pass band center wavelength through the low and high edge of the operational wavelength band. The procedure and results of the calibration tests will be presented. A short summary of the performed extensive UAV imaging campaign during summer 2012 will be presented.

  17. Towards the Long Wavelength Array

    Science.gov (United States)

    Kassim, N. E.; Erickson, W. C.

    2008-08-01

    Nearly three decades ago, the Very Large Array (VLA) opened the cm-wavelength radio sky to high-dynamic range imaging. By developing and exploiting new techniques to mitigate ionospheric phase fluctuations, the VLA 74 MHz system is providing the first sub-arcminute resolution view of the meter-wavelength radio universe. This technical innovation has inspired an emerging suite of much more powerful low-frequency instruments, including the Long Wavelength Array (LWA). The LWA, with its great collecting area (approaching one square kilometer at 20 MHz) and long baselines (up to 400 km), will surpass, by up to 2--3 orders of magnitude, the imaging power of any previous low-frequency interferometer. LWA science goals include Cosmic Evolution, the Acceleration of Relativistic Particles, Plasma Astrophysics, and Ionospheric & Space Weather Science. Because it will explore one of the last and most poorly investigated regions of the spectrum, the potential for unexpected new discoveries is high. For more on the LWA, see http://lwa.unm.edu. The LWA project is led by the University of New Mexico, and includes the Naval Research Laboratory, Applied Research Laboratories of U. Texas, Los Alamos National Laboratory, Virginia Tech, and U. Iowa, with cooperation from the National Radio Astronomy Observatory.

  18. Automatic magnetometer calibration with small space coverage

    Science.gov (United States)

    Wahdan, Ahmed

    The use of a standalone Global Navigation Satellite System (GNSS) has proved to be insufficient when navigating indoors or in urban canyons due to multipath or obstruction. Recent technological advances in low cost micro-electro-mechanical system (MEMS) -- based sensors (like accelerometers, gyroscopes and magnetometers) enabled the development of sensor-based navigation systems. Although MEMS sensors are low-cost, lightweight, small size, and have low-power consumption, they have complex error characteristics. Accurate computation of the heading angle (azimuth) is one of the most important aspects of any navigation system. It can be computed either by gyroscopes or magnetometers. Gyroscopes are inertial sensors that can provide the angular rate from which the heading can be calculated, however, their outputs drift with time. Moreover, the accumulated errors due to mathematical integration, performed to obtain the heading angle, lead to large heading errors. On the other hand, magnetometers do not suffer from drift and the calculation of heading does not suffer from error accumulation. They can provide an absolute heading from the magnetic north by sensing the earth's magnetic field. However, magnetometer readings are usually affected by magnetic fields, other than the earth magnetic field, and by other error sources; therefore magnetometer calibration is required to use magnetometer as a reliable source of heading in navigation applications. In this thesis, a framework for fast magnetometer calibration is proposed. This framework requires little space coverage with no user involvement in the calibration process, and does not need specific movements to be performed. The proposed techniques are capable of performing both 2-dimensional (2D) and 3-dimensional (3D) calibration for magnetometers. They are developed to consider different scenarios suitable for different applications, and can benefit from natural device movements. Some applications involve tethering the

  19. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  20. Iterative Magnetometer Calibration

    Science.gov (United States)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  1. Multi-DOF Incremental Optical Encoder with Laser Wavelength Compensation

    Directory of Open Access Journals (Sweden)

    Cha'o-Kuang Chen

    2013-09-01

    Full Text Available This study used a reflective diffraction grating as the medium to develop a multi-DOF incremental optical encoder for motion stage. The optical encoder can measure three angular displacements, roll, yaw and pitch of the motion stage simultaneously, as well as the horizontal straightness and linear displacement, summed to five DOF errors of motion stage by only using the positive and negative first-order diffracted light. The grating diffraction theory, Doppler effect, and optical interference technique were used. Two quadrant photodetectors were used to measure the changes in three-dimensional space of diffraction direction of diffracted light, in order to construct a multi-DOF incremental optical encoder. Considering the working stability of a laser diode and preventing the influence of the zeroth-order diffracted light returning to the laser diode, an additional optical isolation system was designed and a wavelength variation monitoring module was created. The compensation for the light source wavelength variation could be 0.001 nm. The multi-DOF verification results showed that the roll error is ±0.7/60 arcsec, the standard deviation is 0.025 arcsec; the yaw error is ±0.7/30 arcsec, the standard deviation is 0.05 arcsec; the pitch error is ±0.8/90 arcsec, the standard deviation is 0.18 arcsec, the horizontal straightness error is ±0.5/250 μm, the standard deviation is 0.05 μm and the linear displacement error is ±1/20000 μm, the standard deviation is 12 nm.

  2. Importance dosimetry of the systematic error in the twist of collimator on treatments VMAT; Importancia dosimetrica del error sistematico en el giro de colimador en tratamientos VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Puchades Puchades, V.; Serna Berna, A.; Mata Colodro, F.; Ramos Amores, D.

    2013-07-01

    The aim of this study is to assess the dosimetric impact produced by the presence of systematic errors associated to poor calibration of rotation of collimator with the VMAT treatment technique. (Author)

  3. Measurement Errors and Uncertainties Theory and Practice

    CERN Document Server

    Rabinovich, Semyon G

    2006-01-01

    Measurement Errors and Uncertainties addresses the most important problems that physicists and engineers encounter when estimating errors and uncertainty. Building from the fundamentals of measurement theory, the author develops the theory of accuracy of measurements and offers a wealth of practical recommendations and examples of applications. This new edition covers a wide range of subjects, including: - Basic concepts of metrology - Measuring instruments characterization, standardization and calibration -Estimation of errors and uncertainty of single and multiple measurements - Modern probability-based methods of estimating measurement uncertainty With this new edition, the author completes the development of the new theory of indirect measurements. This theory provides more accurate and efficient methods for processing indirect measurement data. It eliminates the need to calculate the correlation coefficient - a stumbling block in measurement data processing - and offers for the first time a way to obtain...

  4. Heliostat kinematic system calibration using uncalibrated cameras

    Science.gov (United States)

    Burisch, Michael; Gomez, Luis; Olasolo, David; Villasante, Cristobal

    2017-06-01

    The efficiency of the solar field greatly depends on the ability of the heliostats to precisely reflect solar radiation onto a central receiver. To control the heliostats with such a precision accurate knowledge of the motion of each of them modeled as a kinematic system is required. Determining the parameters of this system for each heliostat by a calibration system is crucial for the efficient operation of the solar field. For small sized heliostats being able to make such a calibration in a fast and automatic manner is imperative as the solar field potentially contain tens or even hundreds of thousands of them. A calibration system which can rapidly recalibrate a whole solar field would also allow reducing costs. Heliostats are generally designed to provide stability over a large period of time. Being able to relax this requirement and compensate any occurring error by adapting parameters in a model, the costs of the heliostat can be reduced. The presented method describes such an automatic calibration system using uncalibrated cameras rigidly attached to each heliostat. The cameras are used to observe targets spread out through the solar field; based on this the kinematic system of the heliostat can be estimated with high precision. A comparison of this approach to similar solutions shows the viability of the proposed solution.

  5. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  6. In-situ Broadband Cryogenic Calibration for Two-port Superconducting Microwave Resonators

    CERN Document Server

    Yeh, Jen-Hao

    2012-01-01

    In this paper we introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflection-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in-situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 minutes), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting reso...

  7. In situ broadband cryogenic calibration for two-port superconducting microwave resonators.

    Science.gov (United States)

    Yeh, Jen-Hao; Anlage, Steven M

    2013-03-01

    We introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflect-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 min), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave-chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting resonator.

  8. Borehole strainmeter measurements spanning the 2014, Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John O.

    2015-01-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  9. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John

    2015-10-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source, and the observed offsets ranged up to 400 parts per billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain tides predicted by a model. Although the borehole strainmeter accurately measures the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  10. Errors of measurement by laser goniometer

    Science.gov (United States)

    Agapov, Mikhail Y.; Bournashev, Milhail N.

    2000-11-01

    The report is dedicated to research of systematic errors of angle measurement by a dynamic laser goniometer (DLG) on the basis of a ring laser (RL), intended of certification of optical angle encoders (OE), and development of methods of separation the errors of different types and their algorithmic compensation. The OE was of the absolute photoelectric angle encoder type with an informational capacity of 14 bits. Cinematic connection with a rotary platform was made through mechanical connection unit (CU). The measurement and separation of a systematic error to components was carried out with applying of a method of cross-calibration at mutual turns OE in relation to DLG base and CU in relation to OE rotor. Then the Fourier analysis of observed data was made. The research of dynamic errors of angle measurements was made with use of dependence of measured angle between reference direction assigned by the interference null-indicator (NI) with an 8-faced optical polygon (OP), and direction defined by means of the OE, on angular rate of rotation. The obtained results allow to make algorithmic compensation of a systematic error and in the total considerably to reduce a total error of measurements.

  11. Using Dome C for MODIS calibration and characterization

    Science.gov (United States)

    Xiong, X.; Wu, A.; Wenny, B.

    2008-10-01

    MODIS is a scanning radiometer that has 36 spectral bands with wavelengths from visible (VIS) to long-wave infrared (LWIR). Its observations and data products have significantly enabled studies of changes in the Earth system of land, oceans, and atmosphere. Currently, there are two nearly identical MODIS instruments operated in space: one on the Terra spacecraft launched in December 1999 and another on the Aqua spacecraft lunched in May 2002. MODIS reflective solar bands (RSB) are calibrated on-orbit by a system that consists of a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) on a regular basis. Its thermal emissive bands (TEB) calibration is executed on a scan-by-scan basis using an on-board blackbody (BB). In addition to on-board calibrators (OBC), well-characterized ground targets have been used by MODIS calibration and validation scientists and by the MODIS Characterization Support Team (MCST) to evaluate and validate sensor on-orbit calibration, characterization, and performance. In this paper, we describe current MCST effort and progress made to examine sensor stability and inter-calibration consistency using observations over Dome Concordia, Antarctica. Results show that this site can provide useful calibration reference for a wide range of Earth-observing sensors.

  12. Research on the calibration of ultraviolet energy meters

    Science.gov (United States)

    Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming

    2016-10-01

    Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.

  13. Multi-Instrument Inter-Calibration (MIIC System

    Directory of Open Access Journals (Sweden)

    Chris Currey

    2016-11-01

    Full Text Available In order to have confidence in the long-term records of atmospheric and surface properties derived from satellite measurements it is important to know the stability and accuracy of the actual radiance or reflectance measurements. Climate quality measurements require accurate calibration of space-borne instruments. Inter-calibration is the process that ties the calibration of a target instrument to a more accurate, preferably SI-traceable, reference instrument by matching measurements in time, space, wavelength, and view angles. A major challenge for any inter-calibration study is to find and acquire matched samples from within the large data volumes distributed across Earth science data centers. Typically less than 0.1% of the instrument data are required for inter-calibration analysis. Software tools and networking middleware are necessary for intelligent selection and retrieval of matched samples from multiple instruments on separate spacecraft.  This paper discusses the Multi-Instrument Inter-Calibration (MIIC system, a web-based software framework used by the Climate Absolute Radiance and Refractivity Observatory (CLARREO Pathfinder mission to simplify the data management mechanics of inter-calibration. MIIC provides three main services: (1 inter-calibration event prediction; (2 data acquisition; and (3 data analysis. The combination of event prediction and powerful server-side functions reduces the data volume required for inter-calibration studies by several orders of magnitude, dramatically reducing network bandwidth and disk storage needs. MIIC provides generic retrospective analysis services capable of sifting through large data volumes of existing instrument data. The MIIC tiered design deployed at large institutional data centers can help international organizations, such as Global Space Based Inter-Calibration System (GSICS, more efficiently acquire matched data from multiple data centers. In this paper we describe the MIIC

  14. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise ge...

  15. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    is suggested to cope with the singular design matrix most often seen in chemometric calibration. Furthermore, the proposed algorithm may be generalized to all convex norms like Sigma/beta (j)/(gamma) where gamma greater than or equal to 1, i.e. a method that continuously varies from ridge regression...

  16. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  17. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  18. CALIBRATION OF PHOSWICH DETECTORS

    NARCIS (Netherlands)

    LEEGTE, HKW; KOLDENHOF, EE; BOONSTRA, AL; WILSCHUT, HW

    1992-01-01

    Two important aspects for the calibration of phoswich detector arrays have been investigated. It is shown that common gate ADCs can be used: The loss in particle identification due to fluctuations in the gate timing in multi-hit events can be corrected for by a simple procedure using the measured ti

  19. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  20. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.