WorldWideScience

Sample records for waveguide polarization twist

  1. Broadband terahertz polarization rotator based on a twisted parallel plate waveguide

    DEFF Research Database (Denmark)

    Kristensen, T. Bjørk; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    A broadband polarization rotator for terahertz waves is developed by 3D printing. The device is based on a twisted parallel plate waveguide.......A broadband polarization rotator for terahertz waves is developed by 3D printing. The device is based on a twisted parallel plate waveguide....

  2. Highly transparent twist polarizer metasurface

    Science.gov (United States)

    Faniayeu, Ihar; Khakhomov, Sergei; Semchenko, Igor; Mizeikis, Vygantas

    2017-09-01

    A twist polarizer metasurface for polarization rotation by an angle of 90 ° is proposed and realized at microwave frequencies. The metasurface consists of sub-wavelength metallic helices arranged periodically in a single layer and operates in transmission geometry with a nearly unity cross-polarization conversion coefficient at resonance. The structure exhibits low reflectivity R polarization orientation of the incident wave. Moreover, it can operate with high efficiency at oblique incidence angles of up to 35 ° . Such twist polarizer metasurfaces are potentially applicable as electromagnetic/optical isolators and frequency-selective polarization antennas.

  3. Quantum walks of photon pairs in twisted waveguide arrays

    Science.gov (United States)

    Vavulin, D. N.; Sukhorukov, A. A.

    2015-11-01

    We consider an array of closely spaced optical waveguides, which are twisted around a central axis along the propagation direction. We derive Schrodinger-type equation of the biphoton wavefunction, taking into account the waveguide bending through the appearance of additional phase in the coupling coefficients. We present an example of the evolution of quantum photon-pair state.

  4. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling o...

  5. Twist-3 Effects in Polarized Photon Structure

    Science.gov (United States)

    Baba, Hideshi; Sasaki, Ken; Uematsu, Tsuneo

    The polarized photon structure is described by two spin structure functions g1γ and g2γ which can be studied in the future polarized ep or e+e- colliders. Here we investigate the QCD twist-3 effects in g2γ to the leading order in QCD.

  6. Higher-twist correlations in polarized hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Tangerman, R.D.

    1996-09-16

    In this thesis we studied the response of polarized hadrons to several high-energy probes, working in the framework of the field theoretic model. Emphasis is laid upon higher-twist effects such as quark transverse momentum. The inclusive DIS process is very well suited to study QCD. From general principles we were able to derive four positivity constraints on the structure functions without invoking the helicity formalism. The on-shell quark model is used to illustrate these constraints. Subseqeuently, we concentrated on the higher-twist structure function g{sub 2}(x,Q{sup 2}). (orig./HSI).

  7. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Joshua Lee [Univ. of Tennessee, Knoxville, TN (United States)

    2008-12-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed

  8. Twist-3 effects for polarized virtual photon structure function g2γ

    Science.gov (United States)

    Sasaki, K.

    2003-03-01

    We investigate twist-3 effects in the polarized virtual photon. The structure function g2γ, which exists only for the virtual photon target and can be measured in future polarized e+e- collider experiments, receives both twist-2 and twist-3 contributions. The twist-3 part is analyzed in pure QED interaction as well as in LO QCD. We find the twist-3 contribution is appreciable for the photon in contrast to the nucleon case.

  9. Tolerance of polarization independent waveguides for communication devices

    NARCIS (Netherlands)

    Worhoff, Kerstin; Roeloffzen, C.G.H.; de Ridder, R.M.; Sengo, G.; Sengo, G.; Hilderink, L.T.H.; Driessen, A.

    2004-01-01

    A polarization independent optical waveguide structure suited for operation in the third communication window has been developed and optimized towards minimized dependence on deviations in the processing parameters and very low processing complexity. The tolerance analysis and optimization have been

  10. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  11. Polarized virtual photon structure function gγ2 and twist-3 effects in QCD

    Science.gov (United States)

    Baba, Hideshi; Sasaki, Ken; Uematsu, Tsuneo

    2002-06-01

    We investigate twist-3 effects in the polarized virtual photon structure. The structure functions gγ1 and gγ2 of a polarized photon could be experimentally studied in future polarized ep or e+e- colliders. The leading contributions to gγ1 are twist-2 effects, while another structure function gγ2, which exists only for the virtual photon target, receives not only twist-2 but also twist-3 contributions. We first show that twist-3 effects actually exist in the box-diagram contributions and we extract the twist-3 part, which can also be reproduced by the pure QED operator product expansion. We then calculate the nontrivial lowest moment (n=3) of the twist-3 contribution to gγ2 in QCD. For large Nc (the number of colors), the QCD analysis of twist-3 effects in the flavor nonsinglet part of gγ2 becomes tractable and we can obtain its moments in a compact form for all n.

  12. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  13. Polarization evolution of vector wave amplitudes in twisted fibers pumped by single and paired pulses.

    Science.gov (United States)

    Almanee, M; Haus, J W; Armas-Rivera, I; Beltrán-Pérez, G; Ibarra-Escamilla, B; Duran-Sanchez, M; Álvarez-Tamayo, R I; Kuzin, E A; Bracamontes-Rodríguez, Y E; Pottiez, O

    2016-11-01

    Nonlinear polarization dynamics of single and paired pulses in twisted fibers is experimentally and numerically studied. Accompanying a dramatic difference in the output spectrum when a single- or double-amplified soliton pulse is launched in the fiber, the output polarization for the two cases also reveals very different characteristics.

  14. Polarization of the excited states of twisted ethylene in a non-symmetrical environment

    NARCIS (Netherlands)

    Zijlstra, R.W J; van Duijnen, P.T.; de Vries, Alex

    1996-01-01

    The polarization behavior of the low lying excited states in the vicinity of the perpendicularly twisted (D-2d) ethylene has been investigated in a quantum mechanical CISD approach, in which the quantum system was embedded in a polarized dielectric continuum modeling a non-symmetrical distribution

  15. Compton scattering of twisted light: Angular distribution and polarization of scattered photons

    Science.gov (United States)

    Stock, S.; Surzhykov, A.; Fritzsche, S.; Seipt, D.

    2015-07-01

    Compton scattering of twisted photons is investigated within a nonrelativistic framework using first-order perturbation theory. We formulate the problem in the density-matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.

  16. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, A. M.; Boria, V. E. [Departamento de Comunicaciones-iTEAM, Universidad Politécnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Gimeno, B. [Departamento de Física Aplicada y Electromagnetismo-ICMUV, Universitat de València c/Dr. Moliner, 50, 46100 Valencia (Spain); Anza, S.; Vicente, C.; Gil, J. [Aurora Software and Testing S.L., Edificio de Desarrollo Empresarial 9B, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored.

  17. Magnetic planar waveguides as combined polarizers and spin-flippers for neutron microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Rühm, A. [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany); Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany); Major, J. [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)

    2013-04-21

    We propose waveguide structures which transform an incident unpolarized beam into a polarized microbeam and also can be used as spin-flippers by varying the incidence angle on the structure. We describe optimized structures combining these functions. Such waveguides could be used for the investigation of one-dimensional magnetic structures and could be implemented on any existing fixed wavelength reflectometer. -- Highlights: ► We propose a waveguide transforming a neutron beam into a polarized microbeam. ► This thin-film device acts as polarizer and spin-flipper for neutron microbeam. ► We calculate optimized parameters of this waveguide. ► Application of waveguides is in investigation of magnetic microstructures.

  18. Polarization-Entangled Photon Pairs From Periodically-Poled Crystalline Waveguides Over a Range of Frequencies.

    Science.gov (United States)

    Heberle, Dylan A; Levine, Zachary H

    2013-01-01

    We propose a method to extend the frequency range of polarization entanglement in periodically poled rubidium-doped potassium titanyl phosphate (Rb:KTP) waveguides. Our calculations predict that output wavelengths from 1130 nm to 1257 nm may be achieved using Rb:KTP by the appropriate selection of a direction of propagation for the waveguide. The fidelity using a poling period of 1 mm is approximately 0.98.

  19. High-efficiency dual-polarized patch antenna array with common waveguide feed

    OpenAIRE

    Vilaltella Esteve, Robert

    2013-01-01

    Treball realitzat a l'Institut für Hochfrequenztechnik (IHF)de la Universität Stuttgart [ANGLÈS] A concept for a dual-polarized patch antenna array with large bandwidth and high efficiency is proposed. A short overmoded waveguide section is connected to a square feed waveguide on one side, and to the common groundplane of a 2x2 or a 3x3 patch array on the other side. Each square-shaped patch is coupled to the waveguide by crossed slots in the groundplane. The coupled resonances of the patc...

  20. Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure.

    Science.gov (United States)

    Wang, Yi; Cao, Zhuangqi; Li, Honggen; Shen, Qishun; Yuan, Wen; Xiao, Pingping

    2009-08-03

    Electrical tuning of polarization beam splitting is demonstrated in the structure of symmetrical metal-cladding waveguide by introducing optically nonlinear material into both the coupling prism and the guiding layer. Due to the anisotropy of the coupling material, different excitation conditions for TE and TM modes are obtained, which results in polarization-dependent reflections and transmissions. And the splitting effect of the two orthogonally polarized beams can be manipulated through an electrical modulation of the guiding layer properties.

  1. Reducing the Dispersion of Periodic Structures with Twist and Polar Glide Symmetries.

    Science.gov (United States)

    Dahlberg, O; Mitchell-Thomas, R C; Quevedo-Teruel, O

    2017-08-31

    In this article, a number of guiding structures are proposed which take advantage of higher symmetries to vastly reduce the dispersion. These higher symmetries are obtained by executing additional geometrical operations to introduce more than one period into the unit cell of a periodic structure. The specific symmetry operations employed here are a combination of p-fold twist and polar glide. Our dispersion analysis shows that a mode in a structure possessing higher symmetries is less dispersive than in a conventional structure. It is also demonstrated that, similar to the previously studied Cartesian glide-symmetric structures, polar glide-symmetric structures also exhibit a frequency independent response. Promising applications of these structures are leaky-wave antennas which utilize the low frequency dependence.

  2. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more...

  3. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Science.gov (United States)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.; Ljungman, E. A.; Myers, P. D.; Thompson, J. K.; Tai, A.; Aidala, C. A.; Courant, E. D.; Krisch, A. D.; Leonova, M. A.; Lorenzon, W.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yang, T.; Derbenev, Y. S.; Morozov, V. S.; Kondratenko, A. M.

    2017-09-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV /c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9 - 120 GeV /c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  4. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Directory of Open Access Journals (Sweden)

    F. Antoulinakis

    2017-09-01

    Full Text Available Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC, use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120  GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120  GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  5. Effects of laser polarization in the expansion of plasma waveguides

    Science.gov (United States)

    Lemos, N.; Grismayer, T.; Cardoso, L.; Geada, J.; Figueira, G.; Dias, J. M.

    2013-10-01

    We experimentally demonstrate that a column of hydrogen plasma generated by an ultra-short (sub-picosecond), moderate intensity (˜1015-16 W.cm-2) laser, radially expands at a higher velocity when using a circularly polarized laser beam instead of a linearly polarized beam. Interferometry shows that after 1 ns there is a clear shock structure formed, that can be approximated to a cylindrical blast wave. The shock velocity was measured for plasmas created with linearly and circularly polarized laser beams, indicating an approximately 20% higher velocity for plasmas generated with a circularly polarized laser beam, thus implying a higher plasma electron temperature. The heating mechanism was determined to be the Above Threshold Ionization effect. The calculated electrum energy spectrum for a circularly polarized laser beam was broader when compared to the one generated by a linearly polarized laser beam, leading to a higher plasma temperature.

  6. Polarization-independent waveguides in air holes photonic crystals and its slow light

    Science.gov (United States)

    Fan, Qingbin; Li, Chuanqi; Liu, Wei; Lu, Ye; Zhang, Dongchuang

    2016-12-01

    A line-defect waveguide in a triangular lattice photonic crystal (PC) made of air holes in dielectric is demonstrated to support transverse magnetic (TM) as well as transverse electric (TE) guided modes simultaneously. A group of suitable geometric parameters were found to make the guided bands overlapped by means of Genetic Algorithm. The optimized waveguide realizes a polarization-independent single-mode transmission and wide operating bandwidth which reaches 0.012 Δ ω a / (2 π c) . Moreover, the guided modes are shown to exhibit a wide-bandwidth slow light and an extremely low group velocity dispersion in most frequency range.

  7. Mirror-based polarization-insensitive broadband vertical optical coupling for Si waveguide

    Science.gov (United States)

    Noriki, Akihiro; Amano, Takeru; Shimura, Daisuke; Onawa, Yosuke; Sasaki, Hironori; Yaegashi, Hiroki; Yamada, Koji; Nishi, Hidetaka; Tsuchizawa, Tai; Mori, Masahiko; Sakakibara, Yoichi

    2017-09-01

    To achieve an efficient, broadband, and polarization-insensitive vertical optical input/output for Si photonics, we demonstrated vertical optical coupling for a Si photonic wire waveguide with an integrated 45° mirror and a spot size converter. The output beam from the fabricated mirror was evaluated and a high-quality single mode beam was obtained. On the basis of coupling loss measurements, the coupling losses for the Si photonic wire waveguide were estimated to be 0.85 and 0.55 dB in TE and TM polarizations, respectively. The wavelength-dependent loss was ±0.1 dB over a wavelength range of 1500-1600 nm.

  8. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices.

    Science.gov (United States)

    Bonneau, Damien; Lobino, Mirko; Jiang, Pisu; Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H; Dorenbos, Sanders N; Zwiller, Val; Thompson, Mark G; O'Brien, Jeremy L

    2012-02-03

    We demonstrate fast polarization and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons, and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.

  9. Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings.

    Science.gov (United States)

    Wu, Shengbao; Xiao, Jinbiao

    2017-06-10

    A compact and broadband polarization rotator (PR) for silicon-based cross-slot waveguides using subwavelength gratings (SWGs) is proposed and analyzed. To significantly break the symmetry of the waveguide structure, the diagonal regular Si wires of the cross-slot waveguides are replaced with the full etching SWGs. Moreover, the special properties of the SWGs-whose effective index is adjustable-can effectively enhance the modal birefringence between the two lowest-order hybrid modes, resulting in a more compact device. By utilizing interference effect of the hybrid modes, both transverse electric to transverse magnetic (TE-to-TM) and TM-to-TE conversion can be efficiently realized. Numerical results show that a PR of 12.6 μm in length at a wavelength of 1.55 μm is achieved, where the polarization conversion efficiency (PCE) and insertion loss (IL) are, respectively, 97.2% and 0.71 dB, and the reflection loss is below -20.5  dB for both cases. Moreover, a wide bandwidth of ∼260  nm for both polarizations is obtained for keeping the PCE over 90% and IL below 1 dB. In addition, fabrication tolerances to the structural parameters are analyzed in detail, and field evolution along the propagation distance is also presented.

  10. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    Science.gov (United States)

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  11. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide.

    Science.gov (United States)

    Li, Ming; Zou, Chang-Ling; Ren, Xi-Feng; Xiong, Xiao; Cai, Yong-Jing; Guo, Guo-Ping; Tong, Li-Min; Guo, Guang-Can

    2015-04-08

    Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state Φ(+). Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495 ± 0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.

  12. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    Energy Technology Data Exchange (ETDEWEB)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy [Technical University of Denmark, Ørsteds Plads 349, 2800 Kgs. Lyngby (Denmark); Ardenkjær-Larsen, Jan Henrik, E-mail: jhar@elektro.dtu.dk [Technical University of Denmark, Ørsteds Plads 349, 2800 Kgs. Lyngby (Denmark); GE Healthcare, Park Alle 295, Brøndby (Denmark)

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.

  13. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

    Science.gov (United States)

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-01

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  14. Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding.

    Science.gov (United States)

    Gao, Shiming; Wang, Xiaoyan; Xie, Yanqiao; Hu, Peiran; Yan, Qiang

    2015-04-01

    A reconfigurable dual-channel all-optical logic gate is proposed and experimentally demonstrated using four-wave mixing in a silicon waveguide for polarization encoding signals. Six logic functions, XNOR, AND, NOR, XOR, AB¯, and A¯B are implemented at two different wavelength channels by adjusting the polarization states of two 10 Gb/s non-return-to-zero polarization-shift keying (NRZ-PolSK) signals modulated by 10-bit on-off keying (OOK) sequences. The eye diagrams of the logic signals are clearly observed, and the logic functions are well demonstrated as the two incident NRZ-PolSK signals are both modulated by the OOK sequences, which originate from 2(31)-1 pseudo-random binary sequences.

  15. Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide

    Science.gov (United States)

    Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.

    Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).

  16. Nonreciprocal lasing and polarization selectivity in silicon ring Raman lasers based on micro- and nano-scale waveguides

    Science.gov (United States)

    Vermeulen, N.

    2012-06-01

    In this paper I present a generic model that describes the lasing characteristics of continuous-wave circular and racetrack-shaped ring Raman lasers based on micro- and nano-scale silicon waveguides, including their lasing directionality and polarization behavior. This model explicitly takes into account the effective Raman gain values for forward and backward lasing, the Raman amplification in the bus waveguide, and the spatial gain variations for different polarization states in the ring structure. I show numerically that ring lasers based on micro-scale waveguides generate unidirectional lasing in either the forward or backward direction because of an asymmetry in nonlinear losses at near-infrared telecommunication wavelengths, whereas those based on nanowires yield only backward lasing due to a non-reciprocity in effective gain. Furthermore, the model indicates that backward lasing can yield a significantly higher lasing output at the bus waveguide facets than lasing in the forward direction. Finally, considering a TE-polarized pump input for a (100) grown silicon ring Raman laser, I demonstrate numerically that the polarization state of the lasing radiation strongly depends on whether micro-scale or nano-scale waveguides are used.

  17. Strip-loaded waveguides: low-cost and high-performance waveguide technology in single polarization applications

    Science.gov (United States)

    Clapp, Terry V.; DeGroot, Jon V., Jr.

    2005-03-01

    The continuous penetration of optical data transport into diverse applications is driving an imperative to find lower cost fabrication routes to high performance waveguides and devices. Strip-loaded waveguides (SLWG) offer a unique opportunity to enable ultra-low cost processing and excellent performance in these applications. In this paper we will show that simple waveguides and devices may be fabricated that have compelling performance metrics. Similarly it is shown that the waveguide design is easily accomplished and that the designs may be rendered with limiting precision using standard process tool-sets. The combination of good design and facile manufacturing practice suggests that, unlike conventional waveguide technology, the SLWG is eminently suited to a wide variety of applications. It will also be shown that the simplicity of the processing offers new opportunities to apply this approach to waveguides in a wide variety of materials and on diverse substrates. Forward design and rendition of devices with excellent reconciliation of measured performance with the design parameters provides a feasibility proof for the validity and manufacturability of the SLWG. Perhaps contrary to pre-conception it is proven that very low coupling loss with normal, single mode, fibres is readily achieved with waveguides of this type. This has been shown both by simulation and via the measured performance of devices. Processing of the test artifacts was via conventional silica-on-silicon planar waveguide manufacturing processes. However, other processes are shown to offer a strong proposition for much lower cost and a diversification of the utility and applicability of waveguides on many substrates.

  18. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-12-01

    Full Text Available Design of bandwidth-enhanced circularly polarized (CP patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM. In particular, the embedded meander line (EML structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  19. CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    B. T. P. MADHAV

    2016-02-01

    Full Text Available Coplanar waveguide fed circularly polarized microstrip patch antenna performance evaluation is presented in this paper. The broadband characteristics are attained by placing open end slot at the lower side of the antenna. The proposed design has the return loss of less than -10dB and VSWR<2 in the desired band of operation. A gain of 3dB to 4dB is attained in the desired band with good radiation characteristics and a suitable axial ratio of less than 3 dB is attained in the prescribed band of operation. Proposed antenna is fabricated on the FR4 substrate with dielectric constant of 4.4. Parametric analysis with change in substrate permittivity also performed and the optimized dimensions are presented in this work.

  20. Substrate Integrated Waveguide Fed Cavity Backed Slot Antenna for Circularly Polarized Application

    Directory of Open Access Journals (Sweden)

    Xiao Hong Zhang

    2013-01-01

    Full Text Available A novel planar low-profile cavity-backed slot antenna for circularly polarized applications is presented in this paper. The low-profile substrate integrated waveguide (SIW cavity is constructed on a single PCB substrate with two metal layers on the top and the bottom surfaces and metallized via array through the substrate. The SIW cavity is fed by a SIW transmission line. The two orthogonal degenerate cavities resonance TM110 mode are successfully stimulated and separated. The circularly polarized radiation has been generated from the crossed-slot structure whose two arms’ lengths have slight difference Its gain is higher than 5.4 dBi, the peak cross-polarization level is lower than −22 dB, and the maximum axial ratio (AR is about −1.5 dB. Compared with the previous presented low-profile cavity-backed slot antenna work, the spurious radiation from the proposed antenna’s feeding element is very low and it has less interference on the following circuits.

  1. Low-loss and wide-band polarization converter based on a hybrid plasmonic waveguide with symmetric Ag strips

    Science.gov (United States)

    Wang, Zhen; Wang, Jin; Zhai, Yumeng; Lu, Yunqing; Sun, Xiaohan

    2017-11-01

    We propose a polarization converter (PC) based on mode coupling in a hybrid plasmonic waveguide (HPW), comprising a Si waveguide, SiO2 layers surrounding the Si core, and two symmetrically arranged metal strips with respect to the optical axes. In this HPW structure, the surface-plasmon-polariton modes at the metal and SiO2 interfaces are hybridized with traditional optical modes within the SiO2 layer Two orthogonal hybrid polarization modes are thus excited. By exploiting the mode characteristics of these two hybrid polarization modes, a compact polarization converter is realized. Simulations indicate that polarization conversion is achieved with a polarization conversion efficiency (PCE) of 99.9%, an insertion loss (IL) of 0.82 dB and an extinction ratio (ER) of 30.4 dB at a wavelength of 155 nm for a conversion length of 4 . 58 μm. For the C-band, in a wavelength range of 1530-1565 nm the PCE is greater than 99.6% the IL is below 1 dB and the ER is larger than 24 dB. These performance values are an improvement over those reported HPW-based PCs

  2. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  3. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.

    Science.gov (United States)

    Dai, Daoxin; Wu, Hao; Zhang, Wei

    2015-10-09

    Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  4. Twist-induced birefringence in hexagonal photonic fibers

    Science.gov (United States)

    Tentori, D.; Garcia-Weidner, A.; Torres-Gómez, I.

    2011-09-01

    Photonic crystal optical fibers have much more degrees of freedom concerning the geometries and index contrasts than step-index fibers; therefore, the theoretical analysis of their performance is usually based on the finite element method. In this work, taking advantage of the similarities observed for twisted single-mode fibers: standard (SMF-28 and SMF- 28e) and hexagonal photonic fibers, we propose that in regard with polarization performance, photonic fibers can be described using a simpler model based on classical polarization optics. The main advantages of the matrix model we propose lie in its accuracy and generality: for each one of the selected wavelengths and input states of polarization, it allows a precise prediction of the output polarization state. The comparison of the experimental results measured for standard and photonic fibers with the theoretical model predictions indicates that in both cases, twist induced birefringence is produced not only by the medium's photoelasticity, but also by the waveguide (cladding/core structure and asymmetry) modification. In addition, for the photonic fiber, the non-symmetrical response to right and left twist allowed the identification of an initial twist as part of the residual elliptical birefringence.

  5. A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A; Issautier, A; Ostrowsky, D B; Alibart, O; Tanzilli, S [Laboratoire de Physique de la Matiere Condensee, CNRS UMR 6622, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2 (France); Herrmann, H; Sohler, W, E-mail: sebastien.tanzilli@unice.f [Angewandte Physik, Universitat-GH-Paderborn, Postfach 1621, D-4790 Paderborn (Germany)

    2010-10-15

    We report the realization of a fiber-coupled polarization entangled photon-pair source at 1310 nm based on a birefringent titanium in-diffused waveguide integrated into periodically poled lithium niobate. By making use of a dedicated and high-performance setup, we characterized the quantum properties of the pairs by measuring two-photon interference in both Hong-Ou-Mandel and standard Bell inequality configurations. For the two sets of measurements we obtained interference net visibilities reaching nearly 100%, which represent important and competitive results compared to those for the similar waveguide-based configurations already reported. These results prove the relevance of our approach as an enabling technology for long-distance quantum communication.

  6. 110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, R.; Ludwig, R.

    2010-01-01

    and difference frequency generation in a Ti:PPLN waveguide. Error-free operation with a negligible optical signal-to-noise ratio penalty for the signal after the OPC transmission without and with polarization scrambling was achieved. The results also show the polarization insensitivity of the OPC system using...

  7. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  8. Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers

    Science.gov (United States)

    Young, A. B.; Thijssen, A. C. T.; Beggs, D. M.; Androvitsaneas, P.; Kuipers, L.; Rarity, J. G.; Hughes, S.; Oulton, R.

    2015-10-01

    By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source. Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for a range of devices that can be realized with a QD in a PCW. We also show how suppression of quantum interference prevents dipole induced reflection in the waveguide, and highlight a fundamental breakdown of the semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.

  9. Mapping the broadband polarization properties of linear 2D SOI photonic crystal waveguides

    DEFF Research Database (Denmark)

    Canning, John; Skivesen, Nina; Kristensen, Martin

    2007-01-01

    Both quasi-TE and TM polarisation spectra for a silicon- on-insulator (SOI) waveguide are recorded over (1100-1700) nm using a broadband supercontinuum source. By studying both the input and output polarisation eigenstates we observe narrowband resonant cross coupling near the lowest quasi-TE mode...

  10. Dual Polarized near Field Probe Based on OMJ in Waveguide Technology Achieving More Than Octave Bandwidth

    DEFF Research Database (Denmark)

    Foged, L. J.; Giacomini, A.; Morbidini, R.

    2014-01-01

    correction techniques for high-order probes are feasible [6], they are highly demanding in terms of implementation complexity as well as in terms of calibration and post-processing time. In this paper, a new OMJ designed entirely in waveguide and capable of covering more than an octave bandwidth is presented...

  11. Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter.

    Science.gov (United States)

    Huang, C Y; Lin, C H; Chen, Y H; Huang, Y C

    2007-03-05

    We report the first experimental demonstration of electrically controlled Solc-type optical wavelength filters and TE-TM mode converters based on Ti-diffused periodically poled lithium niobate (Ti:PPLN) waveguides. A maximum mode conversion efficiency or a peak spectral transmittance of ~99% in the telecom C-L bands was obtained from a 9-mm long, 21.5-21.8-mum multiple-grating Ti:PPLN waveguide device with a switching voltage of as low as 22 V or 0.99 Vxd(mum)/L(cm), where d is the electrode separation and L is the electrode length. The spectral range of this device can be tuned by temperature at a rate of ~0.758 nm/ degrees C.

  12. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  13. Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device.

    Science.gov (United States)

    Arahira, Shin; Murai, Hitoshi

    2013-03-25

    In this paper we report the generation of wavelength-multiplexed polarization-entangled photon pairs in the 1.5-μm communication wavelength band by using cascaded optical second nonlinearities (sum-frequency generation and subsequent spontaneous parametric down-conversion, c-SFG/SPDC) in a periodically poled LiNbO(3) ridge waveguide device. The c-SFG/SPDC method makes it possible to fully use the broad spectral bandwidth of SPDC in nearly frequency-degenerate conditions, and can provide more than 50 pairs of wavelength channels for the entangled photon pairs in the 1.5-μm wavelength band, using only standard optical resources in the telecom field. Visibilities higher than 98% were clearly observed in two-photon interference fringes for all the wavelength channels under investigation (eight pairs). We further performed a detailed experimental investigation of the cross-talk characteristics and the impact of detuning the pump wavelengths.

  14. Fabrication of Proton-Exchange Waveguide Using Stoichiometric LiTaO3 for Guided Wave Electrooptic Modulators with Polarization-Reversed Structure

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-01-01

    Full Text Available Optical waveguides were fabricated on z-cut stoichiometric LiTaO3 (SLT by using the proton-exchange method. The surface index change for the extraordinary ray on the SLT substrate resulting from the proton exchange was 0.017, which coincided well with congruent LiTaO3 substrates. The proton exchange coefficient in the SLT was 0.25×10−12 cm2/s. The application of the SLT waveguide to a quasi-velocity-matched travelling-wave electrooptic modulator with periodically polarization-reversed structure is also reported.

  15. 110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide.

    Science.gov (United States)

    Hu, Hao; Nouroozi, Rahman; Ludwig, Reinhold; Schmidt-Langhorst, Carsten; Suche, Hubertus; Sohler, Wolfgang; Schubert, Colja

    2010-09-01

    We demonstrate 160 Gbit/s return-to-zero (RZ) differential quarternary phase-shift keying (DQPSK) signal transmission over a 110 km single-mode fiber by taking advantage of mid-span optical phase conjugation (OPC). The technique is based on nonlinear wavelength conversion by cascaded second harmonic and difference frequency generation in a Ti:PPLN waveguide. Error-free operation with a negligible optical signal-to-noise ratio penalty for the signal after the OPC transmission without and with polarization scrambling was achieved. The results also show the polarization insensitivity of the OPC system using a polarization diversity scheme.

  16. High-efficiency wavelength and polarization selective grating-waveguide structures for Yb:YAG thin-disk lasers

    Science.gov (United States)

    Rumpel, Martin; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-06-01

    We report on Grating Waveguide Structures (GWS) with a high diffraction efficiency used in Littrow configuration to select (and tune) the wavelength of an Yb:YAG thin-disk laser. The structures are composed of a multilayer HR coating, on which an additional low index layer (SiO2) and high index layer (Ta2O5) was deposited. A binary grating with a period of 580 nm is etched on top of the structure with a groove depth of 87 nm for GWS 1 and 72 nm for GWS 2. The simulation results show that the diffraction efficiency in the -1st order can reach a value of 99.99% for TE polarization, whereas it is only about 20% for TM polarization at 1030 nm. The grating was fabricated by standard interference lithography followed by a dry etching process to the desired groove depth. The spectroscopic measurement exhibited a diffraction efficiency of 99.6% for GWS 1 at 1030 nm and 99.7% for GWS 2 at 1048 nm. The devices were placed as end-mirror into the resonator of a Yb:YAG thin-disk laser. An output power of up to 110 W could be obtained from the laser in fundamental-mode operation (M2 ~ 1.2) with GWS 1, corresponding to an optical efficiency of ηoo = 36.2%. In multi-mode operation (M2 ~ 6) a power of 325 W with ηoo = 53.2% could be extracted. The spectral bandwidth of the emitted beam was measured using an Optical Spectrum Analyzer (OSA) to be less than 20 pm in fundamental-mode. We also showed a continuous wavelength tuning range of 46 nm for GWS 1 and of 38 nm for GWS 2. With a commercially available Stokes polarimeter the degree of linear polarization (DOLP) was measured to be higher than 98.6% over the whole power and wavelength tuning range.

  17. Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling.

    Science.gov (United States)

    Yang, Yisu; Djogo, Gligor; Haque, Moez; Herman, Peter R; Poon, Joyce K S

    2017-03-06

    We demonstrate the hybrid integration of an O-band vertical-cavity surface-emitting laser (VCSEL) onto a silicon photonic chip using a grating coupler that is optimized to simultaneously provide feedback to maintain the single emission polarization and efficient in-plane coupling. The grating coupler was fabricated on silicon-on-insulator using a standard silicon photonics foundry process, and integrated with a commercially available VCSEL. A transparent VCSEL submount was fabricated with femtosecond laser templating and chemical etching to simplify the passive and active alignment steps. A record-high VCSEL-to-chip coupling efficiency of -5 dB was obtained at a bias current of 2.5 mA. The slope efficiency and output power are competitive with microcavity hybrid silicon lasers. The results show the feasibility of VCSELs as low threshold current on-chip sources for silicon photonics.

  18. Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, R.; Ludwig, R.

    2010-01-01

    Polarization-insensitive wavelength conversion of a single channel 320 Gb/s RZ-DQPSK data signal using a Ti:PPLN waveguide in a bi-directional loop configuration with less than 0.5 dB polarization sensitivity is reported. The conversion efficiency with polarization scrambling of the signal was -21...... dB, which includes 9.2 dB of passive losses in the whole Ti:PPLN subsystem. In BER measurements error-free operation with 2 dB OSNR penalty for the converted signal was achieved. Theoretical and experimental investigations of the temporal shape and chirp of the converted data pulses show only very...

  19. Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide.

    Science.gov (United States)

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-08-18

    We demonstrate a stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short periodically-poled lithium niobate (PPLN) waveguide. Full quantum state tomographic measurement performed on the photon-pairs has revealed a very high state purity of 0.94, and an entanglement fidelity exceeding 0.96 at the low-rate-regime. At higher rates, entanglement quality degrades due to emission of multiple-pairs. Using a new model, we have confirmed that the observed degradation is largely due to double- and triple-pair emissions.

  20. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  1. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  2. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide.

    Science.gov (United States)

    Arahira, Shin; Namekata, Naoto; Kishimoto, Tadashi; Yaegashi, Hiroki; Inoue, Shuichiro

    2011-08-15

    We report the generation of high-purity correlated photon-pairs and polarization entanglement in a 1.5 μm telecommunication wavelength-band using cascaded χ((2)):χ((2)) processes, second-harmonic generation (SHG) and the following spontaneous parametric down conversion (SPDC), in a periodically poled LiNbO(3) (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we have achieved a coincidence-to-accidental ratio (CAR) higher than 4000 at 7.45×10(-5) of the mean number of the photon-pair per pulse. We also demonstrated that the maximum reach of the CAR was truly dark-count-limited by the single-photon detectors used here. This indicates that the fake (noise) photons were negligibly small in this system, even though the photon-pairs, the Raman noise photons, and the pump photons were in the same wavelength band. Polarization entangled photon pairs were also generated by constructing a Sagnac-loop-type interferometer which included the PPLN module and an optical phase-difference compensator to observe maximum entanglement. We achieved two-photon interference visibilities of 99.6% in the H/V basis and 98.7% in the diagonal basis. The peak coincidence count rate was approximately 50 counts per second at 10(-3) of the mean number of the photon-pair per pulse. © 2011 Optical Society of America

  3. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian

    2010-01-01

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range...

  4. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    Science.gov (United States)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-05-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  5. Twisted photons

    Science.gov (United States)

    Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis

    2007-05-01

    The orbital angular momentum of light represents a fundamentally new optical degree of freedom. Unlike linear momentum, or spin angular momentum, which is associated with the polarization of light, orbital angular momentum arises as a subtler and more complex consequence of the spatial distribution of the intensity and phase of an optical field - even down to the single photon limit. Consequently, researchers have only begun to appreciate its implications for our understanding of the many ways in which light and matter can interact, or its practical potential for quantum information applications. This article reviews some of the landmark advances in the study and use of the orbital angular momentum of photons, and in particular its potential for realizing high-dimensional quantum spaces.

  6. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  7. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  8. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  9. Magnetic waveguides for neutron reflectometry

    Science.gov (United States)

    Khaydukov, Yu.; Petrzhik, A. M.; Borisenko, I. V.; Kalabukhov, A.; Winkler, D.; Keller, T.; Ovsyannikov, G. A.; Keimer, B.

    2017-10-01

    We show that the sensitivity and depth selectivity of neutron reflectometry can be greatly enhanced through a waveguide design that takes advantage of the spin-dependent magnetic neutron scattering potential to steer spin-up and spin-down neutrons into waveguide modes with different depth profiles. Using a bilayer of manganate and ruthenate ferromagnets, we demonstrate that a magnetic waveguide structure with sharp spin-up and spin-down modes centered in the two different layers can be generated by adding a magnetically inactive capping layer. The resulting reflectometric data allow accurate and reliable determination of a small in-plane magnetization in the ruthenate layer, despite its immediate proximity to the manganate layer with much larger magnetization. Magnetic neutron waveguides thus enable depth-sensitive measurements of small electronic spin polarizations in a large variety of magnetic multilayers and devices.

  10. RF waveguide phase-directed power combiners

    Science.gov (United States)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  11. Twist Defect in Chiral Photonic Structures

    Science.gov (United States)

    Kopp, Victor I.; Genack, Azriel Z.

    2002-06-01

    We demonstrate that twisting one part of a chiral photonic structure about its helical axis produces a single circularly polarized localized mode that gives rise to an anomalous crossover in propagation. Up to a crossover thickness, this defect results in a peak in transmission and exponential scaling of the linewidth for a circularly polarized wave with the same handedness as structure. Above the crossover, however, the linewidth saturates and the defect mode can be excited only by the oppositely polarized wave, resulting in a peak in reflection instead of transmission.

  12. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George

    2012-01-01

    in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more...... tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help...

  13. Twisted Quantum Affine Algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    We give a highest weight classification of the finite-dimensional irreducible representations of twisted quantum affine algebras. As in the untwisted case, such representations are in one-to-one correspondence with n-tuples of monic polynomials in one variable. But whereas in the untwisted case n is the rank of the underlying finite-dimensional complex simple Lie algebra ?, in the twisted case n is the rank of the subalgebra of ? fixed by the diagram automorphism. The way in which such an n-tuple determines a representation is also more complicated than in the untwisted case.

  14. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  15. Metasurface Waveguides Applied to Matched Feeds for Reflector Antennas

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Jorgensen, Erik; Meincke, Peter

    2017-01-01

    Waveguides with anisotropic surface impedance boundaries have been investigated for the purpose of matched feeds for offset reflectors. Matched feeds employ higher order waveguide modes to cancel out cross polarization introduced by the offset geometry. Since the higher order modes propagate at d...

  16. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  17. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  18. Twisted aspirin crystals.

    Science.gov (United States)

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-06

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites.

  19. Optical Activity in Twisted Solid-Core Photonic Crystal Fibers

    Science.gov (United States)

    Xi, X. M.; Weiss, T.; Wong, G. K. L.; Biancalana, F.; Barnett, S. M.; Padgett, M. J.; St. J. Russell, P.

    2013-04-01

    In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly polarized but carry a small amount of orbital angular momentum caused by the interaction between the core mode and the hollow channels.

  20. Full color waveguide liquid crystal display.

    Science.gov (United States)

    Zhou, Xiaochen; Qin, Guangkui; Wang, Long; Chen, Zhuo; Xu, Xiaoguang; Dong, Youmei; Moheghi, Alireza; Yang, Deng-Ke

    2017-09-15

    We developed a waveguide liquid crystal display from a liquid crystal (LC)/polymer composite. It does not need polarizers or color filters. It is illuminated by color LEDs installed on its edge. The light produced by the edge LEDs is coupled into the display and then waveguided through the display. When the LC is in the transparent state, the incident light is waveguided through and no light comes out of the viewing side of the display. When the LC is in the scattering state, the incident light is scattered and comes out of the display. It can be used either for transparent display or for direct view display. The composite has a submillisecond response time, and a field sequential scheme can be used to display full color images. Because the display does not need polarizers or color filters, its energy efficiency is much higher than current liquid crystal displays.

  1. The Gravitational Field of a Twisted Skyrmion

    CERN Document Server

    Hadi, Miftachul; Husein, Andri

    2015-01-01

    We study nonlinear sigma model, especially Skyrme model without twist and Skyrme model with twist: twisted Skyrme model. Twist term, $mkz$, is indicated in vortex solution. We are interested to construct a space-time containing a string with Lagrangian plus a twist. To add gravity, we replace $\\eta^{\\mu\

  2. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  3. Twisting Light by Nonlinear Photonic Crystals

    Science.gov (United States)

    Bloch, Noa Voloch; Shemer, Keren; Shapira, Asia; Shiloh, Roy; Juwiler, Irit; Arie, Ady

    2012-06-01

    We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a Gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex’s structure and polarization.

  4. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    Spatial solitons are studied in a planar waveguide filled with nonlinear liquids. Spectral and spatial measurements for different geometries and input power of the laser beam show the influence of different nonlinear effects as stimulated scatterings on the soliton propagation and in particular on the beam polarization.

  5. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    Packard [15]. We present a study of the main experimental results we obtained in the last few years in nonlinear liquid waveguides. Polarization properties are particularly attractive, opening the door to applications in the field of optical switching and ...

  6. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  7. Twist limits for late twisting double somersaults on trampoline.

    Science.gov (United States)

    Yeadon, M R; Hiley, M J

    2017-06-14

    An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half...... were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...

  9. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1996-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  10. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1997-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  11. Color entanglement like effect in collinear twist-3 factorization

    Science.gov (United States)

    Zhou, Jian

    2017-12-01

    We study the color entanglement like effect for T-odd cases in collinear twist-3 factorization. For an example, we compute the transverse single spin asymmetry for direct photon production in pp collisions in a pure collinear twist-3 approach. By analyzing the gauge link structure of the collinear gluon distribution on the unpolarized target side, we demonstrate how the color entanglement-like effect arises in the presence of the additional gluon attachment from a polarized projectile. The result is consistent with that obtained from a hybrid approach calculation.

  12. Fluorescence Spectroscopy with Metal-Dielectric Waveguides.

    Science.gov (United States)

    Badugu, Ramachandram; Szmacinski, Henryk; Ray, Krishanu; Descrovi, Emiliano; Ricciardi, Serena; Zhang, Douguo; Chen, Junxue; Huo, Yiping; Lakowicz, Joseph R

    2015-07-16

    We describe a hybrid metal-dielectric waveguide structures (MDWs) with numerous potential applications in the biosciences. These structures consist of a thin metal film coated with a dielectric layer. Depending on the thickness of the dielectric layer, the modes can be localized near the metal, within the dielectric, or at the top surface of the dielectric. The optical modes in a metal-dielectric waveguide can have either S (TE) or P (TM) polarization. The dielectric spacer avoids the quenching, which usually occurs for fluorophores within about 5 nm from the metal. Additionally, the resonances display a sharp angular dependence and can exhibit several hundred-fold increases in intensity (E2) at the silica-air interface relative to the incident intensity. Fluorophores placed on top of the silica layer couple efficiently with the metal, resulting in a sharp angular distribution of emission through the metal and down from the bottom of the structure. This coupling occurs over large distances to several hundred nm away from the metal and was found to be consistent with simulations of the reflectivity of the metal-dielectric waveguides. Remarkably, for some silica thicknesses, the emission is almost completely coupled through the structure with little free-space emission away from the metal-dielectric waveguide. The efficiency of fluorophore coupling is related to the quality of the resonant modes sustained by the metal-dielectric waveguide, resulting in coupling of most of the emission through the metal into the underlying glass substrates. Metal-dielectric waveguides also provide a method to resolve the emission from surface-bound fluorophores from the bulk-phase fluorophores. Metal-dielectric waveguides are simple to fabricate for large surface areas, the resonance wavelength can be adjusted by the dielectric thickness, and the silica surface is suitable for coupling to biomolecules. Metal-dielectric waveguides can have numerous applications in diagnostics and high

  13. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...... which allows for simultaneous modal phase matching with the pump beam in a higher-order mode. Paired photons generated in each process are cross polarized and guided by different guiding mechanisms, which produces entanglement in both polarization and spatial mode. Theoretical analysis shows...... that the output quantum state has a high quality of hyperentanglement by spectral filtering with a bandwidth of a few nanometers, while off-chip compensation is not needed. This technique offers a path to realize an electrically pumped hyperentangled photon source....

  14. Chiral power change upon photoisomerization in twisted nematic liquid crystals.

    Science.gov (United States)

    Simoncelli, Sabrina; Aramendía, Pedro F

    2015-05-05

    In this work, we use the photoisomerization of azobenzenes, a phenanthrospirooxazine, and a fulgide in a twisted nematic liquid crystalline phase to change the chiral twisting power of the system. The changes are probed by the rotatory power of linearly polarized light. Time resolved and steady state experiments are carried out. The chiral change and the photoisomerization process have similar characteristic recovery times and activation energy, thus probing that the change is induced by the modification in the chemical composition of the photochromic dopant system. The amplitude of the light twisting power change correlates with the order change in the liquid crystal (LC) but not with the modification in the absorption characteristics of the system. This indicates that the driving force of the chiral change is the microscopic order modification in the LC phase that affects the helical pitch of the phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  16. Configurationally stable longitudinally twisted polycyclic aromatic compounds.

    Science.gov (United States)

    Walters, Robert S; Kraml, Christina M; Byrne, Neal; Ho, Douglas M; Qin, Qian; Coughlin, Frederick J; Bernhard, Stefan; Pascal, Robert A

    2008-12-03

    Two strategies for the synthesis of configurationally stable twisted polycyclic aromatic compounds (PACs) were pursued. The first approach employed dissymmetrically positioned 1-naphthyl substituents to bias the direction of twist in highly substituted PACs. 2,3-Bis(1-naphthyl)-1,4-diphenyltriphenylene (7) was prepared, and its meso cis-dinaphthyl and enantiomeric trans-dinaphthyl isomers were resolved by preparative supercritical fluid chromatography (SFC) on chiral supports. Similarly, several naphthyl-substituted derivatives of the more highly twisted 9,10,11,12,13,14-hexaphenylbenzo[b]triphenylene (2) were prepared. Of these, 10-(1-naphthyl)-9,11,12,14-tetraphenylbenzo[b]triphenylene (13) was resolved by SFC on a chiral support. The pure enantiomers of trans-7 showed moderately large specific rotations ([alpha]D(25) = -330 and +320 degrees), but the specific rotations for the enantiomers of 13 were unexpectedly small ([alpha]D(25) = -23 and +23 degrees). Computational studies suggest that the latter result is due to presence of a minor conformation of 13 possessing a larger rotation of opposite sign than the major conformation. Both 7 and 13 showed strong circular dichroism and moderately strong circularly polarized luminescence. A byproduct of these syntheses was 9,10,19,21-tetraphenyldiphenanthro[9,10-b:9,10-h]carbazole (15), a very crowded carbazole that exhibits an 81 degree end-to-end twist but is not resolvable. In the second approach, the large, twisted, polycyclic aromatic ligand 9,10,11,12,13,14-hexaphenylbenzo[h]naphtho[2,3-f]quinoline (21, an aza-2) was used to prepare the chiral, cyclometallated iridium(III) complex 4. The ligand 21 was prepared via an unusually stable benzannulated norbornadienone, for which the free energy of activation for decarbonylation was a remarkable 33.5 kcal/mol. The iridium complex 4 proved to be configurationally stable and resolvable by analytical HPLC on chiral supports, but the low solubility of 4 prevented its

  17. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    Science.gov (United States)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  18. Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Bang, Ole

    2015-01-01

    and dielectrics in this frequency range. Here we report on a novel twist on the classical tube waveguide where we deliberately introduce a thick and highly lossy cladding layer. By this we attenuate the field in the cladding and thus prevent interference with the core field. This mechanism breaks the well...

  19. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  20. Higher twist effects in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pirnay, Bjoern Michael

    2016-08-01

    In this work we explore the effects of higher twist power corrections on the deeply virtual Compton scattering process. The calculation of the helicity amplitudes for all possible polarization combinations is performed within the framework of QCD operator product expansion. As a result the known accuracy of the amplitudes is improved to include the (kinematic) twist-4 contributions. For the most part the analysis focuses on spin-1/2 targets, the answers for scalar targets conveniently emerge as a byproduct. We investigate the analytical structure of these corrections and prove consistency with QCD factorization. We give an estimation of the numerical impact of the sub-leading twist contributions for proton targets with the help of a phenomenological model for the nonperturbative proton generalized parton distributions. We compare different twist approximations and relate predictions for physical observables to experiments performed by the Hall A, CLAS, HERMES, H1 and ZEUS collaborations. The estimate also includes a numerical study for planned COMPASS-II runs. Throughout the analysis special emphasis is put on the convention dependence induced by finite twist truncation of scattering amplitudes.

  1. Inscription of 3D waveguides in diamond using an ultrafast laser

    CERN Document Server

    Courvoisier, Arnaud; Salter, Patrick S

    2016-01-01

    Three dimensional waveguides within the bulk of diamond are manufactured using ultrafast laser fabrication. High intensities within the focal volume of the laser cause breakdown of the diamond into a graphitic phase leading to a stress induced refractive index change in neighboring regions. Type II waveguiding is thus enabled between two adjacent graphitic tracks, but supporting just a single polarization state. We show that adaptive aberration correction during the laser processing allows the controlled fabrication of more complex structures beneath the surface of the diamond which can be used for 3D waveguide splitters and Type III waveguides which support both polarizations.

  2. Hybrid fiber resonator employing LRSPP waveguide coupler for gyroscope.

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Tang, Jie; Liu, Yi-Ran; Zhang, Xiao-Yang; Zhang, Tong

    2017-01-24

    Polarization error and temperature noise are two main limits to the performance of resonant fiber optic gyroscope (RFOG). To overcome these limits, we demonstrated a hybrid resonator consisting of a polymer-based long-range surface plasmon polariton (LRSPP) waveguide coupler and a silica fiber. Single-polarization property of LRSPP waveguide and the offsetting of the opposite thermo-optical characteristics between the polymer-based LRSPP waveguide and the silica fiber can effectively inhibit both the polarization error and the temperature noise of RFOG. The measured resonance spectrum of the hybrid resonator shows the absence of polarization noise. The temperature dependence of wavelength shift (TDWS) of resonator dropped to about 2 pm/°C, or even to 0 pm/°C with optimal structure, which dramatically improves the temperature stability of gyroscope system. In addition, the hybrid resonator also shows tremendous application potential in rate-grade and tactical-grade gyroscopes.

  3. Electrically controlled optical bandgap in a twisted photonic liquid crystal

    Science.gov (United States)

    Molina, Ismael; Adrián Reyes, J.; Avendaño, Carlos G.

    2011-06-01

    We consider a one-dimensional twisted photonic liquid crystal, which consists of N nematic liquid crystal slabs in a twisted configuration alternated by N isotropic dielectric layers under the action of a dc electric field (Edc) aligned along the periodicity axis. We write and solve numerically the corresponding Euler-Lagrange equations describing the nematic layer configuration. We express Maxwell's equations in a 4×4 matrix representation, and by using the transfer matrix formalism, we obtain the optical band structures at arbitrary incidence angles and different external electric fields. We have found that there exists a strong dependence of electric field on the transmission and reflection spectra in enhancing and extinguishing bandgaps. The analysis presented here allow us to propose an electrically shiftable universal rejection filter for incident waves of left- and right-circular polarization. It is observed that by increasing the electric field we can highly enhance the cross-polarized reflection bandgaps and suppress the co-polarized ones. We analyzed the optical spectra for different values of twist angle, different ratios between dielectric and nematic layer thicknesses and number of layers N. Also, we showed that the cross-polarized bandgaps are blue-shifted as the incidence angle gets larger.

  4. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  5. Dielectric Waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Orlovic, V.A.; Pachenko, V.; Scherbakov, I.A.

    2007-01-01

    Our recent results on planar and channel waveguide fabrication and lasers in the dielectric oxide materials Ti:sapphire and rare-earth-ion-doped potassium yttrium double tungstate (KYW) are reviewed. We have employed waveguide fabrication methods such as liquid phase epitaxy and reactive ion etching

  6. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  7. Waveguide metacouplers for in-plane polarimetry

    CERN Document Server

    Pors, Anders

    2016-01-01

    The state of polarization (SOP) is an inherent property of the vectorial nature of light and a crucial parameter in a wide range of remote sensing applications. Nevertheless, the SOP is rather cumbersome to probe experimentally, as conventional detectors only respond to the intensity of the light, hence loosing the phase information between orthogonal vector components. In this work, we propose a new type of polarimeter that is compact and well-suited for in-plane optical circuitry, while allowing for immediate determination of the SOP through simultaneous retrieval of the associated Stokes parameters. The polarimeter is based on plasmonic phase-gradient birefringent metasurfaces that facilitate normal incident light to launch in-plane photonic waveguide modes propagating in six predefined directions with the coupling efficiencies providing a direct measure of the incident SOP. The functionality and accuracy of the polarimeter, which essentially is an all-polarization sensitive waveguide metacoupler, is confi...

  8. Evolution of the Twist Subfamily Vertebrate Proteins: Discovery of a Signature Motif and Origin of the Twist1 Glycine-Rich Motifs in the Amino-Terminus Disordered Domain.

    Directory of Open Access Journals (Sweden)

    Yacidzohara Rodriguez

    Full Text Available Twist proteins belong to the basic helix-loop-helix (bHLH family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the region of highest diversity in Twist proteins is the N-terminus, we analyzed the conservation of this region in different vertebrate Twist proteins and study the sequence differences between Twist1 and Twist2 with emphasis on the glycine-rich regions found in Twist1. We found a highly conserved sequence motif in all Twist1 (SSSPVSPADDSLSNSEEE and Twist2 (SSSPVSPVDSLGTSEEE mammalian species with unknown function. Through sequence comparison we demonstrate that the Twist protein family ancestor was "Twist2-like" and the two glycine-rich regions found in Twist1 sequences were acquired late in evolution, apparently not at the same time. The second glycine-rich region started developing first in the fish vertebrate group, while the first glycine region arose afterwards within the reptiles. Disordered domain and secondary structure predictions showed that the amino acid sequence and disorder feature found at the N-terminus is highly evolutionary conserved and could be a functional site that interacts with other proteins. Detailed examination of the glycine-rich regions in the N-terminus of Twist1 demonstrate that the first region is completely aliphatic while the second region contains some polar residues that could be subject to post-translational modification. Phylogenetic and sequence space analysis showed that the Twist1 subfamily is the result of a gene duplication during Twist2 vertebrate fish evolution, and has undergone more evolutionary drift than Twist2. We identified a new signature motif that is characteristic of each Twist paralog and identified

  9. Evolution of the Twist Subfamily Vertebrate Proteins: Discovery of a Signature Motif and Origin of the Twist1 Glycine-Rich Motifs in the Amino-Terminus Disordered Domain.

    Science.gov (United States)

    Rodriguez, Yacidzohara; Gonzalez-Mendez, Ricardo R; Cadilla, Carmen L

    2016-01-01

    Twist proteins belong to the basic helix-loop-helix (bHLH) family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the region of highest diversity in Twist proteins is the N-terminus, we analyzed the conservation of this region in different vertebrate Twist proteins and study the sequence differences between Twist1 and Twist2 with emphasis on the glycine-rich regions found in Twist1. We found a highly conserved sequence motif in all Twist1 (SSSPVSPADDSLSNSEEE) and Twist2 (SSSPVSPVDSLGTSEEE) mammalian species with unknown function. Through sequence comparison we demonstrate that the Twist protein family ancestor was "Twist2-like" and the two glycine-rich regions found in Twist1 sequences were acquired late in evolution, apparently not at the same time. The second glycine-rich region started developing first in the fish vertebrate group, while the first glycine region arose afterwards within the reptiles. Disordered domain and secondary structure predictions showed that the amino acid sequence and disorder feature found at the N-terminus is highly evolutionary conserved and could be a functional site that interacts with other proteins. Detailed examination of the glycine-rich regions in the N-terminus of Twist1 demonstrate that the first region is completely aliphatic while the second region contains some polar residues that could be subject to post-translational modification. Phylogenetic and sequence space analysis showed that the Twist1 subfamily is the result of a gene duplication during Twist2 vertebrate fish evolution, and has undergone more evolutionary drift than Twist2. We identified a new signature motif that is characteristic of each Twist paralog and identified important residues within

  10. Waveguiding Light into Silicon Oxycarbide

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed Memon

    2017-05-01

    Full Text Available In this work, we demonstrate the fabrication of single mode optical waveguides in silicon oxycarbide (SiOC with a high refractive index n = 1.578 on silica (SiO2, exhibiting an index contrast of Δn = 8.2%. Silicon oxycarbide layers were deposited by reactive RF magnetron sputtering of a SiC target in a controlled process of argon and oxygen gases. The optical properties of SiOC film were measured with spectroscopic ellipsometry in the near-infrared range and the acquired refractive indices of the film exhibit anisotropy on the order of 10−2. The structure of the SiOC films is investigated with atomic force microscopy (AFM and scanning electron microscopy (SEM. The channel waveguides in SiOC are buried in SiO2 (n = 1.444 and defined with UV photolithography and reactive ion etching techniques. Propagation losses of about 4 dB/cm for both TE and TM polarizations at telecommunication wavelength 1550 nm are estimated with cut-back technique. Results indicate the potential of silicon oxycarbide for guided wave applications.

  11. Twist1- and Twist2-haploinsufficiency results in reduced bone formation.

    Directory of Open Access Journals (Sweden)

    Yanyu Huang

    Full Text Available Twist1 and Twist2 are highly homologous bHLH transcription factors that exhibit extensive highly overlapping expression profiles during development. While both proteins have been shown to inhibit osteogenesis, only Twist1 haploinsufficiency is associated with the premature synostosis of cranial sutures in mice and humans. On the other hand, biallelic Twist2 deficiency causes only a focal facial dermal dysplasia syndrome or additional cachexia and perinatal lethality in certain mouse strains. It is unclear how these proteins cooperate to synergistically regulate bone formation.Twist1 floxed mice (Twist1(f/f were bred with Twist2-Cre knock-in mice (Twist2(Cre/+ to generate Twist1 and Twist2 haploinsufficient mice (Twist1(f/+; Twist2(Cre/+. X-radiography, micro-CT scans, alcian blue/alizarin red staining, trap staining, BrdU labeling, immunohistochemistry, in situ hybridizations, real-time PCR and dual luciferase assay were employed to investigate the overall skeletal defects and the bone-associated molecular and cellular changes of Twist1(f/+;Twist2(Cre/+ mice.Twist1 and Twist2 haploinsufficient mice did not present with premature ossification and craniosynostosis; instead they displayed reduced bone formation, impaired proliferation and differentiation of osteoprogenitors. These mice exhibited decreased expressions of Fgf2 and Fgfr1-4 in bone, resulting in a down-regulation of FGF signaling. Furthermore, in vitro studies indicated that both Twist1 and Twist2 stimulated 4.9 kb Fgfr2 promoter activity in the presence of E12, a Twist binding partner.These data demonstrated that Twist1- and Twist2-haploinsufficiency caused reduced bone formation due to compromised FGF signaling.

  12. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3...

  13. Optical Properties of a One-Dimensional Photonic Crystal Containing a Twisted Nematic Liquid Crystal Defect Layer

    Science.gov (United States)

    Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    We analyze the optical properties of a one-dimensional photonic crystal containing a twisted nematic liquid crystal (NLC) defect layer. For randomly polarized light incidence, two photonic defect modes were found to appear in the photonic band gap of the one-dimensional photonic crystal, and were associated either with the molecular long axis experiencing the averaged extraordinary refractive index or the molecular short axis experiencing the averaged ordinary refractive index, of the defect NLC layer. Numerical analyses also revealed that the transmitted light at the defect mode is linearly-polarized light at an angle which is determined both from the twist angle of the twisted NLC and the resulting optical rotatory power. When the thickness of the defect layer is sufficiently thin, optical rotation can be ignored and the output polarization angle is at half the twist angle for the long axis mode and at 90 degrees to that for the short axis mode.

  14. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic......This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...

  15. Microfabricated bragg waveguide

    Science.gov (United States)

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald

    2004-10-19

    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  16. Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation

    National Research Council Canada - National Science Library

    Meng, Tian; Huang, Yanyu; Wang, Suzhen; Zhang, Hua; Dechow, Paul C; Wang, Xiaofang; Qin, Chunlin; Shi, Bing; D'Souza, Rena N; Lu, Yongbo

    2015-01-01

    ...)) by breeding Twist1 floxed mice (Twist1(fl/fl)) with Twist2-Cre recombinase knockin mice (Twist2(Cre) (/+)). The Twist2(Cre) (/+);Twist1(fl/fl) embryos formed smaller tooth germs and abnormal cusps during early tooth morphogenesis...

  17. Thermal waveguide OPO.

    Science.gov (United States)

    Lin, S T; Lin, Y Y; Wang, T D; Huang, Y C

    2010-01-18

    We report a mid-infrared, CW singly resonant optical parametric oscillator (OPO) with a thermally induced waveguide in its gain crystal. We measured a numerical aperture of 0.0062 for the waveguide at 80-W intracavity power at 3.2 microm. This thermal-guiding effect benefits to the stable operation of an OPO and improves the parametric conversion efficiency by more than a factor of two when compared with that without thermal guiding.

  18. PHOTONIC CRYSTAL WAVEGUIDE BIOSENSOR

    Directory of Open Access Journals (Sweden)

    A. A. ZANISHEVSKAYA

    2013-04-01

    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  19. Peptide Optical waveguides.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. Hybrid modes in a square corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, K.

    2001-06-01

    By using two scalar eigenfunctions, electric and magnetic fields in the rectangular (or square) corrugated waveguide are analyzed. In a rectangular corrugated waveguide, the boundary conditions on two corrugated and two smooth walls can be satisfied to excite the hybrid mode. In a highly oversized waveguide where the wavelength of dominant mode is close to that in vacuum, two smooth walls can be exchanged with the corrugated walls because the boundary condition at this walls is satisfied approximately. The replacement is possible due to almost no penetration of the electromagnetic fields into the gap of the replaced walls when the direction of main electric field is parallel to the gap of replaced walls. This characteristic enables us to rotate the polarization of the hybrid mode in the oversized square waveguide with all four corrugated walls and is applicable to the remote steering antenna for electron cyclotron heating in the ITER. For a beam injection larger than the critical angle in this antenna, excited higher modes are at a considerably different wavelength from that in vacuum and result in the dissatisfaction of boundary conditions due to millimeter-wave penetration into corrugation gaps in replaced walls. (author)

  1. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  2. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  3. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    Sazzad Ali Biswas

    2017-08-07

    Aug 7, 2017 ... SAZZAD ALI BISWAS. Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri 603 103, India ... F of characteristic zero. In general, we do not have any explicit formula of epsilon factor of a twisted character ...... of one variable II, Lecture Notes in Mathematics 349 (1972) (Berlin: Springer) pp. 501–597.

  4. Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber

    Science.gov (United States)

    Wong, G. K. L.; Kang, M. S.; Lee, H. W.; Biancalana, F.; Conti, C.; Weiss, T.; Russell, P. St. J.

    2012-07-01

    Spiral twisting offers additional opportunities for controlling the loss, dispersion, and polarization state of light in optical fibers with noncircular guiding cores. Here, we report an effect that appears in continuously twisted photonic crystal fiber. Guided by the helical lattice of hollow channels, cladding light is forced to follow a spiral path. This diverts a fraction of the axial momentum flow into the azimuthal direction, leading to the formation of discrete orbital angular momentum states at wavelengths that scale linearly with the twist rate. Core-guided light phase-matches topologically to these leaky states, causing a series of dips in the transmitted spectrum. Twisted photonic crystal fiber has potential applications in, for example, band-rejection filters and dispersion control.

  5. Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian; Korotkova, Olga

    2009-11-23

    Radiation force of a focused scalar twisted Gaussian Schell-model (TGSM) beam on a Rayleigh dielectric sphere is investigated. It is found that the twist phase affects the radiation force and by raising the absolute value of the twist factor it is possible to increase both transverse and longitudinal trapping ranges at the real focus where the maximum on-axis intensity is located. Numerical calculations of radiation forces induced by a focused electromagnetic TGSM beam on a Rayleigh dielectric sphere are carried out. It is found that radiation force is closely related to the twist phase, degree of polarization and correlation factors of the initial beam. The trapping stability is also discussed.

  6. Twist angle determination in liquid crystal displays by location of local adiabatic points

    Science.gov (United States)

    Moreno, Ignacio; Bennis, Noureddine; Davis, Jeffrey A.; Ferreira, Carlos

    1998-12-01

    In this work we present a method for the determination of the twist angle of an arbitrary twisted nematic liquid crystal spatial light modulator. The method is based on the location of local adiabatic points, i.e., situations in which the liquid crystal SLM acts only as a rotation device. For these cases, the rotation induced on the polarization of the incident beam is equal to the twist angle. Consequently, the twist angle can be determined with high precision. We show that local adiabatic regime may be achieved in two ways, either by changing the incident beam wavelength, or by applying a voltage to the electrodes of the display. However, the simple model that describes the SLM in the off-state, may break down when a voltage is applied to the display, and it may affect the local adiabatic behaviour. We present theoretical and experimental results.

  7. Adiabatic/diabatic polarization beam splitter

    Science.gov (United States)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  8. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  9. Silicon-free, low-loss and high contrast polymer multimode waveguides

    Science.gov (United States)

    Abdul-Hadi, Jalal; Gauthier, Marc Andre; Packirisamy, Muthukumaran

    2017-10-01

    The fabrication and characterization of SU-8 multimode optical waveguides on fused quartz and silicon oxide substrates were successfully realized and analyzed. Optical losses for the transverse electric (TE) mode polarization of 0.58 dB cm-1 and 1.44 dB cm-1 and transverse magnetic (TM) mode polarization of 0.73 dB cm-1 and 1.16 dB cm-1 were measured for SU-8 waveguides on fused quartz and silicon oxide substrates, respectively. The fabrication process for SU-8 waveguides on quartz developed herein could be applied for SU-8 optical integrated devices on other substrate materials.

  10. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED.

    Science.gov (United States)

    No, You-Shin; Choi, Jae-Hyuck; Ee, Ho-Seok; Hwang, Min-Soo; Jeong, Kwang-Yong; Lee, Eun-Khwang; Seo, Min-Kyo; Kwon, Soon-Hong; Park, Hong-Gyu

    2013-02-13

    We demonstrate the efficient integration of an electrically driven nanowire (NW) light source with a double-strip plasmonic waveguide. A top-down-fabricated GaAs NW light-emitting diode (LED) is placed between two straight gold strip waveguides with the gap distance decreasing to 30 nm at the end of the waveguide and operated by current injection through the p-contact electrode acting as a plasmonic waveguide. Measurements of polarization-resolved images and spectra show that the light emission from the NW LED was coupled to a plasmonic waveguide mode, propagated through the waveguide, and was focused onto a subwavelength-sized spot of surface plasmon polaritons at the tapered end of the waveguide. Numerical simulation agreed well with these experimental results, confirming that a symmetric plasmonic waveguide mode was excited on the top surface of the waveguide. Our demonstration of a plasmonic waveguide coupled to an electrically driven NW LED represents important progress toward further miniaturization and practical implementation of ultracompact photonic integrated circuits.

  11. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  12. "Twisted" black holes are unphysical

    CERN Document Server

    Gray, Finnian; Schuster, Sebastian; Visser, Matt

    2016-01-01

    So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.

  13. Single-transverse-mode Ti:sapphire rib waveguide laser

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus

    2005-01-01

    Laser operation of Ti:sapphire rib waveguides fabricated using photolithography and ion beam etching in pulsed laser deposited layers is reported. Polarized laser emission was observed at 792.5 nm with an absorbed pump power threshold of 265 mW, which is more than a factor of 2 lower in comparison

  14. Waveguides for walking droplets

    CERN Document Server

    Filoux, Boris; Schlagheck, Peter; Vandewalle, Nicolas

    2015-01-01

    When gently placing a droplet onto a vertically vibrated bath, a drop can bounce permanently. Upon increasing the forcing acceleration, the droplet is propelled by the wave it generates and becomes a walker with a well defined speed. We investigate the confinement of a walker in different rectangular cavities, used as waveguides for the Faraday waves emitted by successive droplet bounces. By studying the walker velocities, we discover that 1d confinement is optimal for narrow channels. We also propose an analogy with waveguide models based on the observation of the Faraday instability within the channels.

  15. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  16. Metamaterial Loadings for Waveguide Miniaturization

    CERN Document Server

    Odabasi, H

    2013-01-01

    We show that a rectangular metallic waveguide loaded with metamaterial elements consisting of electric-field coupled (ELC) resonators placed at the side walls can operate well below the cutoff frequency of the respective unloaded waveguide. The dispersion diagrams indicate that propagating modes in ELC-loaded waveguides are of forward-type for both TE and TM modes. We also study the dispersion diagram and transmission characteristics of rectangular metallic waveguides simultaneously loaded with ELCs and split ring resonators (SRRs). Such doubly-loaded waveguides can support both forward wave and backward waves, and provide independent control of the propagation characteristics for the respective modes.

  17. Modeling and control of active twist aircraft

    Science.gov (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  18. Polarization-Conversion Guided Mode (PCGM) technique for exploring thin anisotropic surface layers.

    Science.gov (United States)

    Yang, Fuzi; Ruan, Lizhen; Sambles, John R

    2007-09-03

    A Polarization-Conversion Guided Mode (PCGM) technique has been developed to quantify optical anisotropy as low as 10-5 for a surface layer only 10 nm thick. The optical geometry consists of an index-fluid matched prism-coupler and an air-gap waveguide comprising the thin sample on a glass plate as the incident surface with a gold reflector forming the other surface of the guide. This allows non-destructive characterization of the optical anisotropy of surface layers. The polarization conversion signal is extraordinarily sensitive. Thus the influence of the polarization purity of the incoming beam, very small twists and/or tilts between the normal to the prism bottom surface and the sample plane, have all been analyzed in detail to allow extraction of the sought for information about the thin layer. Rubbed polyimide thin films and incline-evaporated SiOx layers, both used for liquid crystal alignment, have been examined by this PCGM technique to demonstrate its power.

  19. Dual-side backward coupler waveguide orthomode transducer for the 3 mm band

    Science.gov (United States)

    Navarrini, Alessandro; Nesti, Renzo

    2008-07-01

    We describe the design, construction, and characterization results of a waveguide Orthomode Transducer (OMT) for the 3 mm band (84-116 GHz.) The OMT is based on a symmetric backward coupling structure and has a square waveguide input port (2.54 mm × 2.54 mm) and two single-mode waveguide outputs: a standard WR10 rectangular waveguide (2.54 mm × 1.27 mm,) and an oval waveguide with full-radius corners. The reverse coupling structure is located in the common square waveguide arm and splits one polarization signal in two opposite rectangular waveguide sidearms using broadband -3 dB E-plane branch-line hybrid couplers. The device was optimized using a commercial 3D electromagnetic simulator. The OMT consists of two mechanical blocks fabricated in split-block configuration using conventional CNC milling machine. From 84 to 116 GHz the measured input reflection coefficient was less than -17 dB, the isolation between the outputs was less than -50 dB, the cross polarization was less than -30 dB, and the transmission was larger than -0.35 dB at room temperature for both polarization channels. The device is suitable for scaling to higher frequency.

  20. Symmetric Reverse-Coupling Waveguide Orthomode Transducer for the 3-mm Band

    Science.gov (United States)

    Navarrini, Alessandro; Nesti, Renzo

    2009-01-01

    We describe the design, construction, and performance of a waveguide orthomode transducer (OMT) for the 3-mm band (84-116 GHz). The OMT is based on a symmetric backward coupling structure and has a square waveguide input port (2.54 mm times 2.54 mm) and two single-mode waveguide outputs: a standard WR10 rectangular waveguide (2.54 mm times 1.27 mm), and an oval waveguide with full-radius corners. The reverse coupling structure is located in the common square waveguide arm and splits one polarization signal in two opposite rectangular waveguide sidearms using broadband -3-dB .E-plane branch-line hybrid couplers. The device was optimized using a commercial 3-D electromagnetic simulator. The OMT consists of two mechanical blocks fabricated in split- block configuration using conventional CNC milling machine. From 84 to 116 GHz, the measured input reflection coefficient was less than -17 dB, the cross polarization was less than -30 dB, the isolation between the outputs was greater than 50 dB, and the insertion loss was less than 0.35 dB at room temperature for both polarization channels. The device is suitable for scaling to higher frequency.

  1. Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation

    DEFF Research Database (Denmark)

    Maibohm, Christian

    defined and highly polarized. By UV excitation in a fluorescence microscope it has also been shown that nanofibers have waveguiding properties. To further characterize the waveguiding properties the optical near-field has to be investigated. This is done by transferring nanofibers to an quartz half sphere...

  2. Experimental investigation of plasmofluidic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Bonwoo; Kwon, Min-Suk, E-mail: mskwon@unist.ac.kr [School of Electrical and Computer Engineering, UNIST, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Shin, Jin-Soo [Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-16

    Plasmofluidic waveguides are based on guiding light which is strongly confined in fluid with the assistance of a surface plasmon polariton. To realize plasmofluidic waveguides, metal-insulator-silicon-insulator-metal (MISIM) waveguides, which are hybrid plasmonic waveguides fabricated using standard complementary metal-oxide-semiconductor technology, are employed. The insulator of the MISIM waveguide is removed to form 30-nm-wide channels, and they are filled with fluid. The plasmofluidic waveguide has a subwavelength-scale mode area since its mode is strongly confined in the fluid. The waveguides are experimentally characterized for different fluids. When the refractive index of the fluid is 1.440, the plasmofluidic waveguide with 190-nm-wide silicon has propagation loss of 0.46 dB/μm; the coupling loss between it and an ordinary silicon photonic waveguide is 1.79 dB. The propagation and coupling losses may be reduced if a few fabrication-induced imperfections are removed. The plasmofluidic waveguide may pave the way to a dynamically phase-tunable ultracompact device.

  3. Multiple Twisted -Euler Numbers and Polynomials Associated with -Adic -Integrals

    Directory of Open Access Journals (Sweden)

    Jang Lee-Chae

    2008-01-01

    Full Text Available By using -adic -integrals on , we define multiple twisted -Euler numbers and polynomials. We also find Witt's type formula for multiple twisted -Euler numbers and discuss some characterizations of multiple twisted -Euler Zeta functions. In particular, we construct multiple twisted Barnes' type -Euler polynomials and multiple twisted Barnes' type -Euler Zeta functions. Finally, we define multiple twisted Dirichlet's type -Euler numbers and polynomials, and give Witt's type formula for them.

  4. Controling twisting of wells by turbine method

    Energy Technology Data Exchange (ETDEWEB)

    Markov, O.A.; Burkin, Yu. V.; Dveriy, S.V.; Ivanov, B.A.; Romaniv, A.V.; Sereda, N.G.

    1985-01-01

    Methods are examined for controlling twisting of wells by turbine method using eccentric device and rotor method applying oriented assymmetrical flushing of the bit zone, as well as technique of studying the operation of drilling string in a twisted wellby computer.

  5. Higher twist effect in inclusive quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.P

    1997-06-01

    The higher twist effect in photo- and electro-production of quarkonium, where the quarkonium is a spin-triplet, S-wave state was analysed. It was found that the nonperturbative effect of next-to-leading twist is contained in four correlation functions related to the initial hadron. In photoproduction the effect of next-to-leading twist is suppressed by the inverse of the mass square of the quarkonium, while in electroproduction effect is suppressed only by the inverse of other large scales. An interesting fact is that at order of next-to-leading twist the quarkonium can be produced by the scattering of a photon with two gluons in the initial hadron. This results that the production of quarkonium via this subprocess is peaked in the forward direction and may help to study twist-4 effect. 16 refs., 4 figs.

  6. Wakefield in a waveguide

    Science.gov (United States)

    Bliokh, Y. P.; Leopold, J. G.; Shafir, G.; Shlapakovski, A.; Krasik, Ya. E.

    2017-06-01

    The feasibility of an experiment which is being set up in our plasma laboratory to study the effect of a wakefield formed by an ultra-short (≤10-9 s) high-power (˜1 GW) microwave (10 GHz) pulse propagating in a cylindrical waveguide filled with an under-dense [(2-5) × 1010 cm-3] plasma is modeled theoretically and simulated by a particle in cell code. It is shown that the radial ponderomotive force plays a circular key role in the wakefield formation by the TM mode waveguide. The model and the simulations show that powerful microwave pulses produce a wakefield at lower plasma density and electric field gradients but larger space and time scales compared to the laser produced wakefield in plasmas, thus providing a more accessible platform for the experimental study.

  7. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle

    2010-01-01

    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...

  8. Bulk diamond optical waveguides fabricated by focused femtosecond laser pulses

    Science.gov (United States)

    Hadden, J. P.; Sotillo, Belén.; Bharadwaj, Vibhav; Rampini, Stefano; Bosia, Federico; Picollo, Federico; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney T.; Osellame, Roberto; Miura, Kiyotaka; Ferrari, Maurizio; Ramponi, Roberta; Olivero, Paolo; Barclay, Paul E.; Eaton, Shane M.

    2017-02-01

    Diamond's nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.

  9. Terahertz chiral metamaterial based on twisted closed ring resonators

    Science.gov (United States)

    Stojanović, Danka B.; Beličev, Petra P.; Gligorić, Goran; Hadžievski, Ljupčo

    2018-01-01

    We present a chiral metamaterial (CMM) made of periodically distributed compact elements in a form of twisted closed ring resonators designed to be operational in terahertz (THz) frequency range. We analyze the three observed resonances in the absorption spectra and electric field distribution of linearly polarized incident electromagnetic waves. It has been shown that they arise due to excitation of symmetric and antisymmetric modes and are dependent on the geometry of resonant elements as well as the periodicity of the system. For the case of incident circularly polarized waves, a phenomenon of circular dichroism was observed, and its origin and dependency on the geometrical parameters and metal and dielectric losses was examined. This study indicates that the proposed CMM has a high potential for applications in the design of different THz components.

  10. Twist defect in chiral photonic structures with spatially varying pitch

    Science.gov (United States)

    Chen, Jiun-Yeu; Chen, Lien-Wen

    2005-04-01

    The properties of photonic defect modes in a chiral photonic structure were investigated using the finite element method. By stacking two cholesteric liquid crystal (ChLC) films, the defect mode due to the introduction of a twist defect was considered in both cases of chiral structures with constant pitch and spatially varying pitch. Two types of linear pitch gradients for achieving a broadband reflection were analysed, and the number of chiral pitches required for establishing the stop band was simulated. The effect of a finite sample thickness on the energy density distribution of the defect mode and on the required polarization of the incident light to excite the defect mode was studied. In both cases of constant pitch and spatially varying pitch, an unusual crossover behaviour in reflection at the defect resonance wavelength of a single circularly polarized mode appears when the structure thickness increases beyond a specific value. The energy distribution inside the sample also reveals the unusual distribution. Two different resonance wavelengths can be created by a twist defect in the ChLC composite film with linearly varying pitch, while only one resonance wavelength can be created in the identical film with constant pitch.

  11. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    Science.gov (United States)

    Liu, Xiaobao; Tang, Zhilie; Liao, Changjun; Lu, Yiqun; Zhao, Feng; Liu, Songhao

    2006-10-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45°, 135° linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers.

  12. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  13. Experimental Validation of the Sensitivity of Waveguide Grating Based Refractometric (Bio)sensors

    Science.gov (United States)

    Gartmann, Thomas E.; Kehl, Florian

    2015-01-01

    Despite the fact that the theoretical foundations of the sensitivity of waveguide grating based (bio)sensors are well-known, understood and their implications anticipated by the scientific community since several decades, to our knowledge, no prior publication has experimentally confirmed waveguide sensitivity for multiple film thicknesses, wavelengths and polarization of the propagating light. In this paper, the bulk refractive index sensitivity versus waveguide thickness of said refractometric sensors is experimentally determined and compared with predictions based on established theory. The effective refractive indices and the corresponding sensitivity were determined via the sensors’ coupling angles at different cover refractive indices for transverse electric as well as transverse magnetic polarized illumination at various wavelengths in the visible and near-infrared. The theoretical sensitivity was calculated by solving the mode equation for a three layer waveguide. PMID:25871832

  14. Trapping of ultracold polar molecules with a thin-wire electrostatic trap.

    Science.gov (United States)

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-10-05

    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.

  15. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  16. Twisting cracks in Bouligand structures.

    Science.gov (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-12-01

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang; Liu Yuan; Gao Dingshan, E-mail: dsgao@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  18. Leading twist generalized parton distributions and spin densities in a proton

    Science.gov (United States)

    Maji, Tanmay; Mondal, Chandan; Chakrabarti, Dipankar

    2017-07-01

    We evaluate both chirally even and odd generalized parton distributions (GPDs) in the leading twist in a recently proposed quark-diquark model for the proton where the light front wave functions are constructed from the soft-wall AdS/QCD prediction. The GPDs in transverse impact parameter space give the spin densities for different quark and proton polarizations. For longitudinally polarized proton only chiral even GPDs contribute but for transversely polarized proton both chiral even and chiral odd GPDs contribute to the spin densities. We present a detail study of the spin densities in this model.

  19. Development of waveguide sensors for the application in photoacoustic tomography

    Science.gov (United States)

    Nuster, R.; Paltauf, G.; Ditlbacher, H.; Burgholzer, P.

    2007-07-01

    Photoacoustic tomography (PAT) is based on the recording of the acoustic signals excited by illumination of a sample with short laser pulses. The detection of the acoustic signals can be realized either by small (point-like) detectors or by extended integrating detectors. The commonly applied detectors are arrays of small ultrasound transducers or single detectors scanning around the object. A rather new approach is the use of extended integrating detectors for acoustic wave monitoring to avoid the blurring effects of finite aperture sensors in PAT. The present study is focused on the development of integrating line detectors. This is implemented by a combination of a planar waveguide (PWG) and a common path polarization interferometer (CPPI). An arriving acoustic pulse modifies the birefringence of the waveguide material. This leads to a change of phase difference between two orthogonally polarized fundamental waveguide modes, which is converted into a modulation of intensity by an analyzer. The obtained noiseequivalent pressure value is ~1bar without averaging which is rather poor compared to other methods but it can be increased by using polymer waveguide materials with better relative elasto-optic coupling coefficients than polystyrene (C--19•10 -7 bar -1). The guiding polystyrene film had a thickness of 1.3 μm and was fabricated with a spin coating method. The bandwidth of the PWG sensor was limited only by the detection electronics to 125 MHz.

  20. Fiber-to-Waveguide and 3D Chip-to-Chip Light Coupling Based on Bent Metal-Clad Waveguides

    CERN Document Server

    Lu, Zhaolin; Shi, Kaifeng

    2016-01-01

    Efficient fiber-to-waveguide light coupling has been a key issue in integrated photonics for many years. The main challenge lies in the huge mode mismatch between an optical fiber and a single mode waveguide. Herein, we present a novel fiber-to-waveguide coupler, named "L-coupler", through which the light fed from the top of a chip can bend 90{\\deg} with low reflection and is then efficiently coupled into an on-chip Si waveguide within a short propagation distance (<20{\\mu}m). The key element is a bent metal-clad waveguide with a big matched input port. According to our finite-difference time-domain (FDTD) simulation, the coupling efficiency is over 80% within a broad range of working wavelengths in the near-infrared regime for a transverse electric input Gaussian wave. The coupler is polarization-dependent, with very low coupling efficiency (6%-9%) for transverse magnetic waves. The coupler can also be used for three-dimensional (3D) chip-to-chip optical interconnection by efficiently coupling light into ...

  1. Loss engineered slow light waveguides.

    Science.gov (United States)

    O'Faolain, L; Schulz, S A; Beggs, D M; White, T P; Spasenović, M; Kuipers, L; Morichetti, F; Melloni, A; Mazoyer, S; Hugonin, J P; Lalanne, P; Krauss, T F

    2010-12-20

    Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints.

  2. Analysis of integrated optical waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2002-01-01

    An overview of the analysis of integrated optical waveguides is presented. Starting from the Maxwell’s equations, a formulation of the problem for general 3-D structures will be introduced. Then, for longitudinally invariant structures, problem for waveguides with 2-D cross section is presented for

  3. Neutron resonances in planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S. V., E-mail: kozhevn@nf.jinr.ru, E-mail: kzh-sv@mail.ru; Ignatovich, V. K.; Petrenko, A. V. [Joint Institute for Nuclear Research, Neutron Physics Laboratory (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen und Energie (Germany)

    2016-12-15

    We report on the results of the experimental investigation of the spectral width of neutron resonances in planar waveguides using the time-of-flight method and recording the microbeam emerging from the waveguide end. Experimental data are compared with the results of theoretical calculations.

  4. Photophysical properties of trans-3-(4-monomethylamino-phenyl)-acrylonitrile: Evidence of twisted intramolecular charge transfer (TICT) process

    Science.gov (United States)

    Chakraborty, Amrita; Kar, Samiran; Guchhait, Nikhil

    2006-05-01

    A donor acceptor substituted aromatic system trans-3-(4-monomethylamino-phenyl)-acrylonitrile (MMAPA) has been synthesized and its photophysical behavior has been investigated in the solvent of different polarity by steady state absorption and emission, time-resolved emission and quantum chemical calculations. The observed dual fluorescence of MMAPA in polar aprotic solvents has been assigned to emission from the locally excited and twisted intramolecular charge transfer states. The low-energy emission in protic solvent is attributed to the hydrogen-bonded complex. Potential energy surfaces for the ground and excited states along the donor (-NHMe group) and acceptor (acrylonitrile group) twist coordinates have been calculated by time-dependent density functional theory (TDDFT) and time-dependent density functional theory-polarized continuum model (TDDFT-PCM) in the gas phase and in acetonitrile solvent, respectively. Calculations predict that the stabilized excited state along the twist coordinate is responsible for the solvent dependent red shifted charge transfer emission. It is found that the twisting along the donor site is energetically favorable compared to that of the acceptor site. The canonical crossing of the excited states for the twisting of the donor group and localized nitrogen lone pair orbital of -NHMe group at the perpendicular configuration with respect to p-orbitals of benzene ring support TICT model for photo-induced charge transfer reaction in MMAPA molecule.

  5. Folded waveguide resonator

    DEFF Research Database (Denmark)

    2013-01-01

    A waveguide resonator comprising a number of side walls defining a cavity enclosed by said sidewalls defining the cavity; and two or more conductive plates extending into the cavity, each conductive plate having a first side and a second side opposite the first side, and wherein the conductive...... plates are adapted to cause a standing electromagnetic wave to fold around the conductive plates along at least a first and a second direction and to extend on both sides of each of the conductive plates; wherein the conductive plates are adapted to cause the standing electromagnetic wave to fold...

  6. Thermal conductivity of twisted bilayer graphene.

    Science.gov (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan

    2014-11-21

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  7. Transmission properties of cryogenic twisted pair filters

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woon; Rehman, Mushtaq; Chong, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Ryu, Sangwan [Chonnam National University, Gwangju (Korea, Republic of)

    2010-12-15

    We fabricated a cryogenic low pass filter that consists of twisted pairs of manganin wires wrapped in copper tape and measured its transmission characteristics at frequencies up to 18 GHz. The dependence of the microwave transmission characteristics on the filter length was studied, which showed that a filter of length 1.0 m had a 70-dB attenuation at 1 GHz. We also studied the dependence of common- and differential-mode transmission on the number of twists per unit length and found that the number of twists per unit length affects differential-mode transmission but not common-mode transmission. Because the shielded twisted pair filter is more compact than a conventional copper powder filter, it can solve the space and thermal load issues when many cables are required for precision electronic transport experiments at low temperatures.

  8. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  9. Fibred knots and twisted Alexander invariants

    OpenAIRE

    Cha, Jae Choon

    2001-01-01

    We introduce a new algebraic topological technique to detect non-fibred knots in the three sphere using the twisted Alexander invariants. As an application, we show that for any Seifert matrix of a knot with a nontrivial Alexander polynomial, there exist infinitely many non-fibered knots with the given Seifert matrix. We illustrate examples of knots that have trivial Alexander polynomials but do not have twisted Alexander invariants of fibred knots.

  10. Plant Development: Lessons from Getting It Twisted.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-08-07

    In plants, one of the most understated developmental phenomena is that of straightness - a root will grow down, a petal will grow flat. A new mutant in Arabidopsis thaliana that displays twisting in petals and roots, at the organ and cell level, has been investigated. Strikingly, the twisting is always left-handed and is not due to underlying cytoskeletal skewing, as is the case in other known, phenotypically similar, mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numerical...

  12. Freeform Phononic Waveguides

    Directory of Open Access Journals (Sweden)

    Georgios Gkantzounis

    2017-11-01

    Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

  13. Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates.

    Science.gov (United States)

    Ke, Xianmin; Zhu, Hua; Li, Junhao; Chen, Lin; Li, Xun

    2017-04-03

    We demonstrate how it is possible to achieve weak dispersion in the phase delay between two orthogonal polarization states by using double-stacked hyperbolic metamaterial (HMM) waveguide arrays. The weak dispersion in the phase delay originates from the different signs of phase delay from the two different HMM waveguide arrays. The condition of dispersion-free phase delay for the transmitted waves has been theoretically derived from the transmission matrix as the propagation characteristic of the HMM waveguide is involved. We further reveal that the designed double-stacked HMM waveguide array can function as an efficient quarter-wave plate that enables the conversion of linearly polarized light to circularly polarized light within a broad frequency band. In addition, the bandwidth over which the degree of linear polarization is nearly unity and over which the angle of linear polarization is kept at approximately 45° is basically consistent with the phase bandwidth. This offers a promising approach for developing a practical polarization converter in the terahertz domain.

  14. The ideal imaging AR waveguide

    Science.gov (United States)

    Grey, David J.

    2017-06-01

    Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.

  15. Twist expression promotes migration and invasion in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kobayashi Yoshiyuki

    2009-07-01

    Full Text Available Abstract Background Twist, a transcription factor of the basic helix-loop-helix class, is reported to regulate cancer metastasis. It is known to induce epithelial-mesenchymal transition (EMT. In this study, we evaluated the expression of twist and its effect on cell migration in hepatocellular carcinoma (HCC. Methods We examined twist expression using immunohistochemistry in 20 tissue samples of hepatocellular carcinoma, and assessed twist expression in HCC cell lines by RT-PCR and Western blot analysis. Ectopic twist expression was created by introducing a twist construct in the twist-negative HCC cell lines. Endogenous twist expression was blocked by twist siRNA in the twist-positive HCC cell lines. We studied EMT related markers, E-cadherin, Vimentin, and N-cadherin by Western blot analysis. Cell proliferation was measured by MTT assay, and cell migration was measured by in vitro wound healing assay. We used immunofluorescent vinculin staining to visualize focal adhesion. Results We detected strong and intermediate twist expression in 7 of 20 tumor samples, and no significant twist expression was found in the tumor-free resection margins. In addition, we detected twist expression in HLE, HLF, and SK-Hep1 cells, but not in PLC/RPF/5, HepG2, and Huh7 cells. Ectopic twist-expressing cells demonstrated enhanced cell motility, but twist expression did not affect cell proliferation. Twist expression induced epithelial-mesenchymal transition together with related morphologic changes. Focal adhesion contact was reduced significantly in ectopic twist-expressing cells. Twist-siRNA-treated HLE, HLF, and SK-Hep1 cells demonstrated a reduction in cell migration by 50, 40 and 18%, respectively. Conclusion Twist induces migratory effect on hepatocellular carcinoma by causing epithelial-mesenchymal transition.

  16. Conoscopic patterns in photonic band gap of cholesteric liquid crystal cells with twist defects

    Science.gov (United States)

    Egorov, R. I.; Kiselev, A. D.

    2010-10-01

    We investigate theoretically the effects of the angle of incidence on light transmission through cholesteric liquid crystals. The systems are two-layer sandwich structures with a twist defect created by rotation of the one layer about the helical axis. The conoscopic images and polarization-resolved patterns are obtained for thick layers by computing the intensity and the polarization parameters as a function of the incidence angles. In addition to the defect angle-induced rotation of the pictures as a whole, the rings associated with the defect mode resonances are found to shrink to a central point and disappear, as the defect twist angle varies from zero to its limiting value π/2 and beyond.

  17. Hollow waveguide for urology treatment

    Science.gov (United States)

    Jelínková, H.; Němec, M.; Koranda, P.; Pokorný, J.; Kőhler, O.; Drlík, P.; Miyagi, M.; Iwai, K.; Matsuura, Y.

    2010-02-01

    The aim of our work was the application of the special sealed hollow waveguide system for the urology treatment - In our experimental study we have compared the effects of Ho:YAG (wavelength 2100 nm) and Er:YAG (wavelength 2940 nm) laser radiation both on human urinary stones (or compressed plaster samples which serve as a model) fragmentation and soft ureter tissue incision in vitro. Cyclic Olefin Polymer - coated silver (COP/Ag) hollow glass waveguides with inner and outer diameters 700 and 850 μm, respectively, were used for the experiment. To prevent any liquid to diminish and stop the transmission, the waveguide termination was utilized.

  18. Quantum plasmonic waveguides: Au nanowires

    Science.gov (United States)

    Cordaro, C. E. A.; Piccitto, G.; Priolo, F.

    2017-11-01

    Combining miniaturization and good operating speed is a compelling yet crucial task for our society. Plasmonic waveguides enable the possibility of carrying information at optical operating speed while maintaining the dimension of the device in the nanometer range. Here we present a theoretical study of plasmonic waveguides extending our investigation to structures so small that Quantum Size Effects (QSE) become non-negligible, namely quantum plasmonic waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface Plasmon (SP) resonance energy for an ultra-thin gold nanowire.

  19. A unified formulation of dichroic signals using the Borrmann effect and twisted photon beams

    OpenAIRE

    Collins, Stephen P; Lovesey, Stephen W

    2018-01-01

    Dichroic signals derived from the Borrmann effect and a twisted photon beam with topological charge l = 1 are formulated with an effective wavevector. The unification applies for non-magnetic and magnetic materials. Electronic degrees of freedom associated with an ion are encapsulated in multipoles previously used to interpret conventional dichroism and Bragg diffraction enhanced by an atomic resonance. A dichroic signal exploiting the Borrmann effect with a linearly polarized beam presents c...

  20. Fundamentals of optical waveguides

    CERN Document Server

    Okamoto, Katsunari

    2006-01-01

    Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate opti...

  1. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W

    1983-01-01

    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  2. Polymer Waveguide Fabrication Techniques

    Science.gov (United States)

    Ramey, Delvan A.

    1985-01-01

    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  3. Analysis of integrated optical waveguides

    OpenAIRE

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2002-01-01

    An overview of the analysis of integrated optical waveguides is presented. Starting from the Maxwell’s equations, a formulation of the problem for general 3-D structures will be introduced. Then, for longitudinally invariant structures, problem for waveguides with 2-D cross section is presented for vectorial, semivectorial, and scalar formulations. Simpler 1-D case for planar structure will then be discussed in more detail. A novel scheme developed for the analysis of planar structures is giv...

  4. Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch.

    Science.gov (United States)

    Vogele, Kilian; List, Jonathan; Pardatscher, Günther; Holland, Nolan B; Simmel, Friedrich C; Pirzer, Tobias

    2016-12-27

    Nanoscale plasmonic waveguides composed of metallic nanoparticles are capable of guiding electromagnetic energy below the optical diffraction limit. Signal feed-in and readout typically require the utilization of electronic effects or near-field optical techniques, whereas for their fabrication mainly lithographic methods are employed. Here we developed a switchable plasmonic waveguide assembled from gold nanoparticles (AuNPs) on a DNA origami structure that facilitates a simple spectroscopic excitation and readout. The waveguide is specifically excited at one end by a fluorescent dye, and energy transfer is detected at the other end via the fluorescence of a second dye. The transfer distance is beyond the multicolor FRET range and below the Abbé limit. The transmittance of the waveguide can also be reversibly switched by changing the position of a AuNP within the waveguide, which is tethered to the origami platform by a thermoresponsive peptide. High-yield fabrication of the plasmonic waveguides in bulk was achieved using silica particles as solid supports. Our findings enable bulk solution applications for plasmonic waveguides as light-focusing and light-polarizing elements below the diffraction limit.

  5. Twisted electron-acoustic waves in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, Islamabad 45650 (Pakistan); Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Ali, S.; Khan, S. A. [National Centre for Physics at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Shahzad, K. [Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan)

    2016-08-15

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  6. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  7. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  8. Supermodes of Chiral Photonic Filters with Combined Twist and Layer Defects

    Science.gov (United States)

    Hodgkinson, Ian J.; Wu, Qi Hong; de Silva, Lakshman; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh

    2003-11-01

    We consider the circularly polarized localized modes of chiral photonic structures with combined central twist and isotropic layer defects. The general filter is shown to suffer from anomalous remittance and saturation of linewidth as the thickness of the structure is increased. However, by choosing parameters that phase match the elements of the round-trip matrix of the isotropic layer defect, we demonstrate the existence of supermodes that maintain exceptional purity of polarization state and exponential decrease in linewidth as the thickness is increased.

  9. TWIST is Expressed in Human Gliomas, Promotes Invasion

    Directory of Open Access Journals (Sweden)

    Maria C. Elias

    2005-09-01

    Full Text Available TWIST is a basic helix-loop-helix (bHLH transcription factor that regulates mesodermal development, promotes tumor cell metastasis, and, in response to cytotoxic stress, enhances cell survival. Our screen for bHLH gene expression in rat C6 glioma revealed TWIST. To delineate a possible oncogenic role for TWIST in the human central nervous system (CNS, we analyzed TWIST message, protein expression in gliomas, normal brain. TWIST was detected in the large majority of human glioma-derived cell lines, human gliomas examined. Increased TWIST mRNA levels were associated with the highest grade gliomas, increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis, subsequent malignant progression. TWIST was also expressed in embryonic, fetal human brain, in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.

  10. Scattering loss of antiresonant reflecting optical waveguides

    OpenAIRE

    Baba, Toshihiko; Kokubun, Yasuo

    1991-01-01

    Scattering loss of two-dimensional ARROW-type waveguides, i.e., antiresonant reflecting optical waveguide (ARROW) and ARROW-B, is analyzed by the first-order perturbation theory. Calculated results are compared with those of conventional three-layer waveguides. Optimum design for the reduction of scattering loss of these ARROW-type waveguides is discussed. It was found that the scattering loss of ARROW-type waveguides is no larger than that of a conventional waveguide having a relative refrac...

  11. Analysis of gun barrel rifling twist

    Science.gov (United States)

    Sun, Jia; Chen, Guangsong; Qian, Linfang; Liu, Taisu

    2017-05-01

    Aiming at the problem of gun barrel rifling twist, the constraint relation between rifling and projectile is investigated. The constraint model of rifling and projectile is established and the geometric relation between the twist and the motion of projectile is analyzed. Based on the constraint model, according to the rotating band that is fired, the stress and the motion law of the rotating band in bore are analyzed. The effects to rotating band (double rotating band or wide driving band) caused by different rifling (rib rifling, increasing rifling and combined rifling) are also investigated. The model is demonstrated by several examples. The results of numerical examples and the constraint mode show that the uncertainty factors will be brought in the increasing rifling and combined rifling during the projectile move in the bore. According to the amplitude and the strength of the twist acting on rotating band, the steady property of rotational motion of the projectile, the rib rifling is a better choose.

  12. Finite element simulation of twist forming process to study twist springback pattern

    Directory of Open Access Journals (Sweden)

    Nashrudin M. N.

    2017-01-01

    Full Text Available Springback is one of the most common defects found in the metal forming of automotive parts. There are three conditions which can be considered as springback i.e. flange angle change, sidewall curl and twist springback and among them, twist springback is the most complicated problem. This study will focuses on the development of finite element simulation model of the twist forming process. The main aim of this project is to investigate the parameters that may affect the twist springback. Few parameters including twist angle, hardening constant and thickness are explored using finite element (FE software ANSYS Workbench (16.0. The rectangular mild strips are used to form the twist forming. The standard material properties and stress-strain curve of mild steel had been used to get the springback prediction. The results of springback were measured by the difference of the bending angles before and after unloading process. The results were then be validated with the research made of Dwivedi et al., (2002. The results show that the springback angle reduces as the thickness of strips are increased and also as the angle of twist increases.

  13. Twisting Functors for Quantum Group Modules

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    We construct twisting functors for quantum group modules. First over the field Q(v) but later over any Z[v,v^{−1}]-algebra. The main results in this paper are a rigerous definition of these functors, a proof that they satisfy braid relations and applications to Verma modules.......We construct twisting functors for quantum group modules. First over the field Q(v) but later over any Z[v,v^{−1}]-algebra. The main results in this paper are a rigerous definition of these functors, a proof that they satisfy braid relations and applications to Verma modules....

  14. Twisted bi-layer graphene: microscopic rainbows.

    Science.gov (United States)

    Campos-Delgado, J; Algara-Siller, G; Santos, C N; Kaiser, U; Raskin, J-P

    2013-10-11

    Blue, pink, and yellow colorations appear from twisted bi-layer graphene (tBLG) when transferred to a SiO2 /Si substrate (SiO2 = 100 nm-thick). Raman and electron microscope studies reveal that these colorations appear for twist angles in the 9-15° range. Optical contrast simulations confirm that the observed colorations are related to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG/100 nm-thick SiO2 /Si. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  16. Twist-three effects in two-photon processes

    Science.gov (United States)

    Belitsky, A. V.; Müller, D.

    2000-11-01

    We give a general treatment of twist-three effects in two-photon reactions. We address the issue of the gauge invariance of the Compton amplitude in generalized Bjorken kinematics and relations of twist-three `transverse' skewed parton distributions to twist-two ones and interaction dependent three-particle correlation functions. Finally, we discuss leading order evolution of twist-three functions and their impact on the deeply virtual Compton scattering.

  17. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    Science.gov (United States)

    Vawter, G Allen [Corrales, NM

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  18. Empirical model for the waveguiding properties of directly UV written waveguides

    DEFF Research Database (Denmark)

    Leick, Lasse; Harpøth, Anders; Svalgaard, Mikael

    2002-01-01

    We present an empirical model for the waveguiding properties of directly UV-written planar waveguides in silica-on-silicon. The waveguides are described by a rectangular core step-index profile, in which model parameters are found by comparison of the measured waveguide width and effective index...

  19. Miniaturized Waveguide Fourier Transform Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To characterize the IR optical properties of the metal-coated hollow waveguide ensemble; configure the Hollow Waveguide FTS (HWFTS) chip in such a way that we...

  20. Integrated waveguide amplifiers for optical backplanes

    NARCIS (Netherlands)

    Yang, J.; Lamprecht, T.; Worhoff, Kerstin; Driessen, A.; Horst, F.; Horst, F.; Offrein, B.J.; Offrein, B.J.; Ay, F.; Pollnau, Markus

    Amplifier performance of Nd3+-doped polymer and Al2O3 channel waveguides at 880 nm is investigated. Tapered amplifiers are embedded between optical backplane waveguides, and a maximum 0.21 dB net gain is demonstrated.

  1. 1, 6-Diaminoperylene bisimide with a highly twisted perylene core

    Indian Academy of Sciences (India)

    The central perylene core of 1 is twisted with dihedral angles of 19.48(2)◦ and 19.50(2)◦; this twist configuration induces the axial chirality in this family of perylene bisimide chromophores. Density functional theory (DFT) calculations also show that the core twist angles of 1,6-diaminoperylene bisimide are larger than those of ...

  2. Chaos in orientation reversing twist maps of the plane

    NARCIS (Netherlands)

    van den Berg, G.J.B.; van der Vorst, R.C.A.M.; Wójcik, W.

    2007-01-01

    We study forcing of periodic points in orientation reversing twist maps. First, we observe that the fourth iterate of an orientation reversing twist map can be expressed as the composition of four orientation preserving positive twist maps. We then reformulate the problem in terms of parabolic

  3. Twisted convolution, pseudo-differential operators and Fourier modulation spaces

    OpenAIRE

    Toft, Joachim

    2008-01-01

    We discuss continuity of the twisted convolution on (weighted) Fourier modulation spaces. We use these results to establish continuity results for the twisted convolution on Lebesgue spaces. For example we prove that if $\\omega$ is an appropriate weight and $1\\le p\\le 2$, then $L^p_{(\\omega)}$ is an algebra under the twisted convolution.

  4. Twisted surfaces in the Pseudo-Galilean space

    Directory of Open Access Journals (Sweden)

    Ahmet Kazan

    2017-10-01

    Full Text Available In this paper, we construct the twisted surfaces according to the supporting plane and type of rotations in pseudo-Galilean space G13. Also, we find the Gaussian curvatures and mean curvatures of the different types of these twisted surfaces and draw some figures for these twisted surfaces.

  5. Mode control and mode conversion in nonlinear aluminum nitride waveguides.

    Science.gov (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P

    2013-11-04

    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  6. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths

    Science.gov (United States)

    Thomas, Philip A.; Auton, Gregory H.; Kundys, Dmytro; Grigorenko, Alexander N.; Kravets, Vasyl G.

    2017-03-01

    We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.

  7. Magnetohydrodynamic waves in coronal polar plumes.

    Science.gov (United States)

    Nakariakov, Valery M

    2006-02-15

    Polar plumes are cool, dense, linear, magnetically open structures that arise from predominantly unipolar magnetic footpoints in the solar polar coronal holes. As the Alfvén speed is decreased in plumes in comparison with the surrounding medium, these structures are natural waveguides for fast and slow magnetoacoustic waves. The simplicity of the geometry of polar plumes makes them an ideal test ground for the study of magnetohydrodynamic (MHD) wave interaction with solar coronal structures. The review covers recent observational findings of compressible and incompressible waves in polar plumes with imaging and spectral instruments, and interpretation of the waves in terms of MHD theory.

  8. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  9. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    Science.gov (United States)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  10. Investigation of semiconductor clad optical waveguides

    Science.gov (United States)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  11. Study of twisting of vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, N.G.; Burkin, Yu.V.; Markov, O.A.

    1980-01-01

    Diagrams and techniques are examined for analytical and experimental studies for the interaction of components in the lower part of the drilling column of different design with the face and the walls of wells. Results of studies and field introduction of measures to regulate twisting of wells are presented.

  12. Families of twisted tensor product codes

    OpenAIRE

    Giuzzi, Luca; Pepe, Valentina

    2011-01-01

    Using geometric properties of the variety $\\cV_{r,t}$, the image under the Grassmannian map of a Desarguesian $(t-1)$-spread of $\\PG(rt-1,q)$, we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We exactly determine the parameters of these codes and characterise the words of minimum weight.

  13. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  14. Self-Portraits with a Twist

    Science.gov (United States)

    DeMarco, Frederick

    2010-01-01

    This article describes an art activity on self-portraiture inspired by artist Tim Hawkinson. Hawkinson created a sculpture titled "Emoter" in which his face, moved by motors, twisted and contorted based on random signals from a TV. This art activity incorporates technology into the art room, brings the work of practicing artists alive, and is a…

  15. Stacking interactions and the twist of DNA

    DEFF Research Database (Denmark)

    Cooper, V.R.; Thonhauser, T.; Puzder, A.

    2008-01-01

    The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence-dependent ......The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence......-dependent Twists observed in high-resolution experiments. Furthermore, they demonstrate that additional stability gained by the presence of thymine is due to methyl interactions with neighboring bases, thus adding to our understanding of the mechanisms that contribute to the relative stability of DNA and RNA. Our...... mapping of the energy required to twist each of the 10 unique base pair steps should provide valuable information for future studies of nucleic acid stability and dynamics. The method introduced will enable the nonempirical theoretical study of significantly larger pieces of DNA or DNA/amino acid...

  16. Growth and electro-optical characterization of ZnMgTe/ZnTe waveguide by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Nakasu, T.; Taguri, K.; Aiba, T.; Yamashita, S. [Department of Electrical Engineering, Waseda University, Tokyo (Japan); Kobayashi, M. [Department of Electrical Engineering, Waseda University, Tokyo (Japan); Laboratory of Materials Science and Technology, Waseda University, Tokyo (Japan); Togo, H. [Nippon Telegraph and Telephone Corporation, Atsugi (Japan); Asahi, T. [JX Nippon Oil and Energy, Hitachi (Japan)

    2014-07-15

    ZnMgTe/ZnTe/ZnMgTe thin film waveguide with high crystal quality were grown by molecular beam epitaxy (MBE). The in-plane mismatch between the ZnMgTe cladding layers and ZnTe core layer was about 0.02% which was measured by X-ray reciprocal space mapping (RSM). It indicated that films were grown coherently with high crystal quality. The Electro-Optical characterization of waveguide was evaluated using 1.55 μm polarized lights and bias applied on the waveguide device from -15 V to +15 V. The dependence of light phase shift passed though the waveguide on the applied voltage bias was studied. The electro-optical characterization of the waveguide device was about 7% of the theoretical calculation. It could be improved by increasing the resistance ratio between the ZnMgTe/ZnTe/ZnMgTe waveguide structure and substrate so that the electric field applied on the waveguide structure could be improved. It was indicated that the ZnMgTe/ZnTe/ZnMgTe thin film waveguide has the potential to become a high efficiency electro-optical device. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a slow light.

  18. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    and a finite-difference-time-domain (FDTD) method. Design parameters, i.e. dielectric constants, rod diameter and waveguide width, where these waveguides are single-moded and multi-moded will be given. We will also show our recent results regarding the energy-flow (the Poynting vector) in these waveguides...

  19. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.

    2014-01-01

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure...

  20. Twist-3 fragmentation effects for ALT in light hadron production from proton–proton collisions

    Directory of Open Access Journals (Sweden)

    Y. Koike

    2016-01-01

    Full Text Available We compute the contribution from the twist-3 fragmentation function for light hadron production in collisions between transversely and longitudinally polarized protons, i.e., p↑p→→hX, which can cause a double-spin asymmetry (DSA ALT. This is a naïve T-even twist-3 observable that we analyze in collinear factorization using both Feynman gauge and lightcone gauge as well as give a general proof of color gauge invariance. So far only twist-3 effects in the transversely polarized proton have been studied for ALT in p↑p→→hX. However, there are indications that the naïve T-odd transverse single-spin asymmetry (SSA AN in p↑p→hX is dominated not by such distribution effects but rather by a fragmentation mechanism. Therefore, one may expect similarly that the fragmentation contribution is important for ALT. Given possible plans at RHIC to measure this observable, it is timely to provide a calculation of this term.

  1. Finite-Difference Time-Domain Analysis of Twist-Defect-Mode Lasing Dynamics in Cholesteric Photonic Liquid Crystal

    Science.gov (United States)

    Matsui, Tatsunosuke; Kitaguchi, Masahiro

    2012-04-01

    We have numerically investigated lasing dynamics from a twist defect in a cholesteric liquid crystal (CLC) by an auxiliary differential equation finite-difference time-domain (ADE-FDTD) method. As ADEs, the equation of motion of polarization described on the basis of the classical electron oscillator (Lorenz) model and the rate equation in a four-level energy structure are incorporated. A lower lasing threshold has been obtained from the twist-defect mode (TDM) than from band-edge lasing. Standing-wave-like electric fields are strongly localized only in the vicinity where a twist defect is introduced into a CLC, which works as a distributed feedback TDM laser source. The oscillation direction of a standing-wave electric field is not parallel or perpendicular to LC molecules, which is quite different from the bulk CLC case. Our results may be useful for creating more efficient TDM-based CLC lasers.

  2. A "twist" on the interpretation of the multifluorescence patterns of DASPMI.

    Science.gov (United States)

    Segado, Mireia; Benassi, Enrico; Barone, Vincenzo

    2015-10-13

    In this computational study, we describe the decay mechanism of DASPMI, providing robust and documented answers to some crucial questions of still open debates on the photophysical behavior of this cationic dye. After the initial excitation, the system evolves along a torsional motion, characterized by a quite flat potential energy surface, which crosses an intramolecular charge transfer (ICT) excited state with higher energy. A nonemissive twisted-ICT (TICT) minimum is populated, and this enhances the radiationless deactivation to the ground state. Additionally, during the twisting motion path toward the TICT minima, the system can emit in a quite wide range of angles, which should lead to a red shift of the locally excited (LE) emission and asymmetric broadening of fluorescence. This picture is fully supported by experimental evidence of the multifluorescence of DASPMI. Three twisted minima are found with different energies (namely, T1, T2, and T3). The extension of the work to charge properties shows that, in the GS, the positive charge of the molecule is mainly localized on the acceptor moiety (i.e., methyl-pyridinium), and after the excitation, the charge delocalizes over the whole molecule with a slight preference for the acceptor moiety. Because of the subsequent deactivation via twisting motions, the positive charge moves from the acceptor to the donor moiety (dimethylaminophenyl moiety) so that in TICT minima the positive charge is localized in the donor part. These large differences between charge localization in LE and TICT minima are responsible for a larger population of twisted forms in solvents of increasing polarity and the enhancement of radiationless deactivation.

  3. Defining left ventricular apex-to-base twist mechanics computed from high-resolution 3D echocardiography: validation against sonomicrometry.

    Science.gov (United States)

    Ashraf, Muhammad; Myronenko, Andriy; Nguyen, Thuan; Inage, Akio; Smith, Wayne; Lowe, Robert I; Thiele, Karl; Gibbons Kroeker, Carol A; Tyberg, John V; Smallhorn, Jeffrey F; Sahn, David J; Song, Xubo

    2010-03-01

    To compute left ventricular (LV) twist from 3-dimensional (3D) echocardiography. LV twist is a sensitive index of cardiac performance. Conventional 2-dimensional based methods of computing LV twist are cumbersome and subject to errors. We studied 10 adult open-chest pigs. The pre-load to the heart was altered by temporary controlled occlusion of the inferior vena cava, and myocardial ischemia was produced by ligating the left anterior descending coronary artery. Full-volume 3D loops were reconstructed by stitching of pyramidal volumes acquired from 7 consecutive heart beats with electrocardiography gating on a Philips IE33 system (Philips Medical Systems, Andover, Massachusetts) at baseline and other steady states. Polar coordinate data of the 3D images were entered into an envelope detection program implemented in MatLab (The MathWorks, Inc., Natick, Massachusetts), and speckle motion was tracked using nonrigid image registration with spline-based transformation parameterization. The 3D displacement field was obtained, and rotation at apical and basal planes was computed. LV twist was derived as the net difference of apical and basal rotation. Sonomicrometry data of cardiac motion were also acquired from crystals anchored to epicardium in apical and basal planes at all states. The 3D dense tracking slightly overestimated the LV twist, but detected changes in LV twist at different states and showed good correlation (r = 0.89) when compared with sonomicrometry-derived twist at all steady states. In open chest pigs, peak cardiac twist was increased with reduction of pre-load from inferior vena cava occlusion from 6.25 degrees +/- 1.65 degrees to 9.45 degrees +/- 1.95 degrees . With myocardial ischemia from left anterior descending coronary artery ligation, twist was decreased to 4.90 degrees +/- 0.85 degrees (r = 0.8759). Despite lower spatiotemporal resolution of 3D echocardiography, LV twist and torsion can be computed accurately. Copyright 2010 American College of

  4. Twist-three analysis of photon electroproduction off the pion

    Science.gov (United States)

    Belitsky, A. V.; Müller, D.; Kirchner, A.; Schäfer, A.

    2001-12-01

    We study twist-three effects in spin, charge, and azimuthal asymmetries in deeply virtual Compton scattering on a spin-zero target. Contributions which are power suppressed in 1/Q generate a new azimuthal angle dependence of the cross section that is not present in the leading twist results. On the other hand, the leading twist terms are not modified by the twist-three contributions. They may get corrected at the twist-four level, however. In the Wandzura-Wilczek approximation these new terms in the Fourier expansion with respect to the azimuthal angle are entirely determined by the twist-two generalized parton distributions. We also discuss more general issues such as the general form of the angular dependence of the differential cross section, the validity of factorization at the twist-three level, and the relation of generalized parton distributions to spectral functions.

  5. Optical waveguides fabricated in Cr:LiSAF by femtosecond laser micromachining

    Science.gov (United States)

    Biasetti, Demian A.; Di Liscia, Emiliano J.; Torchia, Gustavo A.

    2017-11-01

    In this work we present the fabrication of double-track type II waveguides written in 1% doped Cr:LiSrAlF6 (Cr:LiSAF) crystal by femtosecond laser micromachining. We studied waveguides fabricated at energies from 1 to 7 μJ per pulse at writing speeds of 15-45 μm/s. We found good wave-guiding performance for both, Transversal Magnetic (TM) and Transversal Electric (TE) polarization modes as well as acceptable losses according to the expected values addressed to technological applications. Also, we performed a high-resolution μ-luminescence waveguide cross-section mapping between the tracks, in order to identify possible spectral changes caused for active ions Cr3+ corresponding to the 4T2 →4A2 vibronic transition in the focal volume zone, due to induced anisotropic graded stress. Finally, their lifetimes were measured for bulk as well as for waveguide trapped ions. We found that for the range of parameters of ultra-short micromachining used, the Cr3+ ions embedded in the waveguides remained spectroscopically unchanged compared with those observed in bulk material.

  6. Dual-frequency characterization of bending loss in hollow flexible terahertz waveguides

    Science.gov (United States)

    Doradla, Pallavi; Giles, Robert H.

    2014-03-01

    Low-loss, hollow, flexible, metal-coated waveguides were designed and fabricated for the maximal transmission of terahertz radiation. Since recent terahertz skin, colon, and breast cancer studies showed a contrast between normal and diseased tissues between 500 to 600GHz frequencies, flexible metal-coated waveguides with various bore diameters were studied at both 584GHz and 1.4THz frequencies for endoscopic applications. Attenuation characteristics of 2μm thick silver-coated waveguides with 99% reflective inner surface were measured as a function of wavelength, bore diameter, bending angle and bend radius. Though the theoretical attenuation coefficient in metal-coated waveguide varies directly as square of wavelength, the propagation loss was found to be smaller at higher wavelengths. This study demonstrates that flexible waveguides with bore diameters less-than 10λ preserve the linearly polarized mode and hence exhibit low bending losses even at smaller bend radii. Also, in contrast to the lower propagation losses in larger bore tubes, the analysis shows higher transmission in smaller bore tubes at larger bending angles. Finally, the dual-frequency investigation of bending and modal characteristics confirms the feasibility of using these metal-coated flexible waveguides at various terahertz frequencies, to obtain low transmission losses even at greater flexures, in addition to the Gaussian mode preservation.

  7. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  8. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal.

    Science.gov (United States)

    Kwon, Min-Suk; Shin, Jin-Soo; Shin, Sang-Yung; Lee, Wan-Gyu

    2012-09-24

    We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/μm. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate ~30-nm-wide nanochannels which may be filled with functional material.

  9. Compact on-Chip Temperature Sensors Based on Dielectric-Loaded Plasmonic Waveguide-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Sergey I. Bozhevolnyi

    2011-02-01

    Full Text Available The application of a waveguide-ring resonator based on dielectric-loaded surface plasmon-polariton waveguides as a temperature sensor is demonstrated in this paper and the influence of temperature change to the transmission through the waveguide-ring resonator system is comprehensively analyzed. The results show that the roundtrip phase change in the ring resonator due to the temperature change is the major reason for the transmission variation. The performance of the temperature sensor is also discussed and it is shown that for a waveguide-ring resonator with the resonator radius around 5 mm and waveguide-ring gap of 500 nm which gives a footprint around 140 µm2, the temperature sensitivity at the order of 10−2 K can be achieved with the input power of 100 mW within the measurement sensitivity limit of a practical optical detector.

  10. Polymeric slot waveguide for photonics sensing

    Science.gov (United States)

    Chovan, J.; Uherek, F.

    2016-12-01

    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  11. Quantum waveguides with corners

    Directory of Open Access Journals (Sweden)

    Raymond Nicolas

    2012-04-01

    Full Text Available The simplest modeling of planar quantum waveguides is the Dirichlet eigenproblem for the Laplace operator in unbounded open sets which are uniformly thin in one direction. Here we consider V-shaped guides. Their spectral properties depend essentially on a sole parameter, the opening of the V. The free energy band is a semi-infinite interval bounded from below. As soon as the V is not flat, there are bound states below the free energy band. There are a finite number of them, depending on the opening. This number tends to infinity as the opening tends to 0 (sharply bent V. In this situation, the eigenfunctions concentrate and become self-similar. In contrast, when the opening gets large (almost flat V, the eigenfunctions spread and enjoy a different self-similar structure. We explain all these facts and illustrate them by numerical simulations. La modélisation la plus simple des guides d’ondes quantiques plans est le problème aux valeurs propres pour le laplacien dans des ouverts non bornés qui sont fins dans une direction. Ici nous considérons des guides en forme de V. Leurs propriétés spectrales dépendent essentiellement d’un seul paramètre, l’ouverture du V. La bande d’énergie libre est un intervalle semi-infini borné inférieurement. Dès que le V n’est pas plat, il existe des états liés sous la bande d’énergie libre. Ils sont en nombre fini, fonction de l’ouverture. Ce nombre tend vers l’infini quand l’ouverture tend vers 0 (V très refermé. Dans cette situation, les fonctions propres se concentrent et deviennent auto-similaires. À l’opposé, quand l’ouverture est grande (V très aplati, les fonctions propres s’étalent et jouissent d’une autre structure auto-similaire. Nous expliquons tous ces résultats et les illustrons par des expériences numériques.

  12. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors

    National Research Council Canada - National Science Library

    Rosenberg, Jessie; Shenoi, Rajeev V; Krishna, Sanjay; Painter, Oskar

    2010-01-01

    We design a polarization-sensitive resonator for use in mid-infrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector...

  13. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  14. Glass Waveguides for Periodic Poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....

  15. A New Twisting Somersault: 513XD

    Science.gov (United States)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  16. General relativistic neutron stars with twisted magnetosphere

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2015-03-01

    Soft gamma-ray repeaters and anomalous X-ray pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here, we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided, to investigate the effects of different current distributions on the overall magnetic field structure.

  17. Twisted Radiation by Electrons in Spiral Motion

    CERN Document Server

    Katoh, M; Mirian, N S; Konomi, T; Taira, Y; Kaneyasu, T; Hosaka, M; Yamamoto, N; Mochihashi, A; Takashima, Y; Kuroda, K; Miyamoto, A; Miyamoto, K; Sasaki, S

    2016-01-01

    We theoretically show that a single free electron in circular/spiral motion radiates an electromagnetic wave possessing helical phase structure and carrying orbital angular momentum. We experimentally demonstrate it by double-slit diffraction on radiation from relativistic electrons in spiral motion. We show that twisted photons should be created naturally by cyclotron/synchrotron radiations or Compton scatterings in various situations in astrophysics. We propose promising laboratory vortex photon sources in various wavelengths ranging from radio wave to gamma-rays.

  18. Drag Performance of Twist Morphing MAV Wing

    OpenAIRE

    Ismail N.I.; Zulkifli A.H.; Talib R.J.; Zaini H.; Yusoff H.

    2016-01-01

    Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analy...

  19. Twisted Cyclic Cohomology and Modular Fredholm Modules

    Directory of Open Access Journals (Sweden)

    Adam Rennie

    2013-07-01

    Full Text Available Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988, 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SU_q(2.

  20. Dark Matter in a twisted bottle

    OpenAIRE

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2012-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the dire...

  1. Theoretical investigation of twist boundaries in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Payne, M.C.; Bristowe, P.D.; Joannopoulos, J.D.

    1987-01-01

    Results of the first completely ab-initio investigation of the microscopic structure of a grain boundary in a semiconductor are presented. Using the molecular dynamics simulated annealing method for performing total energy calculations within the LDA and pseudopotential approximations, the ..sigma.. = 5(001) twist boundary in germanium is studied. A low energy structure is identified which exhibits a rigid body translation and a small contraction at the boundary.

  2. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  3. Commissioning of inline ECE system within waveguide based ECRH transmission systems on ASDEX upgrade

    Directory of Open Access Journals (Sweden)

    Donné A.J.H.

    2012-09-01

    Full Text Available A CW capable inline electron cyclotron emission (ECE separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG. The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2, 3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4, 5, 6, 7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.

  4. Band gaps and cavity modes in dual phononic and photonic strip waveguides

    Directory of Open Access Journals (Sweden)

    Y. Pennec

    2011-12-01

    Full Text Available We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this one-dimensional waveguide contains a hole in the middle and two symmetric stubs on the sides. Indeed, stubs and holes are respectively favorable for creating a phononic and a photonic band gap. Appropriate geometrical parameters allow us to obtain a complete phononic gap together with a photonic gap of a given polarization and symmetry. The insertion of a cavity inside the perfect structure provides simultaneous confinement of acoustic and optical waves suitable to enhance the phonon-photon interaction.

  5. Design of optical metamaterial waveguide structures (Conference Presentation)

    Science.gov (United States)

    Ortega-Moñux, Alejandro; Halir, Robert; Sánchez-Postigo, Alejandro; Soler-Penadés, Jordi; Ctyroký, Jirí; Luque-González, José Manuel; Sarmiento-Merenguel, José Darío.; Wangüemert-Pérez, Juan Gonzalo; Schmid, Jens H.; Xu, Dan-Xia; Janz, Sigfried; Lapointe, Jean; Molina-Fernández, Iñigo; Nedeljkovic, Milos; Mashanovich, Goran Z.; Cheben, Pavel

    2017-05-01

    Subwavelength gratings (SWGs) are periodic structures with a pitch (Λ) smaller than the wavelength of the propagating wave (λ), so that diffraction effects are suppressed. These structures thus behave as artificial metamaterials where the refractive index and the dispersion profile can be controlled with a proper design of the geometry of the structure. SWG waveguides have found extensive applications in the field of integrated optics, such as efficient fiber-chip couplers, broadband multimode interference (MMI) couplers, polarization beam splitters or evanescent field sensors, among others. From the point of view of nano-fabrication, the subwavelength condition (Λ electromagnetic simulation of Floquet modes, the relevance of substrate leakage losses and the effects of the random jitter, inherent to any fabrication process, on the performance of SWG structures. Finally, we will show the possibilities of the design of SWG structures with two different state-of-the-art applications: i) ultra-broadband MMI beam splitters with an operation bandwidth greater than 300nm for telecom wavelengths and ii) a set of suspended waveguides with SWG lateral cladding for mid-infrared applications, including low loss waveguides, MMI couplers and Mach-Zehnder interferometers.

  6. Improved nonlinear plasmonic slot waveguide: a full study

    CERN Document Server

    Elsawy, Mahmoud M R; Chauvet, Mathieu; Renversez, Gilles

    2016-01-01

    We present a full study of an improved nonlinear plasmonic slot waveguides (NPSWs) in which buffer linear dielectric layers are added between the Kerr type nonlinear dielectric core and the two semi-infinite metal regions. For TM polarized waves, the inclusion of these supplementary layers have two consequences. First, they reduced the overall losses. Secondly, they modify the types of solutions that propagate in the NPSWs adding new profiles enlarging the possibilities offered by these nonlinear waveguides. Our structure also provides longer propagation length due to the decrease of the losses compared to the simple nonlinear slot waveguide and exhibits, for well-chosen refractive index or thickness of the buffer layer, a spatial transition of its main modes that can be controlled by the power. We provide a full phase diagram of the TM wave operating regimes of these improved NPSWs. The stability of the main TM modes is then demonstrated numerically using the FDTD. We also demonstrate the existence of TE wav...

  7. Integrated optical sensor based on planar polarization interferometer: analysis of angular distribution of polarization degree of outcoming light

    Science.gov (United States)

    Samoylov, A. V.; Lysenko, Sergei I.; Snopok, Boris A.; Shirshov, Yuri M.

    2001-06-01

    The polarization properties of the light leaving from the planar waveguide (WG) being a basis of a planar polarization interferometer (which now is the most sensitive optical instrument, utilized as biosensors) were investigated. The angular distribution of a light emerges SiO2-Si3N4-SiO2 silicon structure was studied. The measurement of a polarization degree of an outcoming light depending on angle of an propagation is carried out.

  8. Electromagnetic Scattering at the Waveguide Step between Equilateral Triangular Waveguides

    Directory of Open Access Journals (Sweden)

    Ana Morán-López

    2016-01-01

    Full Text Available The analysis of the electromagnetic scattering at discontinuities between equilateral triangular waveguides is studied. The complete electromagnetic solution is derived using analytical closed form expressions for the mode spectrum of the equilateral waveguide. The mathematical formulation of the electromagnetic scattering problem is based on the quasi-analytical Mode-Matching method. This method benefits from the electromagnetic field division into symmetries as well as from the plane wave formulation presented for the expressions involved. The unification of the surface integrals used in the method thanks to the plane wave formulation is revealed, leading to expressions that are very well suited for its implementation in an electromagnetic analysis and design code. The obtained results for some cases of interest (building blocks for microwave components for communication systems are verified using other numerical methods included in a commercial software package, showing the potential of the presented approach based on quasi-analytic expressions.

  9. Investigation on thermal behavior of resonant waveguide-grating mirrors in an Yb:YAG thin-disk laser

    Science.gov (United States)

    Rumpel, Martin; Dannecker, Benjamin; Voss, Andreas; Möller, Michael; Moormann, Christian; Graf, Thomas; Abdou Ahmed, Marwan

    2014-05-01

    We present the experimental investigations of different designs of resonant waveguide-grating mirrors (RWG) which are used as intracavity folding mirror in an Yb:YAG thin-disk laser. The studied mirrors combine structured fused silica substrates, a thin-layer waveguide (Ta2O5), a buffer layer (SiO2) and partial reflectors. The grating period was chosen to be 510 nm to allow resonances at an angle of incidence of ~10° for TE polarization. The waveguide layer has a thickness of 236 nm. It is followed by the buffer layer with a thickness of 580 nm and the subsequent alternating Ta2O5/SiO2 layers. The exact coating sequence depends on the two design approaches which were investigated in this work: either introducing different partial reflectors, i.e. stacks of quarter-wave layers on top of the waveguide while keeping the groove depth of the grating constant, or increasing the grating depth, while keeping an identical partial reflector. The investigation was focused on the rise of the surface temperature due to the coupling of the incident radiation to a waveguide mode, as well as on the laser efficiency, polarization and wavelength selectivity. It is found that, when compared to the simplest RWG design which consists of only a single Ta2O5 waveguide layer, damage threshold as well as laser efficiency can be significantly increased, while the laser performances in terms of polarization- and wavelength selectivity are maintained. So far, the presented RWG allow the generation of linear polarization with a narrow spectral linewidth down to 25 pm FWHM in a fundamental mode Yb:YAG thin-disk laser. Damage thresholds of 60kW/cm2 have been reached where only 63K of surface temperature increase was observed. This shows that the improved mirrors are suitable for the generation of kW-class narrow linewidth, linearly polarized Yb:YAG thin-disk lasers.

  10. Design Procedure for Compact Folded Waveguide Filters

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    -dimensional full-wave electromagnetic simulations. The proposed structure and the fabricated folded waveguide filter are shown in Fig. 1. A network analyzer (HP8720D) was used to test the fabricated folded waveguide filter. The measurement results are shown in Fig. 2 in comparison with the simulation results......Waveguide filters are widely used in communication systems due to low losses and high power handling capabilities. One drawback of the conventional waveguide filters is their large size, especially for low-frequency and high-order realizations. It has been shown that the footprint of conventional...... waveguide resonators can be reduced to one quarter by folding the electric and magnetic fields inside the cavity (J. S. Hong, Microwave Symposium Digest, 2004, Vol. 1, pp. 213-216). This paper presents a novel systematic procedure for designing compact low-loss bandpass filters by using folded waveguide...

  11. Extraction film for optical waveguide and method of producing same

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  12. InP-Based Waveguide Triple Transit Region Photodiodes for Hybrid Integration with Passive Optical Silica Waveguides

    Directory of Open Access Journals (Sweden)

    Vitaly Rymanov

    2015-12-01

    Full Text Available We report on a novel InP-based 1.55 μm waveguide triple transit region photodiode (TTR-PD structure for hybrid integration with passive optical silica waveguides. Using the beam propagation method, numerical analyses reveal that, for evanescent optical coupling between a passive silica waveguide and the InP-based waveguide TTR-PD, a coupling efficiency of about 90% can be obtained. In addition to that, an absorption of about 50% is simulated within a TTR-PD length of 30 µm. For fabricated TTR-PD chips, a polarization dependent loss (PDL of less than 0.9 dB is achieved within the complete optical C-band. At the operational wavelength of 1.55 µm, a reasonable PDL of 0.73 dB is measured. The DC responsivity and the RF responsivity are achieved on the order of 0.52 A/W and 0.24 A/W, respectively. Further, a 3 dB bandwidth of 132 GHz is experimentally demonstrated and high output-power levels exceeding 0 dBm are obtained. Even at the 3 dB cut-off frequency, no saturation effects occur at a photocurrent of 15.5 mA and an RF output power of −4.6 dBm is achieved. In addition to the numerical and experimental achievements, we propose a scheme for a hybrid-integrated InP/silicon-based photonic millimeter wave transmitter.

  13. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  14. Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits.

    Science.gov (United States)

    Kovacevic, Goran; Yamashita, Shinji

    2016-02-22

    In this paper, we propose a new way of estimating the absorption in graphene coated silicon wire waveguides based on a self-developed, modified 2D Finite Difference Method, and use it to obtain a detailed absorption dependency of the waveguide design. For the first time, we observe peaks in the TM mode absorption curves, as well as the reversals of the dominantly absorbed mode with waveguide design variation, both of which have not been predicted previously theoretically, but have been implied through experimental results. We also provide a qualitative explanation of our novel numerical results, and explain how these results can be utilized in optimization of various graphene based integrated devices like optical modulators, photodetectors and optical polarizers.

  15. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    We consider rigid Calabi–Yau threefolds defined over Q and the question of whether they admit quadratic twists. We give a precise geometric definition of the notion of a quadratic twists in this setting. Every rigid Calabi–Yau threefold over Q is modular so there is attached to it a certain newform...... of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  16. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Jung-Hun Kim

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

  17. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Kim Jung-Hun

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed

  18. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter

    1996-01-01

    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  19. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractiv...... has the advantage of deeper penetration of the evanescent electromagnetic field into the cover medium, theoretically permitting higher sensitivity to analytes compared to traditional waveguide designs. We present calculated sensitivities and probing depths of conventional and reverse...

  20. Fabrication Of Fiber-Optic Waveguide Coupler

    Science.gov (United States)

    Goss, Willis; Nelson, Mark D.; Mclauchlan, John M.

    1989-01-01

    Technique for making four-port, single-mode fiber-optic waveguide couplers requires no critically-precise fabrication operations or open-loop processes. Waveguide couplers analogous to beam-splitter prisms. Essential in many applications that require coherent separation or combination of two waves; for example, for interferometric purposes. Components of optical waveguide coupler held by paraffin on microscope slide while remaining cladding of two optical fibers fused together by arc welding.

  1. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...... region. The invention also relates to optical devices comprising planar optical waveguides and methods of making waveguides and optical devices....

  2. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals

    Science.gov (United States)

    Ajates, Javier G.; Romero, Carolina; Castillo, Gabriel R.; Chen, Feng; Vázquez de Aldana, Javier R.

    2017-10-01

    We have designed and fabricated photonic structures such as, Y-junctions (one of the basic building blocks for construction any integrated photonic devices) and Mach-Zehnder interferometers, based on circular depressed-cladding waveguides by direct femtosecond laser irradiation in Nd:YAG crystal. The waveguides were optically characterized at 633 nm, showing nearly mono-modal behaviour for the selected waveguide radius (9 μm). The effect of the splitting angle in the Y structures was investigated finding a good preservation of the modal profiles up to more than 2°, with 1 dB of additional losses in comparison with straight waveguides. The dependence with polarization of these splitters keeps in a reasonable low level. Our designs pave the way for the fabrication of arbitrarily complex 3D photonic circuits in crystals with cladding waveguides.

  3. Wide-band polarization controller for Si photonic integrated circuits.

    Science.gov (United States)

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  4. Fluctuation Modes of a Twist-Bend Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Z. Parsouzi

    2016-06-01

    Full Text Available We report a dynamic light-scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic (N_{TB} phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic modes and one hydrodynamic mode in the N_{TB} phase, and a single nonhydrodynamic mode plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-de Gennes expansion of the free-energy density in terms of heliconical director and helical polarization fields that characterize the N_{TB} structure, with the latter serving as the primary order parameter. A “coarse-graining” approximation simplifies the theoretical analysis and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.

  5. Waveguide structures in anisotropic nonlinear crystals

    Science.gov (United States)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  6. Improved optical planar waveguides for lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate efficacy of a novel growth technique for planar waveguides (PWG) Enable PWG laser technology with improved performance, efficiency and manufacturability....

  7. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  8. Symmetries and Boundary Conditions with a Twist

    Science.gov (United States)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  9. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...

  10. How fast is a twisted photon?

    OpenAIRE

    Roger, Thomas; Lyons, Ashley; Westerberg, Niclas; Vezzoli, Stefano; Maitland, Calum; Leach, Jonathan; Padgett, Miles; Faccio, Daniele

    2017-01-01

    Recent measurements have highlighted that spatially shaped photons travel slower than c, the speed of monochromatic, plane waves in vacuum. Here we investigate the intrinsic delay introduced by `twisting' a photon, i.e. by introducing orbital angular momentum (OAM). In order to do this we use a Hong-Ou-Mandel interferometer to measure the change in delay of single photons when we introduce OAM on a ring-shaped beam that is imaged through a focusing telescope. Our findings show that when all o...

  11. Superlubricity in quasicrystalline twisted bilayer graphene

    Science.gov (United States)

    Koren, Elad; Duerig, Urs

    2016-05-01

    The unique atomic positions in quasicrystals lead to peculiar self-similarity and fractal-like structural morphology. Accordingly, many of the material properties are supposed to manifest exceptional characteristics. In this Rapid Communication, we explain through numerical simulations the fundamental and peculiar aspects of quasicrystals wearless friction manifested in a 30° twisted bilayer graphene system. In particular, the sliding force exhibits a fractal structure with distinct area correlations due to the natural mixture between both periodic and aperiodic lateral modulations. In addition, zero power scaling of the sliding force with respect to the contact area is demonstrated for a geometric sequence of dodecagonal elements.

  12. Twist-off purification of hair bundles.

    Science.gov (United States)

    Shin, Jung-Bum; Pagana, James; Gillespie, Peter G

    2009-01-01

    Purification of hair bundles from inner-ear organs allows biochemical analysis of bundle constituents, including proteins and lipids. We describe here the "twist-off" method of bundle isolation, where dissected inner-ear organs are embedded in agarose, then subjected to a mechanical disruption that shears off bundles and leaves them in agarose blocks. With care in the dissection and in clean-up of the isolated bundles, contamination from cell bodies can be kept to a minimum. Isolated bundles can be analyzed by a variety of techniques, including immunocytochemistry, SDS-PAGE, immunoblotting, and mass spectrometry.

  13. Practical microstructured and plasmonic terahertz waveguides

    Science.gov (United States)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated

  14. Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer

    Science.gov (United States)

    Timofeev, Ivan V.; Lin, Yu-Ting; Gunyakov, Vladimir A.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.

    2012-01-01

    Defect modes are investigated in a band gap of an electrically tunable one-dimensional photonic crystal infiltrated with a twisted-nematic liquid crystal. Their frequency shift and interference under applied voltage are studied both experimentally and theoretically. We deal with the case where the defect layer thickness is much larger than the wavelength (i.e., the Mauguin condition). It is shown theoretically that the defect modes could have a complex structure with elliptic polarization. Two series of polarized modes are coupled with each other and exhibit an avoided crossing phenomenon in the case of opposite parity.

  15. Computational design of an automotive twist beam

    Directory of Open Access Journals (Sweden)

    Benki Aalae

    2016-07-01

    Full Text Available In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke׳s law. Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI algorithm coupling with a radial basis function (RBF metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

  16. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  17. Simulations of twisted bilayer orthorhombic black phosphorus

    Science.gov (United States)

    Pan, Douxing; Wang, Tzu-Chiang; Xiao, Wende; Hu, Dongmei; Yao, Yugui

    2017-07-01

    We identified, by means of coincidence site lattice theory, an evaluative stacking phase with a wavelike Moiré pattern, denoted as 2 O -t α P , from all potentially twisted bilayer orthorhombic black phosphorus. Such a twisted stacking comes with a low formation energy of -162.8 meV , very close to existing AB stacking, according to first-principles calculations. Particularly, classic molecular dynamic simulations verified that the stacking can be directly obtained in an in situ cleavage. The stability of 2 O -t α P stacking can be directly attributed to the corrugated configuration of black phosphorus leading to the van der Waals constraining forces, where the top layer can get stuck to the bottom when one layer rotates in plane relative to the other by ˜70 .5∘ . Tribological analysis further revealed that the interlayer friction of 2 O -t α P stacking reaches up to 1.3 nN, playing a key role in the origin of 2 O -t α P .

  18. Twisted geometries, twistors and conformal transformations

    CERN Document Server

    Långvik, Miklos

    2016-01-01

    The twisted geometries of spin network states are described by simple twistors, isomorphic to null twistors with a time-like direction singled out. The isomorphism depends on the Immirzi parameter, and reduces to the identity when the parameter goes to infinity. Using this twistorial representation we study the action of the conformal group SU(2,2) on the classical phase space of loop quantum gravity, described by twisted geometry. The generators of translations and conformal boosts do not preserve the geometric structure, whereas the dilatation generator does. It corresponds to a 1-parameter family of embeddings of T*SL(2,C) in twistor space, and its action preserves the intrinsic geometry while changing the extrinsic one - that is the boosts among polyhedra. We discuss the implication of this action from a dynamical point of view, and compare it with a discretisation of the dilatation generator of the continuum phase space, given by the Lie derivative of the group character. At leading order in the continuu...

  19. Heat transfer and fluid friction in bundles of twisted tubes

    Science.gov (United States)

    Dzyubenko, B. V.; Dreitser, G. A.

    1986-06-01

    The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.

  20. Design optimization of a twist compliant mechanism with nonlinear stiffness

    Science.gov (United States)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  1. Two new twisted helical nickel (II) and cobalt (III) octahedral ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 6. Two new twisted helical nickel(II) and cobalt(III) octahedral monomer complexes: Synthesis and structural characterization. Malay Dolai ... Keywords. Coordination chemistry; nickel(II); cobalt(III); Schiff base; twisted helicity; supramolecular interactions.

  2. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    width twisted tape inserts, ASME Transactions, Vol. 122, pp. 143-149. Naphon P., 2006. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, International communications in Heat and Mass Transfer, Vol. 33, pp. 166-175. Promvonge P. and Eiamsa-ard S., 2007. Heat transfer ...

  3. Beyond the classical Rayleigh limit with twisted light.

    Science.gov (United States)

    Tong, Zhisong; Korotkova, Olga

    2012-07-01

    It is shown that twisted stochastic light can serve as illumination that may produce images with a resolution overcoming the Rayleigh limit by an order of magnitude. This finding is illustrated for an isoplanatic axially symmetric system with low angular aperture and twisted scalar Gaussian Schell-model illumination.

  4. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening ...

    Indian Academy of Sciences (India)

    tribpo

    corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the ...

  5. Incompressible magnetohydrodynamic modes in the thin magnetically twisted flux tube

    Science.gov (United States)

    Cheremnykh, O. K.; Fedun, V.; Kryshtal, A. N.; Verth, G.

    2017-08-01

    Context. Observations have shown that twisted magnetic fields naturally occur, and indeed are omnipresent in the Sun's atmosphere. It is therefore of great theoretical interest in solar atmospheric waves research to investigate the types of magnetohydrodynamic (MHD) wave modes that can propagate along twisted magnetic flux tubes. Aims: Within the framework of ideal MHD, the main aim of this work is to investigate small amplitude incompressible wave modes of twisted magnetic flux tubes with m ≥ 1. The axial magnetic field strength inside and outside the tube will be allowed to vary, to ensure the results will not be restricted to only cold plasma equilibria conditions. Methods: The dispersion equation for these incompressible linear MHD wave modes was derived analytically by implementing the long wavelength approximation. Results: It is shown, in the long wavelength limit, that both the frequency and radial velocity profile of the m = 1 kink mode are completely unaffected by the choice of internal background magnetic twist. However, fluting modes with m ≥ 2 are sensitive to the particular radial profile of magnetic twist chosen. Furthermore, due to background twist, a low frequency cut-off is introduced for fluting modes that is not present for kink modes. From an observational point of view, although magnetic twist does not affect the propagation of long wavelength kink modes, for fluting modes it will either work for or against the propagation, depending on the direction of wave travel relative to the sign of the background twist.

  6. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    ... developed for friction factors and Nusselt numbers for a fully developed turbulent swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 107-118 ...

  7. Integrated all-optical wavelength multicasting for 40 Gbit/s PDM-QPSK signals using a single silicon waveguide

    Science.gov (United States)

    Feng, Xianglian; Wu, Zhihang; Wang, Xiaoyan; Gao, Shiming

    2017-09-01

    All-optical wavelength multicasting is presented and experimentally demonstrated for 40 Gbit/s polarization-division-multiplexed (PDM) nonreturn-to-zero quadrature phase-shift keying (QPSK) signals using four-wave mixing (FWM) with angled-polarization pumps in a silicon waveguide. Five multicast channels are obtained on the generated idlers. The eye diagrams, constellation diagrams, and bit error rates (BERs) of the QPSK sequences on the two polarization states are measured for each wavelength channel. The power penalties of all these multicast QPSK sequences on x or y polarization state are less than 2.0 dB at the BER of 3 × 10-3.

  8. Spin Physics Experiments at NICA-SPD with polarized proton and deuteron beams

    Directory of Open Access Journals (Sweden)

    Savin I.

    2015-01-01

    Full Text Available The brief description of the Letter of Intent proposing primarily to perform measurements of asymmetries of the DY pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons.

  9. Phase-sensitive Four-wave Mixing in AlGaAs-on-Insulator Nano-waveguides

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa

    2016-01-01

    Phase-sensitive four-wave mixing is experimentally demonstrated in a 5-mm long AlGaAsOI nano-waveguide. More than 7 dB of phase-sensitive extinction ratio are reported without neither using active biasing nor polarization-assisted schemes. Measurements show a good match with numerical predictions....

  10. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...

  11. Waveguide couplers for ferroelectric optical resonators

    OpenAIRE

    Grudinin, Ivan S.; Kozhanov, A.; Yu, N.

    2014-01-01

    We report a study of using the same material to fabricate a whispering gallery mode resonator and a coupler. Coupling to high Q whispering gallery modes of the lithium niobate resonator is demonstrated by means of the titanium-doped waveguide. The waveguide coupling approach opens possibilities for simpler and wider practical usage of whispering gallery mode resonators and their integration into optical devices.

  12. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  13. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  14. Antenna arrays: waveguide layout designing automation

    OpenAIRE

    Anamova, R. R.

    2014-01-01

    Waveguide layout designing automation in the large-sized phased antenna arrays is studied. A new methodology of the automation and algorithms based on the flexible connection routing method are suggested. Results are realized in the software module WDS (Waveguide Design Solution) based on SolidWorks system. This module gives an opportunity to decrease design and engineering time and costs.

  15. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Youwen; Oldenbeuving, Ruud; Klein, E.J.; Lee, Christopher James; Song, H.; Khan, M.R.H.; Offerhaus, Herman L.; van der Slot, Petrus J.M.; Boller, Klaus J.; Mackenzie, J.I.; Jelinkova, H.; Taira, T.; Ahmed, M.A.

    2014-01-01

    abstract .We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 μm wavelength range. The Si3N4/SiO2 glass waveguide circuit

  16. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Van der Slot, P.J.M.; Boller, K.J.

    2014-01-01

    We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 µm wavelength range. The Si3N4/SiO2 glass waveguide circuit comprises two

  17. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  18. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission is h...

  19. Sapphire and other dielectric waveguide devices

    NARCIS (Netherlands)

    Pollnau, Markus

    2008-01-01

    Different fabrication methods have been explored successfully and surface and buried channel waveguide lasers have been demonstrated in Ti:sapphire for the first time. Since the propagation losses of these first-generation waveguides are still rather high, substantial improvement is required in

  20. Infrared nanoantenna couplers for plasmonic slot waveguide

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    A slot plasmonic waveguide is promising solution as a replacement of electrical interconnects in the future optical integrated circuits. In this contribution we consider a set of compact solutions for coupling the infrared light from free space to the plasmonic slot waveguide. We systematically...

  1. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  2. Untwisting twisted NJL2 kinks by a bare fermion mass

    Science.gov (United States)

    Thies, Michael

    2017-12-01

    Twisted kinks in the massless NJL2 model interpolate between two distinct vacua on the chiral circle. If one approaches the chiral limit from finite bare fermion masses m0, the vacuum is unique and twist cannot exist. This issue is studied analytically in the nonrelativistic limit, using a no-sea effective theory. We conclude that even in the massless limit, the interpretation of the twisted kink has to be revised. One has to attribute the fermion number of the valence state to the twisted kink. Fermion density is spread out over the whole space due to the massless pion field. The result can be pictured as a composite of a twisted kink (carrying energy, but no fermion number) and a partial winding of the chiral spiral (carrying fermion number, but no energy). This solves at the same time the puzzle of missing baryons with fermion number Nf

  3. Analysis list: Twist1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  4. Expression of EMT Markers SLUG and TWIST in Breast Cancer.

    Science.gov (United States)

    Grzegrzolka, Jedrzej; Biala, Martyna; Wojtyra, Patrycja; Kobierzycki, Christopher; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Piotrowska, Aleksandra; Rys, Janusz; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-07-01

    The epithelial-mesenchymal transition (EMT) has been observed in progression of in situ breast cancer to the invasive form and might be initiated by snail family zinc finger 2 (SLUG) and twist family bHLH transcription factor 1 (TWIST) protein overexpression. During this phenomenon, cells lose their epithelial phenotype and acquire mesenchymal features. The aim of the study was to examine the association of EMT markers SLUG and TWIST with clinicopathological data and the possibility of using these proteins as prognostic markers of breast cancer. Immunohistochemical analysis (IHC) of SLUG and TWIST expression was performed on archival paraffin samples of 19 cases with fibrocystic breast changes (control group), 148 cases of invasive ductal breast cancer (IDC) and 26 of invasive lobular breast cancer (ILC). Laser capture microdissection for isolation of cells from 17 frozen samples of IDC was employed and subsequently SLUG and TWIST mRNA expression in cancer and stromal cells was detected separately by real-time polymerase chain reaction. SLUG and TWIST expression in IDC was significant higher in stromal cells regardless of the method of quantification used (p<0.001 for SLUG mRNA, and p<0.0001 for SLUG IHC, TWIST IHC and TWIST mRNA expression). Positive correlation of SLUG and TWIST protein and mRNA expression was observed in stromal cells of IDC (r=0.347; p<0.0001 and r=0.704; p<0.01, respectively). Expression of TWIST protein in IDC was higher in cancer cells of cases with shorter event-free survival period, as well as in stromal cells of cases with shorter overall survival period (p<0.05 for both). Stromal cells could play a role in the regulation of EMT in breast cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    Light can propagate much slower in photonic crystal waveguides and plasmonic waveguides than in vacuum. Slow light propagation in waveguides shows broad prospects in the terabit communication systems. However, it causes severe signal distortions and displays large propagation loss. Moreover......, an optimization formulation is presented to tailor the slope of the dispersion curve. The design robustness is enforced by considering different manufacturing realizations in the optimization procedure. Both free- and fixed-topology (circular-hole based) slow light photonic crystal waveguides are obtained using...... two different parameterizations. Detailed comparisons show that the bandwidth of slow light propagation can be significantly enhanced by allowing irregular geometries in the waveguides. To mitigate the propagation loss due to scattering in the photonic crystal waveg- uides, an optimization problem...

  6. Generation of pure heralded single-photon states by cross-polarized spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; McKinstrie, Colin J.; Rottwitt, Karsten

    2016-01-01

    We propose a novel scheme which employs cross-polarized pumps to generate temporally and spectrally uncorrelated signal-idler photon-pairs through spontaneous fourwave mixing in a birefringent third-order nonlinear waveguide.......We propose a novel scheme which employs cross-polarized pumps to generate temporally and spectrally uncorrelated signal-idler photon-pairs through spontaneous fourwave mixing in a birefringent third-order nonlinear waveguide....

  7. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  8. A Precision Measurement of the Neutron Twist-3 Matrix Element $d_2^n$: Probing Color Forces

    CERN Document Server

    Posik, M; Parno, D S; Allada, K; Armstrong, W; Averett, T; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Choi, S; Chudakov, E; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; Deng, X; Deur, A; Dutta, C; Fassi, L El; Franklin, G B; Friend, M; Gao, H; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Guo, L; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Hyde, C; Ibrahim, H F; Jiang, X; Jin, G; Katich, J; Kelleher, A; Kolarkar, A; Korsch, W; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Long, E; Lukhanin, A; Mamyan, V; McNulty, D; Meziani, Z -E; Michaels, R; Mihovilovič, M; Moffit, B; Muangma, N; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Nuruzzaman,; Oh, Y; Peng, J C; Qian, X; Qiang, Y; Rakhman, A; Riordan, S; Saha, A; Sawatzky, B; Shabestari, M H; Shahinyan, A; Širca, S; Solvignon, P; Subedi, R; Sulkosky, V; Tobias, A; Troth, W; Wang, D; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X

    2014-01-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken $x$ (0.25 $ \\le x \\le $ 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized $^3$He target. In this dedicated experiment, the spin structure function $g_2$ on $^3$He was determined with precision at large $x$, and the neutron twist-three matrix element $d_2^n$ was measured at $\\left$ of 3.21 and 4.32 GeV$^2$/$c^2$, with an absolute precision of about $10^{-5}$. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at $\\left =$ 5 GeV$^2$/$c^2$. Combining $d_2^n$ and a newly extracted twist-four matrix element, $f_2^n$, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  9. Hybrid grapheme plasmonic waveguide modulators

    Science.gov (United States)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  10. Photonic waveguides theory and applications

    CERN Document Server

    Boudrioua, Azzedine

    2009-01-01

    This book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th

  11. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  12. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  13. Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization.

    Science.gov (United States)

    Frandsen, L; Harpøth, A; Borel, P; Kristensen, M; Jensen, J; Sigmund, O

    2004-11-29

    Topology optimization has been used to design a 60 degrees bend in a single-mode planar photonic crystal waveguide. The design has been realized in a silicon-on-insulator material and we demonstrate a record-breaking 200-nm transmission bandwidth with an average bend loss of 0.43+/-0.27 dB for the TE polarization. The experimental results agree well with 3D finite-difference-time-domain simulations.

  14. Chiral Response of Twisted Bilayer Graphene

    Science.gov (United States)

    Stauber, T.; Low, T.; Gómez-Santos, G.

    2018-01-01

    We present an effective (minimal) theory for chiral two-dimensional materials. These materials possess an electromagnetic coupling without exhibiting a topological gap. As an example, we study the response of doped twisted bilayers, unveiling unusual phenomena in the zero frequency limit. An in-plane magnetic field induces a huge paramagnetic response at the neutrality point and, upon doping, also gives rise to a substantial longitudinal Hall response. The system also accommodates nontrivial longitudinal plasmonic modes that are associated with a longitudinal magnetic moment, thus endowing them with a chiral character. Finally, we note that the optical activity can be considerably enhanced upon doping and our general approach would enable systematic exploration of 2D material heterostructures with optical activity.

  15. Unusual presentation of twisted ovarian cyst

    Directory of Open Access Journals (Sweden)

    Vineet V Mishra

    2016-01-01

    Full Text Available Ovarian torsion (also termed as adnexal torsion refers to partial or complete rotation of the ovary and a portion of fallopian tube along its supplying vascular pedicle. It occurs commonly in reproductive age group; more on the right side (60% and often presents with acute lower abdominal pain lasting for few hours and up to 24 h, accounting for 2.7% of acute gynecological conditions. It is one of the devastating conditions, hampering blood supply of ovary which may lead to total necrosis of ovarian tissue and complications, if not diagnosed and managed in time. Hence, we present a case on a twisted ovarian cyst in postmenopausal woman with unusual symptomatology leading to delayed diagnosis and loss of an ovary.

  16. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey

    2015-01-01

    nonce misuse resistance, such as POET. The algebraic structure of polynomial hashing has given rise to security concerns: At CRYPTO 2008, Handschuh and Preneel describe key recovery attacks, and at FSE 2013, Procter and Cid provide a comprehensive framework for forgery attacks. Both approaches rely...... heavily on the ability to construct forgery polynomials having disjoint sets of roots, with many roots (“weak keys”) each. Constructing such polynomials beyond naïve approaches is crucial for these attacks, but still an open problem. In this paper, we comprehensively address this issue. We propose to use...... twisted polynomials from Ore rings as forgery polynomials. We show how to construct sparse forgery polynomials with full control over the sets of roots. We also achieve complete and explicit disjoint coverage of the key space by these polynomials. We furthermore leverage this new construction...

  17. Twisted Black Hole Is Taub-NUT

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner -- the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry.

  18. Bioinspired twisted composites based on Bouligand structures

    Science.gov (United States)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  19. Twist-2 controls myeloid lineage development and function.

    Directory of Open Access Journals (Sweden)

    Andrew B Sharabi

    2008-12-01

    Full Text Available Basic helix-loop-helix (bHLH transcription factors play critical roles in lymphoid and erythroid development; however, little is known about their role in myeloid lineage development. In this study, we identify the bHLH transcription factor Twist-2 as a key negative regulator of myeloid lineage development, as manifested by marked increases in mature myeloid populations of macrophages, neutrophils, and basophils in Twist-2-deficient mice. Mechanistic studies demonstrate that Twist-2 inhibits the proliferation as well as differentiation of granulocyte macrophage progenitors (GMP by interacting with and inhibiting the transcription factors Runx1 and C/EBPalpha. Moreover, Twist-2 was found to have a contrasting effect on cytokine production: inhibiting the production of proinflammatory cytokines such as interleukin-12 (IL-12 and interferon-gamma (IFNgamma while promoting the regulatory cytokine IL-10 by myeloid cells. The data from further analyses suggest that Twist-2 activates the transcription factor c-Maf, leading to IL-10 expression. In addition, Twist-2 was found to be essential for endotoxin tolerance. Thus, this study reveals the critical role of Twist-2 in regulating the development of myeloid lineages, as well as the function and inflammatory responses of mature myeloid cells.

  20. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The

  1. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    Science.gov (United States)

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Metamaterial Waveguide Devices for Integrated Optics

    Science.gov (United States)

    Kanazawa, Toru; Yamasaki, Satoshi; Arai, Shigehisa

    2017-01-01

    We show the feasibility of controlling the magnetic permeability of optical semiconductor devices on InP-based photonic integration platforms. We have achieved the permeability control of GaInAsP/InP semiconductor waveguides by combining the waveguide with a metamaterial consisting of gate-controlled split ring resonators. The split-ring resonators interact magnetically with light travelling in the waveguide and move the effective relative permeability of the waveguide away from 1 at optical frequencies. The variation in permeability can be controlled with the gate voltage. Using this variable-permeability waveguide, we have built an optical modulator consisting of a GaInAsP/InP Mach–Zehnder interferometer for use at an optical communication wavelength of 1.55 μm. The device changes the permeability of its waveguide arm with controlling gate voltage, thereby varying the refractive index of the arm to modulate the intensity of light. For the study of variable-permeability waveguide devices, we also propose a method of extracting separately the permittivity and permeability values of devices from the experimental data of light transmission. Adjusting the permeability of optical semiconductors to the needs of device designers will open the promising field of ‘permeability engineering’. Permeability engineering will facilitate the manipulation of light and the management of photons, thereby contributing to the development of novel devices with sophisticated functions for photonic integration. PMID:28872621

  3. Spectroscopic and theoretical evidence for the photoinduced twisted intramolecular charge transfer state formation in N,N-dimethylaminonaphthyl-(acrylo)-nitrile

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rupashree Balia; Mahanta, Subrata; Kar, Samiran [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhil.guchhait@rediffmail.com

    2008-09-15

    The phenomenon of excited state twisted intramolecular charge transfer (TICT) process in N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) has been reported on the basis of steady-state absorption and fluorescence spectroscopy in combination with quantum chemical calculations. The absorption and fluorescence characteristics of DMANAN in solvents of different polarity reveal the presence of a single species in the ground state which forms the intramolecular charge transfer state upon photoexcitation. The observed dual fluorescence is assigned to a high-energy emission from the locally excited or the Franck-Condon state and the red-shifted emission from the charge transfer (CT) state. In polar protic solvents, hydrogen-bonding interaction on CT emission has been established from the linear dependency of the position of the low-energy emission maxima on hydrogen-bonding parameter ({alpha}). The experimental findings have been correlated with the theoretical results based on TICT model obtained at density functional theory (DFT) level. The theoretical potential energy surface for the first excited state along both the donor and acceptor twist coordinates in the gas phase obtained by time dependent density functional theory (TDDFT) method and in polar solvent by time dependent density functional theory-polarized continuum model (TDDFT-PCM) method predicts well the experimental spectral properties.

  4. Theoretical study of the double Compton effect with twisted photons

    Science.gov (United States)

    Sherwin, J. A.

    2017-05-01

    Double Compton scattering of high-energy twisted photons is investigated within the framework of relativistic quantum electrodynamics. We investigate the dependence of the angular distributions of the scattered photons on the parameters of the incident photon beam, such as momentum cone opening angle and projection of orbital angular momentum. Numerical calculations of the angular distributions of the scattered photons are presented for incoming twisted photons and compared to the standard case of incident plane-wave photons. The dependence of the angular distributions of the double-Compton-scattered photons for initially twisted photons prepared in a superposition of two vortex states is also presented.

  5. Topological duality twist and brane instantons in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova andINFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)

    2014-06-30

    A variant of the topological twist, involving SL(2,ℤ) dualities and hence named topological duality twist, is introduced and explicitly applied to describe a U(1) N=4 super Yang-Mills theory on a Kähler space with holomorphically space-dependent coupling. Three-dimensional duality walls and two-dimensional chiral theories naturally enter the formulation of the duality twisted theory. Appropriately generalized, this theory is relevant for the study of Euclidean D3-brane instantons in F-theory compactifications. Some of its properties and implications are discussed.

  6. Design of mode converters from TE circular om modes in circular waveguides to TE rectangular mo modes in rectangular waveguides for high power applications in the frequency range 1 to 30 GHz

    Science.gov (United States)

    Janzen, G.

    1984-07-01

    A mode converter for transitions from circular symmetric modes to rectangular waveguide modes and vice versa for high power applications in plasma heating experiments is described. The converter conserves the power of all circular symmetric modes emitted by a gyrotron and aligns the fields into linearly polarized modes required for effective plasma heating by electron cyclotron or by lower hybrid resonance absorption. It also allows a convenient combination of the power output of several klystrons and mode conversion into modes with low attenuation. Suitable combinations of waveguide diameter and number of sectors dividing (or combining) the power avoid the excitation of unwanted modes.

  7. Optical planar waveguide for cell counting

    Science.gov (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  8. Suppression of crosstalk in coupled plasmonic waveguides

    CERN Document Server

    Kuznetsov, E V; Zyablovsky, A A; Vinogradov, A P; Lisyansky, A A

    2016-01-01

    We demonstrate the suppression of crosstalk between two dielectric nanowaveguides by placing an auxiliary linear waveguide between loaded waveguides spaced by one wavelength. The total cross-sectional dimension of the system containing two transmission lines is less than two microns that is hundred times smaller than a cross-section of a system made of dielectric fiber. The propagating modes in these waveguides are the sum and the difference of symmetric and antisymmetric modes of the coupled system. Crosstalk is suppressed by matching the wavenumbers of these modes. The analytically obtained results are confirmed by numerical simulation.

  9. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  10. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    A scanning near-field optical microscope is used to directly map the propagation of light in the wavelength range of 1500-1630 nm along straight photonic crystal waveguides (PCWs) fabricated on silicon-on-insulator wafers. The PVWs were formed by removing a single row of holes in the triangular 428...... guiding (for both samples) of the TM-polarized radiation is observed in the whole range of laser tunability. For TE polarization, the efficient guiding is limited to the wavelengths shorter than 1552 or 1570 nm for the PCW with the filling factor of 0.76 or 0.82, respectively. For longer wavelengths, we...

  11. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Laurent Jacqueroud

    2016-05-01

    Full Text Available The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.

  12. Efficient second-harmonic generation and modal dispersion effects in orientation-patterned GaAs waveguides.

    Science.gov (United States)

    Oron, M B; Pearl, S; Blau, P; Shusterman, S

    2010-08-15

    Efficient second-harmonic conversion of 4 microm radiation was demonstrated in orientation-patterned GaAs (OPGaAs) waveguides (WGs). An experimentally corrected phase-matching curve for second harmonic generation (SHG) in OPGaAs WGs is presented. Influence of WG modes on the SHG process was studied. Two distinct types of SHG in the waveguides were identified and related to the TE and TM modes. Each type has its own dependence on pump polarization. The 21% W(-1) normalized conversion efficiency is within a factor of 0.75 from the predicted value for an ideal WG.

  13. Towards integrated superconducting detectors on lithium niobate waveguides

    Science.gov (United States)

    Höpker, Jan Philipp; Bartnick, Moritz; Meyer-Scott, Evan; Thiele, Frederik; Krapick, Stephan; Montaut, Nicola; Santandrea, Matteo; Herrmann, Harald; Lengeling, Sebastian; Ricken, Raimund; Quiring, Viktor; Meier, Torsten; Lita, Adriana; Verma, Varun; Gerrits, Thomas; Nam, Sae Woo; Silberhorn, Christine; Bartley, Tim J.

    2017-08-01

    Superconducting detectors are now well-established tools for low-light optics, and in particular quantum optics, boasting high-efficiency, fast response and low noise. Similarly, lithium niobate is an important platform for integrated optics given its high second-order nonlinearity, used for high-speed electro-optic modulation and polarization conversion, as well as frequency conversion and sources of quantum light. Combining these technologies addresses the requirements for a single platform capable of generating, manipulating and measuring quantum light in many degrees of freedom, in a compact and potentially scalable manner. We will report on progress integrating tungsten transition-edge sensors (TESs) and amorphous tungsten silicide superconducting nanowire single-photon detectors (SNSPDs) on titanium in-diffiused lithium niobate waveguides. The travelling-wave design couples the evanescent field from the waveguides into the superconducting absorber. We will report on simulations and measurements of the absorption, which we can characterize at room temperature prior to cooling down the devices. Independently, we show how the detectors respond to flood illumination, normally incident on the devices, demonstrating their functionality.

  14. Periodic Structures Formed by Ag Nanoparticles in AgCl-Ag Film Waveguides Exposed to Violet Laser Light

    Science.gov (United States)

    Ageev, L. A.; Miloslavsky, V. K.; Makovetsky, E. D.; Volosenko, V. M.

    2013-07-01

    Periodic structures with a period d ≈ 266 nm owing to excitation of waveguide modes are produced in a thin film AgCl-Ag composition by normally incident linearly polarized light from a semiconductor laser (λ ≈ 407 nm). The grooves in the periodic structure are formed by Ag nanoparticles oriented along the polarization direction E 0. Dichroism with a gap at the laser wavelength is observed in absorption spectra of these films measured in polarized light. The dichroism is retained after chemical removal of the AgCl from the AgCl-Ag film. It is found that the absorption gap is related to conversion of the plasmon energy into the energy of a waveguide mode, while the dichroism is attributable to anisotropic absorption of the light by Ag nanoparticles distributed in the grooves of the periodic structures.

  15. Broadband amps sport coplanar waveguide

    Science.gov (United States)

    Browne, Jack

    1987-02-01

    The design techniques, manufacturing methods and the performance envelope of VMA 110 bandwidth amplifiers are described. The devices are produced with a combination of coplanar waveguide, slotline and twinstrip media and result in gain ripples of 0.35 dB per 10 dB of gain. The ground plane is placed above the circuit board to allow access without drilling, thereby making the amplifiers suitable for use with surface-mount components, Si MMICs and GaAs MMICs. Well-controlled electromagnetic fields permit clustering functions with no fear of electrical interaction between different circuits. The devices are designed, optimized and artwork is formatted on a personal computer using CAD programs.

  16. Waveguides having patterned, flattened modes

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  17. Photon correlations in multimode waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Poem, Eilon; Silberberg, Yaron [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-10-15

    We consider the propagation of classical and nonclassical light in multimode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much as the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the ''revival'' of the initial correlation pattern at the end of each period. It is found that when the input state possesses nontrivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudothermal light, and compare the results with the predictions for nonclassical, quantum light.

  18. Polanski lavastas filmi "Oliver Twist" oma lastele / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm "Oliver Twist" Charles Dickensi romaani ainetel esilinastus Prahas, kus toimusid ka filmivõtted. Tšehhi, Suurbritannia, Prantsusmaa ja Itaalia koostöös valminud filmi lavastas Roman Polanski

  19. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  20. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  1. DNA twist stability changes with magnesium(2+) concentration

    CERN Document Server

    Broekmans, Onno D; Stephens, Greg J; Wuite, Gijs J L

    2014-01-01

    For an understanding of DNA elasticity at high mechanical loads (F > 30 pN), its helical nature needs to be taken into account, in the form of coupling between the twist and stretch degrees of freedom. The prevailing model for DNA elasticity, the worm-like chain, was previously extended to include this twist-stretch coupling, giving rise to the twistable worm-like chain. Motivated by DNA's charged nature, and the known effects of ionic charges on the molecule's persistence length and stretch modulus, we explored the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach for force-extension data, we find that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation.

  2. Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005

  3. Higher-twist dynamics in large transverse momentum hadron production.

    Science.gov (United States)

    Arleo, François; Brodsky, Stanley J; Hwang, Dae Sung; Sickles, Anne M

    2010-08-06

    A scaling law analysis of the world data on inclusive large-p(⊥) hadron production in hadronic collisions is carried out. Significant deviations from leading-twist perturbative QCD predictions at next-to-leading order are observed, particularly at high x(⊥)=2p(⊥)/sqrt[s]. In contrast, the production of prompt photons and jets exhibits near-conformal scaling behavior in agreement with leading-twist expectations. These results indicate a non-negligible contribution of higher-twist processes in large-p(⊥) hadron production, where the hadron is produced directly in the hard subprocess, rather than by quark and gluon fragmentation. Predictions for the scaling exponents at RHIC and LHC are given. Triggering on isolated large-p(⊥) hadron production will enhance the higher-twist processes. We also note that the use of isolated hadrons as a signal for new physics can be affected by the presence of direct hadron production.

  4. Low-index discontinuity terahertz waveguides

    National Research Council Canada - National Science Library

    Michael Nagel; Astrid Marchewka; Heinrich Kurz

    2006-01-01

    ... of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions...

  5. Differential interference in a polymer waveguide

    National Research Council Canada - National Science Library

    Gut, K

    2011-01-01

    The paper presents the results of investigations concerning the measurement of the refractive index and the thickness of planar waveguide structures, obtained by photo polymerization of the polymer SU8...

  6. Holographic Waveguided See-Through Display Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...

  7. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    We report on experimental realization of different metal-insulator geometries that are used as plasmonic waveguides guiding electromagnetic radiation along metal-dielectric interfaces via excitation of surface plasmon polaritons (SPPs). Three configurations are considered: metal strips, symmetric...

  8. Optical waveguides in hard crystalline materials

    NARCIS (Netherlands)

    Pollnau, Markus

    2005-01-01

    The recent results of our research group and collaborators in the field of fabrication, characterization, and applications of optical waveguides in hard crystalline materials, specifically in sapphire and Ti:sapphire, are reviewed.

  9. Laser written waveguide photonic quantum circuits

    National Research Council Canada - National Science Library

    Graham D. Marshall; Alberto Politi; Jonathan C. F. Matthews; Peter Dekker; Martin Ams; Michael J. Withford; Jeremy L. O'Brien

    2009-01-01

    We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices...

  10. Quantum random walks circuits with photonic waveguides

    NARCIS (Netherlands)

    Peruzzo, Alberto; Matthews, Jonathan; Politi, Alberto; Lobino, Mirko; Zhou, Xiao-Qi; Thompson, Mark G.; O'Brien, Jeremy; Matsuda, Nobuyuki; Ismail, N.; Worhoff, Kerstin; Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron

    2010-01-01

    Arrays of 21 evanescently coupled waveguides are fabricated to implement quantum random walks and a generalised form of two-photon non-classical interference, which observed via two photon correlation.

  11. High index contrast UV-written waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Færch, Kjartan Ullitz

    By increasing the concentration of molecular hydrogen in germanosilica samples, we show that buried channel waveguides with an index step of up to 0.02 can be fabricated using the directUV writing technique....

  12. Direct UV-writing of waveguides

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz

    2003-01-01

    The research presented in this phd thesis is concerned about fabrication of waveguide structures in photosensitized germanosilica thin films by exposure to Ultra-violet (UV) radiation. Using a high pressure loading system and a waveguide fabrication setup, planar waveguiding structures with an UV...... induced refractive index change of more than 10-2 have been obtained. New insight, with respect to understanding the UV induced index change obtained by direct UV writing, has been provided, through experiments conducted with such high-pressure loaded germanosilica samples. This include measurements...... of the UV induced refractive index change, and spectroscopic measurements of the defect distribution, for various fabrication parameters. A method to measure the concentration of molecular hydrogen in thin film planar waveguide samples is established and validated for hydrogen loadign at up to 12 mole...

  13. Projecting light beams with 3D waveguide arrays

    CERN Document Server

    Crespi, Andrea

    2016-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase pa...

  14. Diffraction of a Waveguide Mode in a Nanowire

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2009-01-01

    can be calculated numerically, such an approach does not allow comprehensive analysis of the problem. In the present talk, the rigorous theory of reflection and diffraction of a waveguide mode at the end of a semi-infinite dielectric circular cylinder is developed. The theory assumes an arbitrary...... ratio between the cylinder radius and the wavelength and hence it can be used for the description of the nanowire optical properties. An exact solution of this problem is found by the use of fictitious electric and magnetic current sheets located at the end of the cylinder. The solution has the form....... It is shown that the polarization of the electromagnetic field is not changed upon reflection and its amplitude is zero in the far-field limit. The extension of this approach to the case of a nanowire of a finite length is also discussed. The normal modes of such a resonator which are analogs of the Fabry...

  15. Off-axis excitation of hydrogenlike atoms by twisted photons

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Mukherjee, Asmita

    2013-09-01

    We show that the twisted-photon states, or photon states with large (>ℏ) angular momentum projection (mγ) in the direction of motion, can photoexcite atomic levels for a hydrogenlike atom that are novel and distinct and are not restricted by mγ, when the symmetry axis of the twisted-photon beam does not coincide with the center of the atomic target. Selection rules are given and interesting implications and observables for the above process are pointed out.

  16. The Hardy inequality and the heat equation in twisted tubes

    OpenAIRE

    Krejčiřík, David; Zuazua, Enrique

    2010-01-01

    We show that a twist of a three-dimensional tube of uniform cross-section yields an improved decay rate for the heat semigroup associated with the Dirichlet Laplacian in the tube. The proof employs Hardy inequalities for the Dirichlet Laplacian in twisted tubes and the method of self-similar variables and weighted Sobolev spaces for the heat equation. © 2010 Elsevier Masson SAS.

  17. Finite-dimensional representations of twisted hyper loop algebras

    OpenAIRE

    Bianchi, Angelo; Moura, Adriano

    2012-01-01

    We investigate the category of finite-dimensional representations of twisted hyper loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twi...

  18. Magnetic cloud fit by uniform-twist toroidal flux ropes

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2017-12-01

    Context. Detailed studies of magnetic cloud observations in the solar wind in recent years indicate that magnetic clouds are interplanetary flux ropes with a low twist. Commonly, their magnetic fields are fit by the axially symmetric linear force-free field in a cylinder (Lundquist field), which in contrast has a strong and increasing twist toward the boundary of the flux rope. Therefore another field, the axially symmetric uniform-twist force-free field in a cylinder (Gold-Hoyle field) has become employed to analyze magnetic clouds. Aims: Magnetic clouds are bent, and for some observations, a toroidal rather than a cylindrical flux rope is needed for a local approximation of the cloud fields. We therefore try to derive an axially symmetric uniform-twist force-free field in a toroid, either exactly, or approximately, and to compare it with observations. Methods: Equations following from the conditions of solenoidality and force-freeness in toroidally curved cylindrical coordinates were solved analytically. The magnetic field and velocity observations of a magnetic cloud were compared with solutions obtained using a nonlinear least-squares method. Results: Three solutions of (nearly) uniform-twist magnetic fields in a toroid were obtained. All are exactly solenoidal, and in the limit of high aspect ratios, they tend to the Gold-Hoyle field. The first solution has an exactly uniform twist, the other two solutions have a nearly uniform twist and approximate force-free fields. The analysis of a magnetic cloud observation showed that these fields may fit the observed field equally well as the already known approximately linear force-free (Miller-Turner) field, but it also revealed that the geometric parameters of the toroid might not be reliably determined from fits, when (nearly) uniform-twist model fields are used. Sets of parameters largely differing in the size of the toroid and its aspect ratio yield fits of a comparable quality.

  19. High finesse silica waveguide ring resonators for resonant micro-optic gyroscopes

    Science.gov (United States)

    Zhang, Jianjie; Li, Hanzhao; Ma, Huilian; Jin, Zhonghe

    2017-04-01

    A high-finesse silica waveguide ring resonator (WRR) is designed and a new record is demonstrated experimentally. The finesse and the resonant depth of the silica WRR with a length of 7.9 cm and a diameter of 2.5 cm are 196.7 and 98%, respectively. In addition, the silica WRR is pigtailed with single-polarization fiber to improve the polarization extinction ratio thus to reduce the polarization error. With the application of this high-finesse and high polarization extinction ratio WRR to the resonant micro-optic gyroscope (RMOG), a bias stability of 0.004°/s was observed over a one-hour timeframe.

  20. Benefit of birefringence for the direct generation of polarization-entangled photon pairs.

    Science.gov (United States)

    Kultavewuti, Pisek; Qian, Li; Aitchison, J Stewart

    2017-07-24

    Generating polarization-entangled photon pairs on chip is generally complicated by the birefringence of waveguides. In this work, we propose a technique that uses waveguide birefringence and lends itself to simple device designs. The technique relies on two orthogonal spontaneous four-wave mixing processes. We employ the full quantum optics theory and dispersion analysis, and show that the technique can produce highly entangled states, with concurrence as high as 0.976 and covering the entire C-band.

  1. Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration.

    Science.gov (United States)

    Galarza, Marko; Van Thourhout, Dries; Baets, Roel; Lopez-Amo, Manuel

    2008-06-09

    Compact low-loss polarization independent vertical coupling between a 1.55 microm InGaAsP bulk active waveguide and a passive waveguide based on bimodal interference is presented. Simulation results show low coupling loss (<0.1 dB) over coupler lengths more than 5 times shorter than using the adiabatic design. The concept avoids submicron photolithographic features and shows acceptable fabrication tolerances.

  2. Application of exterior calculus to waveguides

    OpenAIRE

    Ferraro, Rafael

    2009-01-01

    Exterior calculus is a powerful tool to search for solutions to the electromagnetic field equations, whose strength can be better appreciated when applied to work out non-trivial configurations. Here we show how to exploit this machinery to obtain the electromagnetic TM and TE modes in hollow cylindrical waveguides. The proper use of exterior calculus and Lorentz boosts will straightforwardly lead to such solutions and the respective power transmitted along the waveguide.

  3. Thermotherapeutic waveguide applicator for cancer treatment

    Science.gov (United States)

    Cvek, Jakub; Vrba, Jan

    2004-04-01

    Thermotherapy is one of the standard methods of the complex cancer treatment. In many studies, the improvement in local tumor control and free life survival has been shown. Goal of this project was realization of Evanescent Mode Waveguide applicator and its comparison with Waveguide Applicator, which is clinically used. The optimization of the Evanescent Mode Applicator has been studied with aid of numerical methods (FDTD).

  4. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  5. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  6. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  7. 70-nm-bandwidth achromatic waveguide coupler.

    Science.gov (United States)

    Mendes, S B; Li, L; Burke, J J; Lee, J E; Saavedra, S S

    1995-09-20

    We report a general approach to the design of broadband waveguide couplers. A double-parallel grating assembly is used to cancel the first chromatic order, and a proper choice of prism glass and base angle is made to compensate for the second chromatic order. The technique was applied to a Corning glass 7059 waveguide, and a spectral bandwidth of 70 nm was measured by the use of two complementary procedures.

  8. Optical waveguide device with an adiabatically-varying width

    Energy Technology Data Exchange (ETDEWEB)

    Watts,; Michael R. (Albuquerque, NM), Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  9. Twisting short dsDNA with applied tension

    Science.gov (United States)

    Zoli, Marco

    2018-02-01

    The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.

  10. A new twist on the geometry of gravitational plane waves

    Science.gov (United States)

    Shore, Graham M.

    2017-09-01

    The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The rôle of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsváth-Schücking, `anti-Mach' plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the rôle of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.

  11. Twisted Single Crystals in Nonbiological Main-Chain Chiral Polyesters

    Science.gov (United States)

    Cheng, S.; Li, Y.; Bai, F.; Harris, F.; Yan, D.; Chen, L.

    1998-03-01

    A series of chiral Poly(R)-(-)-4-(w)-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1- nonyloxy-4-biphenyl carboxylic acid has been synthesized. Singe crystals were grown from the melt. Two very distinct morphological habits can be observed: an elongated flat-on morphology and a helical twist along its long axis. The twisted single crystals show a unique left-handed helical habit with typical pitch length of about 1-2 micrometers. It is expected that this twisted morphology results from a slight deviation of a 21 symmetry in chain packing. In the past, helical morphologies were report in two classes of materials: liquid crystals from the melt and biopolymers in solutions. Liquid crystals only show this kind of morphology when their order is lower than smectic F or I phase, while biopolmers, such as bombyx mori silk fibroin, exhibit similar morphology from solutions due to the existence of the twisted b-sheets. In this case, however, the twisted morphology was identified as crystals via ED and WAXD experiments. Furthermore, neither H-bonding nor b-sheet structure exists in the chemical structure. It is believed that our observation in the twisted single crystals from the melt may represent a class of phases which has not been fully classified.

  12. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    Science.gov (United States)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; hide

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  13. Longitudinal Modes along Thin Piezoelectric Waveguides for Liquid Sensing Applications

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2015-06-01

    Full Text Available The propagation of longitudinally polarized acoustic modes along thin piezoelectric plates (BN, ZnO, InN, AlN and GaN is theoretically studied, aiming at the design of high frequency electroacoustic devices suitable for work in liquid environments. The investigation of the acoustic field profile across the plate revealed the presence of longitudinally polarized Lamb modes, travelling at velocities close to that of the longitudinal bulk acoustic wave propagating in the same direction. Such waves are suitable for the implementation of high-frequency, low-loss electroacoustic devices operating in liquid environments. The time-averaged power flow density, the phase velocity and the electroacoustic coupling coefficient K2 dispersion curves were studied, for the first (S0 and four higher order (S1, S2, S3, S4 symmetrical modes for different electrical boundary conditions. Two electroacoustic coupling configurations were investigated, based on interdigitated transducers, with or without a metal floating electrode at the opposite plate surface. Enhanced performances, such as a K2 as high as 8.5% and a phase velocity as high as 16,700 m/s, were demostrated for the ZnO- and BN-based waveguides, as an example. The relative velocity changes, and the inertial and viscous sensitivities of the first symmetric and anti-symmetric mode, S0 and A0, propagating along thin plates bordered by a viscous liquid were derived using the perturbation approach. The present study highlights the feasibility of the piezoelectric waveguides to the development of high-frequency, integrated-circuits compatible electroacoustic devices suitable for working in liquid environment.

  14. Twisted photons: new classical and quantum applications

    Science.gov (United States)

    Torres, Juan P.; Molina-Terriza, Gabriel; Torner, Lluis

    2005-09-01

    Twisted light, or light with orbital angular momentum (OAM), plays an emerging role in both classical and quantum science, with important applications in areas as diverse as biophotonics, micromachines, spintronics, or quantum information. It offers fascinating opportunities for exploring new fundamental ideas in physics, as well as for being used as a tool for practical applications. One important point is to determine how to generate single photons, and two-photon states, with an appropriate OAM content. Here we describe the paraxial orbital angular momentum of entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) in different non-collinear geometries. These geometries introduce a variety of new features. In particular, we find the OAM of entangled pairs generated in purely transverse-emitting configurations, where the entangled photons counter-propagate perpendicularly to the direction of propagation of the pump beam. The spatial walk-off of all interacting waves in the parametric process also determines the OAM content of the down-converted photons, and here its influence is also revealed.

  15. Dark Matter in a twisted bottle

    Science.gov (United States)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  16. Dark Matter in a twisted bottle

    CERN Document Server

    Arbey, Alexandre; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the ...

  17. Resonant Raman spectroscopy of twisted multilayer graphene

    Science.gov (United States)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  18. Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide.

    Science.gov (United States)

    Wang, Donglin; Yu, Zhongyuan; Liu, Yumin; Guo, Xiaotao; Shu, Changgan; Zhou, Shuai

    2013-09-10

    A two-dimensional photonic crystal waveguide structure is designed for both TE- and TM-mode slow light propagation. The minimum group index of the waveguide for TE and TM modes can reach to 137.8 and 126.4, and the two polarizations have the same slow light frequency region. The designed structure can provide a large bandwidth range with very low group velocity dispersion for both TE and TM modes. The transmission property investigation for a suspended two-dimensional slab photonic crystal waveguide (PCW) indicates that such slow light character may be retained when perfect reflectors can be fixed on the horizontal surfaces of the slab. Such high group index for both TE and TM modes in two-dimensional PCWs is, to the best of our knowledge, first reported here, and may provide some useful guides for slow light research in theory.

  19. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2017-03-15

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  20. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Science.gov (United States)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo

    2017-03-01

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  1. Spintronics: A new twist in electronics

    Indian Academy of Sciences (India)

    BIPUL PAL

    2009-07-02

    Jul 2, 2009 ... No. of transistor that can be cost- effectively placed on a IC chip will double approximately every two .... Laser Spectroscopy. A simple model of PL polarization. Depending on parallel or antiparallel orientation of photo- created and resident electron spins, two types of QDs: P-type and A-type QDs. 02/07/09 ...

  2. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer.

    Science.gov (United States)

    Galván, José A; Helbling, Melina; Koelzer, Viktor H; Tschan, Mario P; Berger, Martin D; Hädrich, Marion; Schnüriger, Beat; Karamitopoulou, Eva; Dawson, Heather; Inderbitzin, Daniel; Lugli, Alessandro; Zlobec, Inti

    2015-01-20

    Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.

  3. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  4. Twisting and tweezing liquid crystals with lasers

    Science.gov (United States)

    Gleeson, Helen F.; Dickinson, Mark R.; Sanders, Jennifer E.; Yang, Yiming

    2014-02-01

    Exciting new directions for liquid crystals (LCs) are emerging on the length scale of the wavelength of light. Two complementary micron-sized systems are formed by LC droplets and by dispersions of colloidal particles in LCs. The dimensions of each of these systems are ideal for laser tweezer manipulation, allowing a new range of photon-addressed LC systems to be envisaged. Trapping and moving micron-sized particles in LCs is a beautiful approach that can build novel colloidal photonic materials. However, it is also a unique way of studying fundamental LC properties, particularly anisotropic viscosity coefficients in the low Ericksen regime, which can be accessed by laser trapping. Rather few nematic materials have been studied using laser traps; we describe two different approaches to deduce the viscosity coefficients of nematic mixtures. Micron-sized LC droplets are emerging as intriguing photonic systems in their own right. Angular momentum can be transferred from laser traps to droplets, with specific polarization properties and droplet geometries resulting in a variety of novel photon-driven effects. Fast optical switches, rotating at speeds >1kHz, can be produced from nematic droplets in circularly polarized beams. Both droplet geometry and beam polarization influence the droplet rotation, allowing control of the phenomenon. Surprisingly, a chiral nematic droplet can sometimes undergo continuous rotation in a linearly polarized trap, a phenomenon caused by optically-induced changes in chirality. We describe this remarkable effect which demonstrates how the control of chirality through polarization can result in an optically driven transducer.

  5. A Search for Higher Twist Effects in the Neutron Spin Structure Function gn2(x,Q2)

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin [College of William and Mary, Williamsburg, VA (United States)

    2003-08-01

    Jefferson Lab experiment E97-103 measured the spin structure function gn2(x,Q2) from a Q2 of 0.58 to 1.36 with a nearly constant x of 0.2. Combining this data with a fit to the world gn1 data, the size of higher twist contributions to the spin structure functions can be extracted using the Wandzura-Wilczek relation. These higher twist contributions result from quark-gluon correlations and are expected to be larger as Q2 decreases. This experiment was performed in Hall A with a longitudinally polarized electron beam and a high density polarized 3He target. The physics motivation and an overview of the experiment will be presented.

  6. Spin-orbit-based device for electron spin polarization

    Science.gov (United States)

    Avishai, Y.; Band, Y. B.

    2017-03-01

    We propose quantum devices having spin-orbit coupling (but no magnetic fields or magnetic materials) that, when attached to leads, yield a high degree of transmitted electron polarization. An example of such a simple device is treated within a tight binding model composed of two one-dimensional chains coupled by several consecutive rungs (i.e., a ladder) and subject to a gate voltage. The ensuing scattering problem (with Rashba spin-orbit coupling) is solved, and a sizable polarization is predicted. When the ladder is twisted into a helix (as in DNA), the curvature energy augments the polarization. For a system with random spin-orbit coupling, the distribution of polarization is broad; hence a high degree of polarization can be obtained in a measurement of a given disorder realization. When disorder occurs in a double helix structure then, depending on scattering energy, the variance of the polarization distribution can increase even further due to helix curvature.

  7. Silica waveguide-type ring resonators for resonant micro-optic gyroscopes

    Science.gov (United States)

    Lin, Yi; Zhang, Jianjie; Li, Hanzhao; Ma, Huilian; Jin, Zhonghe

    2017-10-01

    The resonant micro-optic gyroscope (RMOG) is an attractive candidate for inertial rotation sensors requiring small, light and robust gyros. A high-performance RMOG needs a low-loss and high finesse waveguide-type ring resonator (WRR). Two general configurations of the WRRs which are made of Ge-doped silica core waveguides based on plasma enhanced chemical vapor deposition including the reflector-type and the transmitter-type are introduced. The reflector-type WRR with a length of 7.9 cm and a diameter of 2.5 cm has a finesse of 196.7 and a resonant depth of 98%. In addition, it's pigtailed with single-polarization fiber to reduce the polarization error. The transmitter-type WRR with a length of 15.9 cm and a diameter of 5.06 cm has a finesse of 128 and a resonant depth of 95%. The waveguide loss low as 0.007 dB/cm has been measured, leading to the shot-noise limited sensitivity of 1.0°/h when the average optical power at the input of the photodetector is 1 mW and the detecting bandwidth is 1 Hz.

  8. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  9. An unexpected twist in viral capsid maturation

    Energy Technology Data Exchange (ETDEWEB)

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.; (Pitt); (Scripps); (UCSD)

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  10. An Unexpected Twist in Viral Capsid Maturation

    Science.gov (United States)

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-01-01

    Lambda-like dsDNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm. of pressure during genome packaging1. The extensive integration between subunits in capsids is unlikely to form in a single assembly step, therefore requiring formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Though various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage that undergoes large scale conformational changes. We present a procapsid x-ray structure at 3.65Å resolution, termed Prohead II, of the lambda like bacteriophage HK97, whose mature capsid structure was previously solved to 3.44 Å2. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and Hydrogen/Deuterium exchange data presented here demonstrates that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and β-sheet regions. We have also discovered conserved subunit interactions at each 3-fold of the virus capsid, from which capsid subunits maintain their integrity during refolding, facilitating the rotational and translational motions of maturation. Calormetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90KJ/mol of energy3. We propose the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process likely present in many ds

  11. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.

    Science.gov (United States)

    Liu, Qiang; Gross, S; Dekker, P; Withford, M J; Steel, M J

    2014-11-17

    We consider the process of Faraday rotation in femtosecond laser direct-write waveguides. The birefringence commonly associated with such waveguides may be expected to impact the observable Faraday rotation. Here, we theoretically calculate and experimentally verify the competition between Faraday rotation and birefringence in two waveguides created by laser writing in a commercial magneto-optic glass. The magnetic field applied to induce Faraday rotation is nonuniform, and as a result, we find that the two effects can be clearly separated and used to accurately determine even weak birefringence. The birefringence in the waveguides was determined to be on the scale of Δn = 10(-6) to 10(-5). The reduction in Faraday rotation caused by birefringence of order Δn = 10(-6) was moderate and we obtained approximately 9° rotation in an 11 mm waveguide. In contrast, for birefringence of order 10(-5), a significant reduction in the polarization azimuth change was found and only 6° rotation was observed.

  12. Internal Optical Waveguide Loss and p-Type Absorption in Blue and Green InGaN Quantum Well Laser Diodes

    Science.gov (United States)

    Sizov, Dmitry S.; Bhat, Rajaram; Heberle, Albert; Song, Kechang; Zah, Chung-en

    2010-12-01

    We present a new characterization method for internal optical waveguide loss of blue, aquamarine, and green group-III-nitride laser diodes from as-grown wafers without need for further fabrication. This approach relies on excitation-position dependent polarization-resolved photoluminescence spectra collected from the edge of the planar waveguide. The high measurement accuracy of +/-1 cm-1 enables for the first time determination of the mechanisms for p-layer optical loss from the waveguide loss difference before and after Mg dopant activation. Temperature-dependent measurements show that the dominant optical loss mechanism is absorption by acceptor-bound holes. This absorption mechanism does not depend significantly on light polarization.

  13. OBSERVATIONS OF A SERIES OF FLARES AND ASSOCIATED JET-LIKE ERUPTIONS DRIVEN BY THE EMERGENCE OF TWISTED MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Kim, Yeon-Han [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Sung-Hong [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Penteli 15236 (Greece); Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk, E-mail: eklim@kasi.re.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-20

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed a curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.

  14. Analysis of the polarization rotation effect in the inversely tapered spot size converter.

    Science.gov (United States)

    Jia, Lianxi; Zhou, Haifeng; Liow, Tsung-Yang; Song, Junfeng; Huang, Ying; Tu, Xiaoguang; Luo, Xianshu; Li, Chao; Fang, Qing; Yu, Mingbin; Lo, Guoqiang

    2015-10-19

    Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact.

  15. Adaptive coupling approach for single mode VCSELs with polymer waveguides

    NARCIS (Netherlands)

    Bosman, E.; Elmogi, A.; Wiegersma, S.; Berg, H. van den; Ortsiefer, M.; Daly, A.; Duis, J.; Steenberge, G. van

    2014-01-01

    A novel coupling approach for single mode VCSELs and planar optical waveguides is presented. The coupling is based on the embedding of the VCSELs inside the substrate and the adaptive fabrication of waveguides on top.

  16. Femtosecond laser writing of optical edge filters in fused silica optical waveguides.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2013-02-25

    The positional alignment of femtosecond laser written Bragg grating waveguides within standard and coreless optical fiber has been exploited to vary symmetry and open strong optical coupling to a high density of asymmetric cladding modes. This coupling was further intensified with tight focusing of the laser pulses through an oil-immersion lens to control mode size against an asymmetric refractive index profile. By extending this Bragg grating waveguide writing into bulk fused silica glass, strong coupling to a continuum of radiation-like modes facilitated a significant broadening to over hundreds of nanometers bandwidth that blended into the narrow Bragg resonance to form into a strongly isolating (43 dB) optical edge filter. This Bragg resonance defined exceptionally steep edge slopes of 136 dB/nm and 185 dB/nm for unpolarized and linearly polarized light, respectively, that were tunable through the 1450 nm to 1550 nm telecommunication band.

  17. Propagation of Channel Plasmons at the Visible Regime in Aluminum V-Groove Waveguides

    DEFF Research Database (Denmark)

    Lotan, Oren; Smith, Cameron; Bar-David, Jonathan

    2016-01-01

    Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V-grooves are ......Aluminum plasmonics is emerging as a promising platform in particular for the ultraviolet-blue spectral band. We present the experimental results of propagating channel plasmon-polaritons (CPP) waves in aluminum coated V-shaped waveguides at the short visible wavelength regime. The V......-grooves are fabricated by a process involving UV-photolithography, crystallographic silicon etching, and metal deposition. Polarization measurements of coupling demonstrate a preference to the TM-aligned mode, as predicted in simulations....

  18. Multiple Twisted q-Euler Numbers and Polynomials Associated with p-Adic q-Integrals

    Directory of Open Access Journals (Sweden)

    Lee-Chae Jang

    2008-04-01

    Full Text Available By using p-adic q-integrals on ℤp, we define multiple twisted q-Euler numbers and polynomials. We also find Witt's type formula for multiple twisted q-Euler numbers and discuss some characterizations of multiple twisted q-Euler Zeta functions. In particular, we construct multiple twisted Barnes' type q-Euler polynomials and multiple twisted Barnes' type q-Euler Zeta functions. Finally, we define multiple twisted Dirichlet's type q-Euler numbers and polynomials, and give Witt's type formula for them.

  19. Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser

    Science.gov (United States)

    Sarkar, Anirban; Ojha, N. N. Subhashree; Bhaktha, B. N. Shivakiran

    2017-06-01

    We present an experimental study on the effect of the photonic stop-band (PSB) on the random laser (RL) emission characteristics of a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) doped polyvinyl alcohol (PVA) film (DCM-PVA). The film, having its refractive index greater than the substrate and density variations at the microscopic scale, acts as a disordered active planar waveguide. The propagation losses for the transverse magnetic (TM) and transverse electric (TE) modes of the waveguide are observed to be 0.50 and 0.74 dB/cm, respectively, at λ = 632.8 nm. The waveguiding DCM-PVA film is then sandwiched between two silica 3-D photonic crystals (opals). The overlap of the DCM-PVA photoluminescence with the PSB of the opals is controlled by the choice of the particle size used for opal fabrication. The random lasing threshold studies have been carried out for both TM and TE polarizations for opals with different particle sizes. A reduction in the threshold of RL emission, with respect to the DCM-PVA waveguide, by about 20 times (to 0.67 mJ/cm2) is observed when the photoluminescence of the DCM-PVA film overlaps with the PSB of the opal structure for TM polarization, showing that the embedding of an RL in an engineered PSB material is an effective way to reduce the thresholds of RLs.

  20. Atomic form factor for twisted vortex photons interacting with atoms

    Science.gov (United States)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  1. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  2. Comments on twisted indices in 3d supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Simons Center for Geometry and PhysicsState University of New York, Stony Brook, NY 11794 (United States); Kim, Heeyeon [Perimeter Institute for Theoretical Physics31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada)

    2016-08-09

    We study three-dimensional N=2 supersymmetric gauge theories on Σ{sub g}×S{sup 1} with a topological twist along Σ{sub g}, a genus-g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S{sup 1} can be computed exactly by supersymmetric localization. For g=1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ℝ{sup 2}×S{sup 1}. This also provides a powerful and simple tool to study 3d N=2 Seiberg dualities. Finally, we study A- and B-twisted indices for N=4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S{sup 2}×S{sup 1} twisted indices and the Hilbert series of N=4 moduli spaces.

  3. The epsilon regime with twisted mass Wilson fermions

    CERN Document Server

    Bar, Oliver; Shindler, Andrea

    2010-01-01

    We investigate the leading lattice spacing effects in mesonic two-point correlators computed with twisted mass Wilson fermions in the epsilon-regime. By generalizing the procedure already introduced for the untwisted Wilson chiral effective theory, we extend the continuum chiral epsilon expansion to twisted mass WChPT. We define different regimes, depending on the relative power counting for the quark masses and the lattice spacing. We explicitly compute, for arbitrary twist angle, the leading O(a^2) corrections appearing at NLO in the so-called GSM^* regime. As in untwisted WChPT, we find that in this situation the impact of explicit chiral symmetry breaking due to lattice artefacts is strongly suppressed. Of particular interest is the case of maximal twist, which corresponds to the setup usually adopted in lattice simulations with twisted mass Wilson fermions. The formulae we obtain can be matched to lattice data to extract physical low energy couplings, and to estimate systematic uncertainties coming from ...

  4. Quantum Communication with a Twist: QKD using Orbital Angular Momentum Photons

    Science.gov (United States)

    Miller, Warner; Sweiti, Ayman

    2007-03-01

    We briefly outline our progress in developing a programmable-optics QKD system that utilizes the orbital angular momentum (OAM) eigenstates of photons. A photon can be prepared in a state that exhibits both its polarization as well as OAM. A single photon with polarization can communicate one bit of information. However a single photon from an appropriate set of axial eigenstates (OAM or ``twisted photon'') can, in principle, transmit many bits. While there is no improvement in bandwidth over conventional spin-based QKD devises, the use of an OAM eigenmodes in an n-state QKD system can substantially reduce the system's optical fidelity requirements. We outline the relative strengths and weaknesses in using OAM states verses polarization states regarding the (1) state preparation, (2) state propagation and (3) state detection. An essential element of any QKD system is the generation, propagation and sorting of mutually unbiased (MUB) quantum states. We demonstrate here the diffractive optics generation of MUB states built from the superpositions in an n-dimensional Hilbert space of OAM photons. In particular, we show the generation of a MUB state utilizing a liquid crystal spatial light modulator.

  5. Gravitational field around black hole induces photonic spin-orbit interaction that twists light

    Science.gov (United States)

    Pan, Deng; Xu, Hong-Xing

    2017-10-01

    The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [ Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.

  6. Poincaré-sphere representation of phase-mostly twisted nematic liquid crystal spatial light modulators

    Science.gov (United States)

    Durán, V.; Clemente, P.; Martínez-León, Ll; Climent, V.; Lancis, J.

    2009-08-01

    We establish necessary conditions in order to build a phase-only wavefront modulation system from a liquid crystal display. These conditions determine the dependence of the polarization state of the light emerging from the display on the addressing gray level. The analysis, which is carried out by means of the coherence-matrix formalism, includes the depolarization properties of the device. Two different types of polarization distributions at the output of the liquid crystal cells are found. This approach is applied to a twisted nematic liquid crystal display. In this case, an optimization algorithm must be designed in order to select the input polarization state that leads to the required distributions. We show that the Poincaré-sphere representation provides a convenient framework to design the optimization algorithm as it allows for a reduced number of degrees of freedom. This feature significantly decreases the computation time. Laboratory results are presented for a liquid crystal on silicon display showing a phase modulation depth greater than 2π rad with an intensity variation lower than 6%. In addition, a hybrid ternary modulation (HTM), an operation regime employed in holographic data storage, is achieved.

  7. Optical waveguides formed by silver ion exchange in Schott SG11 glass for waveguide evanescent field fluorescence microscopy: evanescent images of HEK293 cells.

    Science.gov (United States)

    Hassanzadeh, Abdollah; Nitsche, Michael; Armstrong, Souzan; Nabavi, Noushin; Harrison, Rene; Dixon, S Jeffrey; Langbein, Uwe; Mittler, Silvia

    2010-01-01

    Planar glass waveguides with a specific number of modes were fabricated by Ag(+)-Na(+) exchange in Schott SG11 glass. The effective refractive indices were determined using m-line spectroscopy in both s- and p-polarization. By using the reversed Wentzel-Kramers-Brillouin approximation, the index profiles were described by a nonlinear diffusion equation. The diffusion coefficients for Ag(+) were established, as well as the penetration depth of the evanescent field in an aqueous environment for the different modes. The integrals of \\E\\(2) fields for the evanescent-guided fields were investigated. These are important when evanescent fields are used for illumination in interface microscopy, an alternative method to total internal reflection fluorescence (TIRF) microscopy. The photoluminescent behavior of the waveguides was investigated as a function of ion exchange time and excitation wavelengths. Comparable images were obtained of fluorescently labeled HEK293 cells using TIRF microscopy and waveguide evanescent field fluorescence microscopy. Imaging was performed using HEK293 cells, delivering similar images and information.

  8. On the use of slow light for enhancing waveguide properties

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Torben Roland

    2010-01-01

    On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry...... of the waveguide. A combination of material and waveguide dispersion may strongly enhance the control of light speed, e.g., using electromagnetically induced transparency in quantum dots embedded in a photonic crystal waveguide....

  9. THz parallel-plate waveguides with resonant cavities

    DEFF Research Database (Denmark)

    Reichel, Kimberly S.; Astley, Victoria; Iwaszczuk, Krzysztof

    2015-01-01

    We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA.......We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA....

  10. Optical micromanipulation of freestanding microstructures with embedded waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton

    2013-01-01

    Optically micromanipulated waveguides can be arbitrarily positioned and oriented for targeted light delivery. At the same time, controlled light deflection in designed waveguides can be exploited to exert optical forces for new optical micromanipulation modalities.......Optically micromanipulated waveguides can be arbitrarily positioned and oriented for targeted light delivery. At the same time, controlled light deflection in designed waveguides can be exploited to exert optical forces for new optical micromanipulation modalities....

  11. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  12. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process

    DEFF Research Database (Denmark)

    Liu, Liu; Ding, Yunhong; Yvind, Kresten

    2011-01-01

    An efficient TE-TM polarization converter built on a silicon-on-insulator nanophotonic platform is demonstrated. The strong cross-polarization coupling effect in air-cladded photonic-wire waveguides is employed to realize the conversion. A peak TE-TM coupling efficiency of 87% (-0.6 dB insertion...

  13. Microminiature optical waveguide structure and method for fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  14. Microminiature optical waveguide structure and method for fabrication

    Science.gov (United States)

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  15. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n......(g) for the combined system is significantly enhanced relative to slow light based on purely material or waveguide dispersion....

  16. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any......, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated. (C) 2015 Optical Society of America...

  17. Designing large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Søndergaard, Thomas

    2002-01-01

    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...

  18. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  19. Waveguide BEC Interferometry with Painted Potentials

    Science.gov (United States)

    Boshier, Malcolm; Lebedev, Vyacheslav; Samson, Carlo; Ryu, Changhyun

    2015-05-01

    Waveguide atom interferometers offer the possibility of long measurement times in a compact geometry, which can be an advantage over free space interferometers if the dephasing due to interatomic interactions can be controlled. We are investigating waveguide BEC interferometers created with the painted potential, a technique which allows for the creation and manipulation of BECs in arbitrary 2D potentials. The goal is to measure a linear acceleration of the device. The painted potential allows new approaches to the initial splitting of the BEC. For example, instead of smoothly deforming a single well potential into a double well, it is possible instead to gradually remove a weak link coupling two initially separated waveguides. This strategy should reduce excitations created in the splitting process. We are currently implementing such schemes and measuring the coherence time of the BEC after division. We will present the results of these measurements, and report progress towards measuring linear accelerations. Supported by LANL/LDRD.

  20. Quantum interference between transverse spatial waveguide modes.

    Science.gov (United States)

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-20

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  1. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  2. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong...... and self-defocusing Kerr effect so that the soliton is created and the soliton self-compression happens in the normal dispersion region. Meanwhile, the chromatic dispersion in the waveguide is also tunable, understood as the dispersion engineering with structural designs. Therefore, compared to commonly......-focusing Kerr effects when under the self-defocusing regime. On the other hand, CQSC in quadratic waveguides seems highly complementary to that in quadratic bulk crystals. With bulk crystals dealing with high-energy, low-repetition-rate and large-beam-size pulses, quadratic waveguides could operate low...

  3. Reconfigurable origami-inspired acoustic waveguides.

    Science.gov (United States)

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia

    2016-11-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  4. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  5. Optical polyimides for single-mode waveguides

    Science.gov (United States)

    Beuhler, Allyson J.; Wargowski, David A.; Kowalczyk, Tony C.; Singer, Kenneth D.

    1993-07-01

    The synthesis and optical characterization of fluorinated polyimide systems with potential use in passive waveguides and electro-optic devices is reported. The effect of fluorination on optical properties such as refractive index, birefringence, and near-infrared absorbance is reviewed in terms of optical performance requirements. Synthetic methods of tuning the refractive index in order to achieve appropriate core/cladding differentials is discussed. The relation between processing parameters and refractive index for several polyimide structures also is reported. We describe the microlithographic fabrication of a multilayer polyimide rib- type waveguide that is suitable for single mode guiding. The waveguide is fabricated using photosensitive polyimide systems via negative resist imaging. A comparison of wall profiles and resolution limits afforded by the wet-chemical patterning techniques is presented. Results on channel guide coupling, propagation, and loss are described, as well as progress in producing active guides.

  6. Lithium niobate integrated photonic crystal and waveguides

    Science.gov (United States)

    Lim, Soon Thor; Ang, Thomas Y.-L.; Png, Ching Eng; Deng, Jun; Danner, Aaron J.

    2016-02-01

    In this work we successfully fabricated and measured PhCs patterned on a LiNbO3 APE waveguide. SIMS data indicate that after 5 hours exchange time a PE layer of 3μm can be obtained. The depth of holes was 2μm by applying a large milling current. We presented experimental characterization of the PhC waveguide and a well-defined PBG was observed from the transmission spectra. An extinction ratio was estimated to be approximately 15dB. Optical transmission results indicate that deep air holes can lead to a sharp band edge. This PhC waveguide is a good candidate for further development of an ultra-compact, low-voltage LiNbO3 modulator.

  7. The N = 1 Triplet Vertex Operator Superalgebras: Twisted Sector

    Directory of Open Access Journals (Sweden)

    Drazen Adamovic

    2008-12-01

    Full Text Available We classify irreducible σ-twisted modules for the N = 1 super triplet vertex operator superalgebra SW(m introduced recently [Adamovic D., Milas A., Comm. Math. Phys., to appear, arXiv:0712.0379]. Irreducible graded dimensions of σ-twisted modules are also determined. These results, combined with our previous work in the untwisted case, show that the SL(2,Z-closure of the space spanned by irreducible characters, irreducible supercharacters and σ-twisted irreducible characters is (9m + 3-dimensional. We present strong evidence that this is also the (full space of generalized characters for SW(m. We are also able to relate irreducible SW(m characters to characters for the triplet vertex algebra W(2m + 1, studied in [Adamovic D., Milas A., Adv. Math. 217 (2008, 2664-2699, arXiv:0707.1857].

  8. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

    Science.gov (United States)

    Ham, J.-Y.; Lee, J.

    2016-09-01

    We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.

  9. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  10. Polar predictions

    OpenAIRE

    Crame, Alistair; Francis, Jane; Robinson, Stuart; Bowman, Vanessa

    2014-01-01

    In an effort to improve understanding of faunal evolution and its relationship to climate change, the PALEOPOLAR project is challenging existing theories about the Early Cenozoic era using an integrated, multidisciplinary approach in the polar regions

  11. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Pedersen, T. R.; Rodriguez, S.; SanAntonio, G.

    2012-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using a "twisted beam" excitation mode. Unlike traditional heating beams used at HAARP or other heating facilities, the twisted beam attempts to impart orbital angular momentum (OAM) into the heating region. Analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region. The ring heating pattern may be more conducive to the creation of artificial airglow layers. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  12. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    . With such waveguides we demonstrate that it is possible to perform quantitative spectroscopy on very small volumes of sample material inside the PPWG. Using continuous-wave as well as femtosecond excitation we inject carriers into semiconductor material in the transparent PPWG, and perform static as well as transient...... spectroscopy of the optically injected charges. Ongoing work in our laboratory investigates the lower limits to the amount of sample material required for quantitative spectroscopy. Whereas sensing of extremely small quantities of material is possible with resonant and thus narrow-band THz waveguide techniques...

  13. "Unmanned” optical micromanipulation using waveguide microstructures

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    2013-01-01

    that could be microfabricated, the study of how optical forces behave in such structures become useful in the emerging field of optofludics. Recently, we have shown how optically maneuverable tapered waveguide microstructures can augment beam shaping experiments by delivering strongly focused light...... be shaped more arbitrarily, engineered light deflection could lead to more control in the resulting motion. We demonstrated this principle with the autonomous translation of bent waveguides though pre-defined light tracks. In our experiment, incoming light makes a near 90 degree turn, hence the resulting...

  14. Laser written waveguide photonic quantum circuits.

    Science.gov (United States)

    Marshall, Graham D; Politi, Alberto; Matthews, Jonathan C F; Dekker, Peter; Ams, Martin; Withford, Michael J; O'Brien, Jeremy L

    2009-07-20

    We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices. We have characterized directional couplers--the key functional elements of photonic quantum circuits--and found that they perform as well as lithographically produced waveguide devices. We further demonstrate high-performance interferometers and an important multi-photon quantum interference phenomenon for the first time in integrated optics. This direct-write approach will enable the rapid development of sophisticated quantum optical circuits and their scaling into three-dimensions.

  15. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas....... The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than...

  16. Physically correct theoretical prism waveguide coupler model.

    Science.gov (United States)

    Liu, Tao; Samuels, Robert J

    2004-07-01

    We develop new generalized four-wave-model-based waveguide mode equations for both isotropic and anisotropic systems by taking into account the influence of the incident light. These new mode equations eliminate the inherent deficiency in the conventional waveguide model, in which the action of incident light was neglected. Further, a peak-value-search (PVS) numerical method is developed to solve the four-wave-model-based mode equations. The PVS method has significant advantages in that accurate refractive index and thickness can be obtained without prior knowledge of the thickness of the air gap.

  17. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  18. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...... as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct...

  19. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    of this Thesis we discuss a novel type of photonic crystal waveguide and show its applications for on-chip quantum information processing. This structure was designed for the ecient mapping of two orthogonal circular dipole transitions to dierent propagation paths of the emitted photon, i.e. exhibits chiral...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  20. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  1. Exponential reduction of finite volume effects with twisted boundary conditions

    Science.gov (United States)

    Cherman, Aleksey; Sen, Srimoyee; Wagman, Michael L.; Yaffe, Laurence G.

    2017-04-01

    Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with S U (Nf) light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large Nc volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.

  2. Methyltransferase G9A Regulates Osteogenesis via Twist Gene Repression.

    Science.gov (United States)

    Higashihori, N; Lehnertz, B; Sampaio, A; Underhill, T M; Rossi, F; Richman, J M

    2017-09-01

    Here we investigate the role of epigenetic factors in controlling the timing of cranial neural crest cell differentiation. The gene coding for histone H3 lysine 9 methyltransferase G9A was conditionally deleted in neural crest cells with Wnt1-Cre. The majority of homozygous-null animals survived to birth but thereafter failed to thrive. Phenotypic analysis of postnatal animals revealed that the mutants displayed incomplete ossification and 20% shorter jaws as compared to their wild-type littermates. At E13.5, patterns of expression of the osteogenic transcription factor RUNX2 and the mesenchymal transcription factor TWIST are similar in controls and mutants; both overlap in areas of future intramembranous bone formation. At E14.5, the nonosteogenic mesenchyme expressed TWIST, whereas the ossification center had strong RUNX2 and osteopontin expression. In the mutants, TWIST protein was present in the osteogenic mesenchyme, while osteopontin was not expressed until E15.5. In addition, in mutants, small regions of TWIST-positive osteogenic mesenchyme were visible until E15.5. The delay in ossification and reduction in size of the ossification centers were correlated with an earlier decrease in proliferation. We used micromass cultures of the face to investigate the direct effects of G9A inhibition on skeletal differentiation. Addition of a small molecule inhibitor for G9A, BIX-01294, to wild-type cells upregulated Twist genes similar to what was observed in vivo. The inhibitor also caused decreases in several osteogenic markers. Chromatin immunoprecipitation analysis of primary osteogenic mesenchyme from calvaria revealed that Twist1 and Twist2 regulatory regions contain the repressive H3K9me2 marks catalyzed by G9A, which are removed when BIX-01294 is added. Our results establish a role for G9A and H3K9me2 in the regulation of Twist genes and provide novel insights into the significance of epigenetic mechanisms in controlling temporal and tissue-specific gene

  3. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    AFRL-AFOSR-JP-TR-2017-0053 Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures Takeshi Seki TOHOKU UNIVERSITY Final Report 06/27...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      27-06-2017 2. REPORT TYPE Final...3. DATES COVERED (From - To) 12 Jun 2015 to 12 Dec 2016 4. TITLE AND SUBTITLE Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

  4. A computational study of twist boundary structures in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Astala, R; Bristowe, P D [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom)

    2002-12-16

    A density functional plane-wave pseudopotential method is used to study various {sigma} = 5 (001) twist boundary models for strontium titanate. Results concerning the atom-level geometries and electronic structures are reported. The structures have varying SrO/TiO{sub 2} ratios and their relative stabilities are discussed in terms of the SrO chemical potential. A twist boundary containing a Sr-O pair of vacancies is found to be exceptionally stable and have a low volume expansion and is a possible candidate for showing impurity segregation.

  5. A computational study of twist boundary structures in strontium titanate

    Science.gov (United States)

    Astala, R.; Bristowe, P. D.

    2002-12-01

    A density functional plane-wave pseudopotential method is used to study various Sigma = 5 (001) twist boundary models for strontium titanate. Results concerning the atom-level geometries and electronic structures are reported. The structures have varying SrO/TiO2 ratios and their relative stabilities are discussed in terms of the SrO chemical potential. A twist boundary containing a Sr-O pair of vacancies is found to be exceptionally stable and have a low volume expansion and is a possible candidate for showing impurity segregation.

  6. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis

    DEFF Research Database (Denmark)

    Tran, Phuoc T; Shroff, Emelyn H; Burns, Timothy F

    2012-01-01

    overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy....... mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor...... progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D) to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting...

  7. Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert

    2017-01-01

    Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending or deflection under load) or from the anisotropic properties of the blade material. Bend-twist coupling can...... a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist...... for flapwise (flap-twist coupling) or edgewise (edge-twist coupling) bending. Edge-twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge-twist to feather coupling for edgewise deflection towards...

  8. Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum

    Directory of Open Access Journals (Sweden)

    Qing Yin

    2017-01-01

    Full Text Available The structures and behaviors of grain boundaries (GBs have profound effects on the mechanical properties of polycrystalline materials. In this paper, twist GBs in aluminum were investigated with molecular dynamic simulations to reveal their atomic structures, energy and interactions with dislocations. One hundred twenty-six twist GBs were studied, and the energy of all these twist GBs were calculated. The result indicates that and twist GBs have lower energy than twist GBs because of their higher interplanar spacing. In addition, 12 types of twist GBs in aluminum were chosen to explore the deformation behaviors. Low angle twist GBs with high density of network structures can resist greater tension because mutually hindering behaviors between partial dislocations increase the twist GB strength.

  9. Simulating QCD at the Physical Point with $N_f=2$ Wilson Twisted Mass Fermions at Maximal Twist

    CERN Document Server

    Abdel-Rehim, A; Burger, F; Constantinou, M; Dimopoulos, P; Frezzotti, R; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Kostrzewa, B; Koutsou, G; Mangin-Brinet, M; Petschlies, M; Pientka, G; Rossi, G C; Urbach, C; Wenger, U

    2015-01-01

    We present simulations of QCD using Nf=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at ~0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  10. Optimized design of 1×4 optical splitter based on annealed proton exchanged waveguides in LiNbO3 crystal

    Science.gov (United States)

    Yang, Zuoyun; Wang, Dayong; Yang, Dengcai; Wang, Yunxin; Rong, Lu

    2013-12-01

    A 1×4 optical splitter based on annealed proton exchanged (APE) waveguides is designed and fabricated. The beam propagation method and refractive index profile of APE waveguide are analyzed numerically. The symmetry of the optical splitter is reformed and optimized by adding straight waveguide in the cascaded Y-branch structure. The relationship between the length of the straight waveguide and the beam-slipper coefficient is obtained. The function of the 1×4 optical splitter is simulated by the commercial software BeamProp (RSoft). And the result indicates that the output uniformity of the optical splitter is improved when the length of the straight waveguide is 1935μm. Furthermore, the polarization-maintaining is gained in the 1×4 optical splitter since only the TE mode can propagate in the APE waveguide in X-cut LiNbO3 crystal. Finally, the optical splitter is fabricated and tested experimentally and the results show good agreement with the simulation.

  11. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  12. Optimization of optical losses in waveguide component manufacturing

    Science.gov (United States)

    Swatowski, Brandon W.; Hyer, Maynard G.; Shepherd, Debra A.; Weidner, W. Ken; Degroot, Jon V.

    2017-02-01

    We report on the development and optimization of key performance properties of multimode silicone polymer waveguides, manufactured for 850 nm optical propagation. These developments are based on photopatternable, mechanically flexible, low-loss, gradient index waveguides. Cross sectional waveguide core sizes ranging from 40 μm x 50 μm to greater than 60 μm x 60 μm are assessed with optical analysis of component losses such as crossings and coupling between OM4 fiber and waveguide. Assessments of these values, led to optimization of waveguide size and lower total optical system losses. Methods of manufacture, preparation, and analysis are discussed in detail along with performance results.

  13. Untwisting the polarization properties of light reflected by scarab beetles

    Science.gov (United States)

    McDonald, Luke T.; Finlayson, Ewan D.; Vukusic, Peter

    2015-03-01

    The spectral and angle-dependent optical properties of two scarab beetle species belonging to the genus Chrysina are presented. The species display broadband reflectivity and selectively reflect left-circularly polarized light. We use electron microscopy to detail the left-handed, twisted lamellar structure present in these biological systems and imaging scatterometry to characterize their bidirectional reflectance distribution function. We show that the broadband nature of the beetles' reflectance originates due to the range of pitch dimensions found in the structure.

  14. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    Science.gov (United States)

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.

  15. Geometry of the toroidal N-helix: optimal-packing and zero-twist

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2012-01-01

    Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....

  16. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals

    Science.gov (United States)

    Shamid, Shaikh; Dhakal, Subas; Selinger, Jonathan

    2013-03-01

    We develop a Landau theory for bend flexoelectricity in a liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature, and it diverges at the nematic to polar phase transition. At this critical point, there is a second order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations. To test the predictions of Landau theory, we perform Monte Carlo simulations to find the behavior as a function of temperature, applied electric field and interaction parameters, and to determine the orientational distribution of the mesogenic molecules. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center.

  17. Integrated graphene waveguide modulators based on low-loss plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2017-01-01

    Graphene based electro-absorption modulators involving dielectric optical waveguides have been recently explored, suffering however from weak graphene-light interaction. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening...... graphene-light interactions. I present novel integrated graphene plasmonic waveguide modulator showing high modulation depth and low insertion loss, thus giving a promising way to miniaturize the device without jeopardizing the performance of the device....

  18. Mathematical simulation of a twisted pseudoplastic fluid flow in a cylindrical channel

    Science.gov (United States)

    Matvienko, O. V.; Bazuev, V. P.; Yuzhanova, N. K.

    2011-05-01

    The results of investigations of a pseudoplastic fluid twisted flow in a cylindrical channel are presented. With increase in the shear stresses caused by the flow twisting, the effective viscosity decreases. As a result, in the axial part of the channel a zone of lower pressure is formed which, at smaller flow twisting, leads to the formation of the zone of backward flows.

  19. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    Science.gov (United States)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  20. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  1. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  2. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...

  3. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  4. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  5. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity...

  6. Single and Double Superconducting Coplanar Waveguide Resonators

    Science.gov (United States)

    Zhao, Na; Liu, Jian-She; Li, Hao; Li, Tie-Fu; Chen, Wei

    2012-08-01

    Transmission characteristics of single and double coplanar waveguide (CPW) resonators are simulated. The crosstalk of two CPW resonators located on the same chip is observed in simulation as well as in low temperature measurement results. The crosstalk behaves as exponential attenuation versus the distance between two resonators.

  7. Control of resonances in photonic crystal waveguides

    NARCIS (Netherlands)

    Lian, Jin

    2016-01-01

    Photonic crystal waveguides (PhCWG) with intentional defects and unavoidable disorder exhibit high quality factor (Q) resonances. Single- and multi-resonance systems based on them are suitable for applications such as optical memories, delay lines and cavity QED. Therefore, characterization, control

  8. Subwavelength line imaging using plasmonic waveguides

    NARCIS (Netherlands)

    Podoliak, N.; Horak, P.; Prangsma, Jord; Pinkse, Pepijn Willemszoon Harry

    2015-01-01

    We investigate the subwavelength imaging capacity of a 2-D fanned-out plasmonic waveguide array, formed by air channels surrounded by gold metal layers for operation at near-infrared wavelengths, via finite-element simulations. High resolution is achieved on one side of the device by tapering down

  9. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  10. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  11. Transforming guided waves with metamaterial waveguide cores

    Science.gov (United States)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  12. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...

  13. Higher Twist Effects in Photon-Photon Collisions

    Science.gov (United States)

    Ahmadov, A. I.; Boztosun, I.; Soylu, A.; Dadashov, E. A.

    In this article, we investigate the contribution of the high twist Feynman diagrams to the large-pT single pseudoscalar and vector mesons inclusive production cross section in two-photon collisions and we present the general formulae for the high and leading twist differential cross sections. The pion wave function where two non-trivial Gegenbauer coefficients a2 and a4 have been extracted from the CLEO data, Braun-Filyanov pion wave function, the asymptotic and the Chernyak-Zhitnitsky wave functions are all used in the calculations. For ρ-meson we used the Ball-Braun wave function. The results of the calculations reveal that the high twist cross sections, the ratio R, the dependence transverse momentum pT and the rapidity y of meson in the ΦCLEO(x, Q2) wave function case is very close to the Φasy(x) asymptotic wave function case. It is shown that the high twist contribution to the cross section depends on the choice of the meson wave functions.

  14. Coherent nonlinear electromagnetic response in twisted bilayer and ...

    Indian Academy of Sciences (India)

    The same phenomena are also described in twisted bilayer graphene with and without an electric potential difference between the ... and conduction band touch one another. These chiral quasiparticles ... we find that the anomalous Rabi frequency (ARF) is highly sensitive to the low-energy band structure and therefore, ...

  15. Twist-2 Light-Cone Pion Wave Function

    OpenAIRE

    Belyaev, V. M.; Johnson, Mikkel B.

    1997-01-01

    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.

  16. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening. K. Sundara Raman K. B. Ramesh R. Selvendran P. S. M. Aleem K. M. Hiremath. Session V – Vector Magnetic Fields, Prominences, CMEs & Flares Volume 21 Issue 3-4 ...

  17. Twist of Magnetic Fields in Solar Active Regions Hongqi Zhang ...

    Indian Academy of Sciences (India)

    tribpo

    twisted field (current helicity) in the photosphere (Seehafer 1990; Pevtsov et al. 1995;. Bao & Zhang 1998). Bao & Zhang (1998) and Zhang & Bao (1999) computed the photospheric current helicity parameter h|| for 422 active regions, including most of the large ones observed in the period of 1988 1997 at Huairou Solar ...

  18. On the Cohomology of Twisting Sheaves on Toric Varieties

    OpenAIRE

    Nikbakht-Tehrani, M.

    1998-01-01

    Using the homogeneous coordinate ring construction of a toric variety IP defined by a complete simplicial fan and the methods of local cohomology theory we develop a framework for the calculation of cohomology groups H^{*}(IP, O(p)) of twisting sheaves O(p) on IP.

  19. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed ...

  20. Twist and its effect on ACL graft forces

    NARCIS (Netherlands)

    Arnold, M. P.; Blankevoort, L.; ten Ham, A.; Verdonschot, N.; van Kampen, A.

    2004-01-01

    Graft tension is a controversial topic in anterior cruciate ligament (ACL) surgery. Evidence suggests a narrow range of graft tensions, which allow the graft to remodel to a stable and mature neoligament. In previous cadaver experiments, we showed that twisting the graft could modulate the graft

  1. Would You Rather (WYR), with a Sexual Health Twist!

    Science.gov (United States)

    Rosen, Brittany; McNeill, Elisa Beth; Wilson, Kelly

    2014-01-01

    Would You Rather (WYR), with a Sexual Health Twist! teaching technique uses two youth games, "Would you rather…" and Twister®, to actively engage students in developing decision-making skills regarding human sexuality. Utilizing the "Would you rather" choices, the teacher provides a short scenario with two difficult choices.…

  2. Photoelectric effect for twist-deformed space-time

    OpenAIRE

    Daszkiewicz, Marcin

    2016-01-01

    In this article, we investigate the impact of twisted space-time on the photoelectric effect, \\ie, we derive the $\\theta$-deformed threshold frequency. In such a way, we indicate that the space-time noncommutativity strongly enhances the photoelectric process.

  3. Twisted Winged Endoparasitoids-An Enigma for Entomologists

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. EXFOLIATION AT WIRE TWISTING FOR TIRES BEAD RINGS

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2010-01-01

    Full Text Available It is shown that reduction of twisting numbers up to destruction of cold drawn wire for bead rings is stipulated by junction of microcracks formed in longitudinallyand transverse-oriented planes of deformation shift with creation of main crack.

  5. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section.

    Science.gov (United States)

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-08-28

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10(-6) RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things.

  6. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    Directory of Open Access Journals (Sweden)

    Dengpeng Yuan

    2015-08-01

    Full Text Available A high-sensitivity Mach-Zehnder interferometer (MZI biochemical sensing platform based on Silicon-in-insulator (SOI rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto- electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things.

  7. All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide.

    Science.gov (United States)

    Wang, Jian; Sun, Qizhen; Sun, Junqiang; Zhang, Weiwei

    2009-03-02

    We propose and demonstrate a novel approach to optically generate ultrawideband (UWB) monocycle pulses by exploiting the parametric attenuation effect of sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) waveguide. The SFG process changes the continuous-wave pump into dark optical pulse pump with undershoot, resulting in the generation of UWB monocycle through the combination of input signal and output pump with proper relative time advance/delay. Pairs of polarity-inverted UWB monocycle pulses meeting the UWB definition of U. S. Federal Communications Commission (FCC, part 15) are successfully obtained in the experiment.

  8. Analytical study of planar waveguide sensor with a metamaterial guiding layer

    Science.gov (United States)

    Upadhyay, Anurag; Prajapati, Yogendra Kumar; Tripathi, Rajeev

    2017-12-01

    Sensitivities of three-layer and four-layer planar waveguide sensors having metamaterial as guiding layer are analyzed for p-polarization of incident light and compared with existing results. Proposed sensors show improved cover layer sensitivity for each case of the cover layer refractive index. Also, proposed sensors demonstrate improved adlayer sensitivity for different values of adlayer thickness and adlayer refractive indices. It is observed that metamaterial has increased the evanescent field due to the unconventional nature of it, by which values of cover layer sensitivity as well as adlayer sensitivity are enhanced.

  9. TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform

    Science.gov (United States)

    Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.

    2017-12-01

    We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.

  10. Spin physics experiments at NICA-SPD with polarized proton and deuteron beams

    Energy Technology Data Exchange (ETDEWEB)

    Savin, I.; Efremov, A.; Pshekhonov, D.; Kovalenko, A.; Teryaev, O.; Shevchenko, O.; Nagajcev, A.; Guskov, A.; Kukhtin, V.; Toplilin, N. [JINR, Dubna (Russian Federation)

    2016-08-15

    This is a brief description of suggested measurements of asymmetries of the Drell-Yan (DY) pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading-twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. Other spin effects in hadronic and heavy-ion collisions may be also studied constituting the spin physics program at NICA. (orig.)

  11. Structure-Function Studies of the bHLH Phosphorylation Domain of TWIST1 in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rajendra P. Gajula

    2015-01-01

    Full Text Available The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K-mammalian target of rapamycin (mTOR inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice.

  12. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  13. Design Investigation of a Laminated Waveguide Fed Multi-Band DRA for Military Applications

    Science.gov (United States)

    Kumar, Pramod; Dwari, Santanu; Singh, Shailendra; Agrawal, N. K.

    2017-12-01

    In this paper a laminated waveguide fed DR Antenna is investigated. It can use for moderate power military applications. Cylindrical DRA is excited by two closely spaced asymmetric longitudinal slots on the broad wall of the laminated cavity are responsible for producing three different frequency bands. Parametric study of slots has been done with the help of commercial software ANSOFT HFSS. All the bands have sharp rejection. The final model of the antenna is simulated, fabricated and experimentally measured. Measured results are in quite accordant with design results. SIW feeding structures have small losses, moderate power handling capacity, low costs, compact sizes and can be seamlessly integrated with planar circuits. At all the bands 9.76 GHz, 10.53 GHz and 11.8 GHz resonant frequency, the antenna shows 56 MHz, 160 MHz, and 250 MHz impedance bandwidth (for VSWR<2) with 6 dB,6.2 dB and 6.8 dB gain respectively. Simulated and measured results reveal outstanding performance with a cross-polar level of 29 dB lower than that of the co-polar level at 9.76 GHz, the cross-polar level of 32 dB lower than that of the co-polar level at 10.53, GHz, and similarly cross-polar level of 30 dB lower than that of the co-polar level at 11.8 GHz.

  14. Power monitoring in dielectric-loaded surface plasmon-polariton waveguides.

    Science.gov (United States)

    Kumar, Ashwani; Gosciniak, Jacek; Andersen, Thomas B; Markey, Laurent; Dereux, Alain; Bozhevolnyi, Sergey I

    2011-02-14

    We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Using single-mode polarization-maintaining fiber for in- and out-coupling of radiation, DLSPPW mode power monitoring at telecom wavelengths is realized with the responsivities of up to ~1.8 µV/µW (showing weak wavelength dependence) being evaluated for a bias voltage of 1 V.

  15. Spin-transfer-driven spin-waves excitation in a finite-size magnetic waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Consolo, Giancarlo, E-mail: gconsolo@unime.it; Currò, Carmela; Valenti, Giovanna

    2015-06-19

    The current-driven excitation of spin-waves in a one-dimensional magnetic waveguide is examined analytically and numerically. The proposed model accounts for the interference between incident and reflected waves caused by the finite sizes of the physical domain. This effect is relevant in experiments where the demand of miniaturization leads the spin-wave decay length to be of the same scale as the extents of the structures. Particular analytical solutions of the linearized equation for the spin-wave amplitude are found for elongated and contracted nanocontacts. These solutions are compared to those of an infinite waveguide and are also successfully validated through micromagnetic simulations. - Highlights: • We characterize spin-waves in a one-dimensional magnetic waveguide. • Finite-size effects are investigated numerically and analytically. • Spin-waves are excited via a spin-polarized current flowing through a nanocontact. • The model accounts for the interference between incident and reflected waves. • Particular analytical solutions are found in two different ranges of the control parameter.

  16. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  17. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  18. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    Science.gov (United States)

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  19. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  20. Mesoscopic correlation with polarization rotation of electromagnetic waves.

    Science.gov (United States)

    Chabanov, A A; Trégourès, N P; van Tiggelen, B A; Genack, A Z

    2004-04-30

    Mesoscopic correlations are observed in the polarization of microwave radiation transmitted through a random waveguide. These measurements, supported by diagrammatic theory, permit an unambiguous decomposition of the intensity correlation function of a vector wave into short, long, and infinite range components. Infinite range correlation that leads to universal conductance fluctuations is measured and found to be in agreement with calculations. The long and infinite range components include nonuniversal frequency-independent terms associated with coupling into and out of the sample.