Sample records for waveguide grating awg

  1. Design and simulation of arrayed waveguide grating (AWG) for micro-Raman spectrometer (United States)

    Cheng, Yaqin; Deng, Shengfeng; Xu, Yingchao; Lu, Miao


    Micro Raman spectrometer has broad applications for monitoring harmful chemicals in food, water and environment. Arrayed waveguide grating (AWG) is a promising device to build a dispersive micro Raman spectrometer. Comparing with the widely used demultiplexer in optical communication, AWG in spectrometer is unique due to its broad spectral range and low insert loss. In this paper, a computer algorithm routine was explored to accomplish the design of a broadband, arbitrary AWG structure. First, the focal length, length increment of adjacent waveguide and diffraction order of an AWG were figured out by a MATLAB program, the coordinates was then input into a VBScript program to generate the layout, and the layout was analyzed in OptiwaveBPM software for optical characterization. The proposed MATLAB and VBScript program was verified by the design and simulation of a 800-1000 nm range, 40 channels asymmetric AWG, a spectral resolution of 5 nm was demonstrated with insert loss of 5.03-7.16 dB. In addition, an approach to realize multimode input was introduced to reduce the optical coupling loss. Multimode light beam was firstly converted to a series of single mode beams by the methods proposed by S. G. Leon-Saval et al. in 2005. Next, these single mode beams were coupled into the input star coupler of an AWG. As a proof of this concept, a three inputs, 20 channel, 850-950 nm spectral range AWG was simulated, and merits and drawbacks of this approach were discussed.

  2. Perencanaan Arrayed Waveguide Grating (AWG untuk Wavelength Division Multiplexing (WDM pada C-Band

    Directory of Open Access Journals (Sweden)

    Frezza Oktaviana Hariyadi


    Full Text Available Teknologi Arrayed Waveguide Grating (AWG, salah satu solusi membagi kanal menjadi sub kanal lebih kecil dengan mengatur selisih panjang array tetap. Dalam Makalah ini, dilakukan perencanaan desain parameter AWG beroperasi pada kanal C-Band (1530-1560 nm, untuk mendukung kebutuhan kanal WDM, baik coarse-WDM (CWDM, dense-WDM (CWDM maupun very high density-WDM (VHDWDM. Perencanaan dilakukan lewat perhitungan teoritis dan menggunakan bantuan tool berupa WDM_Phasar.Perhitungan parameter AWG secara teoritis bertujuan menghasilkan  parameter desain ideal, sementara lewat  WDM_phasar dengan menambahkan batasan ukuran devais, crosstalk dan nonuniformity, diharapkan akan diperoleh parameter desain yang lebih realistis. Adapun parameter yang diamati meliputi besarnya orde difraksi (m, panjang free propagation range (FPR, perbedaan panjang array (ΔL, jumlah array (Narray, jumlah kanal I/O (Nmax  dan free spectral range (FSR.Dengan contoh spasi kanal 100 GHz pada C-band,  dihasilkan parameter hitungan teoritis sebesar 1308,61 μm, 25,1698 μm, 43,7143, 108 buah, 27 kanal dan 21,211 nm, masing-masing untuk nilai FPR, ΔL, m, Narray, Nmax dan FSR. Sedangkan lewat bantuan WDM_Phasar dengan batasan ukuran devais (15000x9000 μm2, crosstalk (-35 dB dan nonuniformity (0,5, menghasilkan parameter AWG 1197,347 μm(FSR, 23,764 μm(ΔL, 41(m, 56 (Narray, 16(Nmax dan 11,2 nm(FSR. Semakin besar spasi kanal, jumlah bit yang bisa diangkut juga semakin banyak.

  3. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang; Liu Yuan; Gao Dingshan, E-mail: [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)


    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  4. Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG) (United States)

    Samion, M. Z.; Ismail, M. F.; Muhamad, A.; Sharbirin, A. S.; Harun, S. W.; Ahmad, H.


    Thulium-doped fiber lasers (TDFLs), operating in the 1.8-2.0 μm wavelength region, have been viewed as an important research topic, due to their potential in various fields of applications. However, the growing need to advance the development of applications in various fields for instance medicine and environment sensor, has led to a deeper and specific study of Q-switched TDFLs with wavelength tunability. In this paper, a stable, tunable Q-switched TDFL operating in a wavelength range near to 1.9 μm by exploiting the use of a multiwall carbon nanotube (MWCNT)-based thin film as a saturable absorber (SA), and the use of an arrayed waveguide grating (AWG) for wavelength tunability, is presented. The tuning range of the Q-switched pulses generated covered a wavelength range that spanned from 1871.6 nm to 1888.8 nm. The repetition rate of the generated Q-switched pulses covers a range of frequency starting from 41.19 kHz to 68.3 kHz with a change in pump power from 242.2 mW until 360.9 mW.

  5. High-performance arrayed waveguide grating (United States)

    Fondeur, Bart; Sala, Anca; Thekdi, Sanjay; Gopinathan, Niranjan; Nakamoto, David; Aghel, Masoud; Brainard, Bob; Vaidyanathan, Anant


    Planar technology and design have evolved significantly in the past decade, both in terms of performance and yield, reducing the cost/performance advantage of thin-film filters (TFF) over Array-Waveguide Grating (AWG) devices. This evolution is primarily due to two reasons. One of the reasons for this is the adoption of the latest in semi-conductor fabrication techniques with respect to wafer scale, process equipment automation, and yield engineering. The other reason is the many advancements made in the Planar Light Circuit (PLC) design front which have resulted in lower optical insertion loss, reduced crosstalk, increased channel bandwidth, decreased channel spacing, and minimal chromatic dispersion. We demonstrate here how such state-of-the-art fabrication technology in combination with advanced PLC designs can be effectively used to engineer the filter shape (ripple, bandwidth, and flatness) and chromatic dispersion of AWG's to match or exceed that of their thin-film counterparts. Low passband ripple is critical for cascading multiple nodes in ring network architecture whereas minimal chromatic dispersion (CD) is desired in high rate data systems to avoid signal distortion. The AWG device presented here has a 1dB bandwidth that exceeds 80% of the channel spacing awhile exhibiting a high flatness (25dB/1dB ratio < 1.7), both of which are at least a 50% improvement over generic flat-top AWG designs available in the market and are equivalent in performance to TFF devices. At 100 GHz spacing, AWG's have intrinsic low-dispersion, but narrowing the spacing to 50GHz leads to a four fold increase in the CD. Here, we have successfully overcome this limitation and have been able to design and fabricate a 50GHz wide-band AWG with less than 1ps/nm chromatic dispersion, which exceeds TFF performance.

  6. High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges

    Directory of Open Access Journals (Sweden)

    Andreas Stoll


    Full Text Available A comprehensive design of a folded-architecture arrayed-waveguide-grating (AWG-device, targeted at applications as integrated photonic spectrographs (IPS in near-infrared astronomy, is presented. The AWG structure is designed for the astronomical H-band (1500 nm–1800 nm with a theoretical maximum resolving power R = 60,000 at 1630 nm. The geometry of the device is optimized for a compact structure with a footprint of 5.5 cm × 3.93 cm on SiO 2 platform. To evaluate the fabrication challenges of such high-resolution AWGs, effects of random perturbations of the effective refractive index (RI distribution in the free propagation region (FPR, as well as small variations of the array waveguide optical lengths are numerically investigated. The results of the investigation show a dramatic degradation of the point spread function (PSF for a random effective RI distribution with variance values above ∼ 10 - 4 for both the FPR and the waveguide array. Based on the results, requirements on the fabrication technology for high-resolution AWG-based spectrographs are given in the end.

  7. Investigation of AWG demultiplexer based SOI for CWDM application (United States)

    Juhari, Nurjuliana; Susthitha Menon, P.; Shaari, Sahbudin; Annuar Ehsan, Abang


    9-channel Arrayed Waveguide Grating (AWG) demultiplexer for conventional and tapered structure were simulated using beam propagation method (BPM) with channel spacing of 20 nm. The AWG demultiplexer was design using high refractive index (n 3.47) material namely silicon-on-insulator (SOI) with rib waveguide structure. The characteristics of insertion loss, adjacent crosstalk and output spectrum response at central wavelength of 1.55 μm for both designs were compared and analyzed. The conventional AWG produced a minimum insertion loss of 6.64 dB whereas the tapered AWG design reduced the insertion loss by 2.66 dB. The lowest adjacent crosstalk value of -16.96 dB was obtained in the conventional AWG design and this was much smaller compared to the tapered AWG design where the lowest crosstalk value is -17.23 dB. Hence, a tapered AWG design significantly reduces the insertion loss but has a slightly higher adjacent crosstalk compared to the conventional AWG design. On the other hand, the output spectrum responses that are obtained from both designs were close to the Coarse Wavelength Division Multiplexing (CWDM) wavelength grid.

  8. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters. (United States)

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang


    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  9. Broadband high reflectivity in subwavelength-grating slab waveguides. (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang


    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  10. Low-loss single-mode operation in silicon multi-mode arrayed waveguide grating with a double-etched inverse taper structure (United States)

    Park, Jaegyu; Kwack, Myung-Joon; Joo, Jiho; Kim, Gyungock


    We investigate the single-mode operation in a silicon arrayed multi-mode waveguide grating. By introducing a double-etched structure at the boundary of a star coupler with inverse-tapered waveguides (WGs), the suppression of the mode-coupling between adjacent arrayed multi-mode WGs, and the adiabatic optical mode conversion between a FPR (free propagation region) and arrayed WGs can be achieved with a reduced phase error of the arrayed WGs. The fabricated four-channel Si arrayed waveguide grating (AWG) demonstrates a good performance level, such as a low insertion loss of 0.61 dB (0.73 dB) and low adjacent crosstalk less than -31.3 dB (-32.2 dB) for transverse-electric (TE) (transverse-magnetic, TM) polarization, in the range of ˜1300 nm wavelength.

  11. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm


    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half...... were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...

  12. PDMS-based waveguides with surface relief Bragg grating (United States)

    Goraus, Matej; Pudis, Dusan; Jandura, Daniel; Berezina, Sofia


    In this paper we present fabrication process of waveguides with surface relief Bragg grating (SR-BG) embossed in poly dimethyl diphenyl siloxane (PDMDPS). Generally, the Bragg grating causes spectral selectivity of propagated light in optical fibers and optical waveguides. We prepared the original concept of fabrication of novel optical waveguides with SR-BG using the laser interference lithography in combination with embossing process of liquid polymer. We used laser interference lithography in Mach-Zehnder configuration to create a grating with period of 21 μm in thin photoresist layer. In this manner, we created an array of D-shaped waveguides of 10 μm wide and app. 2.5 μm high. SR-BG was created in the next step, where the one dimensional surface Bragg grating with period 1.64 μm was prepared by interference lithography. This period was designed to reflect narrow spectral band close the telecommunication wavelength of 1.55 μm. Quality of the prepared waveguides and SR-BG was confirmed from atomic force microscope analysis. Transmission and coupling properties of the prepared SR-BG waveguides were finally measured by spectral measurements in infrared spectral region.

  13. Bragg grating filters in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Desiatov, Boris; Goykhmann, Ilya


    We demonstrate spectral filtering via Bragg gratings in plasmonic V-groove waveguides. Transmission spectra of wafer-scale fabricated devices exhibit 8.2 dB extinction ratio with 39.9 nm bandwidth. Near-field measurements verify spectral rejection.......We demonstrate spectral filtering via Bragg gratings in plasmonic V-groove waveguides. Transmission spectra of wafer-scale fabricated devices exhibit 8.2 dB extinction ratio with 39.9 nm bandwidth. Near-field measurements verify spectral rejection....

  14. Simulation of 20-channel, 50-GHz, Si3N4-based arrayed waveguide grating applying three different photonics tools (United States)

    Gajdošová, Lenka; Seyringer, Dana


    We present the design and simulation of 20-channel, 50-GHz Si3N4 based AWG using three different commercial photonics tools, namely PHASAR from Optiwave Systems Inc., APSS from Apollo Photonics Inc. and RSoft from Synopsys Inc. For this purpose we created identical waveguide structures and identical AWG layouts in these tools and performed BPM simulations. For the simulations the same calculation conditions were used. These AWGs were designed for TM-polarized light with an AWG central wavelength of 850 nm. The output of all simulations, the transmission characteristics, were used to calculate the transmission parameters defining the optical properties of the simulated AWGs. These parameters were summarized and compared with each other. The results feature very good correlation between the tools and are comparable to the designed parameters in AWG-Parameters tool.

  15. Near-infrared tunable lasers with polymer waveguide Bragg gratings. (United States)

    Son, Nam-Seon; Kim, Kyung-Jo; Kim, Jun-Whee; Oh, Min-Cheol


    Wavelength tunable lasers operating at near infrared (NIR) wavelength are demonstrated through the thermo-optic (TO) refractive index tuning of polymer waveguide Bragg reflectors. The polymer-waveguide device has superior TO efficiency for substantially changing the refractive index, and it enables direct tuning of the Bragg reflection wavelength over a wide range. The waveguide is optimized for NIR wavelengths, and a third-order Bragg reflector is incorporated for facilitating fabrication of the grating. The laser exhibits an output power of 0 dBm, a side-mode suppression ratio of 40 dB, and a tuning range of 21 nm.

  16. A porous silicon Bragg grating waveguide by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Ilaria; Iodice, Mario; Coppola, Giuseppe; Rendina, Ivo; De Stefano, Luca [National Council of Research, Institute for Microelectronic and Microsystems, Department of Naples, Via P Castellino 111, I-80131 Naples (Italy); Marino, Antigone [Department of Physics, ' Federico II' University of Naples, Via Cinthia, I-80126 Naples (Italy)], E-mail:


    We have designed, fabricated and characterized a porous silicon-based Bragg grating integrated in an optical waveguide, by using a low cost and fast technique, direct laser writing. A periodic optical structure with a pitch of 10 {mu}m, resonant in the near-infrared wavelength region, has been obtained. The simulated transmission spectra, calculated by the transfer matrix method and waveguide modal computation, are in good qualitative agreement with the experimental ones. The waveguide transmission losses have been quantified as 22 dB cm{sup -1}.

  17. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. (United States)

    Wang, Jing; Sheng, Zhen; Li, Le; Pang, Albert; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Qi, Minghao; Gan, Fuwan


    Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of -20.5~-24.5 dB (resp. -16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices.

  18. 200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE. (United States)

    Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong


    In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream.

  19. Optical waveguides with compound multiperiodic grating nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Neustock, Lars Thorben; Jahns, Sabrina; Adam, Jost


    The spectral characteristics and refractive index sensitivity of compound multiperiodic grating waveguides are investigated in theory and experiment. Compound gratings are formed by superposition of two or more monoperiodic gratings. Compared to monoperiodic photonic crystal waveguides, compound...... grating waveguides offer more degrees of design freedom by choice of component grating periods and duty cycles. Refractive index sensing is achieved by evaluating the wavelength or intensity of guided-mode resonances in the reflection spectrum. We designed, fabricated and characterized 24 different...... compound multiperiodic nanostructured waveguides for refractive index sensing. Simulations are carried out with the Rigorous Coupled Wave Algorithm (RCWA). The resulting spectra, resonance sensitivities and quality factors are compared to monoperiodic as well as to three selected aperiodic nanostructures...

  20. Steering and filtering white light with resonant waveguide gratings (United States)

    Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin


    A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.

  1. Fabrication of Bragg grating sensors in UV-NIL structured Ormocer waveguides (United States)

    Girschikofsky, Maiko; Förthner, Michael; Rommel, Mathias; Frey, Lothar; Hellmann, Ralf


    We report on the fabrication and characterization of Bragg gratings in UV-NIL structured Ormocer hybrid polymer rib-type waveguides using phase mask technology. The influence of fabrication parameters such as the applied laser fluence during the inscription process and the grating's length on the spectral behavior of the waveguide Bragg gratings was experimentally determined and compared to numerical simulations and calculations. To investigate potential sensor applications, the sensitivity of the thus fabricated optical devices towards refractive index changes of the gratings' surrounding (qualification for bio- and chemical sensing) as well as the sensitivity towards temperature and relative humidity were determined.

  2. Grated waveguide cavity for label-free protein and mechano-optical gas sensing

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Dijkstra, Mindert; Hollink, Anton; de Ridder, R.M.; van Wolferen, Hendricus A.G.M.; Krijnen, Gijsbertus J.M.; Pollnau, Markus; Hoekstra, Hugo

    We demonstrate the versatility of a silicon nitride grated waveguide optical cavity as compact integrated optical sensors for (bulk) concentration detection, label-free protein sensing, and – with an integrated cantilever suspended above it – gas sensing.


    Directory of Open Access Journals (Sweden)



    Full Text Available Optical packet switching is considered as the future of data transfer technologyin combination with middle-aged electronics. The biggest challenge encountered in optical packet switching is the lack of optical buffers for storing the contending packets. Therefore, for the contention resolution of packets, a temporary storage in terms of fiber delay lines is used. This task is accomplished by an optical packet switch. In this paper, a design modification in the AWGR (Arrayed Waveguide Grating Router is presented for improving the switch performance. The power budget analysis of the switch is also presented to estimate the sufficient power level of the switch. The obtained results clearly reveal that the architecture presented in this paper can be operated in micro-watts in comparison to the earlier optical switch which operates in milli watts regime. Finally, simulation results are presented to obtain packet loss probability and average delay. Even at the higher load of 0.6, the switch presented in this paper provides a very low loss probability (10^6 and delay remain within 2 slots.

  4. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl


    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  5. Monolithic integration of a InP AWG and InGaAs photodiodes on InP platform (United States)

    Lv, Qianqian; han, Qin; Pan, Pan; Ye, Han; Yin, Dongdong; Yang, Xiaohong


    We demonstrate a monolithic integration of a photodiode array and a 13 channels arrayed waveguide grating (AWG) grown on InP substrate with a shallow trench structure between the AWG top cladding layer and the photodiode p-doped layer. A smooth epitaxial structure interface is obtained by nonselective regrowth to make the two epitaxial structure compatible and fabrication easy. Three-dimensional finite-difference time-domain(FDTD) solutions are used in the optical simulations. The highest simulation quantum efficiency can achieve 82%. The fabricated PD with a trench structure presents a responsivity of 0.68 A/W. The integrated device can achieve a total capacity of more than 200 Gb/s.

  6. Optimal Design of an Ultrasmall SOI-Based 1 × 8 Flat-Top AWG by Using an MMI

    Directory of Open Access Journals (Sweden)

    Hongqiang Li


    Full Text Available Four methods based on a multimode interference (MMI structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI- based arrayed-waveguide grating (AWG applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately −21.9 dB and had an insertion loss of −4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.

  7. The Effect of Grating Design on the Performance of Erbium-Doped Planar Waveguide Distributed Bragg Reflector Lasers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg; Søndergaard, Thomas; Broeng, Jes


    For an erbium-doped DBR planar waveguide laser, the impact of internal waveguide losses on the grating design have been studies using a numerical model. The result show that laser performance is strongly dependent on the modulation strength and the length of the grating, and that there exsists...

  8. Sub-wavelength grating structure on the planar waveguide (Conference Presentation) (United States)

    Qing-Song, Zhu; Sheng-Hui, Chen


    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  9. Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography

    DEFF Research Database (Denmark)

    Smith, Cameron L. C.; Desiatov, Boris; Goykmann, Ilya


    We demonstrate spectral filtering with state-of-the-art Bragg gratings in plasmonic V-groove waveguides fabricated by wafer scale processing based on nanoimprint lithography. Transmission spectra of the devices having 16 grating periods exhibit spectral rejection of the channel plasmon polaritons...... with effective refractive index values calculated by finite element simulations in COMSOL. The results represent advancement towards the implementation of plasmonic V-grooves with greater functional complexity and mass-production compatibility....

  10. Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Hukriede, J [Post str. 29, 49525 Lengerich (Germany); Runde, D [Technical University of Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Kip, D [Technical University of Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany)


    Permanent refractive-index gratings in waveguide devices are of high potential for optical communication systems that make use of the high spectral selectivity of holographic filters, e.g. dense wavelength division multiplexing (DWDM), optical sensors, or narrow-bandwidth mirrors for integrated waveguide lasers. In this contribution we review our results on holographically recorded refractive-index gratings in Cu-doped LiNbO{sub 3} channel waveguides. Elementary holograms are recorded with green light and read in reflection geometry in the insensitive infrared wavelength region around 1.5 {mu}m. To enable long-term stability of the Bragg gratings a thermal fixing technique is applied. In this way strong and almost permanent refractive-index gratings are obtained and their application as narrow-bandwidth filters for DWDM applications is demonstrated. In comparison with Bragg gratings in silica fibres, the electro-optic effect in LiNbO{sub 3} allows for a direct wavelength tuning and a fast, reliable electrical switching of these gratings. (topical review)

  11. Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing. (United States)

    Holmes, Christopher; Carpenter, Lewis G; Rogers, Helen L; Sparrow, Ian J G; Gates, James C; Smith, Peter G R


    A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide. The resulting device is demonstrated as an effective refractometer, displaying a comparable sensitivity to tilted Bragg gratings in a fiber optical geometry, but with the added advantages of planar integration.

  12. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Mortensen, Asger


    We present a method for calculating the transmission spectra, dispersion, and time delay characteristics of optical-waveguide gratings based on Green's functions and Dyson's equation. Starting from the wave equation for transverse electric modes we show that the method can solve exactly both...

  13. Waveguide Bragg Gratings in Ormocer®s for Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Maiko Girschikofsky


    Full Text Available Embedded channel waveguide Bragg gratings are fabricated in the Ormocer® hybrid polymers OrmoComp®, OrmoCore, and OrmoClad by employing a single writing step technique based on phase mask technology and KrF excimer laser irradiation. All waveguide Bragg gratings exhibit well-defined reflection peaks within the telecom wavelengths range with peak heights of up to 35 dB and −3 dB-bandwidths of down to 95 pm. Furthermore, the dependency of the fabricated embedded channel waveguide Bragg gratings on changes of the temperature and relative humidity are investigated. Here, we found that the Bragg grating in OrmoComp® is significantly influenced by humidity variations, while the Bragg gratings in OrmoCore and OrmoClad exhibit linear and considerably high temperature sensitivities of up to −250 pm/ ∘ C and a linear dependency on the relative humidity in the range of −9 pm/%.

  14. Refractive index biosensor using sidewall gratings in dual-slot waveguide (United States)

    Sahu, Sourabh; Ali, Jalil; Singh, Ghanshyam


    This paper presents an optical biosensor using sidewall grating in dual slot waveguide, modeled on silicon-on-insulator (SOI) platform. By optimizing the geometric parameters of the device, the spectral response is tailored to obtain a sharp resonant peak with high transmissivity that also enhances the limit-of-detection. The device detects the shift in resonant wavelength on a variation of the biomaterial refractive index. The simulation study has performed using the transfer matrix method. The obtained characteristics of the sensors include linear response to a change in refractive index of biomaterial, limit of detection of the order of 10-6 and ease of fabrication. The device performance has also compared with other SOI resonator structures like photonic crystal waveguide, sub-wavelength grating, ring resonator and grating resonator.

  15. Experimental Validation of the Sensitivity of Waveguide Grating Based Refractometric (Bio)sensors (United States)

    Gartmann, Thomas E.; Kehl, Florian


    Despite the fact that the theoretical foundations of the sensitivity of waveguide grating based (bio)sensors are well-known, understood and their implications anticipated by the scientific community since several decades, to our knowledge, no prior publication has experimentally confirmed waveguide sensitivity for multiple film thicknesses, wavelengths and polarization of the propagating light. In this paper, the bulk refractive index sensitivity versus waveguide thickness of said refractometric sensors is experimentally determined and compared with predictions based on established theory. The effective refractive indices and the corresponding sensitivity were determined via the sensors’ coupling angles at different cover refractive indices for transverse electric as well as transverse magnetic polarized illumination at various wavelengths in the visible and near-infrared. The theoretical sensitivity was calculated by solving the mode equation for a three layer waveguide. PMID:25871832

  16. Si3N4 grated waveguide optical cavity based sensors for bulk-index concentration, label-free protein, and mechano-optical gas sensing

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Dijkstra, Mindert; Hollink, Anton; de Ridder, R.M.; Pollnau, Markus; Hoekstra, Hugo

    A grated waveguide (GWG), which is a waveguide with a finite-length grated section, acts as an optical resonator, showing sharp fringes in the transmission spectrum near the stop-band edges of the grating. These oscillations are due to Fabry-Perot resonances of Bloch modes propagating in the cavity

  17. SOI waveguide based planar reflective grating demultiplexer for FTTH (United States)

    Bidnyk, S.; Feng, D.; Balakrishnan, A.; Pearson, M.; Gao, M.; Liang, H.; Qian, W.; Kung, C.-C.; Fong, J.; Yin, J.; Asghari, M.


    Recent deployments of fiber-to-the-home (FTTH) represent the fastest growing sector of the telecommunication industry. The emergence of the silicon-on-insulator (SOI) photonics presents an opportunity to exploit the wide availability of silicon foundries and high-quality low-cost substrates for addressing the FTTH market. We have now demonstrated that a monolithically integrated FTTH demultiplexer can be built using the SOI platform. The SOI filter comprises a monolithically integrated planar reflective grating and a multi-stage Mach-Zehnder interferometer that were fabricated using a CMOS-compatible SOI process with the core thickness of 3.0 μm and optically insulating layer of silica with a thickness of 0.375 μm. The Mach-Zehnder interferometer was used to coarsely separate the 1310 nm channel from 1490 and 1550 nm channels. Subsequently, a planar reflective grating was used to demultiplex the 1490 and 1550 nm channels. The manufactured device showed the 1-dB bandwidth of 110 nm for the 1310 nm channel. For the 1490 nm and 1550 nm channels, the 1-dB bandwidth was measured to be 30 nm. The adjacent channel isolation between the 1490 nm and 1550 nm channels was better than 32 dB. The optical isolation between the 1310 nm and 1490 and 1550 nm channels was better than 45 dB. Applications of the planar reflective gratings in the FTTH networks are discussed.

  18. High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity (United States)

    Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye


    We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.

  19. [Research on demodulation system for human body temperature measurement of intelligent clothing based on arrayed waveguide grating]. (United States)

    Yu, Xiao-gang; Miao, Chang-yun; Li, Hong-qiang; Li, En-bang; Liu, Zhi-hui; Wei, Ke-jia


    A system for demodulating distributed fiber Bragg grating sensors of the intelligent clothing was researched and realized, which is based on arrayed waveguide grating. The principle of demodulation method based on arrayed waveguide grating was analyzed, intensity--demodulating method was used to interrogate the wavelength of the fiber Bragg grating based on the building up of an experimental platform, and demodulation experiment of pre and post series of fiber Bragg grating was completed. The results show that the wavelength demodulation of the system has high linearity for fiber Bragg grating, the system gives a wavelength accuracy of 0.001 nm, and demodulation error caused by crosstalk between different sensors is 0.0005 nm. The measurement error of human body temperature is +/- 0.16 degrees C. It can be applied to the human body temperature measurement.

  20. Tunable arrayed waveguide grating driven by surface acoustic waves (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.


    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  1. Resonant waveguide grating imagers for single cell analysis and high throughput screening (United States)

    Fang, Ye


    Resonant waveguide grating (RWG) systems illuminate an array of diffractive nanograting waveguide structures in microtiter plate to establish evanescent wave for measuring tiny changes in local refractive index arising from the dynamic mass redistribution of living cells upon stimulation. Whole-plate RWG imager enables high-throughput profiling and screening of drugs. Microfluidics RWG imager not only manifests distinct receptor signaling waves, but also differentiates long-acting agonism and antagonism. Spatially resolved RWG imager allows for single cell analysis including receptor signaling heterogeneity and the invasion of cancer cells in a spheroidal structure through 3-dimensional extracellular matrix. High frequency RWG imager permits real-time detection of drug-induced cardiotoxicity. The wide coverage in target, pathway, assay, and cell phenotype has made RWG systems powerful tool in both basic research and early drug discovery process.

  2. Highly efficient waveguide display with space-variant volume holographic gratings. (United States)

    Yu, Chao; Peng, Yifan; Zhao, Qing; Li, Haifeng; Liu, Xu


    We propose a highly efficient waveguide display based on space-variant volume holographic gratings (SVVHGs). The local period and slant angle of the SVVHG vary along the tangential direction, enabling variant incident angles to satisfy the Bragg condition of the local gratings. As a result, we enlarge the field of view (FOV) without using the conventional multiplexing scheme, while achieving high efficiency and large FOV at the same time. We experimentally record the SVVHGs on Bayfol HX200 films. We demonstrate that the proposed display can achieve 31.9% system efficiency for a broadband light source and 52.3% for a coherent light source, 20° FOV, and high brightness uniformity, making it a promising candidate for widespread applications in the augmented reality (AR) industry.

  3. Reconfiguring waveguide-gratings-based M-signature codecs to enhance OCDMA network confidentiality (United States)

    Huang, Jen-Fa; Chen, Kai-Sheng; Lin, Ying-Chen; Li, Chung-Yu


    A reconfiguration scheme based on composite signature codes over waveguide-gratings-based optical code-division multiple-access (OCDMA) network coder/decoders (codecs) is proposed in the paper. By using central control node to monitor network traffic condition and reconfigure the composite signature codes made up of maximal-length sequence (M-sequence) component codes and random changing the signature codes assigned for each user to improve the confidentiality performance in an OCDMA system. The proposed scheme is analyzed with some practical eavesdroppers' attacks.

  4. TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform (United States)

    Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.


    We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.

  5. Compact wavelength add-drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides

    CERN Document Server

    Biagi, Giulio; Radko, Ilya P; Rubahn, Horst-Günter; Pedersen, Kjeld; Bozhevolnyi, Sergey I


    We report a novel design of a compact wavelength add-drop multiplexer utilizing dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abilities of Bragg gratings. We present practical realization of a 20-$\\mu$m-long device operating at telecom wavelengths that can reroute optical signals separated by approximately 70 nm in the wavelength band. We characterize the performance of the fabricated structures using scanning near-field optical microscopy as well as leakage-radiation microscopy and support our findings with numerical simulations.

  6. Photon control by multi-periodic binary grating waveguides: A coupled-mode theory approach

    DEFF Research Database (Denmark)

    Adam, Jost; Lüder, Hannes; Gerken, Martina

    - taneous control over multiple spectral resonance positions and relative intensities. The experimental findings were theoretically backed up by a rigorous coupled-wave analysis (RCWA) approach, yielding the leaky modes’ complex propagation constants and diffraction efficiencies. This approach, however, can...... only lead to quantitative results outside the device’s band gaps, since only radiative propagation loss is calculated.n order to provide more physical and quantitative insight to grating-induced waveguide losses, we implemented a coupled-mode theory (CMT) approach for the semi-analytical treatment...

  7. Compact wavelength add–drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Biagi, Giulio; Fiutowski, Jacek; Radko, Ilya P.


    We report a novel design of a compact wavelength add–drop multiplexer utilizing dielectric-loaded surface plasmon–polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abilities of Bragg gratings. We present practical...... realization of a 20-μm-long device operating at telecom wavelengths that can reroute optical signals separated by approximately 70 nm in the wavelength band. We characterize the performance of the fabricated structures using scanning near-field optical microscopy as well as leakage-radiation microscopy...

  8. Determination of ray directions coupled out of waveguides through prisms and gratings. (United States)

    Marom, E; Chen, B; Ramer, O G


    Prism or grating couplers are used to couple out guided modes propagating in optical waveguides. The directions of the beams propagating out of the guided medium are evaluated, in general, with the intent to assess the effect of the coupler on the propagation direction. In particular, the results are applied for the determination of m-line curvatures and beam deflectors. It is interesting to point out that deflections in a direction lateral to the coupling structure depend only on the relative effective index of refraction of the guided mode and that of the surrounding medium and are not affected by the coupler itself.

  9. Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings. (United States)

    Wu, Shengbao; Xiao, Jinbiao


    A compact and broadband polarization rotator (PR) for silicon-based cross-slot waveguides using subwavelength gratings (SWGs) is proposed and analyzed. To significantly break the symmetry of the waveguide structure, the diagonal regular Si wires of the cross-slot waveguides are replaced with the full etching SWGs. Moreover, the special properties of the SWGs-whose effective index is adjustable-can effectively enhance the modal birefringence between the two lowest-order hybrid modes, resulting in a more compact device. By utilizing interference effect of the hybrid modes, both transverse electric to transverse magnetic (TE-to-TM) and TM-to-TE conversion can be efficiently realized. Numerical results show that a PR of 12.6 μm in length at a wavelength of 1.55 μm is achieved, where the polarization conversion efficiency (PCE) and insertion loss (IL) are, respectively, 97.2% and 0.71 dB, and the reflection loss is below -20.5  dB for both cases. Moreover, a wide bandwidth of ∼260  nm for both polarizations is obtained for keeping the PCE over 90% and IL below 1 dB. In addition, fabrication tolerances to the structural parameters are analyzed in detail, and field evolution along the propagation distance is also presented.

  10. Investigation on thermal behavior of resonant waveguide-grating mirrors in an Yb:YAG thin-disk laser (United States)

    Rumpel, Martin; Dannecker, Benjamin; Voss, Andreas; Möller, Michael; Moormann, Christian; Graf, Thomas; Abdou Ahmed, Marwan


    We present the experimental investigations of different designs of resonant waveguide-grating mirrors (RWG) which are used as intracavity folding mirror in an Yb:YAG thin-disk laser. The studied mirrors combine structured fused silica substrates, a thin-layer waveguide (Ta2O5), a buffer layer (SiO2) and partial reflectors. The grating period was chosen to be 510 nm to allow resonances at an angle of incidence of ~10° for TE polarization. The waveguide layer has a thickness of 236 nm. It is followed by the buffer layer with a thickness of 580 nm and the subsequent alternating Ta2O5/SiO2 layers. The exact coating sequence depends on the two design approaches which were investigated in this work: either introducing different partial reflectors, i.e. stacks of quarter-wave layers on top of the waveguide while keeping the groove depth of the grating constant, or increasing the grating depth, while keeping an identical partial reflector. The investigation was focused on the rise of the surface temperature due to the coupling of the incident radiation to a waveguide mode, as well as on the laser efficiency, polarization and wavelength selectivity. It is found that, when compared to the simplest RWG design which consists of only a single Ta2O5 waveguide layer, damage threshold as well as laser efficiency can be significantly increased, while the laser performances in terms of polarization- and wavelength selectivity are maintained. So far, the presented RWG allow the generation of linear polarization with a narrow spectral linewidth down to 25 pm FWHM in a fundamental mode Yb:YAG thin-disk laser. Damage thresholds of 60kW/cm2 have been reached where only 63K of surface temperature increase was observed. This shows that the improved mirrors are suitable for the generation of kW-class narrow linewidth, linearly polarized Yb:YAG thin-disk lasers.

  11. Thermo-mechanically tunable Bragg grating filters on silicon-on-insulator rib waveguide bridges (United States)

    Raum, Christopher R.

    This thesis explores the integration of an optical device within a micromechanical structure to enhance its performance and enable behaviour it would otherwise be incapable of. Thermo-mechanically tunable Bragg grating filters on silicon-on-insulator rib waveguide bridges have been designed, fabricated and characterised to demonstrate what happens when an optical device, and the actuator used to tune its optical response, are physically the same structure. The process flow developed to fabricate the device was a five mask process that included a bridge waveguide, integrated filter, and integrated heater. A surface micromachining technique was developed to release up to 4000 mum long, 5 mum thick waveguide bridges. The device has three distinct operating regimes: pre-buckle, buckle, and post-buckle. The pre-buckle experimental thermal sensitivity of the filter was 76 pm/°C and the theoretical sensitivity was 83 pm/°C. During the transient buckle regime, the Bragg filter wavelength was measured to shift 0.95 nm, and theorised to shift 0.55 nm. The post-buckle experimental thermal sensitivity of the filter was 88 pm/°C and the theoretical sensitivity was 99 pm/°C. The rib waveguide bridge was observed to possess a meta-stable regime between the pre- and post-buckle regimes. Before the critical buckle temperature could be attained, the bridge deflected 0.5 mum out-of-plane and remained static over a range of 7.5 °C, whereupon it deflected to its full 15.1 mum buckling mode height. This metastable deflection caused a Bragg wavelength shift of 0.39 nm. The thermal sensitivity of the Bragg filter wavelength in this meta-stable regime was 62 pm/°C. Rectangular cross-section beams did not produce this behaviour. Mechano-optical bi-stability was also observed. In this bi-stable regime there would be two possible Bragg wavelengths for a given temperature, depending on whether the device was in a forward or return path. The bi-stable regime occurred over a span of 15

  12. TiO2 surface functionalization of COC based planar waveguide Bragg gratings for refractive index sensing (United States)

    Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.


    We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.

  13. 80-Channel Multiplexer-Demultiplexer Module for DWDM Communications using Hybrid AWG -- Interleaver Technology (United States)

    Rablau, Corneliu; Bredthauer, Lance


    Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.

  14. Design and Analysis of Multilayered Waveguide Structure With Metal-Dielectric Gratings for Sensing With Reflection Narrowband Notch Filter

    Directory of Open Access Journals (Sweden)

    Guiju ZHANG


    Full Text Available Developments in micro and nanofabrication technologies have led a variety of grating waveguide structures (GWS being proposed and implemented in optics and laser application systems. A new design of multilayered nanostructure double-grating is described for reflection notch filter. Thin metal film and dielectric film are used and designed with one-dimensional composite gratings. The results calculated by rigorous coupled-wave analysis (RCWA present that the thin metal film between substrate and grating can produce significant attenuated reflections and efficiency in a broad reflected spectral range. The behavior of such a reflection filter is evaluated for refractive index sensing, which can be applied inside the integrated waveguide structure while succeeding cycles in measurement. The filter peaks are designed and obtained in a visible range with full width half maximum (FWHM of several nanometers to less than one nanometer. The multilayered structure shows a sensitivity of refractive index of 220nm/RIU as changing the surroundings. The reflection spectra are studied under different periods, depths and duty cycles. The passive structure and its characteristics can achieve practical applications in various fields, such as optical sensing, color filtering, Raman spectroscopy and laser technology.DOI:

  15. Study of all-polymer-based waveguide resonant gratings and their applications for optimization of second-harmonic generation (United States)

    Hoang Luong, Mai; Thanh Ngan Nguyen, Thi; Thanh Nguyen, Chi; Ledoux-Rak, Isabelle; Diep Lai, Ngoc


    We investigated theoretically and experimentally the optical properties of all-polymer-based one-dimensional waveguide resonant gratings (WRGs) and their important applications for the optimization of second-harmonic generation (SHG). We first studied the basic theory of the resonant modes of a simple grating-coupled waveguide realized on a material possessing a low refractive index contrast. The optical properties of any WRG were numerically simulated by using the finite-difference time domain method, performed by commercial Lumerical software. The polymer-based surface relief gratings were fabricated on azopolymer Disperse Red 1-Poly-Methyl-Methacrylate (DR1-PMMA) thin films by using the two-beam interference method and mass transport effect. Their experimental reflection spectra measured as a function of incident light wavelength are in good agreement with the theoretical predictions. We then demonstrated a first application of such a polymer-based WRG for nonlinear optics. Thanks to the strong local electrical field in the WRG, due to a guided-mode resonance condition, the SHG signal of an infrared light beam was strongly enhanced by a factor of 25 as compared to the result obtained in a sample without a grating.

  16. Ultra-broad range organic solid-state laser from a dye-doped holographic grating quasi-waveguide configuration (United States)

    Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Mu, Quanquan; Cao, Zhaoliang; Lu, Xinghai; Ma, Ji; Xuan, Li


    This paper reports the ultra-broad 149.1 nm lasing emission from 573.2 to 722.3 nm using a simple [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM)-doped holographic polymer-dispersed liquid crystal (HPDLC) grating quasi-waveguide configuration by varying the grating period. The lasing emission beams show s-polarization property. The quasi-waveguide structure, which contained the cover glass, the DCM-doped HPDLC grating, the semiconducting polymer film poly[-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and the substrate were confirmed to decrease lasing threshold and broaden lasing wavelength. The operational lifetime of the device is 240 000 pulses, which corresponds to an overall laser duration of more than 6 h at a repetition rate of 10 Hz. In addition, the dual-wavelength lasing range from the 8th and 9th order is over 40 nm. The electrical tunability of the dual-wavelength lasing emission is over 1 nm. The experimental results facilitated the decreased lasing threshold and broadened lasing wavelength range of organic solid-state lasers.

  17. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle


    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  18. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures (United States)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina


    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  19. Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating. (United States)

    Kondo, Keisuke; Tatebe, Tomoki; Hachuda, Shoji; Abe, Hiroshi; Koyama, Fumio; Baba, Toshihiko


    Compact non-mechanical beam steering devices are desired not only for current common applications, but also for advanced applications such as light detection and ranging. We use a Si photonic crystal slow-light waveguide with a diffraction grating, which radiates the guided mode to free space and steers a fan beam by sweeping the wavelength. Due to its large angular dispersion, slow light enhances the steering range without degrading the beam quality, resulting in more resolution points. We fabricated 600 μm devices and observed a 23° steering range and a beam divergence of 0.23°, which resulted in 100 resolution points.

  20. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day


    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  1. Near-unity absorption of graphene monolayer with a triple-layer waveguide coupled grating (United States)

    Zhang, Haojing; Zheng, Gaige; Xian, Fenglin; Zou, Xiujuan; Wang, Jicheng


    In order to achieve the enhancement and manipulation of light absorption in graphene monolayer within the visible (Vis) and near infrared (NIR) regions, a design of absorber inspired by contact coupled gratings with an absentee layer is demonstrated. It is proved that the absorptance of monolayer graphene can be greatly enhanced to near unity through rigorous coupled-wave analysis (RCWA) numerical calculation. The thickness of grating and homogeneous absentee layers can significantly change the linewidth and resonant mode position in absorption spectrum. Furthermore, the lateral shift of the contact coupled gratings changes the magnetic field distributions in the grating cavity and the surface-confined mode at the cover/grating interface, thus facilitating the dynamic control of the spectral bandwidth of the graphene absorber. The proposed devices could be efficiently exploited as tunable and selective absorbers, allowing to realize other two-dimensional (2D) materials-based selective photo-detectors.

  2. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength (United States)

    Liu, Qifa; Wang, Wei


    Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.

  3. High-efficiency wavelength and polarization selective grating-waveguide structures for Yb:YAG thin-disk lasers (United States)

    Rumpel, Martin; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas


    We report on Grating Waveguide Structures (GWS) with a high diffraction efficiency used in Littrow configuration to select (and tune) the wavelength of an Yb:YAG thin-disk laser. The structures are composed of a multilayer HR coating, on which an additional low index layer (SiO2) and high index layer (Ta2O5) was deposited. A binary grating with a period of 580 nm is etched on top of the structure with a groove depth of 87 nm for GWS 1 and 72 nm for GWS 2. The simulation results show that the diffraction efficiency in the -1st order can reach a value of 99.99% for TE polarization, whereas it is only about 20% for TM polarization at 1030 nm. The grating was fabricated by standard interference lithography followed by a dry etching process to the desired groove depth. The spectroscopic measurement exhibited a diffraction efficiency of 99.6% for GWS 1 at 1030 nm and 99.7% for GWS 2 at 1048 nm. The devices were placed as end-mirror into the resonator of a Yb:YAG thin-disk laser. An output power of up to 110 W could be obtained from the laser in fundamental-mode operation (M2 ~ 1.2) with GWS 1, corresponding to an optical efficiency of ηoo = 36.2%. In multi-mode operation (M2 ~ 6) a power of 325 W with ηoo = 53.2% could be extracted. The spectral bandwidth of the emitted beam was measured using an Optical Spectrum Analyzer (OSA) to be less than 20 pm in fundamental-mode. We also showed a continuous wavelength tuning range of 46 nm for GWS 1 and of 38 nm for GWS 2. With a commercially available Stokes polarimeter the degree of linear polarization (DOLP) was measured to be higher than 98.6% over the whole power and wavelength tuning range.

  4. Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications

    NARCIS (Netherlands)

    Bernhardi, Edward


    The research presented in this thesis concerns the investigation and development of Bragggrating-based integrated cavities for the rare-earth-ion-doped Al2O3 (aluminium oxide) waveguide platform, both from a theoretical and an experimental point of view, with the primary purpose of realizing

  5. Monolithic integration of an InP-based 4 × 25 GHz photodiode array to an O-band arrayed waveguide grating demultiplexer (United States)

    Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong


    We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.

  6. Ultra-Low Loss, Chip-Based Hollow-Core Waveguide Using High-Contrast Grating (United States)


    delay circuit can be realized with a device loss that is order of magnitude lower than the current state- of-the-art in on-chip semiconductor...demonstrated as a high reflection mirrors at normal incident angle for VCSELs [5-7]. An HCG structure consists of a single layer of grating composed of a...nonlinearity measurement is currently limited by maximum power level of our EDF A ( ~ 18 dBm), the noise floor of OSA and the insufficient length of the

  7. Broadband tunable bandpass filters using phase shifted vertical side wall grating in a submicrometer silicon-on-insulator waveguide. (United States)

    Prabhathan, P; Murukeshan, V M; Jing, Zhang; Ramana, Pamidighantam V


    We propose the silicon-on-insulator (SOI) based, phase shifted vertical side wall grating as a resonant transmission filter suitable for dense wavelength division multiplexing (DWDM) communication channels with 100 GHz channel spacing. The gratings are designed and numerically simulated to obtain a minimum loss in the resonant cavity by adjusting the grating parameters so that a high transmittivity can be achieved for the resonant transmission. The resonant grating, which is designed to operate in the DWDM International Telecommunication Union (ITU) grid C band of optical communication, has a high free spectral range of 51.7 nm and a narrow band resonant transmission. The wavelength selectivity of the filter is improved through a coupled cavity configuration by applying two phase shifts to the gratings. The observed channel band width and channel isolation of the resonant transmission filter are good and in agreement with the ITU specifications.

  8. 3D Printed Terahertz Focusing Grating Couplers (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin


    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  9. Comparison of Surface Plasmon Resonance, Resonant Waveguide Grating Biosensing and Enzyme Linked Immunosorbent Assay (ELISA in the Evaluation of a Dengue Virus Immunoassay

    Directory of Open Access Journals (Sweden)

    Joe Buechler


    Full Text Available Two label-free biosensor platforms, Resonance Waveguide Grating (RWG and Surface Plasmon Resonance (SPR, were used to rank a large panel of anti-dengue virus NS1 antibodies. Dengue non-structural 1 (NS1 protein is an established serological marker for the early detection of dengue infection. A variety of commercial dengue NS1 antigen capture immunoassays are available in both ELISA and lateral flow format. However, there is a significant scope to improve both the sensitivity and the specificity of those tests. The interactions of antibody (Ab-antigen (Ag were profiled, with weak interactions (KD = 1–0.1 μM able to be detected under static equilibrium conditions by RWG, but not observed to under more rigorous flow conditions using SPR. There were significant differences in the absolute affinities determined by the two technologies, and there was a poor correlation between antibodies best ranked by RWG and the lower limit of detection (LLOD found by ELISA. Hence, whilst high-throughput RWG can be useful as preliminary screening for higher affinity antibodies, care should be exercised in the assignation of quantitative values for affinity between different assay formats.

  10. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor (United States)

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J.; Szabó, Bálint; Horvath, Robert


    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 +/- 243 μm-2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  11. Bragg gratings: Optical microchip sensors (United States)

    Watts, Sam


    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  12. Novel 3D resist shaping process via e-beam lithography, with application for the formation of blased planar waveguide gratings and planar lenses on GaAs (United States)

    Poli, Louis C.; Kondek, Christine A.; Novembre, Anthony E.; McLane, George F.


    Planar waveguide gratings are finding applications in wide band signal processing for imaging and location radars. Advanced forms may take the form of a `blased' topology, in which height as well as line and space dimensioning are engineered. This allows more complicated beam steering and wave interaction along the grating, promising better control over efficiency and more diverse engineering application. Planar lenses are being investigated as a method of coupling optical signals to the substrate. Realizing these devices also requires modification of the host substrate in three dimensions and is a difficult technological hurdle. Inherently low contrast resists can be shaped with the aid of clever processing techniques and have been classically used to obtain smaller line widths than the lithography technique would have normally allowed. In this work we utilize an experimental negative tone resist formulation to realize three dimensional features on GaAs substrates. The negative tone resist of interest, P(SI-CMS)-20, is under development (AT&T Bell Labs, Murray Hill, NJ) as a high performance single component system to be used in the fabrication of x-ray masks. Its properties include high resolution and the more unusual ability to faithfully retain a post processed film thickness that is primarily dependent upon e-beam dose, while using a fixed post exposure processing methodology. A curve of film thickness retention versus dose is then selected to define a required post exposure processed film thickness. A nominal 200 nm thick film is first spun onto the GaAs host wafer and softbaked. A Leica EBMF-10.5 vector scan electron beam lithography tool working at 25 KeV beam energy is used for patterning. A saw tooth or step ramping in processed resist height may now be achieved with a series of single pass lines or small areal features of successively higher dose density. The minimum dose corresponds to the minimum incipient gel of the resist and clears the foot of the

  13. AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences (United States)

    Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists


    The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.

  14. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole


    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  15. Design Optimisation of Erbium-Doped Planar Waveguide DBR Lasers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg; Søndergaard, Thomas; Broeng, Jes


    For an erbium-doped DBR planar waveguide laser, the impact of internal waveguide losses on the grating design have been studied using a numerical model. The results show that laser performance is strongly dependent on the modulation strength and the length of the gratings, and that there exsists...

  16. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. (United States)

    Marshall, Graham D; Williams, Robert J; Jovanovic, Nemanja; Steel, M J; Withford, Michael J


    The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating's refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

  17. Achromatic waveguide input/output coupler design. (United States)

    Spaulding, K E; Morris, G M


    An investigation into methods for achromatizing the coupling angle characteristics of waveguide input/output couplers is described. The basic approach involves correcting the inherent angular dispersion of conventional waveguide couplers with a diffraction grating. Two configurations are analyzed in detail: a hybrid prism/grating coupler and a double grating coupler. Expressions are derived for values of the grating parameters that produce achromatic coupling. A method is also presented to predict the achromatic wavelength range and maximize it with the available degrees of freedom. For a coupling angle tolerance of 0.005 degrees , it is found that with double grating couplers achromatic wavelength ranges of the order of 10 nm can be obtained, and that with prism/grating couplers this range can be as large as 200 nm.

  18. VCSELs and silicon light sources exploiting SOI grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    grating works as a highly-reflective mirror as well as routes light into a Si in-plane output waveguide connected to the grating. In the vertical-cavity surface-emitting laser (VCSEL) version, there is no in-plane output waveguide connected to the grating. Thus, light is vertically emitted through...... the Bragg reflector. Numerical simulations show that both the silicon light source and the VCSEL exploiting SOI grating mirrors have superior performances, compared to existing silicon light sources and long wavelength VCSELs. These devices are highly adequate for chip-level optical interconnects as well...

  19. 70-nm-bandwidth achromatic waveguide coupler. (United States)

    Mendes, S B; Li, L; Burke, J J; Lee, J E; Saavedra, S S


    We report a general approach to the design of broadband waveguide couplers. A double-parallel grating assembly is used to cancel the first chromatic order, and a proper choice of prism glass and base angle is made to compensate for the second chromatic order. The technique was applied to a Corning glass 7059 waveguide, and a spectral bandwidth of 70 nm was measured by the use of two complementary procedures.

  20. Resonance phenomena in one-dimensional grating-based structures

    Directory of Open Access Journals (Sweden)

    I.Ya. Yaremchuk


    Full Text Available Enhanced optical transmission through metallic 1-D grating-based structures has been studied using the rigorous coupled wave analysis. The results have shown that optical transmission is determined by waveguide properties of the grating slit, and there is a minimum width of slit for TE polarization, when high transmission occurs due to waveguide effect. In contrast, this limitation doesn’t exist for TM polarization, and extraordinary transmission is obtained at the sub-wavelength slit. As a result, high transmission is reached due to resonance of electromagnetic field inside the grating slit.

  1. AWG Scholarships (United States)

    The Association for Women Geoscientists will give two Chrysalis Scholarships in 1990. The awards are for women who returned to school after an interruption in education of at least a year and who are finishing a thesis for a Masters or Ph.D. degree in geoscience.1989 was the first year for the Chrysalis. The recipient, Diane Bellis, was a doctoral candidate in geochemistry at New Mexico Institute of Mining and Technology in Socorro and the mother of four. She received her Ph.D. in May and is currently an AAAS Fellow in the Department of State in Washington, D.C., working on U.S. science policy in Africa and Latin America.

  2. Influence of interferometric cross talk in a cascade of 10-Gbit/s wavelength routers and an improved Gaussian cross talk model

    DEFF Research Database (Denmark)

    Liu, Fenghai; Rasmussen, Christian Jørgen; Pedersen, Rune Johan Skullerud


    Integrated optical N×N wavelength routers based on arrayed-waveguide gratings (AWGs) are likely to become key devices in future WDM networks. A cascade of wavelength routers is formed when several N×N networks are interconnected. Due to the nonideal transfer function of physical AWGs, a node will...

  3. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman


    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  4. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review


    Christian Hoffmann; Gerd Sulz; Kerstin Oehse; Katrin Schmitt


    Evanescent field sensors based on waveguide surfaces play an important rolewhere high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitablematerial for thin-film waveguides due to its high refractive index and low attenuation.Many label-free biosensor systems such as grating couplers and interferometric sensors aswell as fluorescence-based systems benefit from this waveguide material leading toextremely high sensitivity. Some biosensor systems based on Ta2O5 waveguide...

  5. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George


    in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more...... tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help...

  6. Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area (United States)

    Suryaningsih, Sri; Nurhilal, Otong


    Drinking water availability is a major issue in some rural area in Indonesia during the summer season due to lack of rainfall, which peoples in this area have to fetch the water a few kilometers away from home. The Atmospheric Water Generator (AWG) is one of the alternative solution for fresh water recovery from atmosphere which is directly condensed the moisture content of water vapor from the air. This paper presents the method to develop a prototype of an AWG based on Thermo-electric cooler (TEC) that used 12 Volt DC, hence its suitability for using renewable energy resource. Computational Fluid Dynamics (CFD) is utilized to optimize the design process in the flow region only, it's not suitable for recent CFD software to use in Multi physics, because inaccuracy, cost and time saving. Some parameters such as temperature, moisture content, air flow, pressure, form of air flow channel and the water productivity per unit input of energy are to be considered. The result is presented as an experimental prototype of an AWG based on TEC and compared with other conventional commercial products.

  7. Distributed delay-line interferometer based on a Bragg grating in transmission mode

    CERN Document Server

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate


    A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. The proposed "Bragg-DLI" approach is applicable to any kind of Bragg grating technology, such as volume Bragg gratings, dielectric mirrors, silicon photonics, and other optical waveguide based Bragg structures.

  8. Temporal differentiation of optical signals using resonant gratings. (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Viktor A


    We study theoretically the possibility of performing temporal differentiation of optical signals using a resonant diffraction grating. We demonstrate that the resonant grating allows the calculation of the first-order derivative of an optical signal envelope in the vicinity of waveguide resonant frequencies in the zeroth transmitted diffraction order. The grating is shown to allow the calculation of the fractional derivative of order 1/2 in the vicinity of Rayleigh-Wood anomalies. Numerical simulations based on the rigorous coupled-wave analysis of Maxwell's equations demonstrate the high-quality differentiation of optical signals with temporal features in the picosecond range.

  9. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K


    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  10. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario


    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  11. Interdigitated electrode-induced phase grating with an electrically switchable and tunable period. (United States)

    Kulishov, M


    A new design for an adjustable electro-optic phase grating inside a waveguide is proposed. The electric field and the refractive-index distribution induced inside a waveguide by voltage applied to double-sided periodic interdigitated electrode arrays are calculated rigorously on the basis of an original analytical technique. The modeling was carried out with the Mathcad software. It is shown that the fundamental periodicity of the induced grating inside the waveguide can be switched between l and 2l by application of the appropriate voltage, where l is the spatial periodicity of the interdigitated electrodes. One can also fine tune the peak grating reflectivity by changing the constant component of the induced refractive index with the help of the constant component of the electric field inside the waveguide. The suggested design can be used as a basic idea for a variety of optical communication networking applications, including switching, modulation, deflection, and data processing.

  12. Interdigitated Electrode-Induced Phase Grating with an Electrically Switchable and Tunable Period (United States)

    Kulishov, Mykola


    A new design for an adjustable electro-optic phase grating inside a waveguide is proposed. The electric field and the refractive-index distribution induced inside a waveguide by voltage applied to double-sided periodic interdigitated electrode arrays are calculated rigorously on the basis of an original analytical technique. The modeling was carried out with the Mathcad software. It is shown that the fundamental periodicity of the induced grating inside the waveguide can be switched between l and 2 l by application of the appropriate voltage, where l is the spatial periodicity of the interdigitated electrodes. One can also fine tune the peak grating reflectivity by changing the constant component of the induced refractive index with the help of the constant component of the electric field inside the waveguide. The suggested design can be used as a basic idea for a variety of optical communication networking applications, including switching, modulation, deflection, and data processing.

  13. Active and Passive Devices in Ion-Exchanged Glass Waveguides (United States)

    Roman, Jose Eduardo

    The design, fabrication, and characterization of active and passive devices in ion-exchanged glass waveguides is described. The ion-exchanged devices demonstrated include the first distributed Bragg reflector laser, the first photowritten beam deflector, and a waveguide grating filter for pulse compression and dispersion compensation. The laser was fabricated in neodymium-doped, soda -lime, silicate glass using silver ion exchange. A surface -relief Bragg reflector was produced and served as one of the end mirrors. The use of a Bragg grating as one of the cavity mirrors narrowed the emission linewidth of the laser from 2000 GHz to less than 35 MHz, allowing single -longitudinal mode operation at 1054 nm. Except for the optical fiber-based devices, this is the first single-frequency integrated glass waveguide laser. This laser is compatible with optical fibers and could represent an alternative to semiconductor laser diodes as an integrated narrowband source for optical communications. The photowritten beam deflector was based on a new method for producing gratings in ion-exchanged glass waveguides. The glass was made photosensitive to ultraviolet light by creating a bleachable absorption band centered at 330 nm. This band was produced by irradiating the glass with gamma rays from a cobalt source. A phase grating was optically written directly into the waveguide film using the 350-nm line from an argon laser. This light bleached the absorption band and created a refractive index change through the Kramers-Kronig relationship. This novel direct-write technique could facilitate the fabrication of grating-based devices in ion-exchanged waveguides. Finally, two theoretical design methods for waveguide grating filters were investigated. The first method was based on inverse Fourier transform techniques. The second, more powerful method, uses the Gel'fand-Levitan-Marchenko (GLM) inverse scattering technique. The GLM method was used to design a waveguide grating filter for

  14. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg


    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...... fabricated using plasma enhanced chemical vapor deposition (PECVD) and reactive ion etching (RIE). These processes and the control of the film composition is discussed. Ytterbium doped planar waveguides are demonstrated, and it is shown that codoping with aluminium has a positive influence...... on the fluorescence intensity of the ytterbium ions. Based on this result ytterbium doped planar waveguides with a net gain of 0.36 dB/cm are made. The glass is sensitive to ultra violet (UV) light, and using UV-writing Bragg gratings are photoimprinted in the waveguides, and a laser is made in a distributed Bragg...

  15. Quantum waveguides

    CERN Document Server

    Exner, Pavel


    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  16. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.


    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Design of second order grating couplers to detect the angle and polarization of the laser beam (United States)

    Saha, Tapas Kumar; Lu, Mingyu; Zhao, Deyin; Ma, Zhenqiang; Zhou, Weidong


    On-chip laser beam tracking finds innumerable applications. Popularly adopted quadrant photodiodes can only detect laser beam's angle variation up to 0.2° reliably. In this paper, a novel angle detector is designed based on grating coupling. It consists of a grating layer on top of a silicon-on-insulator slab waveguide. The incident light is coupled into guided modes within the waveguide via the grating layer, and then, the incident light's angle can be determined by reading the outputs of light detectors within the waveguide. Performance of the laser angle detector in this paper is demonstrated by full-wave finite-difference-time-domain simulations. Numerical results show that, the detectable angle range can be adjusted by several design parameters and can reach [-4°, 4°]. The device structure in this paper can be straightforwardly extended to two-dimensional photonic crystal configurations.

  19. Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications

    DEFF Research Database (Denmark)

    Horvath, R.; Voros, J.; Graf, R.


    It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...... peaks is observed, while regular microstructures on the incoupling grating produce shifts and splitting of the peaks. A theoretical model, based on the zigzag wave representation of light propagation in a planar optical waveguide has been developed in order to understand the physical background...... of the observed effects. Numerical results are given for the different cases observed, and they are compared with the experimental data. Several possible applications of these effects are considered....

  20. Broadband high-efficiency zero-order surface grating coupler for the near- and mid-infrared wavelength ranges (United States)

    Sánchez-Postigo, Alejandro; Wangüemert-Pérez, J. Gonzalo; Luque-González, José Manuel; Molina-Fernández, Íñigo; Cheben, Pavel; Alonso-Ramos, Carlos A.; Halir, Robert; Schmid, Jens H.; Ortega-Moñux, Alejandro


    Efficient coupling of light from a chip into an optical fiber is a major issue in silicon photonics, as the dimensions of high-index-contrast photonic integrated waveguides are much smaller than conventional fiber diameters. Surface grating couplers address the coupling problem by radiating the optical power from a waveguide through the surface of the chip to the optical fiber, or vice versa. However, since the grating radiation angle substantially varies with the wavelength, conventional surface grating couplers cannot offer high coupling efficiency and broad bandwidth simultaneously. To overcome this limitation, for the near-infrared band we have recently proposed SOI-based zero-order grating couplers, which, making use of a subwavelength-engineered waveguide and a high-index prism, suppress the explicit dependence between the radiation angle and the wavelength, achieving a 1-dB bandwidth of 126 nm at λ = 1.55 μm. However, in the near-infrared, the bandwidth enhancement of zero-order grating couplers is limited by the effective index wavelength dispersion of the grating. In the mid-infrared spectral region, the waveguide dispersion is lower, alleviating the bandwidth limitation. Here we demonstrate numerically our zero-order grating coupler concept in the mid-infrared at λ = 3.8 μm. Several couplers for the silicon-on-insulator and the germanium-on-silicon nitride platforms are designed and compared, with subdecibel coupling efficiencies and 1-dB bandwidths up to 680 nm.

  1. Compact high-efficiency perfectly-vertical grating coupler on silicon at O-band. (United States)

    Wang, Siya; Hong, Yue; Zhu, Yuntao; Chen, Jingye; Gao, Shengqian; Cai, Xinlun; Shi, Yaocheng; Liu, Liu


    A compact, high-efficiency grating coupler is demonstrated for interfacing a silicon waveguide and a perfectly-vertical fiber at O-band. The grating lies on a tilted silicon membrane for minimizing the reflections. Circular grating lines are adopted to shorten the overall device length to about 60μm. 57% peak coupling efficiency and >28nm 1-dB coupling bandwidth are obtained experimentally. Back reflections of 1% to the silicon waveguide and the single mode fiber are theoretically estimated. The processing flow to realize the proposed structure is discussed in detail. The fabrication control over the tilted angle of the silicon membrane is investigated. The approach by applying an oxide cladding to improve the stability of the membrane is also introduced. The present grating coupler is compatible to common fabrication processes for silicon photonic chips.

  2. On-chip Mode Multiplexer Based on a Single Grating Coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing


    A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes.......A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes....

  3. Broadband fiber-chip zero-order surface grating coupler with 0.4  dB efficiency. (United States)

    Sánchez-Postigo, Alejandro; Gonzalo Wangüemert-Pérez, J; Luque-González, José Manuel; Molina-Fernández, Íñigo; Cheben, Pavel; Alonso-Ramos, Carlos A; Halir, Robert; Schmid, Jens H; Ortega-Moñux, Alejandro


    Surface grating couplers enable efficient coupling of light between optical fibers and nanophotonic waveguides. However, in conventional grating couplers, the radiation angle is intrinsically wavelength dependent, thereby limiting their operation bandwidth. In this Letter, we present a zero-order surface grating coupler in silicon-on-insulator which overcomes this limitation by operating in the subwavelength regime. By engineering the effective refractive index of the grating region, both high coupling efficiency and broadband operation bandwidth are achieved. The grating is assisted by a silicon prism on top of the waveguide, which favors upward radiation and minimizes power losses to substrate. Using a linear apodization, our design achieves a coupling efficiency of 91% (-0.41  dB) and a 1-dB bandwidth of 126 nm.

  4. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp (United States)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei


    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  5. Excitation of plasmonic waveguide modes using principles of holography (United States)

    Ignatov, Anton I.; Merzlikin, Alexander M.


    A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. The case of excitation of a plasmonic wave in a dielectric layer on metal using volume holograms in the dielectric layer has been considered. For comparison, simple periodic gratings with refractive index of the dielectric layer modulated in the plane of the layer and invariable in the direction perpendicular to the layer plane have been considered. The efficiencies of the proposed holograms and gratings optimized for various incidence angles of exciting waves incident on the gratings/holograms from air have been analyzed. Based on this analysis, general enough conditions when holograms can be more efficient than simple gratings have been found out. In particular, a hologram is expected to be more efficient than the grating when the refractive index distribution in the hologram is considerably inhomogeneous (contrary to the gratings) in the direction perpendicular to the layer plane. For example, this may be the case if the exciting wave is incident on a hologram obliquely at a rather large angle or if phase fronts of either exciting wave or a wave being excited are curved. The proposed holographic method is quite universal. As expected, this can be extended for efficient excitation of different types of optical surface waves and modes of optical waveguides.

  6. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)


    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  7. Silicon-photonics light source realized by III-V/Si grating-mirror laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    A III–V/Si vertical-cavity in-plane-emitting laser structure is suggested and numerically investigated. This hybrid laser consists of a distributed Bragg reflector, a III–V active region, and a high-index-contrast grating HCG connected to an in-plane output waveguide. The HCG and the output...... waveguide are made in the Si layer of a silicon-on-insulator wafer by using Si-electronics-compatible processing. The HCG works as a highly-reflective mirror for vertical resonance and at the same time routes light to the in-plane output waveguide. Numerical simulations show superior performance compared...

  8. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... VCLs have been fabricated. The first version of hybrid VCL is designed for demonstrating in-plane emission into a Si waveguide. The in-plane emission is enabled by the bottom HCG abutting the Si waveguide, which not only functions as a highly reflective mirror but also routes the light from...... dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM-HCG...

  9. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann


    Full Text Available Evanescent field sensors based on waveguide surfaces play an important rolewhere high sensitivity is required. Particularly tantalum pentoxide (Ta2O5 is a suitablematerial for thin-film waveguides due to its high refractive index and low attenuation.Many label-free biosensor systems such as grating couplers and interferometric sensors aswell as fluorescence-based systems benefit from this waveguide material leading toextremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides alreadytook the step into commercialization. This report reviews the various detection systems interms of limit of detection, the applications, and the suitable surface chemistry.

  10. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels


    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  11. Near-surface temperature profiles collected from an Arctic Wave Glider (AWG) near the Arctic ice-edge in the Beaufort Sea from July 29, 2011 to September 23, 2011 (NODC Accession 0088841) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in the attached files are near-surface temperature profiles collected by an Arctic Wave Glider (AWG) from July 29-Sept 23, 2011. Temperatures were collected...

  12. Thermal hypersensitisation and grating evolution in Ge-doped optical fibre

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Kristensen, Martin


    Low temperature (sub 1000°C) thermal hypersensitisation is reported in germanosilicate optical waveguides. Gratings are written using a CW 266nm laser source. In contrast to laser hypersensitisation, thermal excitation is generally dispersive involving a range of specific glass sites. More complex...

  13. Spectral Collocation and FDTD Approaches for the Design of Focusung Grating Couplers

    DEFF Research Database (Denmark)

    Dridi, Kim; Dinesen, P.G.


    Theoretical and numerical investigations on sub-wavelength waveguide focusing grating couplers are presented. The analyses are based on two approaches, the spectral collocation method and the finite-difference time-domain method. The methods solve the full-vectorial time-domain Maxwell equations....

  14. Spherical grating spectrometers (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher


    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. Volume relaxation in polymers and its effect on waveguide applications. (United States)

    Zhang, Zhiyi; Xiao, Gaozhi; Grover, Chander P


    Volume relaxation in polymers and the effect intrinsic to glassy polymers can significantly affect their refractive index over time. Its beta rate has been found to be related only to relaxation temperature T and the glass transition temperature of the polymer Tg and not to the polymeric chemical structure. Universal values of beta have been obtained for polymers and were used to predict the minimum index change related to volume in polymers. The index change is in the range from 7.86 x 10(-5) to 5.26 x 10(-4) when the Tg - T value of polymers is between 90 and 350 degrees C. These volume-relaxation-induced changes can cause serious deterioration or even failure in corresponding polymer waveguide devices, such as arrayed waveguide gratings and variable optical attenuators, when the Tg of a polymer is not sufficiently high. A minimum requirement is therefore suggested for the Tg of polymers used to fabricate waveguide devices.

  16. Optical Sensors based on single arm thin film Waveguide Interferometer (United States)

    Sarkisov, Sergey S.


    The second achievement meets the second objective for the second year. We choose adjustable prism couplers for connecting the sensor to optical fiber lines in our design of a breadboard prototype of the sensor. These couplers have good coupling efficiency at relatively low cost comparing to any other alternatives such as grating couplers. The third accomplishment meets the third objective for the second year. We performed testing the breadboard prototype of the sensor using heating as a technique of changing its refractive index. The only difference is that we ruled out the channel waveguides as irrelevant to the final goals of the project. The feasibility of the sensor can be shown for the slab waveguide configuration without usage of relatively expensive technologies of channel waveguide delineation.

  17. Dielectric Waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Orlovic, V.A.; Pachenko, V.; Scherbakov, I.A.


    Our recent results on planar and channel waveguide fabrication and lasers in the dielectric oxide materials Ti:sapphire and rare-earth-ion-doped potassium yttrium double tungstate (KYW) are reviewed. We have employed waveguide fabrication methods such as liquid phase epitaxy and reactive ion etching

  18. Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform. (United States)

    Giuntoni, Ivano; Geelhaar, Lutz; Bruns, Jürgen; Riechert, Henning


    We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform.

  19. Photopolymer-based three-dimensional optical waveguide devices (United States)

    Kagami, M.; Yamashita, T.; Yonemura, M.; Kawasaki, A.; Watanabe, O.; Tomiki, M.


    Photopolymer based three-dimensional (3D) waveguide devices are very attractive in low-cost optical system integration. Especially, Light-Induced Self-Written (LISW) technology is suitable for this application, and the technology enables low-loss 3D optical circuitry formation from an optical fiber tip which soaked in photopolymer solution by employing its photo-polymerization due to own irradiation from the fiber tip. This technology is expected drastic mounting cost reduction in fields of micro-optic and hybrid integration devices assembly. The principle of the LISW optical waveguides is self-trapping effect of the irradiation flux into the self-organized waveguide, where, used wavelength can be chosen to fit photopolymer's reactivity from visible to infrared. Furthermore, this effect also makes possible grating formation and "optical solder" interconnection. Actually fabricated self-written grating shows well defined deep periodic index contrast and excellent optical property for the wavelength selectivity. And the "optical solder" interconnection realizes a passive optical interconnection between two faceted fibers or devices by the LISW waveguide even if there is a certain amount of gap and a small degree of misalignment exist. The LISW waveguides grow towards each other from both sides to a central point where the opposing beams overlap and are then combined into one waveguide. This distinctive effect is confirmed in all kind optical fibers, such as from a singlemode to 1-mm-corediameter multimode optical fiber. For example of complicated WDM optical transceiver module, mounted a branchedwaveguide and filter elements, effectiveness of LISW technology is outstanding. In assembling and packaging process, neither dicing nor polishing is needed. In this paper, we introduce LISW technology principles and potential application to integrated WDM optical transceiver devices for both of singlemode and multimode system developed in our research group.

  20. Demonstration of terabit-scale data transmission in silicon vertical slot waveguides. (United States)

    Gui, Chengcheng; Li, Chao; Yang, Qi; Wang, Jian


    We design and fabricate silicon vertical slot waveguides for terabit-scale data transmission. The designed silicon photonic device is composed of apodized grating couplers, strip waveguides, strip-to-slot/slot-to-strip mode converters, and slot waveguide. Tight light confinement in the nano-scale air slot region is achieved in the silicon vertical slot waveguide which features relatively lower nonlinearity compared to silicon strip waveguide. Using the fabricated silicon photonic devices, we first demonstrate ultra-wide bandwidth 1.8-Tbit/s data transmission through a 2-mm-long silicon vertical slot waveguide using 161 wavelength-division multiplexing (WDM) channels each carrying 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. All 161 WDM channels achieve bit-error rate (BER) less than 1e-3 after on-chip data transmission. We further demonstrate terabit-scale data transmission through four silicon vertical slot waveguides with different lengths (1 mm, 2 mm, 3.1 mm, 12.2 mm). The optical signal-to-noise ratio (OSNR) penalties of data transmission through four silicon vertical slot waveguides are 1, 2, 3.2 and 4.5 dB at a BER of 1e-3, respectively. The obtained results indicate that the presented silicon vertical slot waveguide might be an alternative promising candidate facilitating chip-scale high-speed optical interconnections.

  1. Optical nano-antennae as compact and efficient couplers from free-space to waveguide modes

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Volodymyr; Malureanu, Radu


    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Other possibilities include, among others, grating couplers and end-fire end couplers. Our efforts were concentrated on nano-antennae used for coupling IR light in the telecom ...

  2. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic......This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...

  3. Microfabricated bragg waveguide (United States)

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald


    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  4. Thermal waveguide OPO. (United States)

    Lin, S T; Lin, Y Y; Wang, T D; Huang, Y C


    We report a mid-infrared, CW singly resonant optical parametric oscillator (OPO) with a thermally induced waveguide in its gain crystal. We measured a numerical aperture of 0.0062 for the waveguide at 80-W intracavity power at 3.2 microm. This thermal-guiding effect benefits to the stable operation of an OPO and improves the parametric conversion efficiency by more than a factor of two when compared with that without thermal guiding.


    Directory of Open Access Journals (Sweden)



    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  6. Peptide Optical waveguides. (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil


    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  7. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings (United States)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako


    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  8. Holographic Grating Study. Volume 1 (United States)


    EFFICIENCY GRATING ANALYSIS AND MEASUREMENT 167 4. 1 High-Efficiency Holographic Grating Desl ^ri Isaues .... 167 4.2 Computer Modeling of or more higher orders is maximized . This distinguishes them from low-efficiency gratings which utilize the zero order at hi^h efficiency

  9. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry


    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling o...

  10. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan


    . Characterization of the third-order nonlinearities and the frozen-in field were performed using a new measurement method where the Bragg gratings were used as probes. Good coherence was obtained between this new measurement method and the traditional Mach-Zehnder interferometer method. In the project, several...

  11. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.


    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  12. Multiplexing of adjacent vortex modes with the forked grating coupler (United States)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.


    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  13. Grating-assisted superresolution of slow waves in Fourier space

    DEFF Research Database (Denmark)

    Thomas, N. Le; Houdré, R.; Frandsen, Lars Hagedorn


    We present a far-field optical technique allowing the measurement of the dispersion relation of electromagnetic fields propagating under the light cone in photonic nanostuctures. It relies on the use of a one-dimensional grating to probe the evanescent tail of the guided field in combination...... with a high numerical aperture Fourier space imaging set-up. A high-resolution spectroscopy of the far-field emission diagram allows us to accurately and efficiently determine the dispersion curve and the group-index dispersion of planar photonic waveguides operating in the slow light regime....

  14. Precision phase-shifting applied to fiber Bragg gratings

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Kristensen, Martin


    A simple method of displacing a holographic interferogram within a waveguide based on translation along a slightly tilted fringe pattern of the optical interferogram is presented. By way of example, phase-shifted fibre gratings are produced this way. The spatial resolution in fringe shift is sepa...... is separated from the physical spatial displacement of the optical elements and determined primarily by the fringe tilt angle. This relaxes the tolerances in optical components required and can potentially enable spatial displacements as small as 1 nm/@mm to be realised....

  15. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol


    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  16. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer (United States)

    Asadi, Reza; Ouyang, Zhengbiao


    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  17. Tuning Fano resonances of graphene-based gratings (United States)

    de Ceglia, Domenico; Vincenti, Maria A.; Grande, Marco; Bianco, Giuseppe Valerio; Bruno, Giovanni; D'Orazio, Antonella; Scalora, Michael


    We present a strategy to control Fano resonances in hybrid graphene-silicon-on-insulator gratings. The presence of a mono- or few-layer graphene film allows to electrically and/or chemically tuning the Fano resonances that result from the interaction of narrow-band, quasi-normal modes and broad-band, Fabry-Perot-like modes. Transmission, reflection and absorption spectra undergo significant modulations under the application of a static voltage to the graphene film. In particular, for low values of the graphene chemical potential, the structure exhibits a symmetric Lorentzian resonance; when the chemical potential increases beyond a specific threshold, the grating resonance becomes Fano-like, hence narrower and asymmetric. This transition occurs when the graphene optical response changes from that of a lossy dielectric medium into that of a low-loss metal. Further increasing the chemical potential allows to blue-shift the Fano resonance, leaving its shape and linewidth virtually unaltered. We provide a thorough description of the underlying physics by resorting to the quasi-normal mode description of the resonant grating and retrieve perturbative expressions for the characteristic wavelength and linewidth of the resonance. The roles of number of graphene layers, waveguide-film thickness and graphene quality on the tuning abilities of the grating will be discussed. Although developed for infrared telecom wavelengths and silicon-on-insulator technology, the proposed structure can be easily designed for other wavelengths, including visible, far-infrared and terahertz, and other photonic platforms.

  18. Sensored fiber reinforced polymer grate (United States)

    Ross, Michael P.; Mack, Thomas Kimball


    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.

  19. Waveguides for walking droplets

    CERN Document Server

    Filoux, Boris; Schlagheck, Peter; Vandewalle, Nicolas


    When gently placing a droplet onto a vertically vibrated bath, a drop can bounce permanently. Upon increasing the forcing acceleration, the droplet is propelled by the wave it generates and becomes a walker with a well defined speed. We investigate the confinement of a walker in different rectangular cavities, used as waveguides for the Faraday waves emitted by successive droplet bounces. By studying the walker velocities, we discover that 1d confinement is optimal for narrow channels. We also propose an analogy with waveguide models based on the observation of the Faraday instability within the channels.

  20. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi


    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  1. Metamaterial Loadings for Waveguide Miniaturization

    CERN Document Server

    Odabasi, H


    We show that a rectangular metallic waveguide loaded with metamaterial elements consisting of electric-field coupled (ELC) resonators placed at the side walls can operate well below the cutoff frequency of the respective unloaded waveguide. The dispersion diagrams indicate that propagating modes in ELC-loaded waveguides are of forward-type for both TE and TM modes. We also study the dispersion diagram and transmission characteristics of rectangular metallic waveguides simultaneously loaded with ELCs and split ring resonators (SRRs). Such doubly-loaded waveguides can support both forward wave and backward waves, and provide independent control of the propagation characteristics for the respective modes.

  2. Virtual display design using waveguide hologram in conical mounting configuration (United States)

    Yan, Zhanjun; Li, Wenqiang; Zhou, Yongjun; Kang, Mingwu; Zheng, Zhenrong


    An improved virtual display is proposed by using a waveguide holographic configuration with two total internal reflection holographic gratings in conical mounting and two volume hologram in classical mounting recorded on a single transparent planar waveguide. Using this compact configuration, efficiency can be dramatically improved and assembly is easy to be realized. The main principle and the method of intensity uniformity control are present in the paper. The analysis and simulation results are also explained. The virtual display system design shows good optical performance with 25 deg. field of view, a large pupil about 43 mm, little distortion less than 1%, and low aberration. The configuration can be used to a portable or wearable display.

  3. A submillimeter tripler using a quasi-waveguide structure (United States)

    Erickson, Neal R.; Cortes-Medellin, German


    A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.

  4. Mode control and mode conversion in nonlinear aluminum nitride waveguides. (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P


    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  5. Quantized Ultracold Neutrons in Rough Waveguides: GRANIT Experiments and Beyond

    Directory of Open Access Journals (Sweden)

    M. Escobar


    Full Text Available We apply our general theory of transport in systems with random rough boundaries to gravitationally quantized ultracold neutrons in rough waveguides as in GRANIT experiments (ILL, Grenoble. We consider waveguides with roughness in both two and one dimensions (2D and 1D. In the biased diffusion approximation the depletion times for the gravitational quantum states can be easily expressed via each other irrespective of the system parameters. The calculation of the exit neutron count reduces to evaluation of a single constant which contains a complicated integral of the correlation function of surface roughness. In the case of 1D roughness (random grating this constant is calculated analytically for common types of the correlation functions. The results obey simple scaling relations which are slightly different in 1D and 2D. We predict the exit neutron count for the new GRANIT cell.

  6. Hybrid dielectric waveguide spectroscopy of individual plasmonic nanoparticles (United States)

    Cuadra, J.; Verre, R.; Wersäll, M.; Krückel, C.; Torres-Company, V.; Antosiewicz, T. J.; Shegai, T.


    Plasmonics is a mature scientific discipline which is now entering the realm of practical applications. Recently, significant attention has been devoted to on-chip hybrid devices where plasmonic nanoantennas are integrated in standard Si3N4 photonic waveguides. Light in these systems is usually coupled at the waveguide apexes by using multiple objectives and/or tapered optical fibers, rendering the analysis of spectroscopic signals a complicated task. Here, we show how by using a grating coupler and a low NA objective, quantitative spectroscopic information similar to standard dark-field spectroscopy can be obtained at the single-nanoparticle level. This technology may be useful for enabling single-nanoparticle studies in non-linear excitation regimes and/or in complex experimental environments, thus enriching the toolbox of nanophotonic methods.

  7. Hybrid dielectric waveguide spectroscopy of individual plasmonic nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Cuadra


    Full Text Available Plasmonics is a mature scientific discipline which is now entering the realm of practical applications. Recently, significant attention has been devoted to on-chip hybrid devices where plasmonic nanoantennas are integrated in standard Si3N4 photonic waveguides. Light in these systems is usually coupled at the waveguide apexes by using multiple objectives and/or tapered optical fibers, rendering the analysis of spectroscopic signals a complicated task. Here, we show how by using a grating coupler and a low NA objective, quantitative spectroscopic information similar to standard dark-field spectroscopy can be obtained at the single-nanoparticle level. This technology may be useful for enabling single-nanoparticle studies in non-linear excitation regimes and/or in complex experimental environments, thus enriching the toolbox of nanophotonic methods.

  8. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza


    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  9. Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters. (United States)

    Chen, Lawrence R; Li, Jia; Spasojevic, Mina; Adams, Rhys


    We describe the use of various silicon photonic device technologies to implement microwave photonic filters (MPFs). We demonstrate four-wave mixing in a silicon nanowire waveguide (SNW) to increase the number of taps for MPFs based on finite impulse response filter designs. Using a 12 mm long SNW reduces the footprint by five orders of magnitude compared to silica highly nonlinear fiber while only requiring approximately two times more input power. We also demonstrate optical delays based on serial sidewall Bragg grating arrays and step-chirped sidewall Bragg gratings in silicon waveguides. We obtain up to 63 ps delay in discrete steps from 15 ps to 32 ps over a wide bandwidth range from 33 nm to at least 62 nm. These components can be integrated with other silicon-based components such as integrated spectral shapers and modulators to realize a fully integrated MPF.

  10. Experimental investigation of plasmofluidic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Bonwoo; Kwon, Min-Suk, E-mail: [School of Electrical and Computer Engineering, UNIST, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Shin, Jin-Soo [Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)


    Plasmofluidic waveguides are based on guiding light which is strongly confined in fluid with the assistance of a surface plasmon polariton. To realize plasmofluidic waveguides, metal-insulator-silicon-insulator-metal (MISIM) waveguides, which are hybrid plasmonic waveguides fabricated using standard complementary metal-oxide-semiconductor technology, are employed. The insulator of the MISIM waveguide is removed to form 30-nm-wide channels, and they are filled with fluid. The plasmofluidic waveguide has a subwavelength-scale mode area since its mode is strongly confined in the fluid. The waveguides are experimentally characterized for different fluids. When the refractive index of the fluid is 1.440, the plasmofluidic waveguide with 190-nm-wide silicon has propagation loss of 0.46 dB/μm; the coupling loss between it and an ordinary silicon photonic waveguide is 1.79 dB. The propagation and coupling losses may be reduced if a few fabrication-induced imperfections are removed. The plasmofluidic waveguide may pave the way to a dynamically phase-tunable ultracompact device.

  11. Design, fabrication, and characterisation of fully etched TM grating coupler for photonic integrated system-in-package (United States)

    Gili-de-Villasante, Oriol; Tcheg, Paul; Wang, Bei; Suna, Alpaslan; Giannoulis, Giannis; Lazarou, Ioannis; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos; Baus, Matthias; Karl, Matthias; Tekin, Tolga


    Grating couplers are the best solution for testing nano-photonic circuits. Their main benefit is that they allow access via an optical fiber from the top and therefore there is no need to dice the chip and prepare the facets crucially. In the PLATON project grating couplers were designed to couple TM mode into and out of the SOI waveguides. Simulations came up with a grating coupler layout capable of theoretical coupling losses lower than 3dB for 1550 nm in TM configuration. A fully etched grating structure was chosen for fabrication simplicity and the optimal filling factor was found. The structures were fabricated using proximity error correction (PEC) and show a uniform coupling efficiency for all couplers. Therefore they are well-suited for all applications which demand for stable fiber-to-chip coupling. The spectral response of the structures was measured from 1500 to 1580 nm with 2 nm step and measuring the fiber-tofiber losses of three straight waveguides equipped with three grating couplers with different gap widths. The optimal grating period exhibits adequate coupling losses of 3.23 dB per coupler at 1557 nm, being therefore the most promising design.

  12. Bragg Gratings in GIPOF


    Van Boxel, Roel


    Chapter 1: Optical Fibres 1.1 Optical Communication 1.2 Light 1.3 Refractive Index 1.4 Total Internal Reflection 1.5 Fibre Parameters 1.6 Ray Types 1.7 Mode concept 1.8 Fibre Modes 1.9 Number of Modes 1.10 Mode coupling and Mode conversion 1.11 Attenuation 1.12 Dispersion and Bandwidth 1.13 Types of fibres 1.14 Graded Index Polymer Optical Fibre (GIPOF) 1.15 Summary 1.16 References Chapter 2: Bragg Gratings 2.1 Theory 2.2 Photosensi...

  13. Femtosecond laser writing of optical edge filters in fused silica optical waveguides. (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R


    The positional alignment of femtosecond laser written Bragg grating waveguides within standard and coreless optical fiber has been exploited to vary symmetry and open strong optical coupling to a high density of asymmetric cladding modes. This coupling was further intensified with tight focusing of the laser pulses through an oil-immersion lens to control mode size against an asymmetric refractive index profile. By extending this Bragg grating waveguide writing into bulk fused silica glass, strong coupling to a continuum of radiation-like modes facilitated a significant broadening to over hundreds of nanometers bandwidth that blended into the narrow Bragg resonance to form into a strongly isolating (43 dB) optical edge filter. This Bragg resonance defined exceptionally steep edge slopes of 136 dB/nm and 185 dB/nm for unpolarized and linearly polarized light, respectively, that were tunable through the 1450 nm to 1550 nm telecommunication band.

  14. Wakefield in a waveguide (United States)

    Bliokh, Y. P.; Leopold, J. G.; Shafir, G.; Shlapakovski, A.; Krasik, Ya. E.


    The feasibility of an experiment which is being set up in our plasma laboratory to study the effect of a wakefield formed by an ultra-short (≤10-9 s) high-power (˜1 GW) microwave (10 GHz) pulse propagating in a cylindrical waveguide filled with an under-dense [(2-5) × 1010 cm-3] plasma is modeled theoretically and simulated by a particle in cell code. It is shown that the radial ponderomotive force plays a circular key role in the wakefield formation by the TM mode waveguide. The model and the simulations show that powerful microwave pulses produce a wakefield at lower plasma density and electric field gradients but larger space and time scales compared to the laser produced wakefield in plasmas, thus providing a more accessible platform for the experimental study.

  15. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle


    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...

  16. Picosecond Holographic-Grating Spectroscopy

    NARCIS (Netherlands)

    Duppen, K.


    Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves

  17. Imaging properties of diffraction gratings

    NARCIS (Netherlands)

    Werner, W.


    For almost a century now diffraction gratings are being used as the dispersing element in spectroscopic systems. In the greater majority of cases this grating is of the reflecting type, which (among others) has the advantage that the radiation to be analysed need not pass absorbing material as is

  18. Integration of a curved hybrid waveguide lens and photodetector array in a GaAs waveguide. (United States)

    Vu, T Q; Tsai, C S; Kao, Y C


    For the first time, we believe, the integration of a waveguide lens and a photodetector array in GaAs for operation at a 1.3-microm wavelength is reported. The waveguide lens is a newly devised curved hybrid Fresnel/Bragg chirp grating lens fabricated by the ion-million technique. Desirable performance characteristics, including high throughput efficiency, freedom from coma (up to +/-4 deg off axis), and a near-diffraction-limited focal-spot size, have been demonstrated with this curved hybrid lens. The 10-element photodetector array of the InGaAs photoconducting type shows a measured gain-bandwidth product that is higher than 1 GHz at high frequency, while at a lower frequency the gain is in the range of several thousands. The curved-hybrid-lens-photodetector array combination realized in the GaAs 5 x 13 mm(2) in size has produced a well-resolved element spacing of 10 microm with cross talk that is lower than -14 dB. This lens-photodetector array combination constitutes a basc structure for the realization of monolit ic acousto-optic and electro-optic circuits such as integrated-optic rf spectrum analyzers and multiport switches.

  19. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG


    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  20. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne


    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  1. Broadband Asymmetric Light Transmission at Metal/Dielectric Composite Grating. (United States)

    Zhu, Rui; Wu, Xuannan; Hou, Yidong; Zheng, Gaige; Zhu, Jianhua; Gao, Fuhua


    Optical diode-like effect has sparked growing interest in recent years due to its potential applications in integrated photonic systems. In this paper, we propose and numerically demonstrate a new type of easy-processing metal/dielectric cylinder composite grating on semi-sphere substrate, which can achieve high-contrast asymmetric transmission of unpolarized light for the sum of all diffraction modes in the entire visible region, and effectively guide the diffraction light transmitting out the substrate. The asymmetric light transmission (ALT) ratio is larger than 2 dB in the waveband from 380 nm to 780 nm and the maximum ALT ratio can reach to 13 dB at specified wavelengths. The thorough theoretical research reveals that the proposed metal/dielectric pillar composite grating structure, together with the substrate, can effectively excite localized surface plasmonic resonance (LSPR) effect and waveguide mode (WGM), and enlarge the diffraction difference between forward and backward transmission spaces, including both number of diffraction orders and diffraction efficiency, thus resulting in high-contrast broadband ALT phenomenon. In particular, lowering the symmetry of the grating can achieve polarization-dependent ALT. Such a type of easy-processing ALT device with high performance for both polarized and unpolarized light can be regarded as suitable candidates in practical applications.

  2. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect (United States)

    Teotia, Pradeep Kumar; Kaler, R. S.


    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  3. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming


    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  4. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. (United States)

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian


    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

  5. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms (United States)

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian


    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207

  6. Mapping bound plasmon propagation on a nanoscale stripe waveguide using quantum dots: influence of spacer layer thickness

    Directory of Open Access Journals (Sweden)

    Chamanei S. Perera


    Full Text Available In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.

  7. Loss engineered slow light waveguides. (United States)

    O'Faolain, L; Schulz, S A; Beggs, D M; White, T P; Spasenović, M; Kuipers, L; Morichetti, F; Melloni, A; Mazoyer, S; Hugonin, J P; Lalanne, P; Krauss, T F


    Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints.

  8. Analysis of integrated optical waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.


    An overview of the analysis of integrated optical waveguides is presented. Starting from the Maxwell’s equations, a formulation of the problem for general 3-D structures will be introduced. Then, for longitudinally invariant structures, problem for waveguides with 2-D cross section is presented for

  9. Neutron resonances in planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S. V., E-mail:, E-mail:; Ignatovich, V. K.; Petrenko, A. V. [Joint Institute for Nuclear Research, Neutron Physics Laboratory (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen und Energie (Germany)


    We report on the results of the experimental investigation of the spectral width of neutron resonances in planar waveguides using the time-of-flight method and recording the microbeam emerging from the waveguide end. Experimental data are compared with the results of theoretical calculations.

  10. Design of optical metamaterial waveguide structures (Conference Presentation) (United States)

    Ortega-Moñux, Alejandro; Halir, Robert; Sánchez-Postigo, Alejandro; Soler-Penadés, Jordi; Ctyroký, Jirí; Luque-González, José Manuel; Sarmiento-Merenguel, José Darío.; Wangüemert-Pérez, Juan Gonzalo; Schmid, Jens H.; Xu, Dan-Xia; Janz, Sigfried; Lapointe, Jean; Molina-Fernández, Iñigo; Nedeljkovic, Milos; Mashanovich, Goran Z.; Cheben, Pavel


    Subwavelength gratings (SWGs) are periodic structures with a pitch (Λ) smaller than the wavelength of the propagating wave (λ), so that diffraction effects are suppressed. These structures thus behave as artificial metamaterials where the refractive index and the dispersion profile can be controlled with a proper design of the geometry of the structure. SWG waveguides have found extensive applications in the field of integrated optics, such as efficient fiber-chip couplers, broadband multimode interference (MMI) couplers, polarization beam splitters or evanescent field sensors, among others. From the point of view of nano-fabrication, the subwavelength condition (Λ electromagnetic simulation of Floquet modes, the relevance of substrate leakage losses and the effects of the random jitter, inherent to any fabrication process, on the performance of SWG structures. Finally, we will show the possibilities of the design of SWG structures with two different state-of-the-art applications: i) ultra-broadband MMI beam splitters with an operation bandwidth greater than 300nm for telecom wavelengths and ii) a set of suspended waveguides with SWG lateral cladding for mid-infrared applications, including low loss waveguides, MMI couplers and Mach-Zehnder interferometers.

  11. Reflectively coupled waveguide photodetector for high speed optical interconnection. (United States)

    Hsu, Shih-Hsiang


    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  12. Fabrication of Polymer Optical Fibre (POF) Gratings (United States)

    Luo, Yanhua; Yan, Binbin; Zhang, Qijin; Peng, Gang-Ding; Wen, Jianxiang; Zhang, Jianzhong


    Gratings inscribed in polymer optical fibre (POF) have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings. PMID:28273844

  13. Folded waveguide resonator

    DEFF Research Database (Denmark)


    A waveguide resonator comprising a number of side walls defining a cavity enclosed by said sidewalls defining the cavity; and two or more conductive plates extending into the cavity, each conductive plate having a first side and a second side opposite the first side, and wherein the conductive...... plates are adapted to cause a standing electromagnetic wave to fold around the conductive plates along at least a first and a second direction and to extend on both sides of each of the conductive plates; wherein the conductive plates are adapted to cause the standing electromagnetic wave to fold...

  14. Slow light in narrow-core hollow optical waveguide with low loss and large bandwidth. (United States)

    Kaur, Harpinder; Kumar, Varun; Kumar, Mukesh


    A narrow-core hollow waveguide with low loss is proposed that exhibits slow light characteristics. The slow light is guided in air between the top and bottom mirrors, each based on high-index-contrast gratings. The proposed design shows a low propagation loss of 1.8 dB/cm at a 1-μm-thick narrow air core, and the loss remains low for a broad range of wavelengths from 1200 to 1600 nm. Also, the flat band slow light is realized at a grating period of 0.8 μm in 1-μm-thick narrow air core. Further design analysis reveals a large fabrication tolerance of the proposed hollow structure with respect to the grating period.

  15. Encapsulation process for diffraction gratings. (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana


    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  16. Freeform Phononic Waveguides

    Directory of Open Access Journals (Sweden)

    Georgios Gkantzounis


    Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

  17. Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide. (United States)

    Sakai, Kiyohide; Koyata, Yasuharu; Shimada, Naoyuki; Shibata, Kimitaka; Hanamaki, Yoshihiko; Itakura, Shigetaka; Yagi, Tetsuya; Hirano, Yoshihito


    We developed a new master-oscillator power-amplifier scheme consisting of a tapered semiconductor amplifier and a fiber-grating-stabilized laser diode for efficient green-light generation in a planar MgO:PPLN waveguide, and demonstrated cw green-light generation of 346 mW.

  18. Infants' responsiveness to rivalrous gratings. (United States)

    Kavšek, Michael


    The study investigated the early development of responsiveness to rivalrous gratings. Infants were tested weekly between 6 and 16 weeks of age for their ability to discriminate between interocularly identical (fusible) lines and interocularly orthogonal (unfusible, rivalrous) lines. The stimuli were presented on an autostereoscopic monitor equipped with a face-tracking device. Two psychophysical techniques, the forced-choice preferential looking (FPL) method and measurement of looking times, were employed. Contrary to earlier findings, infants at all ages avoided looking at the rivalrous gratings instead of showing a developmental shift from a relative preference for unfusible, rivalrous gratings to a relative preference for fusible gratings. Avoidance of the rivalrous gratings became significant at 8-9weeks of age, suggesting that infants clearly exhibit binocular rivalry from that age onwards. Control experiments secured that the infants' preference for the fusible gratings was not governed by a natural preference for less over more complex line patterns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The ideal imaging AR waveguide (United States)

    Grey, David J.


    Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.

  20. Optical Waveguide Structures for CO(2) Lasers. (United States)

    Cheo, P K; Berak, J M; Oshinsky, W; Swindal, J L


    Thin-film waveguide structures consisting of epitaxially grown low-carrier-concentration GaAs and having two distinct index profiles have been investigated with a 10.6-microm C0(2) laser. Results of Schottky barrier and Hall measurements show that the carrier concentration of some of these films is less than 10(12) cm(-3), and the resistivity can be as high as 1.4 x 10(5) ?-cm. Guided-wave modes were excited by means of a germanium prism or phase grating coupler. When the index difference Deltan between the undoped film and the substrate is approximately 0.3 (strong guide), a number of modes can be obtained with a typical angular full width at half maximum intensity Delta(theta) (1/2) of coupler with a typical Deltatheta((1/2)) of approximately degrees . Measurements were also made of the transmission and cutoff characteristics of the TE and TM modes in weak guides as a function of the guide thickness that varied between 20 micro and 50 micro Results indicate that optical transmission decreases rapidly as the thickness of the weak guide decreases toward the cutoff value.

  1. Hollow waveguide for urology treatment (United States)

    Jelínková, H.; Němec, M.; Koranda, P.; Pokorný, J.; Kőhler, O.; Drlík, P.; Miyagi, M.; Iwai, K.; Matsuura, Y.


    The aim of our work was the application of the special sealed hollow waveguide system for the urology treatment - In our experimental study we have compared the effects of Ho:YAG (wavelength 2100 nm) and Er:YAG (wavelength 2940 nm) laser radiation both on human urinary stones (or compressed plaster samples which serve as a model) fragmentation and soft ureter tissue incision in vitro. Cyclic Olefin Polymer - coated silver (COP/Ag) hollow glass waveguides with inner and outer diameters 700 and 850 μm, respectively, were used for the experiment. To prevent any liquid to diminish and stop the transmission, the waveguide termination was utilized.

  2. Quantum plasmonic waveguides: Au nanowires (United States)

    Cordaro, C. E. A.; Piccitto, G.; Priolo, F.


    Combining miniaturization and good operating speed is a compelling yet crucial task for our society. Plasmonic waveguides enable the possibility of carrying information at optical operating speed while maintaining the dimension of the device in the nanometer range. Here we present a theoretical study of plasmonic waveguides extending our investigation to structures so small that Quantum Size Effects (QSE) become non-negligible, namely quantum plasmonic waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface Plasmon (SP) resonance energy for an ultra-thin gold nanowire.

  3. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging (United States)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.


    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  4. Fundamentals of optical waveguides

    CERN Document Server

    Okamoto, Katsunari


    Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate opti...

  5. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W


    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  6. Polymer Waveguide Fabrication Techniques (United States)

    Ramey, Delvan A.


    The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.

  7. Magnetic waveguides for neutron reflectometry (United States)

    Khaydukov, Yu.; Petrzhik, A. M.; Borisenko, I. V.; Kalabukhov, A.; Winkler, D.; Keller, T.; Ovsyannikov, G. A.; Keimer, B.


    We show that the sensitivity and depth selectivity of neutron reflectometry can be greatly enhanced through a waveguide design that takes advantage of the spin-dependent magnetic neutron scattering potential to steer spin-up and spin-down neutrons into waveguide modes with different depth profiles. Using a bilayer of manganate and ruthenate ferromagnets, we demonstrate that a magnetic waveguide structure with sharp spin-up and spin-down modes centered in the two different layers can be generated by adding a magnetically inactive capping layer. The resulting reflectometric data allow accurate and reliable determination of a small in-plane magnetization in the ruthenate layer, despite its immediate proximity to the manganate layer with much larger magnetization. Magnetic neutron waveguides thus enable depth-sensitive measurements of small electronic spin polarizations in a large variety of magnetic multilayers and devices.

  8. Analysis of integrated optical waveguides


    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.


    An overview of the analysis of integrated optical waveguides is presented. Starting from the Maxwell’s equations, a formulation of the problem for general 3-D structures will be introduced. Then, for longitudinally invariant structures, problem for waveguides with 2-D cross section is presented for vectorial, semivectorial, and scalar formulations. Simpler 1-D case for planar structure will then be discussed in more detail. A novel scheme developed for the analysis of planar structures is giv...

  9. Distributed grating-assisted coupler for optical all-dielectric electron accelerator

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang


    Full Text Available A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field cannot be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side coupling, selective mode excitation, and high coupling efficiency. We present a side-coupling scheme using a distributed grating-assisted coupler to inject the laser power into the waveguide. Side coupling is achieved by a grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile matching between the outgoing beam and the incoming beam, which has normally a Gaussian profile. We demonstrate a nonuniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  10. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap


    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  11. Scattering loss of antiresonant reflecting optical waveguides


    Baba, Toshihiko; Kokubun, Yasuo


    Scattering loss of two-dimensional ARROW-type waveguides, i.e., antiresonant reflecting optical waveguide (ARROW) and ARROW-B, is analyzed by the first-order perturbation theory. Calculated results are compared with those of conventional three-layer waveguides. Optimum design for the reduction of scattering loss of these ARROW-type waveguides is discussed. It was found that the scattering loss of ARROW-type waveguides is no larger than that of a conventional waveguide having a relative refrac...

  12. Etched silicon gratings for NGST

    Energy Technology Data Exchange (ETDEWEB)

    Ge, J.; Ciarlo, D.; Kuzmenko, P.; Macintosh, B.; Alcock, C.; Cook, K.


    The authors have developed the world's first etched silicon grisms at LLNL in September 1999. The high optical surface quality of the grisms allows diffraction-limited spectral resolution in the IR wavelengths where silicon has good transmission. They estimated that the scattering light level is less than 4% at 2.2 {micro}m. Silicon can significantly increase the dispersive power of spectroscopic instruments for NGST due to its very large refractive index (n = 3.4). For example, a silicon grism with 40 mm clear entrance aperture and a 46 wedge angle can provide R = 10,000--100,000 in {approximately} 1--10 {micro}m. The same grating working in the immersed reflection mode can provide {approximately} three times higher spectral resolution than in the transmission mode. To achieve a desired spectral resolution for NGST, the spectrograph size and weight can be significantly reduced if silicon gratings are used instead of conventional gratings.

  13. Integrated high-order surface diffraction gratings for diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A; Slipchenko, S O; Sokolova, Z N; Lubyanskiy, Ya V; Voronkova, N V; Tarasov, I S [Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)


    High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry of the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss. (lasers)

  14. Engineered plasmon focusing on functional gratings

    NARCIS (Netherlands)

    Offerhaus, Herman L.; van den Bergen, B; van Hulst, N.F.


    We report on the engineering of plasmon propagation and focusing by dedicated curved gratings and noncollinear phasematching. Gratings were created on gold by focused ion beam milling and plasmons were measured using phase sensitive PSTM.

  15. High Efficiency Low Scatter Echelle Grating Project (United States)

    National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...

  16. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren


    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  17. Tunable grating with active feedback (United States)

    Rosset, Samuel; O'Brien, Benjamin M.; Gisby, Todd; Xu, Daniel; Shea, Herbert R.; Anderson, Iain A.


    We report on the use of capacitive self-sensing to operate a DEA-based tunable grating in closed-loop mode. Due to their large strain capabilities, DEAs are key candidates for tunable optics applications. However, the viscoelasticity of elastomers is detrimental for applications that require long-term stability, such as tunable gratings and lenses. We show that capacitive sensing of the electrode strain can be used to suppress the strain drift and increase the response speed of silicone-based actuators. On the other hand, VHB actuators exhibit a time-dependent permittivity, which causes a drift between the device capacitance and its strain.

  18. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo


    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  19. Surface plasmons on zig-zag gratings. (United States)

    Constant, Thomas J; Taphouse, Tim S; Rance, Helen J; Kitson, Stephen C; Hibbins, Alastair P; Sambles, J Roy


    Optical excitation of surface plasmons polaritons (SPPs) on a 'zig-zag diffraction grating' is explored. The fabricated silver grating consists of sub-wavelength grooves 'zig-zagged' along their length, providing a diffractive periodicity to visible radiation. SPPs propagating in the diffraction plane and scattered by an odd number of grating vectors are only excited by TE polarized radiation, whereas for TM polarized light, which also induces surface charge, SPP excitation is forbidden by the grating's broken-mirror symmetry.

  20. Improved Slow Light Capacity In Graphene-based Waveguide. (United States)

    Hao, Ran; Peng, Xi-Liang; Li, Er-Ping; Xu, Yang; Jin, Jia-Min; Zhang, Xian-Min; Chen, Hong-Sheng


    We have systematically investigated the wideband slow light in two-dimensional material graphene, revealing that graphene exhibits much larger slow light capability than other materials. The slow light performances including material dispersion, bandwidth, dynamic control ability, delay-bandwidth product, propagation loss, and group-velocity dispersion are studied, proving graphene exhibits significant advantages in these performances. A large delay-bandwidth product has been obtained in a simple yet functional grating waveguide with slow down factor c/v(g) at 163 and slow light bandwidth Δω at 94.4 nm centered at 10.38 μm, which is several orders of magnitude larger than previous results. Physical explanation of the enhanced slow light in graphene is given. Our results indicate graphene is an excellent platform for slow light applications, promoting various future slow light devices based on graphene.

  1. A Waveguide Platform for Collective Light-Atom Interaction

    DEFF Research Database (Denmark)

    Sørensen, Heidi Lundgaard

    In this work a tapered optical fiber is studied as a waveguide platform for efficient collective light-atom interaction. We present an allcomputer controlled heat-and-pull setup with which a standard optical fiber can reproducible be tapered down to sub-micron waist size. The resulting fiber shape...... is compared against a prediction derived from a numerical model build upon an easy experimental calibration of the viscosity profile within the heater. Very good agreement between the modeled and measured fiber shape is found. We next study the coherent back-scattering off atoms confined as two one......-dimensional strings in the evanescent field of a tapered optical fiber. By applying a near-resonant standing wave field, the atoms are arranged into a periodic Bragg structure in close analogy to a photo-refractive medium with a refractive index grating. We observe more than 10% power reflection off about 1000...

  2. "Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire

    Directory of Open Access Journals (Sweden)

    G. Kraftmakher


    Full Text Available Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is suggested a concept of magnetic response based on antiparallel resonant currents excited by magnetic field of surface polaritons in many spatial LC-circuits created from cut-wire pairs of a grating and section of longitudinal cut-wire. Three separately observed resonant effects connected with grating, LC-circuits and with longitudinal cut-wire have been identified applying measurements in waveguides, cutoff waveguides and free space. To tune and mark resonance split cut-wires are loaded with varactor diodes.

  3. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques (United States)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  4. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide (United States)

    Vawter, G Allen [Corrales, NM


    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  5. Empirical model for the waveguiding properties of directly UV written waveguides

    DEFF Research Database (Denmark)

    Leick, Lasse; Harpøth, Anders; Svalgaard, Mikael


    We present an empirical model for the waveguiding properties of directly UV-written planar waveguides in silica-on-silicon. The waveguides are described by a rectangular core step-index profile, in which model parameters are found by comparison of the measured waveguide width and effective index...

  6. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug


    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  7. Holographic Gratings for Slow-Neutron Optics (United States)

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin


    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  8. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.; Fritz, I. J.; Howard, A. J.; Vawter, G. A.; Wendt, J. R.; Corless, R


    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way to construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.

  9. Design of an Angle Detector for Laser Beams Based on Grating Coupling

    Directory of Open Access Journals (Sweden)

    Weidong Zhou


    Full Text Available A novel angle detector for laser beams is designed in this paper. It takes advantage of grating coupling to couple the incident light into a slab waveguide; and, the incident light’s angle can be determined by reading the outputs of light detectors within the waveguide. This device offers fast-responding on-chip detection of laser beam’s angle. Compared to techniques based on quadrant photodiodes or lateral effect photodiodes, the device in this paper has far greater detectable range (up to a few degrees, to be specific. Performance of the laser angle detector in this paper is demonstrated by finite-difference-time-domain simulations. Numerical results show that, the detectable angle range can be adjusted by several design parameters and can reach [−4°, 4°]. The laser beam angle detector in this paper is expected to find various applications such as ultra-fast optical interconnects.

  10. Miniaturized Waveguide Fourier Transform Spectrometer Project (United States)

    National Aeronautics and Space Administration — To characterize the IR optical properties of the metal-coated hollow waveguide ensemble; configure the Hollow Waveguide FTS (HWFTS) chip in such a way that we...

  11. Integrated waveguide amplifiers for optical backplanes

    NARCIS (Netherlands)

    Yang, J.; Lamprecht, T.; Worhoff, Kerstin; Driessen, A.; Horst, F.; Horst, F.; Offrein, B.J.; Offrein, B.J.; Ay, F.; Pollnau, Markus

    Amplifier performance of Nd3+-doped polymer and Al2O3 channel waveguides at 880 nm is investigated. Tapered amplifiers are embedded between optical backplane waveguides, and a maximum 0.21 dB net gain is demonstrated.

  12. High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. (United States)

    Sun, Xu; Dai, Daoxin; Thylén, Lars; Wosinski, Lech


    A Mach-Zehnder Interferometer (MZI) liquid sensor, employing ultra-compact double-slot hybrid plasmonic (DSHP) waveguide as active sensing arm, is developed. Numerical results show that extremely large optical confinement factor of the tested analytes (as high as 88%) can be obtained by DSHP waveguide with optimized geometrical parameters, which is larger than both, conventional SOI waveguides and plasmonic slot waveguides with same widths. As for MZI sensor with 40μm long DSHP active sensing area, the sensitivity can reach as high value as 1061nm/RIU (refractive index unit). The total loss, excluding the coupling loss of the grating coupler, is around 4.5dB.

  13. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  14. Bending loss of terahertz pipe waveguides. (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang


    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  15. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays (United States)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.


    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  16. Investigation of semiconductor clad optical waveguides (United States)

    Batchman, T. E.; Carson, R. F.


    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  17. Numerical analysis of Bragg regime polarization gratings by rigorous coupled-wave analysis (United States)

    Xiang, Xiao; Escuti, Michael J.


    We report on the numerical analysis of Bragg polarization gratings (PGs), especially those formed with liquid crystals, and study their general diffraction properties by Rigorous Coupled-Wave Analysis (RCWA). Different from traditional Bragg (isotropic) gratings, Bragg PGs are verified to have high diffraction efficiency for large field of view, which is ideal for exit-pupil-expanders in waveguide-based head-mounted-displays, spectroscopy, and fiber-optic telecommunication systems. The RCWA approach allows for a rigorous and accurate solution without paraxial approximations to be obtained with much lower computational cost and time, as compared to finite-element, finite-difference, or analytical coupled-wave approaches. Therefore, it enables the study of the complete transmittance and reflectance behavior of Bragg PGs in the most computationally efficient way. Diffraction characteristics including angular response and polarization sensitivity are investigated. The spectral response and thickness dependence are also examined.

  18. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan


    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a slow light.

  19. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim


    and a finite-difference-time-domain (FDTD) method. Design parameters, i.e. dielectric constants, rod diameter and waveguide width, where these waveguides are single-moded and multi-moded will be given. We will also show our recent results regarding the energy-flow (the Poynting vector) in these waveguides...

  20. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.


    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure...

  1. Compact Imaging Spectrometer Utilizing Immersed Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)


    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  2. Optical nano-structuring in light-sensitive AgCl-Ag waveguide thin films: wavelength effect. (United States)

    Talebi, Razieh; Nahal, Arashmid; Bashouti, Muhammad Y; Christiansen, Silke H


    Irradiation of photosensitive thin films results in the nanostructures formation in the interaction area. Here, we investigate how the formation of nanostructures in photosensitive waveguide AgCl thin films, doped by Ag nanoparticles, can be customized by tuning the wavelength of the incident beam. We found, silver nanoparticles are pushed towards the interference pattern minima created by the interference of the incident beam with the excited TEn-modes of the AgCl-Ag waveguide. The interference pattern determines the grating constant of the resulting spontaneous periodic nanostructures. Also, our studies indicate a strong dependence of the shape and size distribution of the formed Ag nano-coalescences on the wavelength of the incident beam. It also influences on the surface coverage of the sample by the formed silver nanoparticles and on period of the self-organized nano-gratings. It is found, exposure time and intensity of the incident light are the most determinant parameters for the quality and finesse of our nanostructures. More intense incident light with shorter exposure time generates more regular nanostructures with smaller nano-coalescences and, produces gratings with higher diffraction efficiency. At constant intensity longer exposure time produces more complete nanostructures because of optical positive feedback. We observed exposure with longer wavelength produces finer gratings.

  3. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)


    The invention relates to vertical cavity lasers (VCL) incorporating a reflectivity-modulated grating mirror (1) for modulating the laser output. A cavity is formed by a bottom mirror (4), an active region (3), and an outcoupling top grating mirror (1) formed by a periodic refractive index grating...... region in a layer structure comprising a p- and a n-doped semiconductor layer with an electrooptic material layer (12) arranged there between. The grating region comprises a grating structure formed by periodic perforations to change the refractive index periodically in directions normal...... to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...

  4. Curved VPH gratings for novel spectrographs (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.


    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  5. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei


    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  6. Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter. (United States)

    Huang, C Y; Lin, C H; Chen, Y H; Huang, Y C


    We report the first experimental demonstration of electrically controlled Solc-type optical wavelength filters and TE-TM mode converters based on Ti-diffused periodically poled lithium niobate (Ti:PPLN) waveguides. A maximum mode conversion efficiency or a peak spectral transmittance of ~99% in the telecom C-L bands was obtained from a 9-mm long, 21.5-21.8-mum multiple-grating Ti:PPLN waveguide device with a switching voltage of as low as 22 V or 0.99 Vxd(mum)/L(cm), where d is the electrode separation and L is the electrode length. The spectral range of this device can be tuned by temperature at a rate of ~0.758 nm/ degrees C.

  7. On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Z.; Radko, I. P.; Mazurski, N.


    We report a novel approach for on-chip electrical detection of the radiation guided by dielectric-loaded surface plasmon polariton waveguides (DLSPPW) and DLSPPW-based components. The detection is realized by fabricating DLSPPW components on the surface of a gold (Au) pad supported by a silicon (Si......) substrate supplied with aluminum pads facilitating electrical connections, with the gold pad being perforated in a specific location below the DLSPPWs in order to allow a portion of the DLSPPW-guided radiation to leak into the Si-substrate, where it is absorbed and electrically detected. We present two......-dimensional photocurrent maps obtained when the laser beam is scanning across the gold pad containing the fabricated DLSPPW components that are excited via grating couplers located at the DLSPPW tapered terminations. By comparing photocurrent signals obtained when scanning over a DLSPPW straight waveguide with those...

  8. Compact on-Chip Temperature Sensors Based on Dielectric-Loaded Plasmonic Waveguide-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Sergey I. Bozhevolnyi


    Full Text Available The application of a waveguide-ring resonator based on dielectric-loaded surface plasmon-polariton waveguides as a temperature sensor is demonstrated in this paper and the influence of temperature change to the transmission through the waveguide-ring resonator system is comprehensively analyzed. The results show that the roundtrip phase change in the ring resonator due to the temperature change is the major reason for the transmission variation. The performance of the temperature sensor is also discussed and it is shown that for a waveguide-ring resonator with the resonator radius around 5 mm and waveguide-ring gap of 500 nm which gives a footprint around 140 µm2, the temperature sensitivity at the order of 10−2 K can be achieved with the input power of 100 mW within the measurement sensitivity limit of a practical optical detector.

  9. Polymeric slot waveguide for photonics sensing (United States)

    Chovan, J.; Uherek, F.


    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  10. Quantum waveguides with corners

    Directory of Open Access Journals (Sweden)

    Raymond Nicolas


    Full Text Available The simplest modeling of planar quantum waveguides is the Dirichlet eigenproblem for the Laplace operator in unbounded open sets which are uniformly thin in one direction. Here we consider V-shaped guides. Their spectral properties depend essentially on a sole parameter, the opening of the V. The free energy band is a semi-infinite interval bounded from below. As soon as the V is not flat, there are bound states below the free energy band. There are a finite number of them, depending on the opening. This number tends to infinity as the opening tends to 0 (sharply bent V. In this situation, the eigenfunctions concentrate and become self-similar. In contrast, when the opening gets large (almost flat V, the eigenfunctions spread and enjoy a different self-similar structure. We explain all these facts and illustrate them by numerical simulations. La modélisation la plus simple des guides d’ondes quantiques plans est le problème aux valeurs propres pour le laplacien dans des ouverts non bornés qui sont fins dans une direction. Ici nous considérons des guides en forme de V. Leurs propriétés spectrales dépendent essentiellement d’un seul paramètre, l’ouverture du V. La bande d’énergie libre est un intervalle semi-infini borné inférieurement. Dès que le V n’est pas plat, il existe des états liés sous la bande d’énergie libre. Ils sont en nombre fini, fonction de l’ouverture. Ce nombre tend vers l’infini quand l’ouverture tend vers 0 (V très refermé. Dans cette situation, les fonctions propres se concentrent et deviennent auto-similaires. À l’opposé, quand l’ouverture est grande (V très aplati, les fonctions propres s’étalent et jouissent d’une autre structure auto-similaire. Nous expliquons tous ces résultats et les illustrons par des expériences numériques.

  11. High Efficiency Germanium Immersion Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V


    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  12. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin


    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  13. Glass Waveguides for Periodic Poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin


    Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....

  14. Fixational saccades during grating detection and discrimination. (United States)

    Spotorno, Sara; Masson, Guillaume S; Montagnini, Anna


    We investigated the patterns of fixational saccades in human observers performing two classical perceptual tasks: grating detection and discrimination. First, participants were asked to detect a vertical or tilted grating with one of three spatial frequencies and one of four luminance contrast levels. In the second experiment, participants had to discriminate the spatial frequency of two supra-threshold gratings. The gratings were always embedded in additive, high- or low-contrast pink noise. We observed that the patterns of fixational saccades were highly idiosyncratic among participants. Moreover, during the grating detection task, the amplitude and the number of saccades were inversely correlated with stimulus visibility. We did not find a systematic relationship between saccade parameters and grating frequency, apart from a slight decrease of saccade amplitude during grating discrimination with higher spatial frequencies. No consistent changes in the number and amplitude of fixational saccades with performance accuracy were reported. Surprisingly, during grating detection, saccade number and amplitude were similar in grating-with-noise and noise-only displays. Grating orientation did not affect substantially saccade direction in either task. The results challenge the idea that, when analyzing low-level spatial properties of visual stimuli, fixational saccades can be adapted in order to extract task-relevant information optimally. Rather, saccadic patterns seem to be overall modulated by task context, stimulus visibility and individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu


    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  16. Temperature tunable optical gratings in nematic elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sungur, Emel; Mager, Loic; Boeglin, Alex; Dorkenoo, Kokou D. [IPCMS-CNRS UMR 7504, 23 rue du Loess, BP 43, Strasbourg Cedex 2 (France); Li, Min-Hui; Keller, Patrick [Institut Curie, CNRS 168, Paris Cedex 5 (France)


    We have investigated the behaviour of temperature dependent periodic-index gratings fabricated in a nematic elastomer. The gratings have been obtained by photopolymerisation under a microscopy apparatus. Contraction properties, as well as diffraction properties, have been studied as a function of temperature. Unidirectional contraction has been demonstrated by means of circular figure deformation and the polarisation dependency of the diffraction by the gratings has been determined. (orig.)

  17. Electromagnetic Scattering at the Waveguide Step between Equilateral Triangular Waveguides

    Directory of Open Access Journals (Sweden)

    Ana Morán-López


    Full Text Available The analysis of the electromagnetic scattering at discontinuities between equilateral triangular waveguides is studied. The complete electromagnetic solution is derived using analytical closed form expressions for the mode spectrum of the equilateral waveguide. The mathematical formulation of the electromagnetic scattering problem is based on the quasi-analytical Mode-Matching method. This method benefits from the electromagnetic field division into symmetries as well as from the plane wave formulation presented for the expressions involved. The unification of the surface integrals used in the method thanks to the plane wave formulation is revealed, leading to expressions that are very well suited for its implementation in an electromagnetic analysis and design code. The obtained results for some cases of interest (building blocks for microwave components for communication systems are verified using other numerical methods included in a commercial software package, showing the potential of the presented approach based on quasi-analytic expressions.

  18. Performance Enhancement of Optical CDMA by Differential-Phase Method for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng


    Full Text Available The study proposes the differential-phase optical code-division multiple-access (OCDMA network for radio-over-fiber (RoF transmissions, and the characteristics are numerically analyzed. The network coder/decoders (codecs are structured on the basis of arrayed-waveguide-grating (AWG routers with complementary Walsh-Hadamard (CWH signature codes. In the proposed system, the network requires only two AWG routers to accomplish spectral encoding of radio base station (RBS and decoding of control station for the complementary keying, thus resulting in a simpler and low cost system. Performance analyses are evaluated with the dominant noise of phase-induced intensity noise (PIIN in spectral code OCDMA network. By the proposed AWG-based OCDMA with the differential-phase scheme, it is possible to establish interference-free and low crosstalk beat noise RoF systems.

  19. Design Procedure for Compact Folded Waveguide Filters

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    -dimensional full-wave electromagnetic simulations. The proposed structure and the fabricated folded waveguide filter are shown in Fig. 1. A network analyzer (HP8720D) was used to test the fabricated folded waveguide filter. The measurement results are shown in Fig. 2 in comparison with the simulation results......Waveguide filters are widely used in communication systems due to low losses and high power handling capabilities. One drawback of the conventional waveguide filters is their large size, especially for low-frequency and high-order realizations. It has been shown that the footprint of conventional...... waveguide resonators can be reduced to one quarter by folding the electric and magnetic fields inside the cavity (J. S. Hong, Microwave Symposium Digest, 2004, Vol. 1, pp. 213-216). This paper presents a novel systematic procedure for designing compact low-loss bandpass filters by using folded waveguide...

  20. Large bandwidth, highly efficient optical gratings through high index materials

    NARCIS (Netherlands)

    Rathgen, H.; Offerhaus, Herman L.


    We analyze the diffraction characteristics of dielectric gratings that feature a high index grating layer, and devise, through rigorous numeri-cal calculations, large bandwidth, highly efficient, high dispersion dielectric gratings in reflection, transmission, and immersed transmission geometry. A

  1. Extraction film for optical waveguide and method of producing same

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric J.; Durkee, John W.


    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  2. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  3. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter


    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  4. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.


    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractiv...... has the advantage of deeper penetration of the evanescent electromagnetic field into the cover medium, theoretically permitting higher sensitivity to analytes compared to traditional waveguide designs. We present calculated sensitivities and probing depths of conventional and reverse...

  5. Fabrication Of Fiber-Optic Waveguide Coupler (United States)

    Goss, Willis; Nelson, Mark D.; Mclauchlan, John M.


    Technique for making four-port, single-mode fiber-optic waveguide couplers requires no critically-precise fabrication operations or open-loop processes. Waveguide couplers analogous to beam-splitter prisms. Essential in many applications that require coherent separation or combination of two waves; for example, for interferometric purposes. Components of optical waveguide coupler held by paraffin on microscope slide while remaining cladding of two optical fibers fused together by arc welding.


    DEFF Research Database (Denmark)


    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...... region. The invention also relates to optical devices comprising planar optical waveguides and methods of making waveguides and optical devices....

  7. Fiber Bragg Grating Based Thermometry

    CERN Document Server

    Ahmed, Zeeshan; Guthrie, William; Quintavalle, John


    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined measurement uncertainty is dominated by uncertainty in determining the peak center fitting and by thermal aging of polyimide coated fibers.

  8. Waveguide structures in anisotropic nonlinear crystals (United States)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.


    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  9. Improved optical planar waveguides for lasers Project (United States)

    National Aeronautics and Space Administration — Demonstrate efficacy of a novel growth technique for planar waveguides (PWG) Enable PWG laser technology with improved performance, efficiency and manufacturability....

  10. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr


    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  11. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.


    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  12. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen


    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  13. Overview on grating developments at ESA (United States)

    Guldimann, B.; Deep, A.; Vink, R.; Harnisch, B.; Kraft, S.; Sierk, B.; Bazalgette, G.; Bézy, J.-L.


    In the frame of recent studies and missions, ESA has been performing various pre-developments of optical gratings for instruments operating at wavelengths from the UV up to the SWIR. The instrument requirements of Sentinel-4, Sentinel-5, CarbonSat and FLEX are driving the need for advanced designs and technologies leading to gratings with high efficiency, high spectral resolution, low stray light and low polarization sensitivities. Typical ESA instruments (e.g. Sciamachy, GOME, MERIS, OLCI, NIRSpec) were and are based on ruled gratings or gratings manufactured with one holographic photoresist mask layer which is transferred to an optical substrate (e.g. glass, glass ceramic) with dry etching methods and subsequently either coated with a reflective coating or used as a mold for replication. These manufacturing methods lead to blazed grating profiles with a metallic reflective surface. The vast majority of spectrometers on ground are still based on such gratings. In general, gratings based on grooved metallic surfaces tend for instance to polarize the incoming light significantly and are therefore not always suitable for ESA's needs of today. Gratings made for space therefore evolved to many other designs and concepts which will be reported in this paper.

  14. New generation DWDM fibre grating devices


    Zervas, M.N.


    Using a recently developed inverse scattering layer-peeling algorithm and a modified stroboscopic grating writing technique, we have designed and successfully demonstrated novel grating devices, such as 50GHz-bandwidth dispersion compensators and square dispersionless filters, suitable for future high performance DWDM optical systems.

  15. Diffractive Optics of Anisotropic Polarization Gratings

    NARCIS (Netherlands)

    Xu, M.


    Diffraction gratings are being used to manipulate light in many different applications, such as in flat panel display systems, modern lighting systems, and optical recording. Diffraction gratings can be made polarization selective due to form birefringence. An alternative approach to polarization

  16. High order Bragg grating microfluidic dye laser

    DEFF Research Database (Denmark)

    Balslev, Søren; Kristensen, Anders


    We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates.......We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates....

  17. Practical microstructured and plasmonic terahertz waveguides (United States)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated

  18. Compact imaging spectrometer utilizing immersed gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)


    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  19. Chirped polymer optical fiber Bragg grating sensors (United States)

    Marques, Carlos A. F.; Pereira, L.; Antunes, P.; Mergo, P.; Webb, D. J.; Pinto, J. L.; André, P.


    We report chirped fiber Bragg gratings (CFBGs) photo-inscribed in undoped PMMA polymer optical fibre (POF) for the first time. The chirped polymer optical fiber Bragg gratings (CPOFBGs) were inscribed using an UV KrF excimer laser operating at 248 nm. The rectangular gauss laser beam was expanded to 25 mm in horizontal direction along the fiber core by a cylindrical lens, giving a total of 25 mm grating length. A 25 mm long chirped phase mask chosen for 1550 nm grating inscription was used. The laser frequency was 1 Hz with an energy of 5 mJ per exposure, exposing few pulses for each grating inscription. The reflection amplitude spectrum evolution of a CPOFBG is investigated as a function of the applied strain and temperature. Also, some results regarding to group delay are collected and discussed. These results pave the way to further developments in different fields, where POFs could present some advantages preferably replacing their silica counterparts.

  20. Flat dielectric grating reflectors with focusing abilities (United States)

    Fattal, David; Li, Jingjing; Peng, Zhen; Fiorentino, Marco; Beausoleil, Raymond G.


    Sub-wavelength dielectric gratings have emerged recently as a promising alternative to distributed Bragg reflection dielectric stacks for broadband, high-reflectivity filtering applications. Such a grating structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as 30 or 40 dielectric distributed Bragg reflection layers, while providing new functionalities such as polarization control and near-field amplification. In this Letter, we introduce an interesting property of grating mirrors that cannot be realized by their distributed Bragg reflection counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings allows the creation of miniature planar focusing elements that could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.

  1. Superluminal space-to-time mapping in grating-assisted co-directional couplers. (United States)

    Ashrafi, Reza; Li, Ming; LaRochelle, Sophie; Azaña, José


    A superluminal space-to-time mapping process is reported and numerically validated in grating-assisted (GA) co-directional couplers, e.g. fiber/waveguide long-period gratings (LPGs). We demonstrate that under weak-coupling conditions, the amplitude and phase of the grating complex apodization profile of a GA co-directional coupling device can be directly mapped into the device's temporal impulse response. In contrast to GA counter-directional couplers, this mapping occurs with a space-to-time scaling factor that is much higher than the propagation speed of light in vacuum. This phenomenon opens up a promising new avenue to overcome the fundamental time-resolution limitations of present in-fiber and on-chip optical waveform generation (shaping) and processing devices, which are intrinsically limited by the achievable spatial resolution of fabrication technologies. We numerically demonstrate the straightforward application of the phenomenon for synthesizing customized femtosecond-regime complex optical waveforms using readily feasible fiber LPG designs, e.g. with sub-centimeter resolutions.

  2. Bandwidth tunable guided-mode resonance filter using contact coupled gratings at oblique incidence (United States)

    Sang, Tian; Wang, Yueke; Li, Junlang; Zhou, Jianyu; Jiang, Wenwen; Wang, Jicheng; Chen, Guoqing


    A novel bandwidth tunable guided-mode resonance filter (GMRF) is proposed based on the contact coupled gratings (CCGs) with the absentee layers at oblique incidence. The design principle of the CCGs with double absentee layers is presented. The lateral shift of the CCGs changes the magnetic field distributions of the waveguide mode in the grating cavity and the surface-confined mode at the cover/grating interface thus facilitates the dynamic control of both the spectral and angular bandwidth of the GMRF. The resonance locations are almost immune to the variation of the lateral shift of the CCGs. The sideband level of the GMRF is almost unaffected by the lateral shift due to the Brewster AR effect. The resonance peak red-shifts quasi-linearly as the incident angle is increased, and the resonance wavelength can be selected by merely tuning the incident angle. The tunable ranges of both the spectral and angular bandwidth can be significantly enhanced by increasing the refractive-index contrast. Low-sideband reflection with controllable bandwidth at 650 nm is designed to demonstrate this concept.

  3. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...

  4. Waveguide couplers for ferroelectric optical resonators


    Grudinin, Ivan S.; Kozhanov, A.; Yu, N.


    We report a study of using the same material to fabricate a whispering gallery mode resonator and a coupler. Coupling to high Q whispering gallery modes of the lithium niobate resonator is demonstrated by means of the titanium-doped waveguide. The waveguide coupling approach opens possibilities for simpler and wider practical usage of whispering gallery mode resonators and their integration into optical devices.

  5. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole


    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  6. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger


    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  7. Antenna arrays: waveguide layout designing automation


    Anamova, R. R.


    Waveguide layout designing automation in the large-sized phased antenna arrays is studied. A new methodology of the automation and algorithms based on the flexible connection routing method are suggested. Results are realized in the software module WDS (Waveguide Design Solution) based on SolidWorks system. This module gives an opportunity to decrease design and engineering time and costs.

  8. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Youwen; Oldenbeuving, Ruud; Klein, E.J.; Lee, Christopher James; Song, H.; Khan, M.R.H.; Offerhaus, Herman L.; van der Slot, Petrus J.M.; Boller, Klaus J.; Mackenzie, J.I.; Jelinkova, H.; Taira, T.; Ahmed, M.A.


    abstract .We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 μm wavelength range. The Si3N4/SiO2 glass waveguide circuit

  9. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Van der Slot, P.J.M.; Boller, K.J.


    We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 µm wavelength range. The Si3N4/SiO2 glass waveguide circuit comprises two

  10. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver


    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  11. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei


    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission is h...

  12. Sapphire and other dielectric waveguide devices

    NARCIS (Netherlands)

    Pollnau, Markus


    Different fabrication methods have been explored successfully and surface and buried channel waveguide lasers have been demonstrated in Ti:sapphire for the first time. Since the propagation losses of these first-generation waveguides are still rather high, substantial improvement is required in

  13. Infrared nanoantenna couplers for plasmonic slot waveguide

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    A slot plasmonic waveguide is promising solution as a replacement of electrical interconnects in the future optical integrated circuits. In this contribution we consider a set of compact solutions for coupling the infrared light from free space to the plasmonic slot waveguide. We systematically...

  14. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc


    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  15. Low cost and high performance GPON, GEPON and RFoG optical network pentaplexer module design using diffractive grating approach (United States)

    Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen


    A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.

  16. VEP vernier, VEP grating, and behavioral grating acuity in patients with cortical visual impairment. (United States)

    Watson, Tonya; Orel-Bixler, Deborah; Haegerstrom-Portnoy, Gunilla


    Cortical visual impairment (CVI) is a leading cause of bilateral vision impairment. Because many patients with CVI cannot perform an optotype test, their acuity is often measured with a grating stimulus using a preferential looking (PL) test or the visual-evoked potential (VEP) recording. The purpose of this study is to determine the relationship among VEP vernier acuity, VEP grating acuity, and behavioral grating acuity in patients with CVI. Sweep VEP vernier acuity, sweep VEP grating acuity, and behavioral grating acuity (measured with PL cards) were measured in 29 patients with CVI. The patients ranged in age from 3.2 to 22.7 years (mean: 12.3; SD: 5.3). Because the measures of vernier acuity and grating acuity have different units, the results were expressed as the log deficit (with normal being 30 cycles per degrees and 0.5 arc min, respectively). VEP grating acuity loss and VEP vernier acuity loss were significantly related (r = 0.70) with a slope of 1.31, indicating that indicating that on average, vernier acuity showed a 0.2 log unit deficit compared with VEP grating acuity. Behavioral grating acuity loss and VEP grating acuity loss were also significantly related (r = 0.64) with a slope of 1.55, indicating that behavioral acuity was more reduced (by approximately 0.3 log unit). VEP vernier acuity loss and behavioral grating acuity loss were significantly related (r = 0.66) with a slope of 0.85, indicating that behavioral acuity and VEP vernier acuity showed a similar magnitude of reduction. A Bland-Altman comparison between the VEP vernier acuity method and the behavioral acuity method showed a flat slope (0.30), indicating that the two measures produce similar visual acuity measures across the range of acuity levels. In patients with CVI, VEP vernier acuity showed greater deficits than VEP grating acuity and was more similar to the behavioral measures of grating acuity.

  17. Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide (United States)

    Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.

    Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).

  18. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    Light can propagate much slower in photonic crystal waveguides and plasmonic waveguides than in vacuum. Slow light propagation in waveguides shows broad prospects in the terabit communication systems. However, it causes severe signal distortions and displays large propagation loss. Moreover......, an optimization formulation is presented to tailor the slope of the dispersion curve. The design robustness is enforced by considering different manufacturing realizations in the optimization procedure. Both free- and fixed-topology (circular-hole based) slow light photonic crystal waveguides are obtained using...... two different parameterizations. Detailed comparisons show that the bandwidth of slow light propagation can be significantly enhanced by allowing irregular geometries in the waveguides. To mitigate the propagation loss due to scattering in the photonic crystal waveg- uides, an optimization problem...

  19. Hybrid grapheme plasmonic waveguide modulators (United States)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.


    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  20. Photonic waveguides theory and applications

    CERN Document Server

    Boudrioua, Azzedine


    This book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th

  1. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov


    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  2. Optical Fiber Grating Hydrogen Sensors: A Review. (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong


    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  3. Speed enhancement in VCSELs employing grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    In recent years, various approaches to improve the speed of directly modulated vertical-cavity surface-emitting lasers (VCSELs) have been reported and demonstrated good improvement. In this paper, we propose and numerically investigate a new possibility of using high-index-contrast grating (HCG......) as mirror for VCSELs. By changing the grating design, one can control the reflection delay of the grating mirror, enabling the control of cavity photon lifetime. On the other hand, short energy penetration depth of the HCG results in smaller modal volume, compared to DBR VCSELs. An example structure shows...... that the HCG VCSEL has a 30-% higher 3-dB bandwidth than the DBR VCSEL....

  4. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    Energy Technology Data Exchange (ETDEWEB)

    Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M. [Plasma Physics Department, Applied Physics Division, Soreq NRC, Yavne (Israel); Strum, G. [Solid State Department, Applied Physics Division, Soreq NRC, Yavne (Israel)


    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  5. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben


    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  6. Waveguiding Light into Silicon Oxycarbide

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed Memon


    Full Text Available In this work, we demonstrate the fabrication of single mode optical waveguides in silicon oxycarbide (SiOC with a high refractive index n = 1.578 on silica (SiO2, exhibiting an index contrast of Δn = 8.2%. Silicon oxycarbide layers were deposited by reactive RF magnetron sputtering of a SiC target in a controlled process of argon and oxygen gases. The optical properties of SiOC film were measured with spectroscopic ellipsometry in the near-infrared range and the acquired refractive indices of the film exhibit anisotropy on the order of 10−2. The structure of the SiOC films is investigated with atomic force microscopy (AFM and scanning electron microscopy (SEM. The channel waveguides in SiOC are buried in SiO2 (n = 1.444 and defined with UV photolithography and reactive ion etching techniques. Propagation losses of about 4 dB/cm for both TE and TM polarizations at telecommunication wavelength 1550 nm are estimated with cut-back technique. Results indicate the potential of silicon oxycarbide for guided wave applications.

  7. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.


    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  8. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)


    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  9. Metamaterial Waveguide Devices for Integrated Optics (United States)

    Kanazawa, Toru; Yamasaki, Satoshi; Arai, Shigehisa


    We show the feasibility of controlling the magnetic permeability of optical semiconductor devices on InP-based photonic integration platforms. We have achieved the permeability control of GaInAsP/InP semiconductor waveguides by combining the waveguide with a metamaterial consisting of gate-controlled split ring resonators. The split-ring resonators interact magnetically with light travelling in the waveguide and move the effective relative permeability of the waveguide away from 1 at optical frequencies. The variation in permeability can be controlled with the gate voltage. Using this variable-permeability waveguide, we have built an optical modulator consisting of a GaInAsP/InP Mach–Zehnder interferometer for use at an optical communication wavelength of 1.55 μm. The device changes the permeability of its waveguide arm with controlling gate voltage, thereby varying the refractive index of the arm to modulate the intensity of light. For the study of variable-permeability waveguide devices, we also propose a method of extracting separately the permittivity and permeability values of devices from the experimental data of light transmission. Adjusting the permeability of optical semiconductors to the needs of device designers will open the promising field of ‘permeability engineering’. Permeability engineering will facilitate the manipulation of light and the management of photons, thereby contributing to the development of novel devices with sophisticated functions for photonic integration. PMID:28872621

  10. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, Steven A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, Cezary [Argonne National Lab. (ANL), Argonne, IL (United States)


    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  11. Optical planar waveguide for cell counting (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.


    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  12. Suppression of crosstalk in coupled plasmonic waveguides

    CERN Document Server

    Kuznetsov, E V; Zyablovsky, A A; Vinogradov, A P; Lisyansky, A A


    We demonstrate the suppression of crosstalk between two dielectric nanowaveguides by placing an auxiliary linear waveguide between loaded waveguides spaced by one wavelength. The total cross-sectional dimension of the system containing two transmission lines is less than two microns that is hundred times smaller than a cross-section of a system made of dielectric fiber. The propagating modes in these waveguides are the sum and the difference of symmetric and antisymmetric modes of the coupled system. Crosstalk is suppressed by matching the wavenumbers of these modes. The analytically obtained results are confirmed by numerical simulation.

  13. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger


    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  14. Broadband amps sport coplanar waveguide (United States)

    Browne, Jack


    The design techniques, manufacturing methods and the performance envelope of VMA 110 bandwidth amplifiers are described. The devices are produced with a combination of coplanar waveguide, slotline and twinstrip media and result in gain ripples of 0.35 dB per 10 dB of gain. The ground plane is placed above the circuit board to allow access without drilling, thereby making the amplifiers suitable for use with surface-mount components, Si MMICs and GaAs MMICs. Well-controlled electromagnetic fields permit clustering functions with no fear of electrical interaction between different circuits. The devices are designed, optimized and artwork is formatted on a personal computer using CAD programs.

  15. Waveguides having patterned, flattened modes

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.


    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  16. Photon correlations in multimode waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Poem, Eilon; Silberberg, Yaron [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)


    We consider the propagation of classical and nonclassical light in multimode optical waveguides. We focus on the evolution of the few-photon correlation functions, which, much as the light-intensity distribution in such systems, evolve in a periodic manner, culminating in the ''revival'' of the initial correlation pattern at the end of each period. It is found that when the input state possesses nontrivial symmetries, the correlation revival period can be longer than that of the intensity, and thus the same intensity pattern can display different correlation patterns. We experimentally demonstrate this effect for classical, pseudothermal light, and compare the results with the predictions for nonclassical, quantum light.

  17. Low-index discontinuity terahertz waveguides

    National Research Council Canada - National Science Library

    Michael Nagel; Astrid Marchewka; Heinrich Kurz


    ... of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions...

  18. Differential interference in a polymer waveguide

    National Research Council Canada - National Science Library

    Gut, K


    The paper presents the results of investigations concerning the measurement of the refractive index and the thickness of planar waveguide structures, obtained by photo polymerization of the polymer SU8...

  19. Holographic Waveguided See-Through Display Project (United States)

    National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...

  20. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu


    We report on experimental realization of different metal-insulator geometries that are used as plasmonic waveguides guiding electromagnetic radiation along metal-dielectric interfaces via excitation of surface plasmon polaritons (SPPs). Three configurations are considered: metal strips, symmetric...

  1. Optical waveguides in hard crystalline materials

    NARCIS (Netherlands)

    Pollnau, Markus


    The recent results of our research group and collaborators in the field of fabrication, characterization, and applications of optical waveguides in hard crystalline materials, specifically in sapphire and Ti:sapphire, are reviewed.

  2. Laser written waveguide photonic quantum circuits

    National Research Council Canada - National Science Library

    Graham D. Marshall; Alberto Politi; Jonathan C. F. Matthews; Peter Dekker; Martin Ams; Michael J. Withford; Jeremy L. O'Brien


    We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices...

  3. Quantum random walks circuits with photonic waveguides

    NARCIS (Netherlands)

    Peruzzo, Alberto; Matthews, Jonathan; Politi, Alberto; Lobino, Mirko; Zhou, Xiao-Qi; Thompson, Mark G.; O'Brien, Jeremy; Matsuda, Nobuyuki; Ismail, N.; Worhoff, Kerstin; Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron


    Arrays of 21 evanescently coupled waveguides are fabricated to implement quantum random walks and a generalised form of two-photon non-classical interference, which observed via two photon correlation.

  4. High index contrast UV-written waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Færch, Kjartan Ullitz

    By increasing the concentration of molecular hydrogen in germanosilica samples, we show that buried channel waveguides with an index step of up to 0.02 can be fabricated using the directUV writing technique....

  5. Direct UV-writing of waveguides

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz


    The research presented in this phd thesis is concerned about fabrication of waveguide structures in photosensitized germanosilica thin films by exposure to Ultra-violet (UV) radiation. Using a high pressure loading system and a waveguide fabrication setup, planar waveguiding structures with an UV...... induced refractive index change of more than 10-2 have been obtained. New insight, with respect to understanding the UV induced index change obtained by direct UV writing, has been provided, through experiments conducted with such high-pressure loaded germanosilica samples. This include measurements...... of the UV induced refractive index change, and spectroscopic measurements of the defect distribution, for various fabrication parameters. A method to measure the concentration of molecular hydrogen in thin film planar waveguide samples is established and validated for hydrogen loadign at up to 12 mole...

  6. Fluorescence Spectroscopy with Metal-Dielectric Waveguides. (United States)

    Badugu, Ramachandram; Szmacinski, Henryk; Ray, Krishanu; Descrovi, Emiliano; Ricciardi, Serena; Zhang, Douguo; Chen, Junxue; Huo, Yiping; Lakowicz, Joseph R


    We describe a hybrid metal-dielectric waveguide structures (MDWs) with numerous potential applications in the biosciences. These structures consist of a thin metal film coated with a dielectric layer. Depending on the thickness of the dielectric layer, the modes can be localized near the metal, within the dielectric, or at the top surface of the dielectric. The optical modes in a metal-dielectric waveguide can have either S (TE) or P (TM) polarization. The dielectric spacer avoids the quenching, which usually occurs for fluorophores within about 5 nm from the metal. Additionally, the resonances display a sharp angular dependence and can exhibit several hundred-fold increases in intensity (E2) at the silica-air interface relative to the incident intensity. Fluorophores placed on top of the silica layer couple efficiently with the metal, resulting in a sharp angular distribution of emission through the metal and down from the bottom of the structure. This coupling occurs over large distances to several hundred nm away from the metal and was found to be consistent with simulations of the reflectivity of the metal-dielectric waveguides. Remarkably, for some silica thicknesses, the emission is almost completely coupled through the structure with little free-space emission away from the metal-dielectric waveguide. The efficiency of fluorophore coupling is related to the quality of the resonant modes sustained by the metal-dielectric waveguide, resulting in coupling of most of the emission through the metal into the underlying glass substrates. Metal-dielectric waveguides also provide a method to resolve the emission from surface-bound fluorophores from the bulk-phase fluorophores. Metal-dielectric waveguides are simple to fabricate for large surface areas, the resonance wavelength can be adjusted by the dielectric thickness, and the silica surface is suitable for coupling to biomolecules. Metal-dielectric waveguides can have numerous applications in diagnostics and high

  7. Application of exterior calculus to waveguides


    Ferraro, Rafael


    Exterior calculus is a powerful tool to search for solutions to the electromagnetic field equations, whose strength can be better appreciated when applied to work out non-trivial configurations. Here we show how to exploit this machinery to obtain the electromagnetic TM and TE modes in hollow cylindrical waveguides. The proper use of exterior calculus and Lorentz boosts will straightforwardly lead to such solutions and the respective power transmitted along the waveguide.

  8. Thermotherapeutic waveguide applicator for cancer treatment (United States)

    Cvek, Jakub; Vrba, Jan


    Thermotherapy is one of the standard methods of the complex cancer treatment. In many studies, the improvement in local tumor control and free life survival has been shown. Goal of this project was realization of Evanescent Mode Waveguide applicator and its comparison with Waveguide Applicator, which is clinically used. The optimization of the Evanescent Mode Applicator has been studied with aid of numerical methods (FDTD).

  9. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  10. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  11. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.


    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  12. A novel single-order diffraction grating: Random position rectangle grating (United States)

    Zuhua, Yang; Qiangqiang, Zhang; Jing, Wang; Quanping, Fan; Yuwei, Liu; Lai, Wei; Leifeng, Cao


    Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy to fabricate, traditional diffraction grating suffers from multi-order diffraction contamination. On the other hand, sinusoidal amplitude grating has the nonharmonic diffraction property, but it is too difficult to fabricate, especially for x-ray application. A novel nonharmonic diffraction grating named random position rectangle grating (RPRG) is proposed in this paper. Theoretical analysis and experiment results show that the RPRG is both higher order diffraction suppressing and not difficult to fabricate. Additionally, it is highly efficient; its first order absolute theoretical diffraction efficiency reaches 4.1%. Our result shows that RPRG is a novel tool for radiation diagnosis and monochromation. Project supported by the National Natural Science Foundation of China (Grant No. 11375160) and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).

  13. Optical waveguide device with an adiabatically-varying width

    Energy Technology Data Exchange (ETDEWEB)

    Watts,; Michael R. (Albuquerque, NM), Nielson; Gregory, N [Albuquerque, NM


    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  14. Hybrid grating reflector with high reflectivity and broad bandwidth

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Park, Gyeong Cheol; Mørk, Jesper


    We suggest a new type of grating reflector denoted hybrid grating (HG) which shows large reflectivity in a broad wavelength range and has a structure suitable for realizing a vertical cavity laser with ultra-small modal volume. The properties of the grating reflector are investigated numerically...... and explained. The HG consists of an un-patterned III-V layer and a Si grating. The III-V layer has a thickness comparable to the grating layer, introduces more guided mode resonances and significantly increases the bandwidth of the reflector compared to the well-known high-index-contrast grating (HCG...

  15. Hyperspectral grating optimization and manufacturing considerations (United States)

    Ziph-Schatzberg, Leah; Swartz, Barry; Warren, Chris; Santman, Jeff; Saleh, Mohammad; Wiggins, Richard; Crifasi, Joe; Comstock, Lovell; Taylor, Kevan


    Hyperspectral imaging systems are finding broader applications in both the commercial and aerospace markets. It is becoming clear that to optimize the performance of these systems, their instrument transfer function needs to be tailored for each application. Vis-SWIR systems in the full 400nm to 2500nm waveband present particular design and manufacturing challenges. A single blazed grating is inadequate for a system operating in the full vis-SWIR wavelength range. In addition, optical materials and broad band coatings present a challenge for non-reflective systems. An understanding of the application and wavelengths of interest, combined with a judicious choice of a focal plane array, can then lead to an optimized system for the specific application. The ability to tailor the grating and manufacture a wide variety of grating profiles and substrate shapes becomes a significant performance enabler. This paper will discuss how the use of optical, coating, and grating design/analysis software, combined with grating manufacturing techniques assure meeting high performance requirements for different applications.

  16. Scanning for piecewise holographic grating generation (United States)

    Miler, Miroslav; Kostka, František; Dvořák, Martin


    Holographic gratings that are recorded as a whole in a single exposition are limited in size because of the available power of suitable laser sources and nonlinear response of and/or reciprocity effects in a recording medium. A sequential-illumination technique can help in this case. This technique relies on piecewise grating recording that consists in scanning with a relatively narrow laser beam, a pencil, across the grating surface employing an appropriate optical set up. The contribution describes a method utilizing a small parallel displacement of the laser pencil by turning a plane-parallel plate, which is then transferred to a larger angular deflection by a short focus lens. Simultaneously, the beam is expanded angularly. This all can take place either before light enters the beam-splitter or along paths of both the interfering beams. In this way, uniform diffraction efficiency gratings that are much larger than the cross-section of the beam can be achieved. The laser pencil can be moved in polar or rectangular coordinates. Recording of larger gratings supposes large precise collimating mirrors. If they are not available e.g. due to their high price, they can be replaced by long propagating homocentric beams with their origins in the same distance from the recording plate.

  17. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. (United States)

    Ferrara, James; Yang, Weijian; Zhu, Li; Qiao, Pengfei; Chang-Hasnain, Connie J


    We report an electrically pumped hybrid cavity AlGaInAs-silicon long-wavelength VCSEL using a high contrast grating (HCG) reflector on a silicon-on-insulator (SOI) substrate. The VCSEL operates at silicon transparent wavelengths ~1.57 μm with >1 mW CW power outcoupled from the semiconductor DBR, and single-mode operation up to 65 °C. The thermal resistance of our device is measured to be 1.46 K/mW. We demonstrate >2.5 GHz 3-dB direct modulation bandwidth, and show error-free transmission over 2.5 km single mode fiber under 5 Gb/s direct modulation. We show a theoretical design of SOI-HCG serving both as a VCSEL reflector as well as waveguide coupler for an in-plane SOI waveguide, facilitating integration of VCSEL with in-plane silicon photonic circuits. The novel HCG-VCSEL design, which employs scalable flip-chip eutectic bonding, may enable low cost light sources for integrated optical links.

  18. Optically tunable chirped fiber Bragg grating. (United States)

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji


    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  19. Diffusion of solid fuelon a vibrating grate

    DEFF Research Database (Denmark)

    Sabelström, Hanna Katarina

    of vibrations can be incorporated into a numerical model. The chosen model approach has been to separate the gas and solid phases into two independent models related to each other through the bed porosity. By treating the bed as a porous media and using Ergun's equation for the gas flow, the numerical work...... is simplified and the computational time shortened. The vibrations are affecting the transport and mixing of the fuel and incorporated into the model through the diffusion coefficient in the conservation equation of the solid phase. Experimental work has been carried out with the aim to study the behaviour...... of wood pellets on a vibrating grate and deriving the diffusion coefficient to be used in the numerical model. Three different grate designs are used and the particle trajectories have been captured by a camera placed above the grate. The diffusion coefficient is defined as the deviation from the mean...

  20. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong


    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  1. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. (United States)

    Frandsen, Lars H; Elesin, Yuriy; Frellsen, Louise F; Mitrovic, Miranda; Ding, Yunhong; Sigmund, Ole; Yvind, Kresten


    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ~6.3 μm × ~3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is utilized and both schemes result in designs theoretically showing an extinction ratio larger than 21 dB. The 3D optimized design has an experimentally estimated insertion loss lower than ~2 dB in an ~43 nm bandwidth. The mode conversion is experimentally confirmed in this wavelength range by recording mode profiles using vertical grating couplers and an infrared camera. The experimentally determined extinction ratio is > 12 dB and is believed to be limited by the spatial resolution of our setup.

  2. Recording multiple holographic gratings in silver-doped ...

    Indian Academy of Sciences (India)

    -wave transmission gratings were stored in the same location of silver-doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using ...

  3. Interferometric fiber Bragg grating shift demodulation (United States)

    Stepien, Karol; Jóźwik, Michalina; Nasilowski, Tomasz


    In this paper we present a fiber Bragg grating shift demodulator with changeable resolution based on an unbalanced fiber Mach-Zehnder interferometer. Preliminary research proves phase sensitivity to Bragg wavelength changes of 6,83 rad/mɛ. Phase sensitivity can be modified by changing the optical path difference witch is only limited by the coherence length of light reflected by the fiber Bragg grating. This solution can be used as a single sensor or as a part of a more complex system.

  4. Silicon immersion gratings and their spectroscopic applications (United States)

    Ge, Jian; Zhao, Bo; Powell, Scott; Fletcher, Adam; Wan, Xiaoke; Chang, Liang; Jakeman, Hali; Koukis, Dimitrios; Tanner, David B.; Ebbets, Dennis; Weinberg, Jonathan; Lipscy, Sarah; Nyquist, Rich; Bally, John


    Silicon immersion gratings (SIGs) offer several advantages over the commercial echelle gratings for high resolution infrared (IR) spectroscopy: 3.4 times the gain in dispersion or ~10 times the reduction in the instrument volume, a multiplex gain for a large continuous wavelength coverage and low cost. We present results from lab characterization of a large format SIG of astronomical observation quality. This SIG, with a 54.74 degree blaze angle (R1.4), 16.1 l/mm groove density, and 50x86 mm2 grating area, was developed for high resolution IR spectroscopy (R~70,000) in the near IR (1.1-2.5 μm). Its entrance surface was coated with a single layer of silicon nitride antireflection (AR) coating and its grating surface was coated with a thin layer of gold to increase its throughput at 1.1-2.5 μm. The lab measurements have shown that the SIG delivered a spectral resolution of R=114,000 at 1.55 μm with a lab testing spectrograph with a 20 mm diameter pupil. The measured peak grating efficiency is 72% at 1.55 μm, which is consistent with the measurements in the optical wavelengths from the grating surface at the air side. This SIG is being implemented in a new generation cryogenic IR spectrograph, called the Florida IR Silicon immersion grating spectrometer (FIRST), to offer broad-band high resolution IR spectroscopy with R=72,000 at 1.4-1.8 um under a typical seeing condition in a single exposure with a 2kx2k H2RG IR array at the robotically controlled Tennessee State University 2-meter Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona. FIRST is designed to provide high precision Doppler measurements (~4 m/s) for the identification and characterization of extrasolar planets, especially rocky planets in habitable zones, orbiting low mass M dwarf stars. It will also be used for other high resolution IR spectroscopic observations of such as young stars, brown dwarfs, magnetic fields, star formation and interstellar mediums. An optimally designed

  5. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.


    Modern scatterometry problems arising in the lithography production of periodic gratings are in the focus of the work. The performance capabilities of a novel theoretical and numerical modeling oriented to these problems are considered. The approach is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state and transient processes of the resonant scattering of electromagnetic waves by the infinite and compact periodic structures. © 2012 IEEE.

  6. Demonstration of three-port grating phase relations


    Bunkowski, A.; Burmeister, O.; Danzmann, K.; Schnabel, R.; Clausnitzer, T; Kley, E.; Tünnermann, A.


    We experimentally demonstrate the phase relations of three-port gratings by investigating three-port coupled Fabry-Perot cavities. Two different gratings that have the same first-order diffraction efficiency but differ substantially in their second-order diffraction efficiency have been designed and manufactured. Using the gratings as couplers to Fabry-Perot cavities, we could validate the results of an earlier theoretical description of the phases at a three-port grating [Opt. Lett. 30, 1183...

  7. Transmission grating stretcher for contrast enhancement of high power lasers. (United States)

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P


    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  8. Laser-induced transient grating setup with continuously tunable period

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Flick, A. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico (Mexico); Eliason, J. K.; Maznev, A. A.; Nelson, K. A., E-mail: [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Khanolkar, A.; Abi Ghanem, M.; Boechler, N. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Alvarado-Gil, J. J. [Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico (Mexico)


    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  9. Adaptive coupling approach for single mode VCSELs with polymer waveguides

    NARCIS (Netherlands)

    Bosman, E.; Elmogi, A.; Wiegersma, S.; Berg, H. van den; Ortsiefer, M.; Daly, A.; Duis, J.; Steenberge, G. van


    A novel coupling approach for single mode VCSELs and planar optical waveguides is presented. The coupling is based on the embedding of the VCSELs inside the substrate and the adaptive fabrication of waveguides on top.

  10. Ultrafast optical signal generation and processing based on fiber long period gratings (United States)

    Ashrafi, Reza; Li, Ming; Azaña, José


    Optical signal generation and processing are becoming increasingly important for a wide range of scientific and engineering applications, including high-speed optical telecommunications, optical computing circuits, optical biomedical imaging, advanced sensors and material/device characterization techniques. Optical approaches offer the possibility to overcome the severe speed limitations of present electronic circuits, which are practically limited to generation/processing speeds below a few tens of GHz. All-optical circuits would easily enable generation/processing speeds covering frequency bandwidths from 10s of GHz to several THz. As for conventional waveform generation/processing circuits in electronics, fundamental devices in the optical domain, such as basic processing functions and customized waveform generation schemes need to be realized and developed. Among all-optical implementation approaches, all-fiber technologies, e.g. fiber long period grating (LPG) and Bragg grating (BG), are attractive due to their simplicity, potential for low cost and full compatibility with fiber-optics and integrated-waveguide systems. The spatial resolution limitation of presently available fiber grating fabrication technologies has limited the fiber-based waveform generation/processing schemes to temporal resolutions of at least several picoseconds, i.e. corresponding to a few 100s of GHz in terms of the bandwidth of waveform generation/processing. In this work, we present our recent research results demonstrating that arbitrary optical waveforms with bandwidths well in the THz regime can be generated/processed using fiber LPG device. The proposed LPG solutions enable one to synthesize/process optical waveforms with temporal resolutions down to the femtosecond range, i.e. far faster operation bandwidths than conventional BG-based optical waveform generation/processing schemes.

  11. Slow light via a tapered grating: transfer matrix approach

    NARCIS (Netherlands)

    Valkering, T.P.


    Reflection properties of a nonuniform apodized Bragg grating connecting a homogeneous medium with a (half-infinite) uniform grating are investigated for system parameters such that the group velocity in the uniform grating is low. In particular a smooth polynomial transition of the index profile to

  12. 21 CFR 133.147 - Grated American cheese food. (United States)


    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is...

  13. Design and development of long-period grating sensors for ...

    Indian Academy of Sciences (India)

    Abstract. Long Period Gratings (LPGs) have been developed using carbon diox- ide laser in a standard optical fibre. LPGs with a periodicity of 600 μm and grating length of 24 mm have been inscribed on standard single mode fibre. Such gratings have been used in designing temperature sensors and temperature is ...

  14. On the use of slow light for enhancing waveguide properties

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Torben Roland


    On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry...... of the waveguide. A combination of material and waveguide dispersion may strongly enhance the control of light speed, e.g., using electromagnetically induced transparency in quantum dots embedded in a photonic crystal waveguide....

  15. THz parallel-plate waveguides with resonant cavities

    DEFF Research Database (Denmark)

    Reichel, Kimberly S.; Astley, Victoria; Iwaszczuk, Krzysztof


    We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA.......We characterize the terahertz resonance due to a cavity inside aparallel-plate waveguide, and discuss its use for refractive index sensing. Insidethe waveguide, we observe a broadband field enhancement associated with thisnarrowband resonance. © 2015 OSA....

  16. Optical micromanipulation of freestanding microstructures with embedded waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton


    Optically micromanipulated waveguides can be arbitrarily positioned and oriented for targeted light delivery. At the same time, controlled light deflection in designed waveguides can be exploited to exert optical forces for new optical micromanipulation modalities.......Optically micromanipulated waveguides can be arbitrarily positioned and oriented for targeted light delivery. At the same time, controlled light deflection in designed waveguides can be exploited to exert optical forces for new optical micromanipulation modalities....

  17. Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings. (United States)

    Romero, Louis A; Dickey, Fred M


    We give an analytical basis for the theory of optimal beam splitting by one-dimensional gratings. In particular, we use methods from the calculus of variations to derive analytical expressions for the optimal phase function.

  18. Microminiature optical waveguide structure and method for fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Strand, O.T.; Deri, R.J.; Pocha, M.D.


    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  19. Microminiature optical waveguide structure and method for fabrication (United States)

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.


    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  20. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper


    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n......(g) for the combined system is significantly enhanced relative to slow light based on purely material or waveguide dispersion....

  1. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi


    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any......, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated. (C) 2015 Optical Society of America...

  2. Designing large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Søndergaard, Thomas


    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...

  3. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.


    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  4. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    the proposed plasmonic transmission gratings via near-field optical scanning microscopy (NSOM) and goniometric far field measurements. We support the evidence of our analyses with numerical calculations, carried out via rigorous coupled wave analysis (RCWA) and finite-difference in time-domain (FDTD...

  5. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.


    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration...

  6. Etched multimode fiber Bragg gratings based refractometer (United States)

    Tiwari, Umesh; Kaushik, Siddharth


    A Multimode Fiber Bragg Gratings for refractive index sensing has been demonstrated experimentally. The fabrication of Bragg gratings in the Standard step-index multimode fiber with a core diameter of 50 μm and a numerical aperture of 0.20 is carried out by phase mask method. The period of the phase mask is 1064 nm. The etching of cladding portion of grating region (2 cm) is carried out by Hydrofluoric acid (48%) for 15 minutes. The etching process causes reduction of cladding diameter by 55 μm which further enhances the interaction of light propagating in core mode with higher cladding modes. Solutions of varied concentrations of glycerol were prepared having corresponding refractive index. Shift in wavelength in the reflection peak of high-order mode L1 is observed when glycerol solution is passed over the cladding surface of grating region. The proposed sensor with 1-pm resolution was successfully employed for sensing of different glycerol solutions. The sensitivity of proposed sensor is 15000 pm/RIU and it can be used as potential sensing platform for bio-chemical applications.

  7. Undergraduate Experiment with Fractal Diffraction Gratings (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.


    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  8. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)


    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  9. Fiber Bragg Grating Filter High Temperature Sensors (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)


    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  10. 21 CFR 133.146 - Grated cheeses. (United States)


    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated cheeses. 133.146 Section 133.146 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... 101 and 130 of this chapter, except that: (1) Enzymes of animal, plant, or microbial origin may be...

  11. Waveguide BEC Interferometry with Painted Potentials (United States)

    Boshier, Malcolm; Lebedev, Vyacheslav; Samson, Carlo; Ryu, Changhyun


    Waveguide atom interferometers offer the possibility of long measurement times in a compact geometry, which can be an advantage over free space interferometers if the dephasing due to interatomic interactions can be controlled. We are investigating waveguide BEC interferometers created with the painted potential, a technique which allows for the creation and manipulation of BECs in arbitrary 2D potentials. The goal is to measure a linear acceleration of the device. The painted potential allows new approaches to the initial splitting of the BEC. For example, instead of smoothly deforming a single well potential into a double well, it is possible instead to gradually remove a weak link coupling two initially separated waveguides. This strategy should reduce excitations created in the splitting process. We are currently implementing such schemes and measuring the coherence time of the BEC after division. We will present the results of these measurements, and report progress towards measuring linear accelerations. Supported by LANL/LDRD.

  12. Quantum interference between transverse spatial waveguide modes. (United States)

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal


    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  13. Full color waveguide liquid crystal display. (United States)

    Zhou, Xiaochen; Qin, Guangkui; Wang, Long; Chen, Zhuo; Xu, Xiaoguang; Dong, Youmei; Moheghi, Alireza; Yang, Deng-Ke


    We developed a waveguide liquid crystal display from a liquid crystal (LC)/polymer composite. It does not need polarizers or color filters. It is illuminated by color LEDs installed on its edge. The light produced by the edge LEDs is coupled into the display and then waveguided through the display. When the LC is in the transparent state, the incident light is waveguided through and no light comes out of the viewing side of the display. When the LC is in the scattering state, the incident light is scattered and comes out of the display. It can be used either for transparent display or for direct view display. The composite has a submillisecond response time, and a field sequential scheme can be used to display full color images. Because the display does not need polarizers or color filters, its energy efficiency is much higher than current liquid crystal displays.

  14. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei


    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  15. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong...... and self-defocusing Kerr effect so that the soliton is created and the soliton self-compression happens in the normal dispersion region. Meanwhile, the chromatic dispersion in the waveguide is also tunable, understood as the dispersion engineering with structural designs. Therefore, compared to commonly......-focusing Kerr effects when under the self-defocusing regime. On the other hand, CQSC in quadratic waveguides seems highly complementary to that in quadratic bulk crystals. With bulk crystals dealing with high-energy, low-repetition-rate and large-beam-size pulses, quadratic waveguides could operate low...

  16. Reconfigurable origami-inspired acoustic waveguides. (United States)

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia


    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  17. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei


    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  18. Optical polyimides for single-mode waveguides (United States)

    Beuhler, Allyson J.; Wargowski, David A.; Kowalczyk, Tony C.; Singer, Kenneth D.


    The synthesis and optical characterization of fluorinated polyimide systems with potential use in passive waveguides and electro-optic devices is reported. The effect of fluorination on optical properties such as refractive index, birefringence, and near-infrared absorbance is reviewed in terms of optical performance requirements. Synthetic methods of tuning the refractive index in order to achieve appropriate core/cladding differentials is discussed. The relation between processing parameters and refractive index for several polyimide structures also is reported. We describe the microlithographic fabrication of a multilayer polyimide rib- type waveguide that is suitable for single mode guiding. The waveguide is fabricated using photosensitive polyimide systems via negative resist imaging. A comparison of wall profiles and resolution limits afforded by the wet-chemical patterning techniques is presented. Results on channel guide coupling, propagation, and loss are described, as well as progress in producing active guides.

  19. Lithium niobate integrated photonic crystal and waveguides (United States)

    Lim, Soon Thor; Ang, Thomas Y.-L.; Png, Ching Eng; Deng, Jun; Danner, Aaron J.


    In this work we successfully fabricated and measured PhCs patterned on a LiNbO3 APE waveguide. SIMS data indicate that after 5 hours exchange time a PE layer of 3μm can be obtained. The depth of holes was 2μm by applying a large milling current. We presented experimental characterization of the PhC waveguide and a well-defined PBG was observed from the transmission spectra. An extinction ratio was estimated to be approximately 15dB. Optical transmission results indicate that deep air holes can lead to a sharp band edge. This PhC waveguide is a good candidate for further development of an ultra-compact, low-voltage LiNbO3 modulator.

  20. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu


    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  1. Fiber-bragg grating-loop ringdown method and apparatus (United States)

    Wang, Chuji [Starkville, MS


    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  2. Metrology measurements for large-aperture VPH gratings (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen


    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  3. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd


    . With such waveguides we demonstrate that it is possible to perform quantitative spectroscopy on very small volumes of sample material inside the PPWG. Using continuous-wave as well as femtosecond excitation we inject carriers into semiconductor material in the transparent PPWG, and perform static as well as transient...... spectroscopy of the optically injected charges. Ongoing work in our laboratory investigates the lower limits to the amount of sample material required for quantitative spectroscopy. Whereas sensing of extremely small quantities of material is possible with resonant and thus narrow-band THz waveguide techniques...

  4. "Unmanned” optical micromanipulation using waveguide microstructures

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson


    that could be microfabricated, the study of how optical forces behave in such structures become useful in the emerging field of optofludics. Recently, we have shown how optically maneuverable tapered waveguide microstructures can augment beam shaping experiments by delivering strongly focused light...... be shaped more arbitrarily, engineered light deflection could lead to more control in the resulting motion. We demonstrated this principle with the autonomous translation of bent waveguides though pre-defined light tracks. In our experiment, incoming light makes a near 90 degree turn, hence the resulting...

  5. Laser written waveguide photonic quantum circuits. (United States)

    Marshall, Graham D; Politi, Alberto; Matthews, Jonathan C F; Dekker, Peter; Ams, Martin; Withford, Michael J; O'Brien, Jeremy L


    We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices. We have characterized directional couplers--the key functional elements of photonic quantum circuits--and found that they perform as well as lithographically produced waveguide devices. We further demonstrate high-performance interferometers and an important multi-photon quantum interference phenomenon for the first time in integrated optics. This direct-write approach will enable the rapid development of sophisticated quantum optical circuits and their scaling into three-dimensions.

  6. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien


    Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas....... The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than...

  7. Physically correct theoretical prism waveguide coupler model. (United States)

    Liu, Tao; Samuels, Robert J


    We develop new generalized four-wave-model-based waveguide mode equations for both isotropic and anisotropic systems by taking into account the influence of the incident light. These new mode equations eliminate the inherent deficiency in the conventional waveguide model, in which the action of incident light was neglected. Further, a peak-value-search (PVS) numerical method is developed to solve the four-wave-model-based mode equations. The PVS method has significant advantages in that accurate refractive index and thickness can be obtained without prior knowledge of the thickness of the air gap.

  8. Nanoparticle sorting in silicon waveguide arrays (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.


    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  9. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.


    Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...... as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct...

  10. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    of this Thesis we discuss a novel type of photonic crystal waveguide and show its applications for on-chip quantum information processing. This structure was designed for the ecient mapping of two orthogonal circular dipole transitions to dierent propagation paths of the emitted photon, i.e. exhibits chiral...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  11. Performance characteristics of continuously grated multicore sensor fiber (United States)

    Westbrook, Paul S.; Kremp, Tristan; Feder, Kenneth S.; Ko, Wing; Monberg, Eric M.; Wu, Hongchao; Simoff, Debra A.; Shenk, Scott; Ortiz, Roy M.


    We describe the fabrication and performance of a continuously grated twisted multicore fiber sensor array. The grated fiber sensor comprises nearly continuous Bragg gratings along its entire length. The gratings are inscribed over lengths in excess of 10m in fibers with UV transparent coating using a flexible and scalable reel to reel processing system. The arrays are tested using optical frequency domain reflectometry (OFDR). We report on automated analysis routines applied to these OFDR measurements that allow for characterization of 100s of individual grating exposures that make up a continuously grated fiber length. We also report on the spectral loss of the continuously grated fiber, showing that it is suitable for applications with sensors in excess of 100m. Finally, we report on the fiber sensing characteristics by performing measurements of fiber bend using a fiber shape reconstruction algorithm on OFDR traces obtained from four of the fiber cores.

  12. Optimization of optical losses in waveguide component manufacturing (United States)

    Swatowski, Brandon W.; Hyer, Maynard G.; Shepherd, Debra A.; Weidner, W. Ken; Degroot, Jon V.


    We report on the development and optimization of key performance properties of multimode silicone polymer waveguides, manufactured for 850 nm optical propagation. These developments are based on photopatternable, mechanically flexible, low-loss, gradient index waveguides. Cross sectional waveguide core sizes ranging from 40 μm x 50 μm to greater than 60 μm x 60 μm are assessed with optical analysis of component losses such as crossings and coupling between OM4 fiber and waveguide. Assessments of these values, led to optimization of waveguide size and lower total optical system losses. Methods of manufacture, preparation, and analysis are discussed in detail along with performance results.

  13. Efficient yellow-green light generation at 561 nm by frequency-doubling of a QD-FBG laser diode in a PPLN waveguide. (United States)

    Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U


    A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.

  14. Integrated graphene waveguide modulators based on low-loss plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui


    Graphene based electro-absorption modulators involving dielectric optical waveguides have been recently explored, suffering however from weak graphene-light interaction. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening...... graphene-light interactions. I present novel integrated graphene plasmonic waveguide modulator showing high modulation depth and low insertion loss, thus giving a promising way to miniaturize the device without jeopardizing the performance of the device....

  15. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides (United States)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo


    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  16. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner


    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  17. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao


    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  18. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    Spatial solitons are studied in a planar waveguide filled with nonlinear liquids. Spectral and spatial measurements for different geometries and input power of the laser beam show the influence of different nonlinear effects as stimulated scatterings on the soliton propagation and in particular on the beam polarization.

  19. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.


    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...

  20. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  1. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    Packard [15]. We present a study of the main experimental results we obtained in the last few years in nonlinear liquid waveguides. Polarization properties are particularly attractive, opening the door to applications in the field of optical switching and ...

  2. Hybrid modes in a square corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, K.


    By using two scalar eigenfunctions, electric and magnetic fields in the rectangular (or square) corrugated waveguide are analyzed. In a rectangular corrugated waveguide, the boundary conditions on two corrugated and two smooth walls can be satisfied to excite the hybrid mode. In a highly oversized waveguide where the wavelength of dominant mode is close to that in vacuum, two smooth walls can be exchanged with the corrugated walls because the boundary condition at this walls is satisfied approximately. The replacement is possible due to almost no penetration of the electromagnetic fields into the gap of the replaced walls when the direction of main electric field is parallel to the gap of replaced walls. This characteristic enables us to rotate the polarization of the hybrid mode in the oversized square waveguide with all four corrugated walls and is applicable to the remote steering antenna for electron cyclotron heating in the ITER. For a beam injection larger than the critical angle in this antenna, excited higher modes are at a considerably different wavelength from that in vacuum and result in the dissatisfaction of boundary conditions due to millimeter-wave penetration into corrugation gaps in replaced walls. (author)

  3. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol


    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  4. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim


    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity...

  5. Single and Double Superconducting Coplanar Waveguide Resonators (United States)

    Zhao, Na; Liu, Jian-She; Li, Hao; Li, Tie-Fu; Chen, Wei


    Transmission characteristics of single and double coplanar waveguide (CPW) resonators are simulated. The crosstalk of two CPW resonators located on the same chip is observed in simulation as well as in low temperature measurement results. The crosstalk behaves as exponential attenuation versus the distance between two resonators.

  6. Control of resonances in photonic crystal waveguides

    NARCIS (Netherlands)

    Lian, Jin


    Photonic crystal waveguides (PhCWG) with intentional defects and unavoidable disorder exhibit high quality factor (Q) resonances. Single- and multi-resonance systems based on them are suitable for applications such as optical memories, delay lines and cavity QED. Therefore, characterization, control

  7. Subwavelength line imaging using plasmonic waveguides

    NARCIS (Netherlands)

    Podoliak, N.; Horak, P.; Prangsma, Jord; Pinkse, Pepijn Willemszoon Harry


    We investigate the subwavelength imaging capacity of a 2-D fanned-out plasmonic waveguide array, formed by air channels surrounded by gold metal layers for operation at near-infrared wavelengths, via finite-element simulations. High resolution is achieved on one side of the device by tapering down

  8. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders


    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  9. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei


    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  10. Transforming guided waves with metamaterial waveguide cores (United States)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.


    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  11. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou


    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...

  12. Optical Properties of Topological Insulator Bragg Gratings

    CERN Document Server

    Crosse, J A


    Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry breaking perturbation, such as an external magnetic field or surface magnetic impurities. Whilst the reflective properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces Faraday and Kerr rotations in the transmitted and reflected light, respectively. These rotations are proportional to the number of layers and the strength of the time-symmetry breaking perturbation. In areas of low reflectivity the rotation angle of TE polarization decreases with increasing incidence angle while the TM polarization increases with increasing incidence angle with the converse occurring in areas of high reflectivity. The formalism and results will be useful in the development of optical and photonic devices based on topological insulators, devices whi...

  13. Novel gratings for next-generation instruments of astronomical observations (United States)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.


    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.


    African Journals Online (AJOL)

    Dr Obe


    Sep 1, 1984 ... shaft of this gear (D) is connected by a 1:2 chain drive ... of the handle produces half a rotation of gear (D). This means that for one rotation of the handle, the grating drum rotates. 115/(2x11) or 5.23 times. Fig. 1 Photograph of Prototype ... If the top surface of the wedge were projected to intersect the.

  15. High-index-contrast subwavelength grating VCSEL

    DEFF Research Database (Denmark)

    Gilet, Philippe; Olivier, Nicolas; Grosse, Philippe


    In this article, we report our results on 980nm high-index-contrast subwavelength grating (HCG) VCSELs for optical interconnection applications. In our structure, a thin undoped HCG layer replaces a thick p-type Bragg mirror. The HCG mirror can feasibly achieve polarization-selective reflectivities...... structures. These results build a bridge between a standard VCSEL and a hybrid laser on silicon, making them of potential use for the realization of silicon photonics....

  16. 1550 nm high contrast grating VCSEL. (United States)

    Chase, Christopher; Rao, Yi; Hofmann, Werner; Chang-Hasnain, Connie J


    We demonstrate an electrically pumped high contrast grating (HCG) VCSEL operating at 1550 nm incorporating a proton implant-defined aperture. Output powers of >1 mW are obtained at room temperature under continuous wave operation. Devices operate continuous wave at temperatures exceeding 60 degrees C. The novel device design, which is grown in a single epitaxy step, may enable lower cost long wavelength VCSELs.

  17. Detailed Investigations of Load Coefficients on Grates

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.; Frigaard, Peter

    In this report is presented the results of model tests carried out at Dept. of Civil Engineering, aalborg University (AAU) on behalf of DONG Energy A/S and Vattenfall A/S, Denmark. The objective of the tests was to investigate the load coefficient on different grates and a solid plate for designi...... offshore windmill access platforms against run-up generated forces with special attention to the influence of air entrainment and the angle of attack....

  18. Grating THz laser with optical pumping (United States)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John


    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  19. Grating Spectroscopes and How to Use Them

    CERN Document Server

    Harrison, Ken M


    Transmission grating spectroscopes look like simple filters and are designed to screw into place on the eyepiece tube of a telescope for visual use, or into a camera adapter for digicam or CCD imaging. They are relatively inexpensive and by far the easiest type of astronomical spectroscope to use, and so are the starting point for most beginners. Using the most popular commercially made filter gratings - from Rainbow Optics in the United States to Star Analyser in the United Kingdon - as examples, the book provides all the information needed to set up and use the grating to obtain stellar spectra. It also presents methods of analyzing the results. No heavy mathematics or formulas are involved, although a reasonable level of proficiency in using an astronomic telescope and, if relevant, imaging camera, is assumed. This book contains many practical hints and tips - something that is almost essential to success when starting out. It encourages new users to get quick results, and by following the worked examples,...

  20. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. (United States)

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios


    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  1. FDTD simulation of amorphous silicon waveguides for microphotonics applications (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,


    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  2. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)


    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  3. Coherently controlling Raman-induced grating in atomic media


    Arkhipkin, V. G.; Myslivets, S. A.; Timofeev, I. V.


    We consider dynamically controllable periodic structures, called Raman induced gratings, in three- and four-level atomic media, resulting from Raman interaction in a standing-wave pump. These gratings are due to periodic spatial modulation of the Raman nonlinearity and fundamentally differ from the ones based on electromagnetically induced transparency. The transmission and reflection spectra of such gratings can be simultaneously amplified and controlled by varying the pump field intensity. ...

  4. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.


    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  5. Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties (United States)

    Wang, Jun; Mu, Xiaoyu; Wang, Gang; Liu, Changlong


    By etching two SiO2 optical waveguide slabs separately implanted with 90 keV Ag ions and 60 keV Cu ions at the same dose of 6 × 1016 cm-2, two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers with 600-nm periodicity and 100-nm thickness were fabricated, and their structural and vertical input coupling properties were investigated. Experimental results revealed that the two couplers could convert light beams at wavelengths of 620-880 nm into guided waves with different efficiencies, highlighting the special importance of metal nanoparticles (NPs). Further discussions also revealed that owing to the introduction of periodically distributed metal NPs, the periodical phase modification of the transmitted beam was enhanced drastically, and the nanocomposite veins could behave as efficient light scatterers. As a result, the two couplers were much larger in coupling efficiency than the NP-free one with identical morphological parameters. The above findings may be useful to construct thin and short but efficient surface-relief grating couplers on glass optical waveguides.

  6. Diffraction Gratings for High-Intensity Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Britten, J


    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  7. Strong phase-controlled fiber Bragg gratings for dispersion compensation (United States)

    Liu, Yisi; Dong, Liang; Pan, J. J.; Gu, Claire


    Dispersion-compensating fiber Bragg gratings with ~99.9% reflectivity that are made by continuous apodization and phase control are demonstrated. These strong dispersion-compensating gratings provide precision second-order, third-order, or even more complex dispersion compensation, as well as sufficient transmission isolation to be used at add-drop stages without additional filtering. A 99.84% grating with a constant -700-ps/nm dispersion and a 99.94% grating with dispersion varying linearly from 1000 to -1000 ps/nm are demonstrated.

  8. Photonic crystal fiber long-period gratings for biochemical sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Jensen, Jesper Bo; Dufva, Hans Martin


    -period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has......We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long...

  9. Fiber facet gratings for high power fiber lasers (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel


    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  10. Gratings for Increasing Solid-State Laser Gain and Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A C; Britten, J A; Bonlie, J D


    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used.

  11. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.


    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  12. Grating coupler on single-crystal lithium niobate thin film (United States)

    Chen, Zhihua; Wang, Yiwen; Jiang, Yunpeng; Kong, Ruirui; Hu, Hui


    The grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) was designed. A bottom reflector was added in the LNOI material to improve the coupling efficiency. The grating structure was optimized by FDTD method. The material parameters such as layer thickness of lithium niobate thin film, SiO2 thickness were discussed with respect to the coupling efficiency, and the tolerances of grating period, etch depth, groove width and fiber position were also studied systematically. The simulated maximum coupling efficiency from a grating coupler with (without) bottom reflector to a single-mode fiber is about 78% (40%) in z-cut LNOI for TE polarization.

  13. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits. (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J


    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  14. Increasing the field of view in grating based X-ray phase contrast imaging using stitched gratings. (United States)

    Meiser, J; Willner, M; Schröter, T; Hofmann, A; Rieger, J; Koch, F; Birnbacher, L; Schüttler, M; Kunka, D; Meyer, P; Faisal, A; Amberger, M; Duttenhofer, T; Weber, T; Hipp, A; Ehn, S; Walter, M; Herzen, J; Schulz, J; Pfeiffer, F; Mohr, J


    Grating based X-ray differential phase contrast imaging (DPCI) allows for high contrast imaging of materials with similar absorption characteristics. In the last years' publications, small animals or parts of the human body like breast, hand, joints or blood vessels have been studied. Larger objects could not be investigated due to the restricted field of view limited by the available grating area. In this paper, we report on a new stitching method to increase the grating area significantly: individual gratings are merged on a carrier substrate. Whereas the grating fabrication process is based on the LIGA technology (X-ray lithography and electroplating) different cutting and joining methods have been evaluated. First imaging results using a 2×2 stitched analyzer grating in a Talbot-Lau interferometer have been generated using a conventional polychromatic X-ray source. The image quality and analysis confirm the high potential of the stitching method to increase the field of view considerably.

  15. UV laser fabrication and modification of fiber Bragg gratings by stitching sub-gratings with in situ fluorescence monitoring. (United States)

    Leng, Yongzhang; Yun, Victor E; Goldhar, Julius


    We present a method for synthesizing complex fiber Bragg gratings using femtosecond UV laser pulses and image projection from a small phase mask. Fiber gratings with arbitrary spectral reflectivity can be achieved by stitching short grating segments with proper phases. The relative phase between neighboring sub-gratings is controlled using in situ UV-excited fluorescence monitoring. During the fabrication, we are able to monitor the amplitude and phase of each segment right after it was written. This is accomplished by scanning the phase mask with attenuated UV laser pulses and observing modulation in fluorescence. This information allows us to precisely set the position of fiber for the next segment. A fabricated grating segment can also be effectively erased with additional out-of-phase UV exposure. Bragg gratings over both telecom C-band and L-band can be conveniently achieved with this simple setup and a single phase mask.

  16. Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides

    Directory of Open Access Journals (Sweden)

    P. Cheben


    Full Text Available We review our work developing optical waveguide-based evanescent field sensors for the label-free, specific detection of biological molecules. Using high-index-contrast silicon photonic wire waveguides of submicrometer dimension, we demonstrate ultracompact and highly sensitive molecular sensors compatible with commercial spotting apparatus and microfluidic-based analyte delivery systems. We show that silicon photonic wire waveguides support optical modes with strong evanescent field at the waveguide surface, leading to strong interaction with surface bound molecules for sensitive response. Furthermore, we present new sensor geometries benefiting from the very small bend radii achievable with these high-index-contrast waveguides to extend the sensing path length, while maintaining compact size. We experimentally demonstrate the sensor performance by monitoring the adsorption of protein molecules on the waveguide surface and by tracking small refractive index changes of bulk solutions.

  17. Realization of robust photonic crystal waveguides designed to reduce out-of-plane scattering

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Søndergaard, Thomas


    We have realized environmentally stable silicon-on-insulator based photonic crystal waveguides. The waveguide structure is designed to minimize scattering at semiconductor/hole interfaces. Transmission measurements and IR pictures indicate efficient guiding through straight and bent waveguides....

  18. Waveguide metacouplers for in-plane polarimetry

    CERN Document Server

    Pors, Anders


    The state of polarization (SOP) is an inherent property of the vectorial nature of light and a crucial parameter in a wide range of remote sensing applications. Nevertheless, the SOP is rather cumbersome to probe experimentally, as conventional detectors only respond to the intensity of the light, hence loosing the phase information between orthogonal vector components. In this work, we propose a new type of polarimeter that is compact and well-suited for in-plane optical circuitry, while allowing for immediate determination of the SOP through simultaneous retrieval of the associated Stokes parameters. The polarimeter is based on plasmonic phase-gradient birefringent metasurfaces that facilitate normal incident light to launch in-plane photonic waveguide modes propagating in six predefined directions with the coupling efficiencies providing a direct measure of the incident SOP. The functionality and accuracy of the polarimeter, which essentially is an all-polarization sensitive waveguide metacoupler, is confi...

  19. Ultralow-Loss CMOS Copper Plasmonic Waveguides. (United States)

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S


    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.

  20. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R


    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  1. Poling of planar silica-based waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Leistiko, Otto


    Planar silica-based waveguides were electrically poled at elevated temperatures and cooled with the field still applied. This procedure induced second-order nonlinear effects in the waveguides. Systematic studies of the dependence of the induced linear electro-optic effect on polilng temperature...... and the poling voltage were performed using a negative voltage on the top electrode. It was found that the optimum poling temperature is -430 C. A linear dependence of the induced linear electro-optic effect on the voltage was observed. The largest measured linear electro-optic coefficient was 0.07 pm/V. A model...... recorded with spatially resolved second-harmonic generation. Very large second-harmonic signals were obtained when poling with a positive voltage on a painted-on top electrode. Calibration of the signals to GaAs showed that the second-order nonlinear susceptibility of the poled glass corresponds to -48 pm...

  2. Single waveguide silicon-organic hybrid modulator (United States)

    Hoppe, Niklas; Rothe, Christian; Celik, Arda; Félix Rosa, María; Vogel, Wolfgang; Widmann, Daniel; Rathgeber, Lotte; Ruiz Delgado, M. Carmen; Villacampa, Belén; Ludwigs, Sabine; Berroth, Manfred


    We present a novel silicon-organic hybrid modulator based on an integrated dual-mode interferometer. The modulator offers a compact, simplified design and enhanced robustness to on-chip fluctuations of temperature compared to conventional Mach-Zehnder based systems. A prototype modulator showing a voltage dependent transmission spectrum is obtained by cladding a dual-mode waveguide in a 250 nm silicon-on-insulator technology with a customized organic electro-optic layer. Estimated phase shifts and corresponding figures of merit are discussed in this contribution. The used organic layer is based on the guest-host approach with customized donor-π-acceptor chromophore embedded and poled in a poly(methylmethacrylate) matrix. The presented prototype is to the best of the authors' knowledge the first integrated single waveguide silicon-organic hybrid modulator.

  3. Single waveguide silicon-organic hybrid modulator

    Directory of Open Access Journals (Sweden)

    N. Hoppe


    Full Text Available We present a novel silicon-organic hybrid modulator based on an integrated dual-mode interferometer. The modulator offers a compact, simplified design and enhanced robustness to on-chip fluctuations of temperature compared to conventional Mach-Zehnder based systems. A prototype modulator showing a voltage dependent transmission spectrum is obtained by cladding a dual-mode waveguide in a 250 nm silicon-on-insulator technology with a customized organic electro-optic layer. Estimated phase shifts and corresponding figures of merit are discussed in this contribution. The used organic layer is based on the guest-host approach with customized donor-π-acceptor chromophore embedded and poled in a poly(methylmethacrylate matrix. The presented prototype is to the best of the authors' knowledge the first integrated single waveguide silicon-organic hybrid modulator.

  4. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei


    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...... which allows for simultaneous modal phase matching with the pump beam in a higher-order mode. Paired photons generated in each process are cross polarized and guided by different guiding mechanisms, which produces entanglement in both polarization and spatial mode. Theoretical analysis shows...... that the output quantum state has a high quality of hyperentanglement by spectral filtering with a bandwidth of a few nanometers, while off-chip compensation is not needed. This technique offers a path to realize an electrically pumped hyperentangled photon source....

  5. Possibilities of Bragg filtering structures based on subwavelength grating guiding mechanism (Conference Presentation) (United States)

    Kwiecien, Pavel; Litvik, Ján.; Richter, Ivan; Ctyroký, Jirí; Cheben, Pavel


    Silicon-on-insulator (SOI), as the most promising platform, for advanced photonic integrated structures, employs a high refractive index contrast between the silicon "core" and surrounding media. One of the recent new ideas within this field is based on the alternative formation of the subwavelength sized (quasi)periodic structures, manifesting as an effective medium with respect to propagating light. Such structures relay on Bloch wave propagation concept, in contrast to standard index guiding mechanism. Soon after the invention of such subwavelength grating (SWG) waveguides, the scientists concentrated on various functional elements such as couplers, crossings, mode transformers, convertors, MMI couplers, polarization converters, resonators, Bragg filters, and others. Our contribution is devoted to a detailed numerical analysis and design considerations of Bragg filtering structures based on SWG idea. Based on our previous studies where we have shown impossibility of application of various 2 and "2.5" dimensional methods for the proper numerical analysis, here we effectively use two independent but similar in-house approaches based on 3D Fourier modal methods, namely aperiodic rigorous coupled wave analysis (aRCWA) and bidirectional expansion and propagation method based on Fourier series (BEX) tools. As it was recently demonstrated, SWG Bragg filters are feasible. Based on this idea, we propose, simulate, and optimize spectral characteristics of such filters. In particular, we have investigated several possibilities of modifications of original SWG waveguides towards the Bragg filtering, including firstly - simple single-segment changes in position, thickness, and width, and secondly - several types of Si inclusions, in terms of perturbed width and thickness (and their combinations). The leading idea was to obtain required (e.g. sufficiently narrow) spectral characteristic while keeping the minimum size of Si features large enough. We have found that the second

  6. Optical properties of silicon germanium waveguides at telecommunication wavelengths. (United States)

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis


    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  7. Complete spectral gap in coupled dielectric waveguides embedded into metal

    CERN Document Server

    Liu, Wei; Miroshnichenko, Andrey; Poulton, Chris; Xu, Zhiyong; Neshev, Dragomir; Kivshar, Yuri


    We study a plasmonic coupler involving backward (TM_01) and forward (HE_11) modes of dielectric waveguides embedded into infinite metal. The simultaneously achievable contradirectional energy flows and codirectional wavevectors in different channels lead to a spectral gap, despite the absence of periodic structures along the waveguide. We demonstrate that a complete spectral gap can be achieved in a symmetric structure composed of four coupled waveguides.


    Directory of Open Access Journals (Sweden)

    A. Palevicius


    Full Text Available Methods allowing investigation of vibrations of the stainless steel waveguide by combining noncontact techniques with the state-of-the-art multiphysics software are developed. The vibrations of the waveguide, used in nowadays surgery are examined by the aids of the holographic interferometry technique, vibrometer based on Doppler shift of backscattered laser light and the virtual model of the waveguide is created by the Comsol Multiphysics software. 

  9. Application of Finite Element Method to Analyze Inflatable Waveguide Structures (United States)

    Deshpande, M. D.


    A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.

  10. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has...... been measured. Such a high group index makes the light-matter interaction extremely efficient, opening for new opportunities in micrometer-sized integrated lightwave circuits....

  11. Forerunning mode transition in a continuous waveguide


    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady


    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  12. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre


    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....

  13. Developments in United Kingdom Waveguide Power Standards, (United States)


    of the Division of Electrical Science at the National Physical Laboratory (NPL). Since 1969 traceability for micro- wave attenuation, impedance, noise...inside of the mount and also produces good electrical continuity between the short circuit terminat- ing the mount and the waveguide walls. The mounts...microcalorimeter is shown in fig 3. This is a develop- 6ment of a microcalorimeter design described by Engen , and originally copied WATER BATH CHOPPER

  14. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.


    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  15. RF waveguide phase-directed power combiners (United States)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.


    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  16. The study of ultrasonic reflex-radar waveguide coolant level gage for a nuclear reactor


    Mel'Nikov, V.I.; Ivanov, V. V.; Teplyashin, I.A.


    Results of experimental study of operation of ultrasonic reflex-radar waveguide level gage in water coolant at elevated parameters with pressure up to 18MPa and temperature up to 350°C are examined. In contrast to the known waveguide level gages, traveltime of acoustic pulses along the waveguide from the radiator to the subsurface layer and back is measured in the level gage under study. Waveguide consists of two acoustically isolated waveguides – the radiating waveguide and the receiving ...

  17. Plasmonic waveguides based optical AND gate (United States)

    Tomer, Sonia; Shankhwar, Nishant; Kalra, Yogita; Sinha, Ravindra Kumar


    In this paper, a design of Plasmonic waveguides based optical AND gate has been proposed. Various designs of Photonic crystal based optical logic gates have already been envisioned and proposed during the past decade, in which, wavelength of operation is comparable to the geometrical parameters. On the contrary, the proposed structure consists of Plasmonic waveguides whose thickness is much smaller than the wavelength of operation. Plasmonics can pave way for the development of optical interconnects that are small enough to operate in nanoscale devices. Nowadays, Plasmonics is being implemented in a large number of areas, one of which is confinement of optical power in subwavelength devices. This may pave the way for large scale on-chip integration for the development of all optical circuits for optical computing systems. Moreover, the proposed design is simple and easy to fabricate using techniques like thin-film technology and lithography. This AND gate has been designed and analysed using the Finite Element Method (FEM) software. The proposed structure has been made by using silver material as a waveguide and silicon as the surrounding dielectric..

  18. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro......-actuation requires the optimization of optical forces and optical torques that, in turn, requires the optimization of the underlying light-matter interaction [1]. We have previously proposed and demonstrated micro-targeted light-delivery and the opto-mechanical capabilities of so-called wave-guided optical...... waveguides (WOWs) [2]. As the WOWs are optically trapped and maneuvered in 3D-space, it is important to maintain efficient light-coupling through these free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track...

  19. Multifunctional logic gates based on silicon hybrid plasmonic waveguides (United States)

    Cui, Luna; Yu, Li


    Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.

  20. Mode properties in metallic and non-metallic plasmonic waveguides. (United States)

    Liu, Wanwan; Chen, Yifu; Hu, Xin; Wen, Long; Jin, Lin; Su, Qiang; Chen, Qin


    Non-metallic plasmonic materials have recently attracted research interest due to their adjustable plasmonic material properties and the potential low loss, which is important to plasmonic waveguides with ultrahigh mode confinement. In this paper, we analyzed the mode properties of four types of plasmonic waveguides based on noble metals, aluminum-zinc-oxide (AZO), and TiN, where the propagation length and mode size are chosen to compare the figures of merit. It is found that AZO has the smallest imaginary part of permittivity in the near-infrared region, while AZO waveguides have propagation lengths comparable to those of Cu waveguides but shorter than those of Au and Ag waveguides. Furthermore, due to the larger real part of permittivities, the mode sizes of the AZO and TiN waveguides are smaller than those of the metal waveguides, in particular, for the insulator-metal-insulator waveguide and dielectric-loaded plasmonic waveguide. AZO/ZnO films with tunable carrier density between 1.8×1017/cm3 and 8.6×1020/cm3 were grown by pulsed-laser deposition. Metal-like properties, i.e., negative real part of permittivity around 1550 nm, were observed, predicting an interesting candidate in the plasmonic optical interconnect.

  1. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole


    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyzes, analytical sensitivity analyzes and gradient...... based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...... curve and design of a wide bandwidth, constant low group velocity waveguide demonstrate the efficiency of the method....

  2. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J


    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  3. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy


    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW...... transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....

  4. Fast dynamic waveguides and waveguide arrays in photorefractive Sn(2)P(2)S(6) induced by visible light. (United States)

    Juvalta, Flurin; Mosimann, Roger; Jazbinsek, Mojca; Günter, Peter


    We report on dynamic waveguides and waveguide arrays induced beneath the surface of electro-optic Sn(2)P(2)S(6) crystals by visible light at 514 nm. The waveguide structures are generated by interband photoexcitation and drift or diffusion charge transport mechanism. These structures are probed nondestructively in the transverse direction with a beam at a longer wavelength. We measured the fastest formation of light induced waveguides in the visible up to now. The recording times are below 200 mus for intensities above 0.1 W/cm2. By interfering two light beams, dynamic waveguide arrays are generated with waveguide spacings of 7 microm. If an electric field is applied to the crystal, these arrays can be spatially shifted by 1.5 mum for an applied field of E(0) = 1 kV/cm.

  5. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben


    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data....... The simulation sheds light on issues that are not amenable to analytical solutions, such as the spectral content of the wave forms, cross talk in three-beam interaction, and the range of applications of the band-transport model. (C) 1998 Optical Society of America....

  6. Suspended Microracetrack Resonator with Lateral Sub-wavelength-Grating Metamaterial Cladding for Mid-infrared Sensing Applications

    Directory of Open Access Journals (Sweden)

    Zhang Zecen


    Full Text Available A one-time etching suspended microracetrack resonator with lateral sub-wavelength-grating (SWG metamaterial cladding is theoretically and experimentally demonstrated on commercial 340 nm-thick-top-silicon silicon-on-insulator (SOI platform for mid-infrared (MIR bio-chemical sensing applications. The suspended structure can offer a larger exposed area of waveguides with the testing chemicals as well as a decent sensitivity. And the one-time etching process also eases the fabrication. The suspended waveguide is optimized with a balance between propagation loss and the sensitivity. The suspended microracetrack resonator is experimentally measured at 2 μm wavelength and well fitted with an extinction ratio (ER of 12.3 dB and a full-width-at-half-maximum (FWHM of 0.12 nm, which corresponds to a quality factor (Q factor of 16600. With the equivalent refractive index method and a specially developed numerical model, the expected sensitivities of fundamental TE and TM mode were calculated as 58 nm/RIU and 303 nm/RIU respectively. This one-time etching suspended microracetrack resonator shows great potential in MIR optical bio-chemical sensing applications.

  7. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm


    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  8. Periodically oriented GaAs templates and waveguide structures for frequency conversion (United States)

    Oron, M. B.; Shusterman, S.; Blau, P.


    Material preparation methods and device fabrication technologies for realization of low loss periodically oriented GaAs waveguides are reported. Planar waveguide structures were grown by MOCVD on periodically patterned templates prepared by wafer bonding and selective layer removal. Ridge waveguides were designed and fabricated from the planar structures with emphasis on waveguide loss minimization. Record low losses of 2.0db/cm in periodically oriented waveguides and 0.95db/cm in single domain waveguides were measured. Routes for further loss reduction in patterned GaAs waveguides are discussed and initial results from further work to reduce waveguide corrugation are presented.

  9. Luminescence and Gain in Co-Sputtered Al2O3 Erbium-Doped Waveguides

    National Research Council Canada - National Science Library

    Johnson, Klein


    Rare earth doping of planar waveguides may potentially yield very compact optical amplifiers, lasers, and amplified spontaneous emission light sources, as well as zero insertion loss waveguide routers...

  10. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG. (United States)

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei


    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  11. Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I; Nikolajsen, Thomas


    By introducing periodic thickness-modulation of thin metal stripes embedded in a dielectric, we realize compact and efficient Bragg gratings for long-range surface plasmon polaritons (LR-SPPs) operating around 1550 nm. We measure reflection and transmission spectra of the gratings having different...

  12. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben


    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  13. Transmission gratings for beam sampling and beam splitting. (United States)

    Popov, E K; Loewen, E G; Neviére, M


    Transmission gratings have rarely been used for beam sampling because they require special properties from dielectric overcoatings, which, to the best of our knowledge, are described here for the first time. Although such gratings are often used as beam splitters, their nature can be modified along the same principles with thin metal coatings, which are described.

  14. Analysis of the optical parameters of phase holographic gratings

    Directory of Open Access Journals (Sweden)

    Є.О. Тихонов


    Full Text Available  Suitability of 2- wave approximation of the coupled waves theory tor description of holographic phase gratings recorded on photopolymer compound ФПК-488 is proved. Using the basic formulas of the theory, main grating optical parameters - a depth of modulation and finished thickness are not measured immediately are determined.

  15. Transversely loaded fiber optic grating strain sensors for aerospace applications (United States)

    Udd, Eric; Schulz, Whitten L.; Seim, John M.; Trego, Angela; Haugse, Eric D.; Johnson, Patrick E.


    Most fiber grating sensor technology that has been developed to support strain sensing involves the measurement of axial strain. Fiber grating sensors are however capable of monitoring transverse as well as axial strain. This paper reviews a series of applications of this technology that are of particular interest to aerospace applications.

  16. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole


    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure bec...

  17. Wave-front-engineered grating mirrors for VCSELs

    DEFF Research Database (Denmark)

    Carletti, Luca; Malureanu, Radu; Mørk, Jesper


    High-index-contrast grating mirrors featuring beam steering abilities for the transmitted beam as well as high reflectivity over a broad bandwidth are suggested. Gratings designed to provide control over the wave front of the transmitted beam are numerically investigated. The proposed structures ...

  18. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)


    Feb 6, 2014 ... very efficient source for writing FBGs using phase mask as well as interferometers [4–7]. In this paper, we ... Figure 1 shows the experimental set-up for writing the tilted fibre Bragg grating. High spatial coherent UV .... [1] R Kashyap, Fibre Bragg grating (Academic Press, New York, 1999). [2] T Erdogan and ...

  19. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail:


    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  20. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)


    Feb 6, 2014 ... This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission and reflection spectra of the tilted fibre Bragg gratings (TFBG) were studied for the tilt ...

  1. The Off-plane Grating Rocket Experiment (United States)

    Donovan, Benjamin


    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  2. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...... in the HCG minimizes this reduction of the quantum confinement factor, not as significant as in the air-coupled cavity DBR VCSEL....

  3. Mode conversion and coupling in a slanted grating. (United States)

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun; Yu, Junjie


    We have proposed a novel transmission slanted grating at the central wavelength of 1550 nm, which can be used in optical communication. We have presented an approximate analytical expression that provides an insightful physical description of the simplified modal method for the slanted grating. The odd grating mode, which only exists in the asymmetric structure under normal incidence, plays the positive role of enhancing the -1st order diffraction efficiency. The analytic expressions of mode conversion and coupling can be obtained to explain the asymmetric field distribution, which cannot occur in the rectangular grating region. Numerical results achieved by the rigorous wave analysis verify the validity of the simplified modal method. We expect that the theoretical modal method set forth in this work will be helpful for the tremendous potential application of the slanted grating.

  4. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen


    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... fire a wide range of fuels of varying moisture content, and requires less fuel preparation and handling. The basic objective of this paper is to review the state-of-the-art knowledge on grate-fired boilers burning biomass: the key elements in the firing system and the development, the important...

  5. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj


    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  6. Electromagnetically Induced Grating Without Absorption Using Incoherent Pump (United States)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang


    We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.

  7. Thick-SOI Echelle grating for any-to-any wavelength routing interconnection in multi-socket computing environments (United States)

    Dabos, G.; Pitris, S.; Mitsolidou, C.; Alexoudi, T.; Fitsios, D.; Cherchi, M.; Harjanne, M.; Aalto, T.; Kanellos, G. T.; Pleros, N.


    As data centers constantly expand, electronic switches are facing the challenge of enhanced scalability and the request for increased pin-count and bandwidth. Photonic technology and wavelength division multiplexing have always been a strong alternative for efficient routing and their potential was already proven in the telecoms. CWDM transceivers have emerged in the board-to-board level interconnection, revealing the potential for wavelength-routing to be applied in the datacom and an AWGR-based approach has recently been proposed towards building an optical multi-socket interconnection to offer any-to-any connectivity with high aggregated throughput and reduced power consumption. Echelle gratings have long been recognized as the multiplexing block exhibiting smallest footprint and robustness in a wide number of applications compared to other alternatives such as the Arrayed Waveguide Grating. Such filtering devices can also perform in a similar way to cyclical AWGR and serve as mid-board routing platforms in multi-socket environments. In this communication, we present such a 3x3 Echelle grating integrated on thick SOI platform with aluminum-coated facets that is shown to perform successful wavelength-routing functionality at 10 Gb/s. The device exhibits a footprint of 60x270 μm2, while the static characterization showed a 3 dB on-chip loss for the best channel. The 3 dB-bandwidth of the channels was 4.5 nm and the free spectral range was 90 nm. The echelle was evaluated in a 2x2 wavelength routing topology, exhibiting a power penalty of below 0.4 dB at 10-9 BER for the C-band. Further experimental evaluations of the platform involve commercially available CWDM datacenter transceivers, towards emulating an optically-interconnected multi-socket environment traffic scenario.

  8. Quantum walks of photon pairs in twisted waveguide arrays (United States)

    Vavulin, D. N.; Sukhorukov, A. A.


    We consider an array of closely spaced optical waveguides, which are twisted around a central axis along the propagation direction. We derive Schrodinger-type equation of the biphoton wavefunction, taking into account the waveguide bending through the appearance of additional phase in the coupling coefficients. We present an example of the evolution of quantum photon-pair state.

  9. Time-resolved THz spectroscopy in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd


    We demonstrate time-resolved terahertz spectroscopy inside a novel parallel plate waveguide where one of the metallic plates is replaced by a transparent conducting oxide. Considerable improvements to the waveguide loss coefficient are shown, with a power absorption coefficient of 4cm-1 at 0.5 THz...

  10. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper


    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  11. A Waveguide Transverse Broad Wall Slot Radiating Between Baffles

    DEFF Research Database (Denmark)

    Dich, Mikael; Rengarajan, S.R.


    An analysis of the self impedance of waveguide-fed transverse slots radiating between baffles is presented. The region exterior to the slot is treated as a parallel plate (PP) waveguide which radiates into half space through an aperture in an infinite ground plane. The slot problem is analyzed...

  12. Nanoimprinted Long-range Surface Plasmon Polariton Waveguide Components

    DEFF Research Database (Denmark)

    Johansen, Dan Mario; Boltasseva, A.; Nielsen, Theodor


    We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation.......We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation....

  13. Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Niemi, Tapio; Frandsen, Lars Hagedorn; Hede, Kristian Knak


    We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is...

  14. Characterization of UV written waveguides with luminescence microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Rosbirk, Tue


    Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 mm and high signal-to-noise ratio. The measurements reveal comlex waveguide formation dynamics with significant topological changes...

  15. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner


    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  16. Fluorophore-doped xerogel antiresonant reflecting optical waveguides. (United States)

    Llobera, A; Cadarso, V J; Carregal-Romero, E; Brugger, J; Domínguez, C; Fernández-Sánchez, C


    Rhodamine B and Alexa Fluor 430 fluorophores have been used as doping agents for xerogel waveguides defined over an antiresonant (ARROW) filter. This configuration has a significant level of integration, since it merges the waveguide, the light emitter and the filter in a single photonic element. Different technologies have been combined for their implementation, namely soft lithography, standard silicon-based technology and silicon bulk micromachining. The spectral response of 15-mm long waveguides without fluorophore is first analyzed as a function of the waveguide width. Here, it has been observed how the xerogel used has a high transparency in the visible spectra, having only significant absorption at the wavelength where the ARROW filter is in resonance. In a second step, identical waveguides but doped with two different concentrations of Rhodamine B and Alexa Fluor 430 are studied. In addition to the effect of the filter, fluorophore-doped xerogel waveguides show losses close to -2 dB (equivalent to 2 dB of light emission). In addition, it has been observed how an increase of the fluorophore concentration within the xerogel matrix does not provide with a emission increase, but saturation or even a decrease of this magnitude due to self-absorption. Finally, the total losses of the proposed waveguides are analyzed as a function of their width, obtaining losses close to 5 dB for waveguide widths higher than 50 µm.

  17. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs


    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...

  18. On linear waveguides of square and triangular lattice strips: an ...

    Indian Academy of Sciences (India)

    Basant Lal Sharma

    An analysis of the linear waves in infinitely-long square and triangular lattice strips of identical particles with .... with a small snapshot of the mode shape across the waveguide 'cross-section' and (d) a 'tube' of square and triangular lattice waveguides ...... [58] Mason J C and Handscomb D C 2003 Chebyshev polyno- mials.

  19. Near-coast tsunami waveguiding: phenomenon and simulations

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Adytia, D.; Adytia, D.; Andonowati, A.


    In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation

  20. Excitation of waves in elastic waveguides by piezoelectric patch actuators

    CSIR Research Space (South Africa)

    Loveday, PW


    Full Text Available to be an infinite waveguide. The excitation of waves in waveguides may be analysed in the time domain using conventional finite element methods. This analysis is computationally very demanding as the model must be a number of wavelengths long to avoid the influence...

  1. Hybrid optical waveguide devices based on polymers and silica

    NARCIS (Netherlands)

    Diemeer, Mart; Driessen, A; Baets, R.G.; Mclerney, J.G.; Suhir, E


    The hybrid integration of polymer and silica in optical waveguides can yield devices that combine the excellent thermo-optic properties of polymers and the superior passive waveguiding properties of silica. The large difference and opposite sign of the thermo-optic coefficients of both classes of

  2. Flexible polymer waveguides for light-activated therapy (Conference Presentation) (United States)

    Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun


    Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.

  3. Polymer waveguide backplanes for optical sensor interfaces in microfluidics. (United States)

    Lee, Kevin S; Lee, Harry L T; Ram, Rajeev J


    A polymer optical backplane capable of generic luminescence detection within microfluidic chips is demonstrated using large core polymer waveguides and vertical couplers. The waveguides are fabricated through a new process combining mechanical machining and vapor polishing with elastomer microtransfer molding. A backplane approach enables general optical integration with planar array microfluidics since optical backplanes can be independently designed but still integrated with planar fluidic circuits. Fabricated large core waveguides exhibit a loss of 0.1 dB cm(-1) at 626 nm, a measured numerical aperture of 0.50, and a collection efficiency of 2.86% in an n = 1.459 medium, comparable to a 0.50 NA microscope objective. In addition to vertical couplers for out-of-plane collection and excitation, polymer waveguides are doped with organic dyes to provide wavelength selective filtering within waveguides, further improving optical device integration. With large core low loss waveguides, luminescence collection is improved and measurements can be performed with simple LEDs and photodetectors. Fluorescein detection via fluorescence intensity with a limit of detection (3sigma) of 200 nM in a 1 microL volume is demonstrated. Phosphorescence lifetime based oxygen detection in water in an oxygen controllable microbial cell culture chip with a limit of detection (3sigma) of 0.08% or 35 ppb is also demonstrated utilizing the waveguide backplane. Single waveguide luminescence collection performance is equivalent to a back collection geometry fiber bundle consisting of nine 500 microm diameter collection fibers.

  4. Metasurface Waveguides Applied to Matched Feeds for Reflector Antennas

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Jorgensen, Erik; Meincke, Peter


    Waveguides with anisotropic surface impedance boundaries have been investigated for the purpose of matched feeds for offset reflectors. Matched feeds employ higher order waveguide modes to cancel out cross polarization introduced by the offset geometry. Since the higher order modes propagate at d...

  5. Towards integrated channel waveguide lasers in monoclinic double tungstates

    NARCIS (Netherlands)

    van Dalfsen, Koop; van Wolferen, Hendricus A.G.M.; Dijkstra, Mindert; Aravazhi, S.; Bernhardi, Edward; García Blanco, Sonia Maria; Pollnau, Markus

    The fabrication of lasers in monoclinic double tungstates has advanced from bulk and planar waveguide lasers toward the recent demonstration of channel waveguide lasers in the 1-μm and 2-μm wavelength regions [1-4]. Not only do these lasers provide a footprint reduction and low thresholds, but also

  6. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg


    . The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  7. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei


    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  8. Optical waveguide mode control by nanoslit-enhanced terahertz field

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zalkovskij, Maksim; Malureanu, Radu


    In this Letter we propose a scheme providing control over an optical waveguide mode by a terahertz (THz) wave. The scheme is based on an optimization of the overlap between the optical waveguide mode and the THz field, with the THz field strength enhanced by the presence of a metallic nanoslit...

  9. Experiments on Cascaded Quadratic Soliton Compression in Unpoled LN Waveguide

    DEFF Research Database (Denmark)

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong


    Experiments on cascaded quadratic soliton compression in unpoled phasemismatched lithium niobate waveguides are presented. Pulse self-phasemodulation dominated by an overall self-defocusing nonlinearity is observed, with an variation of pump wavelength and waveguide core width. © 2014 Optical...... Society of America...

  10. Engineering sidewall angles of silica-on-silicon waveguides

    DEFF Research Database (Denmark)

    Haiyan, Ou


    Burned photoresist is used as etch mask when producing silica-onsilicon waveguides. The sidewall angle of the optical glass waveguides is engineered by varying photoresist thickness and etch selectivity. The principle for the formation of the angles is introduced and very promising experimental...

  11. Optimal synthesis of tunable elastic wave-guides

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Rupp, Cory J.; Dunn, Martin L.


    Topology optimization, or control in the coefficients of partial differential equations, has been successfully utilized for designing wave-guides with precisely tailored functionalities. For many applications it would be desirable to have the possibility of drastically altering the wave-guiding p...

  12. High efficiency input-output prism waveguide coupler: an analysis. (United States)

    Sarid, D


    The theory and experimental results of the performance of a practical prism waveguide input-output coupler are presented. The coupling scheme, which results in a 94% coupling efficiency, uses a single prism for both input and output coupling, with the light propagating 1 cm in the LiNbO(3) Ti in diffused waveguide.

  13. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.


    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  14. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. (United States)

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M


    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  15. Performance of SOI Bragg Grating Ring Resonator for Nonlinear Sensing Applications

    Directory of Open Access Journals (Sweden)

    Francesco De Leonardis


    Full Text Available In this paper, a spectroscopic sensor formed by a silicon-on-insulator waveguiding Bragg grating ring resonator working in linear and non-linear regime is proposed. In linear regime, the device shows a spectral response characterized by a photonic band gap (PBG. Very close to the band gap edges, the resonant structure exhibits split modes having a splitting magnitude equal to the PBG spectral extension, whose characteristics can be exploited to obtain a RI optical sensor almost insensitive to the fabrication tolerances and environmental perturbations. When the device operates in nonlinear regime, exactly in the spectral region showing the split resonant modes, the RI sensing performance is strongly improved with respect to the linear regime. This improvement, demonstrated by taking into account all the non-linear effects excited in the integrated silicon structure (i.e., Two Photon Absorption (TPA, TPA-induced Free Carrier Absorption, plasma dispersion, Self-Phase-Modulation and Cross-Phase-Modulation effects as induced by Kerr nonlinearity as well as the deleterious thermal and stress effects, allows enhancing the performance of the RI split mode resonant sensors, while achieving good immunity to the fabrication tolerances and environmental perturbations. The improvement in terms of sensor resolution can be at least one order of magnitude, still without using optimal parameters.

  16. The LiNbO3 Slab Waveguide: A Platform for Terahertz Signal Generation, Detection, and Control (United States)

    Werley, Christopher A.; Nelson, Keith A.

    We provide an overview of the terahertz (THz) polaritonics system, an on-chip platform for the generation, detection, and control of THz-frequency electromagnetic waves. The "chip" is a thin slab of lithium niobate crystal whose nonlinear and electro-optic properties directly enable the functionality. We first discuss dielectric slab waveguiding, which determines THz wave behavior in the polaritonics system. We then cover the generation of broadband and narrowband THz waves with an ultrafast laser pulse. The next topic is time-resolved imaging, which lets us record movies of the THz waves as they propagate at the speed of light with sub-cycle temporal and λ/100 spatial resolution. The final experimental tool discussed is laser machining, which makes it possible to fabricate photonic elements directly in the lithium niobate slab. Using these techniques, we show THz waves interacting with a variety of microstructures including a mirror, diffraction grating, waveguide, interferometer, photonic crystal, and metal antenna. These structures enable wave steering, guiding, spectral and spatial filtering, amplitude modulation, field enhancement, and sub-wavelength field localization. The broad capability set makes the polaritonics platform a promising one for future high-speed devices in optical communications and computation. The field enhancement and control also makes this an excellent platform for nonlinear THz spectroscopy.

  17. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying


    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  18. Dynamic Time Expansion and Compression Using Nonlinear Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi


    Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  19. Transient radiation in an anisotropic magnetodielectric plate in a waveguide (United States)

    Gevorkyan, E. A.


    We have considered transient radiation of a charged particle in an anisotropic magnetodielectric plate placed into a regular waveguide. It is assumed that the charged particle passes through the plate moving at a constant velocity perpendicularly to the waveguide axis. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in different regions of the waveguide have been obtained. Energies of transient radiation of the moving particle have been calculated. The properties of transient radiation and Vavilov-Cherenkov radiation have been analyzed for the case of a rectangular waveguide. Energies of transient radiation have been calculated for the case of a "thin" plate in the waveguide, when the wavelength in the plate is much greater than the length of the plate.

  20. Reconfigurable optical manipulation by phase change material waveguides. (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua


    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge2Sb2Te5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.