WorldWideScience

Sample records for waveform minimizes problems

  1. Solving seismological problems using sgraph program: II-waveform modeling

    International Nuclear Information System (INIS)

    Abdelwahed, Mohamed F.

    2012-01-01

    One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.

  2. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  3. Gravitino problem in minimal supergravity inflation

    Directory of Open Access Journals (Sweden)

    Fuminori Hasegawa

    2017-04-01

    Full Text Available We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  4. Gravitino problem in minimal supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Fuminori [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Terada, Takahiro, E-mail: terada@kias.re.kr [School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455 (Korea, Republic of); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-04-10

    We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  5. Minimal Time Problem with Impulsive Controls

    Energy Technology Data Exchange (ETDEWEB)

    Kunisch, Karl, E-mail: karl.kunisch@uni-graz.at [University of Graz, Institute for Mathematics and Scientific Computing (Austria); Rao, Zhiping, E-mail: zhiping.rao@ricam.oeaw.ac.at [Austrian Academy of Sciences, Radon Institute of Computational and Applied Mathematics (Austria)

    2017-02-15

    Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.

  6. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  7. OPTIM, Minimization of Band-Width of Finite Elements Problems

    International Nuclear Information System (INIS)

    Huart, M.

    1977-01-01

    1 - Nature of the physical problem solved: To minimize the band-width of finite element problems. 2 - Method of solution: A surface is constructed from the x-y-coordinates of each node using its node number as z-value. This surface consists of triangles. Nodes are renumbered in such a way as to minimize the surface area. 3 - Restrictions on the complexity of the problem: This program is applicable to 2-D problems. It is dimensioned for a maximum of 1000 elements

  8. Minimization under entropy conditions, with applications in lower bound problems

    International Nuclear Information System (INIS)

    Toft, Joachim

    2004-01-01

    We minimize the functional f->∫ afdμ under the entropy condition E(f)=-∫ f log fdμ≥E, ∫ fdμ=1 and f≥0, where E is a member of R is fixed. We prove that the minimum is attained for f=e -sa /∫ e -sa dμ, where s is a member of R is chosen such that E(f)=E. We apply the result on minimizing problems in pseudodifferential calculus, where we minimize the harmonic oscillator

  9. Minimization In Digital Design As A Meta-Planning Problem

    Science.gov (United States)

    Ho, William P. C.; Wu, Jung-Gen

    1987-05-01

    In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.

  10. Minimal surfaces, stratified multivarifolds, and the plateau problem

    CERN Document Server

    Thi, Dao Trong; Primrose, E J F; Silver, Ben

    1991-01-01

    Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed "contours" in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requir...

  11. Iterative Schemes for Convex Minimization Problems with Constraints

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem, the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  12. NP-hardness of the cluster minimization problem revisited

    Science.gov (United States)

    Adib, Artur B.

    2005-10-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  13. NP-hardness of the cluster minimization problem revisited

    International Nuclear Information System (INIS)

    Adib, Artur B

    2005-01-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested

  14. NP-hardness of the cluster minimization problem revisited

    Energy Technology Data Exchange (ETDEWEB)

    Adib, Artur B [Physics Department, Brown University, Providence, RI 02912 (United States)

    2005-10-07

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  15. Free time minimizers for the three-body problem

    Science.gov (United States)

    Moeckel, Richard; Montgomery, Richard; Sánchez Morgado, Héctor

    2018-03-01

    Free time minimizers of the action (called "semi-static" solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120-131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton-Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton's three-body problem which is asymptotic to Lagrange's parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange's solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209-227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler's central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.

  16. A Hybrid ACO Approach to the Matrix Bandwidth Minimization Problem

    Science.gov (United States)

    Pintea, Camelia-M.; Crişan, Gloria-Cerasela; Chira, Camelia

    The evolution of the human society raises more and more difficult endeavors. For some of the real-life problems, the computing time-restriction enhances their complexity. The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous permutation of the rows and the columns of a square matrix in order to keep its nonzero entries close to the main diagonal. The MBMP is a highly investigated {NP}-complete problem, as it has broad applications in industry, logistics, artificial intelligence or information recovery. This paper describes a new attempt to use the Ant Colony Optimization framework in tackling MBMP. The introduced model is based on the hybridization of the Ant Colony System technique with new local search mechanisms. Computational experiments confirm a good performance of the proposed algorithm for the considered set of MBMP instances.

  17. Quantum N-body problem with a minimal length

    International Nuclear Information System (INIS)

    Buisseret, Fabien

    2010-01-01

    The quantum N-body problem is studied in the context of nonrelativistic quantum mechanics with a one-dimensional deformed Heisenberg algebra of the form [x,p]=i(1+βp 2 ), leading to the existence of a minimal observable length √(β). For a generic pairwise interaction potential, analytical formulas are obtained that allow estimation of the ground-state energy of the N-body system by finding the ground-state energy of a corresponding two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed with generic potentials and for D-dimensional systems. Consequently, quantum N-body bound states might be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are present, the more the system deviates from standard quantum-mechanical predictions.

  18. Free-energy minimization and the dark-room problem.

    Science.gov (United States)

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).

  19. Surrogate waveform models

    Science.gov (United States)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.

  20. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  1. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    OpenAIRE

    S. Fanati Rashidi; A. A. Noora

    2010-01-01

    Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...

  2. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    Directory of Open Access Journals (Sweden)

    S. Fanati Rashidi

    2010-06-01

    Full Text Available Using the concept of possibility proposed by zadeh, luhandjula ([4,8] and buckley ([1] have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7] used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. In this paper we shall consider the general form of this problem where all of the parameters and variables are fuzzy and also a model for solving is proposed

  3. Radiological terrorism: problems of prevention and minimization of consequences

    International Nuclear Information System (INIS)

    Bolshov, Leonid; Arutyunyan, Rafael; Pavlovski, Oleg

    2008-01-01

    This paper gives a review of the key factors defining the extent of potential hazard caused by ionizing radiation sources for the purpose of radiological terrorism and the key areas of activities in the field of counteractions and minimization of possible consequences of such acts. The importance of carrying out system analysis of the practical experience of response to radiation accidents and elimination of their consequences is emphasized. The need to develop scientific approaches, methods and software to realistically analyze possible scenarios and predict the scale of consequences of the acts of terrorism involving radioactive materials is pointed out. The importance of improvement of radioactive materials accounting, control and monitoring systems, especially in non-nuclear areas, as well as improvement of the legal and regulatory framework governing all aspects of radiation source application in the national economy is of particular importance. (author)

  4. Minimal investment risk of a portfolio optimization problem with budget and investment concentration constraints

    Science.gov (United States)

    Shinzato, Takashi

    2017-02-01

    In the present paper, the minimal investment risk for a portfolio optimization problem with imposed budget and investment concentration constraints is considered using replica analysis. Since the minimal investment risk is influenced by the investment concentration constraint (as well as the budget constraint), it is intuitive that the minimal investment risk for the problem with an investment concentration constraint can be larger than that without the constraint (that is, with only the budget constraint). Moreover, a numerical experiment shows the effectiveness of our proposed analysis. In contrast, the standard operations research approach failed to identify accurately the minimal investment risk of the portfolio optimization problem.

  5. Canonical Primal-Dual Method for Solving Non-convex Minimization Problems

    OpenAIRE

    Wu, Changzhi; Li, Chaojie; Gao, David Yang

    2012-01-01

    A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. %It is proved that the popular SDP method is indeed a special case of the canonical duality theory. Numerical examples are illustrated. Comparing...

  6. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang

    2017-01-01

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion

  7. On the minimizers of calculus of variations problems in Hilbert spaces

    KAUST Repository

    Gomes, Diogo A.

    2014-01-19

    The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.

  8. Minimizers of a Class of Constrained Vectorial Variational Problems: Part I

    KAUST Repository

    Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber

    2014-01-01

    In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges

  9. On the minimizers of calculus of variations problems in Hilbert spaces

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon

    2014-01-01

    The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.

  10. On the uniqueness of minimizers for a class of variational problems with Polyconvex integrand

    KAUST Repository

    Awi, Romeo

    2017-02-05

    We prove existence and uniqueness of minimizers for a family of energy functionals that arises in Elasticity and involves polyconvex integrands over a certain subset of displacement maps. This work extends previous results by Awi and Gangbo to a larger class of integrands. First, we study these variational problems over displacements for which the determinant is positive. Second, we consider a limit case in which the functionals are degenerate. In that case, the set of admissible displacements reduces to that of incompressible displacements which are measure preserving maps. Finally, we establish that the minimizer over the set of incompressible maps may be obtained as a limit of minimizers corresponding to a sequence of minimization problems over general displacements provided we have enough regularity on the dual problems. We point out that these results defy the direct methods of the calculus of variations.

  11. Minimizers of a Class of Constrained Vectorial Variational Problems: Part I

    KAUST Repository

    Hajaiej, Hichem

    2014-04-18

    In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.

  12. Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems

    DEFF Research Database (Denmark)

    Elden, Lars; Hansen, Per Christian; Rojas, Marielba

    2003-01-01

    The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...

  13. Scheduling stochastic two-machine flow shop problems to minimize expected makespan

    Directory of Open Access Journals (Sweden)

    Mehdi Heydari

    2013-07-01

    Full Text Available During the past few years, despite tremendous contribution on deterministic flow shop problem, there are only limited number of works dedicated on stochastic cases. This paper examines stochastic scheduling problems in two-machine flow shop environment for expected makespan minimization where processing times of jobs are normally distributed. Since jobs have stochastic processing times, to minimize the expected makespan, the expected sum of the second machine’s free times is minimized. In other words, by minimization waiting times for the second machine, it is possible to reach the minimum of the objective function. A mathematical method is proposed which utilizes the properties of the normal distributions. Furthermore, this method can be used as a heuristic method for other distributions, as long as the means and variances are available. The performance of the proposed method is explored using some numerical examples.

  14. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  15. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Science.gov (United States)

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  16. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2014-01-01

    Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

  17. Solving Minimal Covering Location Problems with Single and Multiple Node Coverage

    Directory of Open Access Journals (Sweden)

    Darko DRAKULIĆ

    2016-12-01

    Full Text Available Location science represents a very attractiveresearch field in combinatorial optimization and it is in expansion in last five decades. The main objective of location problems is determining the best position for facilities in a given set of nodes.Location science includes techniques for modelling problemsand methods for solving them. This paper presents results of solving two types of minimal covering location problems, with single and multiple node coverage, by using CPLEX optimizer and Particle Swarm Optimization method.

  18. Sensitivity computation of the l1 minimization problem and its application to dictionary design of ill-posed problems

    International Nuclear Information System (INIS)

    Horesh, L; Haber, E

    2009-01-01

    The l 1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging

  19. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    Science.gov (United States)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  20. Limit behavior of mass critical Hartree minimization problems with steep potential wells

    Science.gov (United States)

    Guo, Yujin; Luo, Yong; Wang, Zhi-Qiang

    2018-06-01

    We consider minimizers of the following mass critical Hartree minimization problem: eλ(N ) ≔inf {u ∈H1(Rd ) , ‖u‖2 2=N } Eλ(u ) , where d ≥ 3, λ > 0, and the Hartree energy functional Eλ(u) is defined by Eλ(u ) ≔∫Rd|∇u (x ) |2d x +λ ∫Rdg (x ) u2(x ) d x -1/2 ∫Rd∫Rdu/2(x ) u2(y ) |x -y |2 d x d y . Here the steep potential g(x) satisfies 0 =g (0 ) =infRdg (x ) ≤g (x ) ≤1 and 1 -g (x ) ∈Ld/2(Rd ) . We prove that there exists a constant N* > 0, independent of λg(x), such that if N ≥ N*, then eλ(N) does not admit minimizers for any λ > 0; if 0 N N*, then there exists a constant λ*(N) > 0 such that eλ(N) admits minimizers for any λ > λ*(N) and eλ(N) does not admit minimizers for 0 N). For any given 0 N N*, the limit behavior of positive minimizers for eλ(N) is also studied as λ → ∞, where the mass concentrates at the bottom of g(x).

  1. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong

    2013-08-20

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  2. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2013-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  3. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    Science.gov (United States)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  4. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  5. Mathematical models for a batch scheduling problem to minimize earliness and tardiness

    Directory of Open Access Journals (Sweden)

    Basar Ogun

    2018-05-01

    Full Text Available Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem is addressed to provide on-time completion of customer orders in the environment of lean manufacturing. The problem is to optimize partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components. Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid from inventory of final products. The first model is a non-linear integer programming model while the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented. Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times comparing to the other two models. It was also showed that the alternative model can solve moderate sized real-world problems. Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature since it includes new circumstances which may arise in real-world applications. This research, also, contributes the literature of batch scheduling problem by presenting new optimization models.

  6. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  7. Exact and Heuristic Solutions to Minimize Total Waiting Time in the Blood Products Distribution Problem

    Directory of Open Access Journals (Sweden)

    Amir Salehipour

    2012-01-01

    Full Text Available This paper presents a novel application of operations research to support decision making in blood distribution management. The rapid and dynamic increasing demand, criticality of the product, storage, handling, and distribution requirements, and the different geographical locations of hospitals and medical centers have made blood distribution a complex and important problem. In this study, a real blood distribution problem containing 24 hospitals was tackled by the authors, and an exact approach was presented. The objective of the problem is to distribute blood and its products among hospitals and medical centers such that the total waiting time of those requiring the product is minimized. Following the exact solution, a hybrid heuristic algorithm is proposed. Computational experiments showed the optimal solutions could be obtained for medium size instances, while for larger instances the proposed hybrid heuristic is very competitive.

  8. Programmable waveform controller

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1979-01-01

    A programmable waveform controller (PWC) was developed for voltage waveform generation in the laboratory. It is based on the Intel 8080 family of chips. The hardware uses the modular board approach, sharing a common 44-pin bus. The software contains two separate programs: the first generates a single connected linear ramp waveform and is capable of bipolar operation, linear interpolation between input data points, extended time range, and cycling; the second generates four independent square waveforms with variable duration and amplitude

  9. MIMO-OFDM Chirp Waveform Diversity Design and Implementation Based on Sparse Matrix and Correlation Optimization

    Directory of Open Access Journals (Sweden)

    Wang Wen-qin

    2015-02-01

    Full Text Available The waveforms used in Multiple-Input Multiple-Output (MIMO Synthetic Aperture Radar (SAR should have a large time-bandwidth product and good ambiguity function performance. A scheme to design multiple orthogonal MIMO SAR Orthogonal Frequency Division Multiplexing (OFDM chirp waveforms by combinational sparse matrix and correlation optimization is proposed. First, the problem of MIMO SAR waveform design amounts to the associated design of hopping frequency and amplitudes. Then a iterative exhaustive search algorithm is adopted to optimally design the code matrix with the constraints minimizing the block correlation coefficient of sparse matrix and the sum of cross-correlation peaks. And the amplitudes matrix are adaptively designed by minimizing the cross-correlation peaks with the genetic algorithm. Additionally, the impacts of waveform number, hopping frequency interval and selectable frequency index are also analyzed. The simulation results verify the proposed scheme can design multiple orthogonal large time-bandwidth product OFDM chirp waveforms with low cross-correlation peak and sidelobes and it improves ambiguity performance.

  10. The analytic solution of the firm's cost-minimization problem with box constraints and the Cobb-Douglas model

    Science.gov (United States)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2012-12-01

    One of the most well-known problems in the field of Microeconomics is the Firm's Cost-Minimization Problem. In this paper we establish the analytical expression for the cost function using the Cobb-Douglas model and considering maximum constraints for the inputs. Moreover we prove that it belongs to the class C1.

  11. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  12. Krylov subspace acceleration of waveform relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)

    1996-12-31

    Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).

  13. A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Directory of Open Access Journals (Sweden)

    Ahmad Zeraatkar Moghaddam

    2012-01-01

    Full Text Available This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model.

  14. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Nader Ghaffari-Nasab

    2010-07-01

    Full Text Available During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-heuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems.

  15. Minimizing total weighted tardiness for the single machine scheduling problem with dependent setup time and precedence constraints

    Directory of Open Access Journals (Sweden)

    Hamidreza Haddad

    2012-04-01

    Full Text Available This paper tackles the single machine scheduling problem with dependent setup time and precedence constraints. The primary objective of this paper is minimization of total weighted tardiness. Since the complexity of the resulted problem is NP-hard we use metaheuristics method to solve the resulted model. The proposed model of this paper uses genetic algorithm to solve the problem in reasonable amount of time. Because of high sensitivity of GA to its initial values of parameters, a Taguchi approach is presented to calibrate its parameters. Computational experiments validate the effectiveness and capability of proposed method.

  16. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  17. Seismic waveform classification using deep learning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  18. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  19. Convex Minimization with Constraints of Systems of Variational Inequalities, Mixed Equilibrium, Variational Inequality, and Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We introduce and analyze one iterative algorithm by hybrid shrinking projection method for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  20. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    Science.gov (United States)

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  1. Waste minimization and control: a review of problems and available technologies

    International Nuclear Information System (INIS)

    Butt, W.M.

    1999-01-01

    A country's environmental problems are affected by the level of its economic development, the availability of national resources, and the socio-economic level of this population. Poverty presents special problems for a heavily populated country with limited resources. environmental problems in Pakistan have become serious and should no longer be neglected. These relate air and water pollution particularly in metropolitan and industrial zones, degradation of common property sources which affect the poor adversely due to the degradation of their life support system, threat to biodiversity, inadequate system of solid waste disposal and sanitation with consequent adverse impact on health, infant mortality, birth rate. These problems impose a serious cost on society although it is impossible to comprehend the extent of these on costs. (author)

  2. Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics

    International Nuclear Information System (INIS)

    Tselios, Kostas; Simos, T.E.

    2007-01-01

    In this Letter a new explicit fourth-order seven-stage Runge-Kutta method with a combination of minimal dispersion and dissipation error and maximal accuracy and stability limit along the imaginary axes, is developed. This method was produced by a general function that was constructed to satisfy all the above requirements and, from which, all the existing fourth-order six-stage RK methods can be produced. The new method is more efficient than the other optimized methods, for acoustic computations

  3. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  4. Triple Hierarchical Variational Inequalities with Constraints of Mixed Equilibria, Variational Inequalities, Convex Minimization, and Hierarchical Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inequality problems (VIPs, the solution set of general system of variational inequalities (GSVI, and the set of minimizers of convex minimization problem (CMP, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others.

  5. The numerical solution of total variation minimization problems in image processing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R.; Oman, M.E. [Montana State Univ., Bozeman, MT (United States)

    1994-12-31

    Consider the minimization of penalized least squares functionals of the form: f(u) = 1/2 ({parallel}Au {minus} z{parallel}){sup 2} + {alpha}{integral}{sub {Omega}}{vert_bar}{del}u{vert_bar}dx. Here A is a bounded linear operator, z represents data, {parallel} {center_dot} {parallel} is a Hilbert space norm, {alpha} is a positive parameter, {integral}{sub {Omega}}{vert_bar}{del}u{vert_bar} dx represents the total variation (TV) of a function u {element_of} BV ({Omega}), the class of functions of bounded variation on a bounded region {Omega}, and {vert_bar} {center_dot} {vert_bar} denotes Euclidean norm. In image processing, u represents an image which is to be recovered from noisy data z. Certain {open_quotes}blurring processes{close_quotes} may be represented by the action of an operator A on the image u.

  6. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  7. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion

  8. A Fast and Accurate Algorithm for l1 Minimization Problems in Compressive Sampling (Preprint)

    Science.gov (United States)

    2013-01-22

    However, updating uk+1 via the formulation of Step 2 in Algorithm 1 can be implemented through the use of the component-wise Gauss - Seidel iteration which...may accelerate the rate of convergence of the algorithm and therefore reduce the total CPU-time consumed. The efficiency of component-wise Gauss - Seidel ...Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012), p

  9. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  10. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  11. On the fine-tuning problem in minimal SO(10) SUSY-GUT

    International Nuclear Information System (INIS)

    Hempfling, R.

    1994-05-01

    In grand unified theories (GUT) based on SO(10) all fermions of one generation are embedded in a single representation. As a result, the top quark, the bottom quark, and the τ lepton have the same Yukawa coupling at the GUT scale. This implies a very large ratio of Higgs vacuum expectation values, tanβ≅m t /m b . In this letter we show that GUT threshold correction to the universal Higgs mass parameter can solve the fine-tuning problem associated with such large values of tan β. (orig.)

  12. Principles of waveform diversity and design

    CERN Document Server

    Wicks, Michael

    2011-01-01

    This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is

  13. CONSIDERATIONS ABOVE THE MINI-CONSTITUENT PROPOSAL AND THE PROBLEMS MINIMIZATION (FROM CONSTITUTIONAL DIRIGISME TO THE EXPECTATIONS FRUSTRATION)

    OpenAIRE

    Padua, Átila Andrade

    2015-01-01

    With the June movements of 2013 was fostered the proposal to convene a "mini constituent" as a possibility to minimize the problems experienced by Brazilian society. Considering the constitutional  work  of  the  influx  Portuguese  José  Joaquim  Gomes  Canotilho  this constitutional model and the breaking of paradigms that represented the turgid Brazilian and Portuguese  constitutions,  dedicated  special  attention  to  the  differentiation  of  program standards with the constitutional di...

  14. Does self-help increase rates of help seeking for student mental health problems by minimizing stigma as a barrier?

    Science.gov (United States)

    Levin, Michael E; Krafft, Jennifer; Levin, Crissa

    2018-01-01

    This study examined whether self-help (books, websites, mobile apps) increases help seeking for mental health problems among college students by minimizing stigma as a barrier. A survey was conducted with 200 college students reporting elevated distress from February to April 2017. Intentions to use self-help were low, but a significant portion of students unwilling to see mental health professionals intended to use self-help. Greater self-stigma related to lower intentions to seek professional help, but was unrelated to seeking self-help. Similarly, students who only used self-help in the past reported higher self-stigma than those who sought professional treatment in the past. Although stigma was not a barrier for self-help, alternate barriers were identified. Offering self-help may increase rates of students receiving help for mental health problems, possibly by offering an alternative for students unwilling to seek in-person therapy due to stigma concerns.

  15. Seismic waveform modeling over cloud

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  16. Multichannel waveform display system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.

    1989-01-01

    For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs

  17. A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop Sequence Dependent Group Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2014-07-01

    Full Text Available Production processes in Cellular Manufacturing Systems (CMS often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs and Biased Random Sampling (BRS search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation.

  18. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  19. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    Energy Technology Data Exchange (ETDEWEB)

    de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  20. Electronics via waveform analysis

    CERN Document Server

    Craig, Edwin C

    1993-01-01

    The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.

  1. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    Science.gov (United States)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  2. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  3. Waveform Sampler CAMAC Module

    International Nuclear Information System (INIS)

    Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.

    1985-09-01

    A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 μs conversion time and stored in an on-board memory accessible through CAMAC

  4. Towards full waveform ambient noise inversion

    Science.gov (United States)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  5. Two collateral problems in the framework of ground-penetrating radar data inversion: influence of the emitted waveform outline and radargram comparison.

    Science.gov (United States)

    Oliveira, Rui Jorge; Caldeira, Bento; Borges, José Fernando

    2017-04-01

    Obtain three-dimensional models of the physical properties of buried structures in the subsurface by inversion of GPR data is an appeal to Archaeology and a challenge to Geophysics. Along the research of solutions to resolve this issue stand out two major problems that need to be solved: 1) Establishment the basis of the computation that allows assign numerically in the synthetic radargrams, the physical conditions at which the GPR wave were generated; and 2) automatic comparison of the computed synthetic radargrams with the correspondent observed ones. The influence of the pulse shape in GPR data processing was a studied topic. The pulse outline emitted by GPR antennas was experimentally acquired and this information has been used in the deconvolution operation, carried out by iterative process, similarly the approach used in seismology to obtain the receiver functions. In order to establish the comparison between real and synthetic radargrams, were tested automatic image adjustment algorithms, which search the best fit between two radargramas and quantify their differences through the calculation of Normalized Root Mean Square Deviation (NRMSD). After the implementation of the last tests, the NRMSD between the synthetic and real data is about 19% (initially it was 29%). These procedures are essential to be able to perform an inversion of GPR data obtained in the field. Acknowledgment: This work is co-funded by the European Union through the European Regional Development Fund, included in the COMPETE 2020 (Operational Program Competitiveness and Internationalization) through the ICT project (UID/GEO/04683/2013) with the reference POCI-01-0145-FEDER-007690.

  6. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  7. Waveform Catalog, Extreme Mass Ratio Binary (Capture)

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  8. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    Science.gov (United States)

    Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel

    2014-07-01

    We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a

  9. Multiples waveform inversion

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.

  10. Measures for simultaneous minimization of alkali related operating problems, Phase 2; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem, Etapp 2. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Aamand, Lars-Erik; Steenari, Britt-Marie; Folkeson, Nicklas; Pettersson, Jesper; Svensson, Jan-Erik; Boss, Anna; Johansson, Linda; Kassman, Haakan

    2007-12-15

    Combustion of an increasing amount of biofuel and waste woods has resulted in certain environmental advantages, including decreased emissions of fossil CO{sub 2}, SO{sub 2} and metals. On the other hand, a number of chloride and alkali related operational problems have occurred which are related to combustion of these fuels. Alkali related operational problems have been studied in a project consisting of two parts. The overall scope has been to characterise the operational problems and to study measures to minimise them. The first part was reported in Vaermeforsk report 997. In part two, additional measures have been included in the test plan and initial corrosion has been studied linked to the different measures. The tests have also in part two been carried out at the 12 MW CFB boiler at Chalmers. The effect of the selected measures has been investigated concerning both deposit formation and bed agglomeration, and at the same time emissions and other operational conditions were characterised. The second part of the project has among other things focused on: To investigate measures which decrease the content of alkali and chloride in the deposits, and consequently decrease the risk for corrosion (by investigating the initial corrosion). Focus was also on trying to explain favourable effects. To investigate if it is possible to combine a rather low dosage of kaolin and injection of ammonium sulphate. This was done in order to reduce both bed agglomeration and problems from deposits during combustion of fuels rich in chlorine. To investigate if co-combustion with sewage sludge, de-inking sludge or peat with high ash content, could give similar advantages as conventional additives. Investigate if ash from PFBC (coal ash and dolomite) is possible to use as an alternative bed material. In the reference case, straw pellets were co-combusted together with wood pellets. This fuel mixture gave high alkali and chlorine contents. Alkali was in surplus of chlorine. The

  11. Propagation compensation by waveform predistortion

    Science.gov (United States)

    Halpin, Thomas F.; Urkowitz, Harry; Maron, David E.

    Certain modifications of the Cobra Dane radar are considered, particularly modernization of the waveform generator. For wideband waveforms, the dispersive effects of the ionosphere become increasingly significant. The technique of predistorting the transmitted waveform so that a linear chirp is received after two-way passage is one way to overcome that dispersion. This approach is maintained for the modified system, but with a specific predistortion waveform well suited to the modification. The appropriate form of predistortion was derived in an implicit form of time as a function of frequency. The exact form was approximated by Taylor series and pseudo-Chebyshev approximation. The latter proved better, as demonstrated by the resulting smaller loss in detection sensitivity, less coarsening of range resolution, and a lower peak sidelobe. The effects of error in determining the plasma delay constant were determined and are given in graphical form. A suggestion for in-place determination of the plasma delay constant is given.

  12. Selective data extension for full-waveform inversion: An efficient solution for cycle skipping

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do

  13. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali; Min, Dong-Joo

    2015-01-01

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a

  14. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2007-01-01

    We address the problem of constructing high-accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes. We work within the effective-one-body (EOB) framework and propose a methodology for improving the current (waveform) implementations of this framework based on understanding, element by element, the physics behind each feature of the waveform and on systematically comparing various EOB-based waveforms with exact waveforms obtained by numerical relativity approaches. The present paper focuses on small-mass-ratio nonspinning binary systems, which can be conveniently studied by Regge-Wheeler-Zerilli-type methods. Our results include (i) a resummed, 3 PN-accurate description of the inspiral waveform, (ii) a better description of radiation reaction during the plunge, (iii) a refined analytic expression for the plunge waveform, (iv) an improved treatment of the matching between the plunge and ring-down waveforms. This improved implementation of the EOB approach allows us to construct complete analytic waveforms which exhibit a remarkable agreement with the exact ones in modulus, frequency, and phase. In particular, the analytic and numerical waveforms stay in phase, during the whole process, within ±1.1% of a cycle. We expect that the extension of our methodology to the comparable-mass case will be able to generate comparably accurate analytic waveforms of direct use for the ground-based network of interferometric detectors of gravitational waves

  15. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Scott E. Field

    2014-07-01

    Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in

  16. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  17. A Time Domain Waveform for Testing General Relativity

    International Nuclear Information System (INIS)

    Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K

    2015-01-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)

  18. Adaptive phase k-means algorithm for waveform classification

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  19. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  20. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.

  1. 3D Electric Waveforms of Solar Wind Turbulence

    Science.gov (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2018-01-01

    Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.

  2. Design and implement of system for browsing remote seismic waveform based on B/S schema

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Wang Zhihai; Sun Peng; Jin Ping; Yan Feng

    2006-01-01

    Browsing remote seismic waveform based on B/S schema is of significance in modern seismic research and data service, and the technology should be improved urgently. This paper describes the basic plan, architecture and implement of system for browsing remote seismic waveform based on B/S schema. The problem to access, browse and edit the waveform data on serve from client only using browser has been solved. On this basis, the system has been established and been in use. (authors)

  3. Closed-loop waveform control of boost inverter

    DEFF Research Database (Denmark)

    Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran

    2016-01-01

    The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...

  4. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  5. Overuse of helicopter transport in the minimally injured: A health care system problem that should be corrected.

    Science.gov (United States)

    Vercruysse, Gary A; Friese, Randall S; Khalil, Mazhar; Ibrahim-Zada, Irada; Zangbar, Bardiya; Hashmi, Ammar; Tang, Andrew; O'Keeffe, Terrence; Kulvatunyou, Narong; Green, Donald J; Gries, Lynn; Joseph, Bellal; Rhee, Peter M

    2015-03-01

    Mortality benefit has been demonstrated for trauma patients transported via helicopter but at great cost. This study identified patients who did not benefit from helicopter transport to our facility and demonstrates potential cost savings when transported instead by ground. We performed a 6-year (2007-2013) retrospective analysis of all trauma patients presenting to our center. Patients with a known mode of transfer were included in the study. Patients with missing data and those who were dead on arrival were excluded from the study. Patients were then dichotomized into helicopter transfer and ground transfer groups. A subanalysis was performed between minimally injured patients (ISS helicopter and 76.7% (3,992) were transferred via ground transport. Helicopter-transferred patients had longer hospital (p = 0.001) and intensive care unit (p = 0.001) stays. There was no difference in mortality between the groups (p = 0.6).On subanalysis of minimally injured patients there was no difference in hospital length of stay (p = 0.1) and early discharge (p = 0.6) between the helicopter transfer and ground transfer group. Average helicopter transfer cost at our center was $18,000, totaling $4,860,000 for 270 minimally injured helicopter-transferred patients. Nearly one third of patients transported by helicopter were minimally injured. Policies to identify patients who do not benefit from helicopter transport should be developed. Significant reduction in transport cost can be made by judicious selection of patients. Education to physicians calling for transport and identification of alternate means of transportation would be both safe and financially beneficial to our system. Epidemiologic study, level III. Therapeutic study, level IV.

  6. A New Waveform Mosaic Algorithm in the Vectorization of Paper Seismograms

    Directory of Open Access Journals (Sweden)

    Maofa Wang

    2014-11-01

    Full Text Available History paper seismograms are very important information for earthquake monitoring and prediction, and the vectorization of paper seismograms is a very import problem to be resolved. In this paper, a new waveform mosaic algorithm in the vectorization of paper seismograms is presented. We also give out the technological process to waveform mosaic, and a waveform mosaic system used to vectorize analog seismic record has been accomplished independently. Using it, we can precisely and speedy accomplish waveform mosaic for vectorizing analog seismic records.

  7. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  8. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from

  9. Experimental validation of waveform relaxation technique for power ...

    Indian Academy of Sciences (India)

    damping controller drawn our attention to a potential convergence problem which ... method was originally proposed as a method of parallelizing the numerical integration of very. Figure 2 ..... to it the features of an industrial real-time operating system. ..... Odeh F and Ruehli A 1985 Waveform relaxation: Theory and practice.

  10. Minimal Paths in the City Block: Human Performance on Euclidean and Non-Euclidean Traveling Salesperson Problems

    Science.gov (United States)

    Walwyn, Amy L.; Navarro, Daniel J.

    2010-01-01

    An experiment is reported comparing human performance on two kinds of visually presented traveling salesperson problems (TSPs), those reliant on Euclidean geometry and those reliant on city block geometry. Across multiple array sizes, human performance was near-optimal in both geometries, but was slightly better in the Euclidean format. Even so,…

  11. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  13. Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time

    Directory of Open Access Journals (Sweden)

    Rinto Yusriski

    2015-09-01

    Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.

  14. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  15. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    Science.gov (United States)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  16. First and second order derivatives for optimizing parallel RF excitation waveforms.

    Science.gov (United States)

    Majewski, Kurt; Ritter, Dieter

    2015-09-01

    For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. First and second order derivatives for optimizing parallel RF excitation waveforms

    Science.gov (United States)

    Majewski, Kurt; Ritter, Dieter

    2015-09-01

    For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.

  18. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    Science.gov (United States)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full

  19. Extension of Modified Polak-Ribière-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems

    Directory of Open Access Journals (Sweden)

    Zhifeng Dai

    2014-01-01

    Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.

  20. Measures for simultaneous minimisation of alkali related operating problems; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, Kent; Eskilsson, David; Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Kassman, Haakan; Steenari, Britt-Marie; Aamand, Lars-Erik

    2006-12-15

    Combustion of biofuel and waste wood is often accompanied by chlorine and alkali related operating problems such as slagging, deposit formation and corrosion on heat exchanger surfaces and bed agglomeration in fluidised bed boilers. In order to gain a greater insight into possible measures to overcome alkali related operating problems studies were carried out during 2005-2006. The results of the studies are presented in this report which includes work performed in the two following projects: 1 A5-509 Frame work - measures for simultaneous minimisation of alkali related operating problems 2 A5-505 Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials Full-scale experiments were carried out at Chalmers 12 MW{sub th} CFB boiler within the project A5-509. The purpose was to study the effect of various measures on bed agglomeration and deposit formation in connection with co-combustion of wood and straw pellets. The various measures included changing the bed material (blast furnace sand and olivine sand), adding various additives (kaolin, ammonium sulphate, elemental sulphur) and also co-combustion with sewage sludge. Furthermore results from kaolin experiments at the 26 MWth CFB boiler owned by Naessjoe Affaersverk were made available during the project and are also presented in this report. The results from the experiments at Chalmers revealed that, already at the lowest dosage of kaolin, approx. 2 kg/MWh, the bed material agglomeration temperatures increased significantly. The dosage of kaolin can presumably be reduced somewhat further while still maintaining the high agglomeration temperature. Experiments with a higher dosage of kaolin, 7 kg/MWh, proved that kaolin could also reduce the risk of deposit problems. The experiments at Naessjoe showed also that addition of kaolin increased the agglomeration temperature of the bed material. Addition of sulphur in any form resulted in a

  1. Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non-compact settings and minimization problems

    Directory of Open Access Journals (Sweden)

    Chowdhury Molhammad SR

    2000-01-01

    Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.

  2. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  3. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2016-01-01

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  4. On the application of neural networks to the classification of phase modulated waveforms

    Science.gov (United States)

    Buchenroth, Anthony; Yim, Joong Gon; Nowak, Michael; Chakravarthy, Vasu

    2017-04-01

    Accurate classification of phase modulated radar waveforms is a well-known problem in spectrum sensing. Identification of such waveforms aids situational awareness enabling radar and communications spectrum sharing. While various feature extraction and engineering approaches have sought to address this problem, the use of a machine learning algorithm that best utilizes these features is becomes foremost. In this effort, a comparison of a standard shallow and a deep learning approach are explored. Experiments provide insights into classifier architecture, training procedure, and performance.

  5. Minimizing waste (off-cuts using cutting stock model: The case of one dimensional cutting stock problem in wood working industry

    Directory of Open Access Journals (Sweden)

    Gbemileke A. Ogunranti

    2016-09-01

    Full Text Available Purpose: The main objective of this study is to develop a model for solving the one dimensional cutting stock problem in the wood working industry, and develop a program for its implementation. Design/methodology/approach: This study adopts the pattern oriented approach in the formulation of the cutting stock model. A pattern generation algorithm was developed and coded using Visual basic.NET language. The cutting stock model developed is a Linear Programming (LP Model constrained by numerous feasible patterns. A LP solver was integrated with the pattern generation algorithm program to develop a one - dimensional cutting stock model application named GB Cutting Stock Program. Findings and Originality/value: Applying the model to a real life optimization problem significantly reduces material waste (off-cuts and minimizes the total stock used. The result yielded about 30.7% cost savings for company-I when the total stock materials used is compared with the former cutting plan. Also, to evaluate the efficiency of the application, Case I problem was solved using two top commercial 1D-cutting stock software.  The results show that the GB program performs better when related results were compared. Research limitations/implications: This study round up the linear programming solution for the number of pattern to cut. Practical implications: From Managerial perspective, implementing optimized cutting plans increases productivity by eliminating calculating errors and drastically reducing operator mistakes. Also, financial benefits that can annually amount to millions in cost savings can be achieved through significant material waste reduction. Originality/value: This paper developed a linear programming one dimensional cutting stock model based on a pattern generation algorithm to minimize waste in the wood working industry. To implement the model, the algorithm was coded using VisualBasic.net and linear programming solver called lpsolvedll (dynamic

  6. PBX-M waveform generator

    International Nuclear Information System (INIS)

    Feng, H.; Frank, K.T.; Kaye, S.

    1987-01-01

    The PBX-M (Princeton Beta Experiment) is an unique Tokamak experiment designed to run with a highly indented plasma. The shaping control will be accomplished through a closed-loop power supply control system. The system will make use of sixteen pre-programmed reference signals and twenty signals taken from direct measurements as input to an analog computer. Through a matrix conversion in the analog computer, these input signals will be used to generate eight control signals to control the eight power supplies. The pre-programmed reference signals will be created using a Macintosh personal computer interfaced to CAMAC (Comptuer Automated Measurement And Control) hardware for down-loading waveforms. The reference signals will be created on the Macintosh by the physics operators, utilizing the full graphics capability of the system. These waveforms are transferred to CAMAC memory, which are then strobed in real time through digital-to-analog converters and fed into the analog computer. The overall system (both hardware and software) is designed to be fail-safe. Specific features of the system, such as load inhibit and discharge inhibit, are discussed

  7. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok

    2013-09-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply multisource full-waveform inversion to marine streamer data, we construct the L1- and L2-norm objective functions using the normalized wavefield. The new residual seismograms obtained from the L1- and L2-norms using the normalized wavefield mitigate the problem of unmatched acquisition geometries, which enables multisource full-waveform inversion to work with marine streamer data. In the new approaches using the normalized wavefield, we used the back-propagation algorithm based on the adjoint-state technique to efficiently calculate the gradients of the objective functions. Numerical examples showed that multisource full-waveform inversion using the normalized wavefield yields much better convergence for marine streamer data than conventional approaches. © 2013 Society of Exploration Geophysicists.

  8. Minimizing the Makespan for a Two-Stage Three-Machine Assembly Flow Shop Problem with the Sum-of-Processing-Time Based Learning Effect

    Directory of Open Access Journals (Sweden)

    Win-Chin Lin

    2018-01-01

    Full Text Available Two-stage production process and its applications appear in many production environments. Job processing times are usually assumed to be constant throughout the process. In fact, the learning effect accrued from repetitive work experiences, which leads to the reduction of actual job processing times, indeed exists in many production environments. However, the issue of learning effect is rarely addressed in solving a two-stage assembly scheduling problem. Motivated by this observation, the author studies a two-stage three-machine assembly flow shop problem with a learning effect based on sum of the processing times of already processed jobs to minimize the makespan criterion. Because this problem is proved to be NP-hard, a branch-and-bound method embedded with some developed dominance propositions and a lower bound is employed to search for optimal solutions. A cloud theory-based simulated annealing (CSA algorithm and an iterated greedy (IG algorithm with four different local search methods are used to find near-optimal solutions for small and large number of jobs. The performances of adopted algorithms are subsequently compared through computational experiments and nonparametric statistical analyses, including the Kruskal–Wallis test and a multiple comparison procedure.

  9. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  10. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  11. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10 -10 . To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the (π + → μ + ν, μ + → e + ν/bar /nu//) decay sequence in scintillator. We report on the design and construction of 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February-May 1988 run showing performance of the system for the observation of the above decay. 8 figs

  12. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10/sup /minus/10/. To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the π + → μ + → e + ν/bar /nu// decay sequence in scintillator. We report on the design and construction of over 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February--May 1988 run showing performance of the system for the observation of the above decay. 9 figs

  13. Frequency domain, waveform inversion of laboratory crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  14. Multifunction waveform generator for EM receiver testing

    Science.gov (United States)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  15. Strategies for the characteristic extraction of gravitational waveforms

    International Nuclear Information System (INIS)

    Babiuc, M. C.; Bishop, N. T.; Szilagyi, B.; Winicour, J.

    2009-01-01

    We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Ψ 4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Ψ 4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves.

  16. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-01-01

    waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking

  17. Developed vibration waveform monitoring unit for CBM

    International Nuclear Information System (INIS)

    Hamada, T.; Hotsuta, K.; Hirose, I.; Morita, E.

    2007-01-01

    In nuclear power plants, many rotating machines such as pumps and fans are in use. Shikoku Research Institute Inc. has recently developed easy-to-use tools to facilitate the maintenance of such equipment. They include a battery-operated vibration waveform monitoring unit which allows unmanned vibration monitoring on a regular basis and data collection even from intermittently operating equipment, a waveform data collector which can be used for easy collection, storage, control, and analysis of raw vibration waveform data during normal operation, and vibration analysis and evaluation tools. A combination of these tools has a high potential for optimization of rotating equipment maintenance. (author)

  18. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  19. A Practical and Robust Execution Time-Frame Procedure for the Multi-Mode Resource-Constrained Project Scheduling Problem with Minimal and Maximal Time Lags

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2016-09-01

    Full Text Available Modeling and optimizing organizational processes, such as the one represented by the Resource-Constrained Project Scheduling Problem (RCPSP, improve outcomes. Based on assumptions and simplification, this model tackles the allocation of resources so that organizations can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure that can guide project management practitioners in their scheduling tasks. This is mainly because many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they propose solution procedures not easily applicable or even feasible in real-life situations. In this study, we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal time lags (MRCPSP/max. The complexity of the model solved is presented, and the practicality of the proposed approach is justified depending on only information that is available for every project regardless of its industrial context. The results confirm that it is possible to determine a robust makespan and to calculate an execution time-frame with gaps lower than 11% between their lower and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the best-known optimum.

  20. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.

    2017-01-01

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  1. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  2. SeisFlows-Flexible waveform inversion software

    Science.gov (United States)

    Modrak, Ryan T.; Borisov, Dmitry; Lefebvre, Matthieu; Tromp, Jeroen

    2018-06-01

    SeisFlows is an open source Python package that provides a customizable waveform inversion workflow and framework for research in oil and gas exploration, earthquake tomography, medical imaging, and other areas. New methods can be rapidly prototyped in SeisFlows by inheriting from default inversion or migration classes, and code can be tested on 2D examples before application to more expensive 3D problems. Wave simulations must be performed using an external software package such as SPECFEM3D. The ability to interface with external solvers lends flexibility, and the choice of SPECFEM3D as a default option provides optional GPU acceleration and other useful capabilities. Through support for massively parallel solvers and interfaces for high-performance computing (HPC) systems, inversions with thousands of seismic traces and billions of model parameters can be performed. So far, SeisFlows has run on clusters managed by the Department of Defense, Chevron Corp., Total S.A., Princeton University, and the University of Alaska, Fairbanks.

  3. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok

    2013-09-26

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.

  4. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  5. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  6. Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

    International Nuclear Information System (INIS)

    Vega, J.; Pereira, A.; Portas, A.; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Santos, M.; Sanchez, E.; Pajares, G.

    2008-01-01

    Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system

  7. Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N. [Departamento de Informatica y Automatica, UNED, Madrid (Spain); Santos, M. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain); Sanchez, E. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Pajares, G. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain)

    2008-01-15

    Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.

  8. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  9. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    Science.gov (United States)

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  10. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  11. WFCatalog: A catalogue for seismological waveform data

    Science.gov (United States)

    Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa

    2017-09-01

    This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.

  12. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  13. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  14. Wavelet analysis of the impedance cardiogram waveforms

    International Nuclear Information System (INIS)

    Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K

    2012-01-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  15. Waveform Design for Wireless Power Transfer

    Science.gov (United States)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  16. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Directory of Open Access Journals (Sweden)

    Miki Motohashi-Saigo

    2009-06-01

    Full Text Available The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV and auditory-only (A-only Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two conditions (isolated words, carrier sentences. Fillers with long vowels were included. Participants completed a forced-choice identification task involving minimal triplets: singletons, geminates, long vowels (e.g., sasu, sassu, saasu. Results revealed a significant improvement in geminate identification following training, especially for AV; b significant effect of geminate (lowest scores for /s/; c no significant effect of condition; and d no significant improvement for the control group. Most errors were misperceptions of geminates as long vowels. Test of generalization revealed 5% decline in accuracy for AV and 14% for A-only. Geminate production improved significantly (especially for AV based on rater judgments; improvement was greatest for /k/ and smallest for /s/. Most production errors involved substitution of a singleton for a geminate. Post-study interviews produced positive comments on Web-based training. Waveforms increased awareness of durational differences. Results support the effectiveness of auditory-visual input in L2 perception training with transfer to novel stimuli and improved production.

  17. Taxonomic minimalism.

    Science.gov (United States)

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  18. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  19. Optimal overlapping of waveform relaxation method for linear differential equations

    International Nuclear Information System (INIS)

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  20. A multi-channel waveform digitizer system

    International Nuclear Information System (INIS)

    Bieser, F.; Muller, W.F.J.

    1990-01-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus

  1. Resolution analysis in full waveform inversion

    NARCIS (Netherlands)

    Fichtner, A.; Trampert, J.

    2011-01-01

    We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic

  2. Classification of morphologic changes in photoplethysmographic waveforms

    Directory of Open Access Journals (Sweden)

    Tigges Timo

    2016-09-01

    Full Text Available An ever increasing number of research is examining the question to what extent physiological information beyond the blood oxygen saturation could be drawn from the photoplethysmogram. One important approach to elicit that information from the photoplethysmogram is the analysis of its waveform. One prominent example for the value of photoplethysmographic waveform analysis in cardiovascular monitoring that has emerged is hemodynamic compensation assessment in the peri-operative setting or trauma situations, as digital pulse waveform dynamically changes with alterations in vascular tone or pulse wave velocity. In this work, we present an algorithm based on modern machine learning techniques that automatically finds individual digital volume pulses in photoplethysmographic signals and sorts them into one of the pulse classes defined by Dawber et al. We evaluate our approach based on two major datasets – a measurement study that we conducted ourselves as well as data from the PhysioNet MIMIC II database. As the results are satisfying we could demonstrate the capabilities of classification algorithms in the automated assessment of the digital volume pulse waveform measured by photoplethysmographic devices.

  3. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.; Alkhalifah, Tariq Ali

    2015-01-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi

  4. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  5. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok; Min, Dong Joon

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating

  6. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-01-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like

  7. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2016-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current

  8. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi

    2017-01-01

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic

  9. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    , the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  10. Retrieving rupture history using waveform inversions in time sequence

    Science.gov (United States)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  11. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    Science.gov (United States)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  12. Codesign of Beam Pattern and Sparse Frequency Waveforms for MIMO Radar

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2015-01-01

    Full Text Available Multiple-input multiple-output (MIMO radar takes the advantages of high degrees of freedom for beam pattern design and waveform optimization, because each antenna in centralized MIMO radar system can transmit different signal waveforms. When continuous band is divided into several pieces, sparse frequency radar waveforms play an important role due to the special pattern of the sparse spectrum. In this paper, we start from the covariance matrix of the transmitted waveform and extend the concept of sparse frequency design to the study of MIMO radar beam pattern. With this idea in mind, we first solve the problem of semidefinite constraint by optimization tools and get the desired covariance matrix of the ideal beam pattern. Then, we use the acquired covariance matrix and generalize the objective function by adding the constraint of both constant modulus of the signals and corresponding spectrum. Finally, we solve the objective function by the cyclic algorithm and obtain the sparse frequency MIMO radar waveforms with desired beam pattern. The simulation results verify the effectiveness of this method.

  13. Minimal quantization and confinement

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.

    1987-01-01

    A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement

  14. Optimization of Modulation Waveforms for Improved EMI Attenuation in Switching Frequency Modulated Power Converters

    Directory of Open Access Journals (Sweden)

    Deniss Stepins

    2015-01-01

    Full Text Available Electromagnetic interference (EMI is one of the major problems of switching power converters. This paper is devoted to switching frequency modulation used for conducted EMI suppression in switching power converters. Comprehensive theoretical analysis of switching power converter conducted EMI spectrum and EMI attenuation due the use of traditional ramp and multislope ramp modulation waveforms is presented. Expressions to calculate EMI spectrum and attenuation are derived. Optimization procedure of the multislope ramp modulation waveform is proposed to get maximum benefits from switching frequency modulation for EMI reduction. Experimental verification is also performed to prove that the optimized multislope ramp modulation waveform is very useful solution for effective EMI reduction in switching power converters.

  15. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  16. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang

    2017-08-16

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  17. Prototype of a transient waveform recording ASIC

    Science.gov (United States)

    Qin, J.; Zhao, L.; Cheng, B.; Chen, H.; Guo, Y.; Liu, S.; An, Q.

    2018-01-01

    The paper presents the design and measurement results of a transient waveform recording ASIC based on the Switched Capacitor Array (SCA) architecture. This 0.18 μm CMOS prototype device contains two channels and each channel employs a SCA of 128 samples deep, a 12-bit Wilkinson ADC and a serial data readout. A series of tests have been conducted and the results indicate that: a full 1 V signal voltage range is available, the input analog bandwidth is approximately 450 MHz and the sampling speed is adjustable from 0.076 to 3.2 Gsps (Gigabit Samples Per Second). For precision waveform timing extraction, careful calibration of timing intervals between samples is conducted to improve the timing resolution of such chips, and the timing precision of this ASIC is proved to be better than 15 ps RMS.

  18. Digitizing and analysis of neutron generator waveforms

    International Nuclear Information System (INIS)

    Bryant, T.C.

    1977-11-01

    All neutron generator waveforms from units tested at the SLA neutron generator test site are digitized and the digitized data stored in the CDC 6600 tape library for display and analysis using the CDC 6600 computer. The digitizing equipment consists mainly of seven Biomation Model 8100 transient recorders, Digital Equipment Corporation PDP 11/20 computer, RK05 disk, seven-track magnetic tape transport, and appropriate DEC and SLA controllers and interfaces. The PDP 11/20 computer is programmed in BASIC with assembly language drivers. In addition to digitizing waveforms, this equipment is used for other functions such as the automated testing of multiple-operation electronic neutron generators. Although other types of analysis have been done, the largest use of the digitized data has been for various types of graphical displays using the CDC 6600 and either the SD4020 or DX4460 plotters

  19. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  20. Induced waveform transitions of dissipative solitons

    Science.gov (United States)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2018-01-01

    The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

  1. Advanced Waveform Simulation for Seismic Monitoring

    Science.gov (United States)

    2008-09-01

    velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range

  2. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.

    2015-09-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1

  3. Integration and interpolation of sampled waveforms

    International Nuclear Information System (INIS)

    Stearns, S.D.

    1978-01-01

    Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed

  4. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    Science.gov (United States)

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    Science.gov (United States)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  6. 'Generalizability' of a radial-aortic transfer function for the derivation of central aortic waveform parameters.

    Science.gov (United States)

    Hope, Sarah A; Meredith, Ian T; Tay, David; Cameron, James D

    2007-09-01

    Arterial transfer functions (TFs) describe the relationship between the pressure waveform at different arterial sites. Generalized TFs are used to reconstruct central aortic waveforms from non-invasively obtained peripheral waveforms and have been promoted as potentially clinically useful. A limitation is the paucity of information on their 'generalizability' with no information existing on the number of subjects required to construct a satisfactory TF, nor is adequate prospective validation available. We therefore investigated the uniformity of radial-aortic TFs and prospectively estimated the capacity of a generalized TF to reconstruct individual central blood pressure parameters. Ninety-three subjects (64 male) were studied by simultaneous radial applanation and high-fidelity (Millar Mikro-tip catheter) direct measurement of central aortic BP during elective coronary procedures. Subjects were prospectively randomized to either a derivation or validation group. Increasing numbers of individual TFs from the derivation group were averaged to form a generalized TF. There was minimal change with greater than 20 TFs averaged. In the validation group, the error in most reconstructed parameters related to the absolute value of the directly measured parameter [systolic blood pressure (SBP) and pulse pressure, Pcentral aortic SBP and pulse pressure (negatively) and time to peak systole (positively) (all PInclusion of more than 20 individual TFs in the construction of a generalized TF does not improve 'generalizability'. There appear to be systematic errors in derived central pressure waveforms and derived aortic augmentation index is inaccurate compared to the directly measured value.

  7. Time-dependent phase error correction using digital waveform synthesis

    Science.gov (United States)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  8. Sparse Frequency Waveform Design for Radar-Embedded Communication

    Directory of Open Access Journals (Sweden)

    Chaoyun Mai

    2016-01-01

    Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.

  9. Classical strings and minimal surfaces

    International Nuclear Information System (INIS)

    Urbantke, H.

    1986-01-01

    Real Lorentzian forms of some complex or complexified Euclidean minimal surfaces are obtained as an application of H.A. Schwarz' solution to the initial value problem or a search for surfaces admitting a group of Poincare transformations. (Author)

  10. Salvus: A scalable software suite for full-waveform modelling & inversion

    Science.gov (United States)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical

  11. Conditioning the full waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  12. Conditioning the full waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-08-05

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  13. Joint optimization of MIMO radar waveform and biased estimator with prior information in the presence of clutter

    Directory of Open Access Journals (Sweden)

    Liu Hongwei

    2011-01-01

    Full Text Available Abstract In this article, we consider the problem of joint optimization of multi-input multi-output (MIMO radar waveform and biased estimator with prior information on targets of interest in the presence of signal-dependent noise. A novel constrained biased Cramer-Rao bound (CRB based method is proposed to optimize the waveform covariance matrix (WCM and biased estimator such that the performance of parameter estimation can be improved. Under a simplifying assumption, the resultant nonlinear optimization problem is solved resorting to a convex relaxation that belongs to the semidefinite programming (SDP class. An optimal solution of the initial problem is then constructed through a suitable approximation to an optimal solution of the relaxed one (in a least squares (LS sense. Numerical results show that the performance of parameter estimation can be improved considerably by the proposed method compared to uncorrelated waveforms.

  14. Advances in Global Full Waveform Inversion

    Science.gov (United States)

    Tromp, J.; Bozdag, E.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Modrak, R. T.; Orsvuran, R.; Smith, J. A.; Komatitsch, D.; Peter, D. B.

    2017-12-01

    Information about Earth's interior comes from seismograms recorded at its surface. Seismic imaging based on spectral-element and adjoint methods has enabled assimilation of this information for the construction of 3D (an)elastic Earth models. These methods account for the physics of wave excitation and propagation by numerically solving the equations of motion, and require the execution of complex computational procedures that challenge the most advanced high-performance computing systems. Current research is petascale; future research will require exascale capabilities. The inverse problem consists of reconstructing the characteristics of the medium from -often noisy- observations. A nonlinear functional is minimized, which involves both the misfit to the measurements and a Tikhonov-type regularization term to tackle inherent ill-posedness. Achieving scalability for the inversion process on tens of thousands of multicore processors is a task that offers many research challenges. We initiated global "adjoint tomography" using 253 earthquakes and produced the first-generation model named GLAD-M15, with a transversely isotropic model parameterization. We are currently running iterations for a second-generation anisotropic model based on the same 253 events. In parallel, we continue iterations for a transversely isotropic model with a larger dataset of 1,040 events to determine higher-resolution plume and slab images. A significant part of our research has focused on eliminating I/O bottlenecks in the adjoint tomography workflow. This has led to the development of a new Adaptable Seismic Data Format based on HDF5, and post-processing tools based on the ADIOS library developed by Oak Ridge National Laboratory. We use the Ensemble Toolkit for workflow stabilization & management to automate the workflow with minimal human interaction.

  15. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. DFT-Based Closed-form Covariance Matrix and Direct Waveforms Design for MIMO Radar to Achieve Desired Beampatterns

    KAUST Repository

    Bouchoucha, Taha

    2017-01-23

    In multiple-input multiple-out (MIMO) radar, for desired transmit beampatterns, appropriate correlated waveforms are designed. To design such waveforms, conventional MIMO radar methods use two steps. In the first step, the waveforms covariance matrix, R, is synthesized to achieve the desired beampattern. While in the second step, to realize the synthesized covariance matrix, actual waveforms are designed. Most of the existing methods use iterative algorithms to solve these constrained optimization problems. The computational complexity of these algorithms is very high, which makes them difficult to use in practice. In this paper, to achieve the desired beampattern, a low complexity discrete-Fourier-transform based closed-form covariance matrix design technique is introduced for a MIMO radar. The designed covariance matrix is then exploited to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms for the desired beampattern. The proposed technique can be used to design waveforms for large antenna array to change the beampattern in real time. It is also shown that the number of transmitted symbols from each antenna depends on the beampattern and is less than the total number of transmit antenna elements.

  17. Best waveform score for diagnosing keratoconus

    Directory of Open Access Journals (Sweden)

    Allan Luz

    2013-12-01

    Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.

  18. Early Cambrian wave-formed shoreline deposits

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Glad, Aslaug Clemmensen; Pedersen, Gunver Krarup

    2017-01-01

    -preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal....... During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well...

  19. Waveform design for wireless power transfer

    OpenAIRE

    Clerckx, B; Bayguzina, E

    2016-01-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity ...

  20. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  1. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  2. Full-waveform inversion of surface waves in exploration geophysics

    Science.gov (United States)

    Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.

    2017-12-01

    Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for

  3. Performance Prediction of Constrained Waveform Design for Adaptive Radar

    Science.gov (United States)

    2016-11-01

    the famous Woodward quote, having a ubiquitous feeling for all radar waveform design (and performance prediction) researchers , that is found at the end...discuss research that develops performance prediction models to quantify the impact on SINR when an amplitude constraint is placed on a radar waveform...optimize the radar perfor- mance for the particular scenario and tasks. There have also been several survey papers on various topics in waveform design for

  4. On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology

    Science.gov (United States)

    Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-08-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.

  5. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  6. Direct Closed-Form Design of Finite Alphabet Constant Envelope Waveforms for Planar Array Beampatterns

    KAUST Repository

    Bouchoucha, Taha

    2015-05-01

    Multiple Input Multiple Output (MIMO) radar systems has attracted lately a lot of attention thanks to its advantage over the classical phased array radar systems. We site among these advantages the improvement of parametric identifiability, achievement of higher spatial resolution and design of complex beampatterns. In colocated multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest in order to increase the Signal to Noise Ratio (SNR) and reduce any undesired signal and thus improve the detection process. This problem is also known as transmit beampattern design. To achieve this goal, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate the actual transmitted waveforms. Both steps require constrained optimization. Most of the existing methods use iterative algorithms to solve these problems, therefore their computational complexity is very high which makes them hard to use in practice especially for real time radar applications. In this paper, we provide a closed-form solution to design the covariance matrix for a given beampattern in the three dimensional space using planar arrays, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms. The proposed algorithm exploits the two-dimensional discrete Fourier transform which is implemented using fast Fourier transform algorithm. Consequently, the computational complexity of the proposed beampattern solution is very low allowing it to be used for large arrays to change the beampattern in real time. We also show that the number of required snapshots in each waveform depends on the beampattern and that it is less than the total number of transmit antennas. In addition, we show that the proposed waveform design method can be used with non symmetric beampatterns. The performance of our proposed algorithm compares

  7. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  8. Advances in waveform-agile sensing for tracking

    CERN Document Server

    Sira, Sandeep Prasad

    2009-01-01

    Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav

  9. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  10. A sheath model for arbitrary radiofrequency waveforms

    Science.gov (United States)

    Turner, M. M.; Chabert, Pascal

    2012-10-01

    The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.

  11. MIMO-Radar Waveform Design for Beampattern Using Particle-Swarm-Optimisation

    KAUST Repository

    Ahmed, Sajid

    2012-07-31

    Multiple input multiple output (MIMO) radars have many advantages over their phased-array counterparts: improved spatial resolution; better parametric identifiably and greater flexibility to acheive the desired transmit beampattern. The desired transmit beampatterns using MIMO-radar requires the waveforms to have arbitrary auto- and cross-correlations. To design such waveforms, generally a waveform covariance matrix, R, is synthesised first then the actual waveforms are designed. Synthesis of the covariance matrix, R, is a constrained optimisation problem, which requires R to be positive semidefinite and all of its diagonal elements to be equal. To simplify the first constraint the covariance matrix is synthesised indirectly from its square-root matrix U, while for the second constraint the elements of the m-th column of U are parameterised using the coordinates of the m-hypersphere. This implicitly fulfils both of the constraints and enables us to write the cost-function in closed form. Then the cost-function is optimised using a simple particle-swarm-optimisation (PSO) technique, which requires only the cost-function and can optimise any choice of norm cost-function. © 2012 IEEE.

  12. Seismic waveform inversion best practices: regional, global and exploration test cases

    Science.gov (United States)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  13. An innovative scintillation process for correcting, cooling, and reducing the randomness of waveforms

    International Nuclear Information System (INIS)

    Shen, J.

    1991-01-01

    Research activities were concentrated on an innovative scintillation technique for high-energy collider detection. Heretofore, scintillation waveform data of high- energy physics events have been problematically random. This paper represents a bottleneck of data flow for the next generation of detectors for proton colliders like SSC or LHC. Prevailing problems to resolve were: additional time walk and jitter resulting from the random hitting positions of particles, increased walk and jitter caused by scintillation photon propagation dispersions, and quantum fluctuations of luminescence. However, these were manageable when the different aspects of randomness had been clarified in increased detail. For this purpose, these three were defined as pseudorandomness, quasi-randomness, and real randomness, respectively. A unique scintillation counter incorporating long scintillators with light guides, a drift chamber, and fast discriminators plus integrators was employed to resolve problems of correcting time walk and reducing the additional jitter by establishing an analytical waveform description of V(t,z) for a measured (z). Resolving problem was accomplished by reducing jitter by compressing V(t,z) with a nonlinear medium, called cooling scintillation. Resolving problem was proposed by orienting molecular and polarizing scintillation through the use of intense magnetic technology, called stabilizing the waveform

  14. Selective data extension for full-waveform inversion: An efficient solution for cycle skipping

    KAUST Repository

    Wu, Zedong

    2017-12-29

    Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.

  15. Accumulated energy norm for full waveform inversion of marine data

    Science.gov (United States)

    Shin, Changsoo; Ha, Wansoo

    2017-12-01

    Macro-velocity models are important for imaging the subsurface structure. However, the conventional objective functions of full waveform inversion in the time and the frequency domain have a limited ability to recover the macro-velocity model because of the absence of low-frequency information. In this study, we propose new objective functions that can recover the macro-velocity model by minimizing the difference between the zero-frequency components of the square of seismic traces. Instead of the seismic trace itself, we use the square of the trace, which contains low-frequency information. We apply several time windows to the trace and obtain zero-frequency information of the squared trace for each time window. The shape of the new objective functions shows that they are suitable for local optimization methods. Since we use the acoustic wave equation in this study, this method can be used for deep-sea marine data, in which elastic effects can be ignored. We show that the zero-frequency components of the square of the seismic traces can be used to recover macro-velocities from synthetic and field data.

  16. The role of the waveform in pulse pile-up

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up is the distortion of pulse-height distributions due to the overlap of detector responses to the arrival of two or more particles or photons within the detector resolving time. This paper presents a computational technique for simulating pile-up effects, which includes explicitly the dependence on the pulse-shape of the detector system. The basis of the technique is the manipulation of probability densities. The method is applicable to all types of linear pulse counting systems for nucleons, electrons, and photons, as long as the result is a pulse-height distribution. The algorithms are highly efficient in the amount of computing required for simulations, and internal checks for the numerical accuracy of the results are included. Studies of pile-up by monoenergetic pulses are used to determine the interrelationship between pulse shapes and spectral features; this information can be used to minimize pile-up. For broad spectra, the square wave approximation is compared with the present model including the correct waveform; introducing the pulse shape information smooths spectral features but does not qualitatively change the spectrum. (Auth.)

  17. Identification of complex stiffness tensor from waveform reconstruction

    Science.gov (United States)

    Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.

    2002-03-01

    An inverse method is proposed in order to determine the viscoelastic properties of composite-material plates from the plane-wave transmitted acoustic field. Analytical formulations of both the plate transmission coefficient and its first and second derivatives are established, and included in a two-step inversion scheme. Two objective functions to be minimized are then designed by considering the well-known maximum-likelihood principle and by using an analytic signal formulation. Through these innovative objective functions, the robustness of the inversion process against high level of noise in waveforms is improved and the method can be applied to a very thin specimen. The suitability of the inversion process for viscoelastic property identification is demonstrated using simulated data for composite materials with different anisotropy and damping degrees. A study of the effect of the rheologic model choice on the elastic property identification emphasizes the relevance of using a phenomenological description considering viscosity. Experimental characterizations show then the good reliability of the proposed approach. Difficulties arise experimentally for particular anisotropic media.

  18. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  19. An Overview of Radar Waveform Optimization for Target Detection

    Directory of Open Access Journals (Sweden)

    Wang Lulu

    2016-10-01

    Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.

  20. A pulse generator of arbitrary shaped waveform

    International Nuclear Information System (INIS)

    Jiang Jiayou; Chen Zhihao

    2011-01-01

    The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)

  1. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  2. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali

    2017-01-01

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  3. Minimal conformal model

    Energy Technology Data Exchange (ETDEWEB)

    Helmboldt, Alexander; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    The gauge hierarchy problem is one of the crucial drawbacks of the standard model of particle physics (SM) and thus has triggered model building over the last decades. Its most famous solution is the introduction of low-scale supersymmetry. However, without any significant signs of supersymmetric particles at the LHC to date, it makes sense to devise alternative mechanisms to remedy the hierarchy problem. One such mechanism is based on classically scale-invariant extensions of the SM, in which both the electroweak symmetry and the (anomalous) scale symmetry are broken radiatively via the Coleman-Weinberg mechanism. Apart from giving an introduction to classically scale-invariant models, the talk presents our results on obtaining a theoretically consistent minimal extension of the SM, which reproduces the correct low-scale phenomenology.

  4. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  5. Rectangular waveform linear transformer driver module design

    International Nuclear Information System (INIS)

    Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin

    2014-01-01

    Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)

  6. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  7. Design of a 9-loop quasi-exponential waveform generator.

    Science.gov (United States)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  8. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  9. Closed form of optimal current waveform for class-F PA up to fourth ...

    Indian Academy of Sciences (India)

    PA and its dual, usually referred as inverse class-F PA, current and voltage ... voltage waveforms provides a number of advantages in the process of PA design ... RF PA design approaches with waveform theory and experimental waveform.

  10. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    Science.gov (United States)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.

  11. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  12. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Jardak, Seifallah

    2014-09-01

    Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.

  13. Waveform LiDAR across forest biomass gradients

    Science.gov (United States)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  14. SURFACE FITTING FILTERING OF LIDAR POINT CLOUD WITH WAVEFORM INFORMATION

    Directory of Open Access Journals (Sweden)

    S. Xing

    2017-09-01

    Full Text Available Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from “WATER (Watershed Allied Telemetry Experimental Research” are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  15. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    Science.gov (United States)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  16. Statistical gravitational waveform models: What to simulate next?

    Science.gov (United States)

    Doctor, Zoheyr; Farr, Ben; Holz, Daniel E.; Pürrer, Michael

    2017-12-01

    Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1=χ2. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in q ∈[1 ,3 ] and χ1∈[-0.5 ,0.5 ], the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3 ×10-5. Our approach could in principle use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are ˜1 order of magnitude lower than the errors from using Latin-hypercube or square training grids.

  17. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  18. Femtosecond Nanofocusing with Full Optical Waveform Control

    International Nuclear Information System (INIS)

    Berweger, Samuel; Atkin, Joanna M.; Xu, Xiaoji G.; Olmon, Robert L.; Raschke, Markus Bernd

    2011-01-01

    The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.

  19. Full waveform inversion for mechanized tunneling reconnaissance

    Science.gov (United States)

    Lamert, Andre; Musayev, Khayal; Lambrecht, Lasse; Friederich, Wolfgang; Hackl, Klaus; Baitsch, Matthias

    2016-04-01

    In mechanized tunnel drilling processes, exploration of soil structure and properties ahead of the tunnel boring machine can greatly help to lower costs and improve safety conditions during drilling. We present numerical full waveform inversion approaches in time and frequency domain of synthetic acoustic data to detect different small scale structures representing potential obstacles in front of the tunnel boring machine. With the use of sensitivity kernels based on the adjoint wave field in time domain and in frequency domain it is possible to derive satisfactory models with a manageable amount of computational load. Convergence to a suitable model is assured by the use of iterative model improvements and gradually increasing frequencies. Results of both, time and frequency approach, will be compared for different obstacle and source/receiver setups. They show that the image quality strongly depends on the used receiver and source positions and increases significantly with the use of transmission waves due to the installed receivers and sources at the surface and/or in bore holes. Transmission waves lead to clearly identified structure and position of the obstacles and give satisfactory guesses for the wave speed. Setups using only reflected waves result in blurred objects and ambiguous position of distant objects and allow to distinguish heterogeneities with higher or lower wave speed, respectively.

  20. Minimally extended SILH

    International Nuclear Information System (INIS)

    Chala, Mikael; Grojean, Christophe; Humboldt-Univ. Berlin; Lima, Leonardo de; Univ. Estadual Paulista, Sao Paulo

    2017-03-01

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  1. Minimally extended SILH

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Mikael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Valencia Univ. (Spain). Dept. de Fisica Teorica y IFIC; Durieux, Gauthier; Matsedonskyi, Oleksii [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Lima, Leonardo de [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Estadual Paulista, Sao Paulo (Brazil). Inst. de Fisica Teorica

    2017-03-15

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  2. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  3. Conditioning the full-waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-04-23

    Multiparameter full-waveform inversion (FWI) suffers from complex nonlinearity in the objective function, compounded by the eventual trade-off between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which small scattering-angles of the gradient update are initially muted out. The model update hierarchical filtering strategy include applying varying degrees of filtering to the different anisotropic parameter updates, a feature not easily accessible to simple data decimation. Using FWI and reflection-based FWI, when the modeled data are obtained with the single-scattering theory, allows access to additional low model wavenumber components. Combining such access to wavenumbers with scattering-angle filters applied to the individual parameter gradients allows for multiple strategies to avoid complex FWI nonlinearity as well as the parameter trade-off.

  4. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  5. Density reconstruction in multiparameter elastic full-waveform inversion

    Science.gov (United States)

    Sun, Min'ao; Yang, Jizhong; Dong, Liangguo; Liu, Yuzhu; Huang, Chao

    2017-12-01

    Elastic full-waveform inversion (EFWI) is a quantitative data fitting procedure that recovers multiple subsurface parameters from multicomponent seismic data. As density is involved in addition to P- and S-wave velocities, the multiparameter EFWI suffers from more serious tradeoffs. In addition, compared with P- and S-wave velocities, the misfit function is less sensitive to density perturbation. Thus, a robust density reconstruction remains a difficult problem in multiparameter EFWI. In this paper, we develop an improved scattering-integral-based truncated Gauss-Newton method to simultaneously recover P- and S-wave velocities and density in EFWI. In this method, the inverse Gauss-Newton Hessian has been estimated by iteratively solving the Gauss-Newton equation with a matrix-free conjugate gradient algorithm. Therefore, it is able to properly handle the parameter tradeoffs. To give a detailed illustration of the tradeoffs between P- and S-wave velocities and density in EFWI, wavefield-separated sensitivity kernels and the Gauss-Newton Hessian are numerically computed, and their distribution characteristics are analyzed. Numerical experiments on a canonical inclusion model and a modified SEG/EAGE Overthrust model have demonstrated that the proposed method can effectively mitigate the tradeoff effects, and improve multiparameter gradients. Thus, a high convergence rate and an accurate density reconstruction can be achieved.

  6. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  7. Uma nova heurística para o problema de minimização de trocas de ferramentas A new heuristic for the minimization of tool switches problem

    Directory of Open Access Journals (Sweden)

    Antônio Augusto Chaves

    2012-01-01

    Full Text Available O problema de minimização de troca de ferramentas (MTSP busca uma sequência de processamento de um conjunto de tarefas, de modo a minimizar o número de trocas de ferramentas requeridas. Este trabalho apresenta uma nova heurística para o MTSP, capaz de produzir bons limitantes superiores para um algoritmo enumerativo. Esta heurística possui duas fases: uma fase construtiva que é baseada em um grafo em que os vértices correspondem a ferramentas e existe um arco k = (i, j que liga os vértices i e j se e somente se as ferramentas i e j são necessárias para a execução de alguma tarefa k; e uma fase de refinamento baseada na meta-heurística Busca Local Iterativa. Resultados computacionais mostram que a heurística proposta tem um bom desempenho para os problemas testados, contribuindo para uma redução significativa no número de nós gerados de um algoritmo enumerativo.The minimization of tool switches problem (MTSP seeks a sequence to process a set of jobs so that the number of tool switches required is minimized. This study presents a new heuristic for the MTSP. This heuristic has two phases: a constructive phase, based on a graph where the vertices correspond to tools and there is an arc k = (i, j linking vertices i and j if and only if the tools i and j are required to execute some job; and an improvement phase, based on an Iterated Local Search. Computational results show that the proposed heuristic has a good performance on the instances tested contributing to a significant reduction in the number of nodes generated by an enumerative algorithm.

  8. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  9. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  10. A Novel wave-form command shaper for overhead cranes

    Directory of Open Access Journals (Sweden)

    KHALED ALHAZZA

    2013-12-01

    Full Text Available In this work, a novel command shaping control strategy for oscillation reduction of simple harmonic oscillators is proposed, and validated experimentally. A wave-form acceleration command shaper is derived analytically. The performance of the proposed shaper is simulated numerically, and validated experimentally on a scaled model of an overhead crane. Amplitude modulation is used to enhance the shaper performance, which results in a modulated wave-form command shaper. It is determined that the proposed wave-form and modulated wave-form command shaper profiles are capable of eliminating travel and residual oscillations. Furthermore, unlike traditional impulse and step command shapers, the proposed command shaper has piecewise smoother acceleration, velocity, and displacement profiles. Experimental results using continuous and discrete commands are presented. Experiments with discrete commands involved embedding a saturation model-based feedback in the algorithm of the command shaper.

  11. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid

    2016-01-13

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  12. Maass waveforms arising from sigma and related indefinite theta functions

    OpenAIRE

    Zwegers, Sander

    2010-01-01

    In this paper we consider an example of a Maass waveform which was constructed by Cohen from a function $\\sigma$, studied by Andrews, Dyson and Hickerson, and it's companion $\\sigma^*$. We put this example in a more general framework.

  13. Efficient data retrieval method for similar plasma waveforms in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying, E-mail: liuying-ipp@szu.edu.cn [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Huang, Jianjun; Zhou, Huasheng; Wang, Fan [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Wang, Feng [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The proposed method is carried out by means of bounding envelope and angle distance. • It allows retrieving for whole similar waveforms of any time length. • In addition, the proposed method is also possible to retrieve subsequences. - Abstract: Fusion research relies highly on data analysis due to its massive-sized database. In the present work, we propose an efficient method for searching and retrieving similar plasma waveforms in Experimental Advanced Superconducting Tokamak (EAST). Based on Piecewise Linear Aggregate Approximation (PLAA) for extracting feature values, the searching process is accomplished in two steps. The first one is coarse searching to narrow down the search space, which is carried out by means of bounding envelope. The second step is fine searching to retrieval similar waveforms, which is implemented by the angle distance. The proposed method is tested in EAST databases and turns out to have good performance in retrieving similar waveforms.

  14. Conditioning the full-waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-01-01

    Multiparameter full-waveform inversion (FWI) suffers from complex nonlinearity in the objective function, compounded by the eventual trade-off between the model parameters. A hierarchical approach based on frequency and arrival time data decimation

  15. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2016-01-01

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially

  16. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-01-01

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have

  17. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-01-01

    surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI

  18. Velocity Building by Reflection Waveform Inversion without Cycle-skipping

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali; Wu, Zedong

    2017-01-01

    Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization

  19. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate

  20. Spectral implementation of full waveform inversion based on reflections

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2014-01-01

    Using the reflection imaging process as a source to model reflections for full waveform inversion (FWI), referred to as reflection FWI (RFWI), allows us to update the background component of the model, and avoid using the relatively costly migration

  1. Generation of correlated finite alphabet waveforms using gaussian random variables

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah

    2016-01-01

    Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.

  2. Lane marking detection based on waveform analysis and CNN

    Science.gov (United States)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  3. Full Waveform Inversion for Reservoir Characterization - A Synthetic Study

    KAUST Repository

    Zabihi Naeini, E.; Kamath, N.; Tsvankin, I.; Alkhalifah, Tariq Ali

    2017-01-01

    Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI

  4. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  5. A microcomputer-based waveform generator for Moessbauer spectrometers

    International Nuclear Information System (INIS)

    Huang Jianping; Chen Xiaomei

    1995-01-01

    A waveform generator for Moessbauer spectrometers based on 8751 single chip microcomputer is described. The reference wave form with high linearity is generated with a 12 bit DAC, and its amplitude is controlled with a 8 bit DAC. Because the channel advance and synchronous signals can be delayed arbitrarily, excellent folded spectra can be acquired. This waveform generator can be controlled with DIP switches on faceplate or series interface of the IBM-PC microcomputer

  6. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)

    2017-04-15

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.

  8. Acoustic 2D full waveform inversion to solve gas cloud challenges

    Directory of Open Access Journals (Sweden)

    Srichand Prajapati

    2015-09-01

    Full Text Available The existing conventional inversion algorithm does not provide satisfactory results due to the complexity of propagated wavefield though the gas cloud. Acoustic full waveform inversion has been developed and applied to a realistic synthetic offshore shallow gas cloud feature with Student-t approach, with and without simultaneous sources encoding. As a modeling operator, we implemented the grid based finite-difference method in frequency domain using second order elastic wave equation. Jacobin operator and its adjoint provide a necessary platform for solving full waveform inversion problem in a reduced Hessian matrix. We invert gas cloud model in 5 frequency band selected from 1 to 12 Hz, each band contains 3 frequencies. The inversion results are highly sensitive to the misfit. The model allows better convergence and recovery of amplitude losses. This approach gives better resolution then the existing least-squares approach. In this paper, we implement the full waveform inversion for low frequency model with minimum number of iteration providing a better resolution of inversion results.

  9. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    International Nuclear Information System (INIS)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Fatouraee, Nasser; Saben, Hazhir

    2017-01-01

    The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes

  10. Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations

    Science.gov (United States)

    Capdeville, Yann; Métivier, Ludovic

    2018-05-01

    Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different imaging techniques currently used, including the so-called full waveform inversion (FWI), are based on limited frequency band data. Such data are not sensitive to the true earth model, but to a smooth version of it. This smooth version can be related to the true model by the homogenization technique. Homogenization for wave propagation in deterministic media with no scale separation, such as geological media, has been recently developed. With such an asymptotic theory, it is possible to compute an effective medium valid for a given frequency band such that effective waveforms and true waveforms are the same up to a controlled error. In this work we make the link between limited frequency band inversion, mainly FWI, and homogenization. We establish the relation between a true model and an FWI result model. This relation is important for a proper interpretation of FWI images. We numerically illustrate, in the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover, it appears that the homogenized FWI model is quite independent of the FWI parametrization, as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor is, in each of our tests, always a good choice. We show how the homogenization can help to understand FWI behaviour and help to improve its robustness and convergence by efficiently constraining the solution space of the inverse problem.

  11. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2011-01-01

    Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate

  12. A new parameterization for waveform inversion in acoustic orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2016-05-26

    Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of

  13. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  14. Extension of frequency-based dissimilarity for retrieving similar plasma waveforms

    International Nuclear Information System (INIS)

    Hochin, Teruhisa; Koyama, Katsumasa; Nakanishi, Hideya; Kojima, Mamoru

    2008-01-01

    Some computer-aided assistance in finding the waveforms similar to a waveform has become indispensable for accelerating data analysis in the plasma experiments. For the slowly-varying waveforms and those having time-sectional oscillation patterns, the methods using the Fourier series coefficients of waveforms in calculating the dissimilarity have successfully improved the performance in retrieving similar waveforms. This paper treats severely-varying waveforms, and proposes two extensions to the dissimilarity of waveforms. The first extension is to capture the difference of the importance of the Fourier series coefficients of waveforms against frequency. The second extension is to consider the outlines of waveforms. The correctness of the extended dissimilarity is experimentally evaluated by using the metrics used in evaluating that of the information retrieval, i.e. precision and recall. The experimental results show that the extended dissimilarity could improve the correctness of the similarity retrieval of plasma waveforms

  15. Pseudo LRM waveforms from CryoSat SARin acquisition

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso; Féménias, Pierre

    2016-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. The main payload of CryoSat is a Ku-band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. When SIRAL operates in SAR or SARin mode, the obtained waveforms have an along-track resolution and a speckle reduction which is increased with respect to the pulse-limited waveforms. Anyway, in order to analyze the continuity of the geophysical retrieved parameters among different acquisition modes, techniques to transform SARin mode data to pseudo-LRM mode data are welcome. The transformation process is known as SAR reduction and it is worth recalling here that only approximate pseudo-LRM waveforms can be obtained in case of closed burst acquisitions, as SIRAL operates. A SAR reduction processing scheme has been developed to obtain pseudo-LRM waveforms from CryoSat SARin acquisition. As a trade-off between the along-track length on Earth surface contributing to one SARin pseudo-LRM waveform and the noisiness of the waveform itself, it has been chosen a SAR reduction approach based on the averaging of all the SARin echoes received each 20Hz, resulting in one pseudo-LRM waveform for each SARin burst given the SARin burst repetition period. SARin pseudo-LRM waveforms have been produced for CryoSat acquisition both on ice and sea surfaces, aiming at verifying the continuity of the retracked surface height over the ellipsoid between genuine LRM products and pseudo-LRM products. Moreover, the retracked height from the SARin pseudo-LRM has been

  16. On detection of black hole quasinormal ringdowns: Detection efficiency and waveform parameter determination in matched filtering

    International Nuclear Information System (INIS)

    Tsunesada, Yoshiki; Tatsumi, Daisuke; Kanda, Nobuyuki; Nakano, Hiroyuki; Ando, Masaki; Sasaki, Misao; Tagoshi, Hideyuki; Takahashi, Hirotaka

    2005-01-01

    Gravitational radiation from a slightly distorted black hole with ringdown waveform is well understood in general relativity. It provides a probe for direct observation of black holes and determination of their physical parameters, masses and angular momenta (Kerr parameters). For ringdown searches using data of gravitational wave detectors, matched filtering technique is useful. In this paper, we describe studies on problems in matched filtering analysis in realistic gravitational wave searches using observational data. Above all, we focus on template constructions, matches or signal-to-noise ratios (SNRs), detection probabilities for Galactic events, and accuracies in evaluation of waveform parameters or black hole hairs. In template design for matched filtering, search parameter ranges and template separations are determined by requirements from acceptable maximum loss of SNRs, detection efficiencies, and computational costs. In realistic searches using observational data, however, effects of nonstationary noises cause decreases of SNRs, and increases of errors in waveform parameter determinations. These problems will potentially arise in any matched filtering searches for any kind of waveforms. To investigate them, we have performed matched filtering analysis for artificial ringdown signals which are generated with Monte-Carlo technique and injected into the TAMA300 observational data. We employed an efficient method to construct a bank of ringdown filters recently proposed by Nakano et al., and use a template bank generated from a criterion such that losses of SNRs of any signals do not exceed 2%. We found that this criterion is fulfilled in ringdown searches using TAMA300 data, by examining distribution of SNRs of simulated signals. It is also shown that with TAMA300 sensitivity, the detection probability for Galactic ringdown events is about 50% for black holes of masses greater than 20M · with SNR>10. The accuracies in waveform parameter estimations are

  17. Waveform tomography in geophysics and helioseismology

    NARCIS (Netherlands)

    Cobden, L.J.; Fichtner, A.; Tong, Vincent

    2015-01-01

    Seismic tomography – in which we construct images of a body's interior using seismic waves – is an inverse problem; that is, our goal is to find a model that fits a set of existing data observations. This is much less straightforward than the reverse, forward problem (i.e., generating synthetic data

  18. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  19. Truncated Gauss-Newton Implementation for Multi-Parameter Full Waveform Inversion

    Science.gov (United States)

    Liu, Y.; Yang, J.; Dong, L.; Wang, Y.

    2014-12-01

    Full waveform inversion (FWI) is a numerical optimization method which aims at minimizing the difference between the synthetic and recorded seismic data to obtain high resolution subsurface images. A practical implementation for FWI is the adjoint-state method (AD), in which the data residuals at receiver locations are simultaneously back-propagated to form the gradient. Scattering-integral method (SI) is an alternative way which is based on the explicit building of the sensitivity kernel (Fréchet derivative matrix). Although it is more memory-consuming, SI is more efficient than AD when the number of the sources is larger than the number of the receivers. To improve the convergence of FWI, the information carried out by the inverse Hessian operator is crucial. Taking account accurately of the effect of this operator in FWI can correct illumination deficits, reserve the amplitude of the subsurface parameters, and remove artifacts generated by multiple reflections. In multi-parameter FWI, the off-diagonal blocks of the Hessian operator reflect the coupling between different parameter classes. Therefore, incorporating its inverse could help to mitigate the trade-off effects. In this study, we focus on the truncated Gauss-Newton implementation for multi-parameter FWI. The model update is computed through a matrix-free conjugate gradient solution of the Newton linear system. Both the gradient and the Hessian-vector product are calculated using the SI approach instead of the first- and second-order AD. However, the gradient expressed by kernel-vector product is calculated through the accumulation of the decomposed vector-scalar products. Thus, it's not necessary to store the huge sensitivity matrix beforehand. We call this method the matrix decomposition approach (MD). And the Hessian-vector product is replaced by two kernel-vector products which are then calculated by the above MD. By this way, we don't need to solve two additional wave propagation problems as in the

  20. Ocular pressure waveform reflects ventricular bigeminy and aortic insufficiency

    Directory of Open Access Journals (Sweden)

    Jean B Kassem

    2015-01-01

    Full Text Available Ocular pulse amplitude (OPA is defined as the difference between maximum and minimum intraocular pressure (IOP during a cardiac cycle. Average values of OPA range from 1 to 4 mmHg. The purpose of this investigation is to determine the source of an irregular IOP waveform with elevated OPA in a 48-year-old male. Ocular pressure waveforms had an unusual shape consistent with early ventricular contraction. With a normal IOP, OPA was 9 mmHg, which is extraordinarily high. The subject was examined by a cardiologist and was determined to be in ventricular bigeminy. In addition, he had bounding carotid pulses and echocardiogram confirmed aortic insufficiency. After replacement of the aortic valve, the bigeminy resolved and the ocular pulse waveform became regular in appearance with an OPA of 1.6-2.0 mmHg. The ocular pressure waveform is a direct reflection of hemodynamics. Evaluating this waveform may provide an additional opportunity for screening subjects for cardiovascular anomalies and arrhythmias.

  1. Selection and generation of waveforms for differential mobility spectrometry.

    Science.gov (United States)

    Krylov, Evgeny V; Coy, Stephen L; Vandermey, John; Schneider, Bradley B; Covey, Thomas R; Nazarov, Erkinjon G

    2010-02-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  2. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  3. Selection and generation of waveforms for differential mobility spectrometry

    International Nuclear Information System (INIS)

    Krylov, Evgeny V.; Coy, Stephen L.; Nazarov, Erkinjon G.; Vandermey, John; Schneider, Bradley B.; Covey, Thomas R.

    2010-01-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  4. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    Science.gov (United States)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  5. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  6. Determining Switched Reluctance Motor Current Waveforms Exploiting the Transformation from the Time to the Position Domain

    Directory of Open Access Journals (Sweden)

    Jakub Bernat

    2017-06-01

    Full Text Available This paper addresses the issue of estimating current waveforms in a switched reluctance motor required to achieve a desired electromagnetic torque. The methodology employed exploits the recently-developed method based on the transformation from the time to the position domain. This transformation takes account of nonlinearities caused by a doubly-salient structure. Owing to this new modelling technique it is possible to solve optimization problems with reference torque, constrained voltage, and parameter sensitivity accounted for. The proposed methodology is verified against published solutions and illustrated through simulations and experiments.

  7. Full-waveform inversion using a nonlinearly smoothed wavefield

    KAUST Repository

    Li, Yuanyuan

    2017-12-08

    Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.

  8. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    Science.gov (United States)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  9. Optimizing Processes to Minimize Risk

    Science.gov (United States)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  10. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...

  11. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  12. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  13. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  14. Analysis of Gradient Waveform in Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    OU-YANG Shan-mei

    2017-12-01

    Full Text Available The accuracy of gradient pulse waveform affects image quality significantly in magnetic resonance imaging (MRI. Recording and analyzing the waveform of gradient pulse helps to make rapid and accurate diagnosis of spectrometer gradient hardware and/or pulse sequence. Using the virtual instrument software LabVIEW to control the high speed data acquisition card DAQ-2005, a multi-channel acquisition scheme was designed to collect the gradient outputs from a custom-made spectrometer. The collected waveforms were post-processed (i.e., histogram statistical analysis, data filtering and difference calculation to obtain feature points containing time and amplitude information. Experiments were carried out to validate the method, which is an auxiliary test method for the development of spectrometer and pulses sequence.

  15. A complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .

  16. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  17. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  18. Improving waveform inversion using modified interferometric imaging condition

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  19. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    Science.gov (United States)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  20. Characterization of a viscoelastic heterogeneous object with an effective model by nonlinear full waveform inversion

    Science.gov (United States)

    Mesgouez, A.

    2018-05-01

    The determination of equivalent viscoelastic properties of heterogeneous objects remains challenging in various scientific fields such as (geo)mechanics, geophysics or biomechanics. The present investigation addresses the issue of the identification of effective constitutive properties of a binary object by using a nonlinear and full waveform inversion scheme. The inversion process, without any regularization technique or a priori information, aims at minimizing directly the discrepancy between the full waveform responses of a bi-material viscoelastic cylindrical object and its corresponding effective homogeneous object. It involves the retrieval of five constitutive equivalent parameters. Numerical simulations are performed in a laboratory-scale two-dimensional configuration: a transient acoustic plane wave impacts the object and the diffracted fluid pressure, solid stress or velocity component fields are determined using a semi-analytical approach. Results show that the retrieval of the density and of the real parts of both the compressional and the shear wave velocities have been carried out successfully regarding the number and location of sensors, the type of sensors, the size of the searching space, the frequency range of the incident plane pressure wave, and the change in the geometric or mechanical constitution of the bi-material object. The retrieval of the imaginary parts of the wave velocities can reveal in some cases the limitations of the proposed approach.

  1. Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information

    DEFF Research Database (Denmark)

    Cordua, Knud Skou; Hansen, Thomas Mejer; Mosegaard, Klaus

    2012-01-01

    We present a general Monte Carlo full-waveform inversion strategy that integrates a priori information described by geostatistical algorithms with Bayesian inverse problem theory. The extended Metropolis algorithm can be used to sample the a posteriori probability density of highly nonlinear...... inverse problems, such as full-waveform inversion. Sequential Gibbs sampling is a method that allows efficient sampling of a priori probability densities described by geostatistical algorithms based on either two-point (e.g., Gaussian) or multiple-point statistics. We outline the theoretical framework......) Based on a posteriori realizations, complicated statistical questions can be answered, such as the probability of connectivity across a layer. (3) Complex a priori information can be included through geostatistical algorithms. These benefits, however, require more computing resources than traditional...

  2. SGRAPH (SeismoGRAPHer): Seismic waveform analysis and integrated tools in seismology

    Science.gov (United States)

    Abdelwahed, Mohamed F.

    2012-03-01

    Although numerous seismological programs are currently available, most of them suffer from the inability to manipulate different data formats and the lack of embedded seismological tools. SeismoGRAPHer, or simply SGRAPH, is a new system for maintaining and analyzing seismic waveform data in a stand-alone, Windows-based application that manipulates a wide range of data formats. SGRAPH was intended to be a tool sufficient for performing basic waveform analysis and solving advanced seismological problems. The graphical user interface (GUI) utilities and the Windows functionalities, such as dialog boxes, menus, and toolbars, simplify the user interaction with the data. SGRAPH supports common data formats, such as SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and provides the ability to solve many seismological problems with built-in inversion tools. Loaded traces are maintained, processed, plotted, and saved as SAC, ASCII, or PS (post script) file formats. SGRAPH includes Generalized Ray Theory (GRT), genetic algorithm (GA), least-square fitting, auto-picking, fast Fourier transforms (FFT), and many additional tools. This program provides rapid estimation of earthquake source parameters, location, attenuation, and focal mechanisms. Advanced waveform modeling techniques are provided for crustal structure and focal mechanism estimation. SGRAPH has been employed in the Egyptian National Seismic Network (ENSN) as a tool assisting with routine work and data analysis. More than 30 users have been using previous versions of SGRAPH in their research for more than 3 years. The main features of this application are ease of use, speed, small disk space requirements, and the absence of third-party developed components. Because of its architectural structure, SGRAPH can be interfaced with newly developed methods or applications in seismology. A complete setup file, including the SGRAPH package with the online user guide, is available.

  3. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    The ideal radio waveform for an upcoming 5th Generation (5G) radio access technology should cope with a set of requirements such as limited complexity, good time/frequency localization and simple extension to multi-antenna technologies. This paper discusses the suitability of Orthogonal Frequency...... Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  4. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  5. Correlates of minimal dating.

    Science.gov (United States)

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  6. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  8. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Juwon

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  9. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  10. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon

    2016-09-06

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  11. Full waveform inversion based on scattering angle enrichment with application to real dataset

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity to the migrated image. We propose a combined FWI and RWI optimization problem through dividing the velocity into the background and perturbed components. We optimize both the background and perturbed components, as independent parameters. The new objective function is quadratic with respect to the perturbed component, which will reduce the nonlinearity of the optimization problem. Solving this optimization provides a true amplitude image and utilizes the diving waves to update the velocity of the shallow parts. To insure a proper wavenumber continuation, we use an efficient scattering angle filter to direct the inversion at the early stages to direct energy corresponding to large (smooth velocity) scattering angles to the background velocity update and the small (high wavenumber) scattering angles to the perturbed velocity update. This efficient implementation of the filter is fast and requires less memory than the conventional approach based on extended images. Thus, the new FWI procedure updates the background velocity mainly along the wavepath for both diving and reflected waves in the initial stages. At the same time, it updates the perturbation with mainly reflections (filtering out the diving waves). To demonstrate the capability of this method, we apply it to a real 2D marine dataset.

  12. Minimizing Mutual Couping

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....

  13. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp

    2011-01-01

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ

  14. Waveform Diversity and Design for Interoperating Radar Systems

    Science.gov (United States)

    2013-01-01

    University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica , Telecomunicazioni Via Girolamo Caruso 16 Pisa, Italy 56122...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University Di Pisa Department Di Ingegneria Dell Informazione Elettronica, Informatica ...DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE ELETTRONICA, INFORMATICA , TELECOMUNICAZIONI WAVEFORM DIVERSITY AND DESIGN FOR INTEROPERATING

  15. Seismic Broadband Full Waveform Inversion by shot/receiver refocusing

    NARCIS (Netherlands)

    Haffinger, P.R.

    2013-01-01

    Full waveform inversion is a tool to obtain high-resolution property models of the subsurface from seismic data. However, the technique is computationally expens- ive and so far no multi-dimensional implementation exists to achieve a resolution that can directly be used for seismic interpretation

  16. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  17. Centered Differential Waveform Inversion with Minimum Support Regularization

    KAUST Repository

    Kazei, Vladimir

    2017-05-26

    Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.

  18. Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing

    Science.gov (United States)

    Brevik, Justus A.; Flowers-Jacobs, Nathan E.; Fox, Anna E.; Golden, Evan B.; Dresselhaus, Paul D.; Benz, Samuel P.

    2017-01-01

    We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin. PMID:28736494

  19. Centered Differential Waveform Inversion with Minimum Support Regularization

    KAUST Repository

    Kazei, Vladimir; Alkhalifah, Tariq Ali

    2017-01-01

    Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model

  20. MURI: Adaptive Waveform Design for Full Spectral Dominance

    Science.gov (United States)

    2011-03-11

    perhaps in a similarly-named file in the same directory as the data file) and handled by a Java class with an API for a user to request data without the...1101- 1104 . [15] J. Wang, and A. Nehorai, “Adaptive polarimetry design for a target in compound-Gaussian clutter,” International Waveform Diversity and

  1. Multisource waveform inversion of marine streamer data using normalized wavefield

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    Multisource full-waveform inversion based on the L1- and L2-norm objective functions cannot be applied to marine streamer data because it does not take into account the unmatched acquisition geometries between the observed and modeled data. To apply

  2. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  3. A compact, multichannel, and low noise arbitrary waveform generator.

    Science.gov (United States)

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  4. A compact, multichannel, and low noise arbitrary waveform generator

    International Nuclear Information System (INIS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-01-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation

  5. Programmable optical waveform reshaping on a picosecond timescale

    DEFF Research Database (Denmark)

    Manurkar, Paritosh; Jain, Nitin; Kumar Periyannan Rajeswari, Prem

    2017-01-01

    We experimentally demonstrate the temporal reshaping of optical waveforms in the telecom wavelength band using the principle of quantum frequency conversion. The reshaped optical pulses do not undergo any wavelength translation. The interaction takes place in a nonlinear chi((2)) waveguide using ...... for quantum communications. (C) 2017 Optical Society of America...

  6. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk; Shin, Changsoo; Cha, Youngho; Choi, Yun Seok; Min, Dongjoo

    2010-01-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations

  7. Full waveform inversion based on scattering angle enrichment with application to real dataset

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2015-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity

  8. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  9. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    Science.gov (United States)

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  10. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  11. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  12. Effects of waveform model systematics on the interpretation of GW150914

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.

    2017-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's e...

  13. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits

    International Nuclear Information System (INIS)

    Sundararajan, Pranesh A.; Hughes, Scott A.; Khanna, Gaurav; Drasco, Steve

    2008-01-01

    This is the second in a series of papers whose aim is to generate adiabatic gravitational waveforms from the inspiral of stellar-mass compact objects into massive black holes. In earlier work, we presented an accurate (2+1)D finite-difference time-domain code to solve the Teukolsky equation, which evolves curvature perturbations near rotating (Kerr) black holes. The key new ingredient there was a simple but accurate model of the singular source term based on a discrete representation of the Dirac-delta function and its derivatives. Our earlier work was intended as a proof of concept, using simple circular, equatorial geodesic orbits as a test bed. Such a source is effectively static, in that the smaller body remains at the same coordinate radius and orbital inclination over an orbit. (It of course moves through axial angle, but we separate that degree of freedom from the problem. Our numerical grid has only radial, polar, and time coordinates.) We now extend the time-domain code so that it can accommodate dynamic sources that move on a variety of physically interesting world lines. We validate the code with extensive comparison to frequency-domain waveforms for cases in which the source moves along generic (inclined and eccentric) bound geodesic orbits. We also demonstrate the ability of the time-domain code to accommodate sources moving on interesting nongeodesic worldlines. We do this by computing the waveform produced by a test mass following a kludged inspiral trajectory, made of bound geodesic segments driven toward merger by an approximate radiation loss formula.

  14. Discussion on the electronic problems of straw vertex detector

    International Nuclear Information System (INIS)

    Xi Deming

    1992-01-01

    The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed

  15. A new optimization approach for source-encoding full-waveform inversion

    NARCIS (Netherlands)

    Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.

    2013-01-01

    Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform

  16. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  17. Accurate Methods for Signal Processing of Distorted Waveforms in Power Systems

    Directory of Open Access Journals (Sweden)

    Langella R

    2007-01-01

    Full Text Available A primary problem in waveform distortion assessment in power systems is to examine ways to reduce the effects of spectral leakage. In the framework of DFT approaches, line frequency synchronization techniques or algorithms to compensate for desynchronization are necessary; alternative approaches such as those based on the Prony and ESPRIT methods are not sensitive to desynchronization, but they often require significant computational burden. In this paper, the signal processing aspects of the problem are considered; different proposals by the same authors regarding DFT-, Prony-, and ESPRIT-based advanced methods are reviewed and compared in terms of their accuracy and computational efforts. The results of several numerical experiments are reported and analysed; some of them are in accordance with IEC Standards, while others use more open scenarios.

  18. Minimizing Exposure at Work

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticide Health and Safety Information Safe Use Practices Minimizing Exposure at Work Pesticides - Pennsylvania State University Cooperative Extension Personal Protective Equipment for Working

  19. Minimalism. Clip and Save.

    Science.gov (United States)

    Hubbard, Guy

    2002-01-01

    Provides background information on the art movement called "Minimalism" discussing why it started and its characteristics. Includes learning activities and information on the artist, Donald Judd. Includes a reproduction of one of his art works and discusses its content. (CMK)

  20. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  1. Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-11-01

    A recently developed time-domain multiscale waveform tomography (MWT) method is applied to synthetic and field marine data. Although the MWT method was already applied to synthetic data, the synthetic data application leads to a development of a hybrid method between waveform tomography and the salt flooding technique commonly use in subsalt imaging. This hybrid method can overcome a convergence problem encountered by inversion with a traveltime velocity tomogram and successfully provides an accurate and highly resolved velocity tomogram for the 2D SEG/EAGE salt model. In the application of MWT to the field data, the inversion process is carried out using a multiscale method with a dynamic early-arrival muting window to mitigate the local minima problem of waveform tomography and elastic effects. With the modified MWT method, reasonably accurate results as verified by comparison of migration images and common image gathers were obtained. The hybrid method with the salt flooding technique is not used in this field data example because there is no salt in the subsurface according to our interpretation. However, we believe it is applicable to field data applications. © 2010 Society of Exploration Geophysicists.

  2. Minimal and careful processing

    OpenAIRE

    Nielsen, Thorkild

    2004-01-01

    In several standards, guidelines and publications, organic food processing is strongly associated with "minimal processing" and "careful processing". The term "minimal processing" is nowadays often used in the general food processing industry and described in literature. The term "careful processing" is used more specifically within organic food processing but is not yet clearly defined. The concept of carefulness seems to fit very well with the processing of organic foods, especially if it i...

  3. Rank deficiency and Tikhonov regularization in the inverse problem for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Rakhmanov, M

    2006-01-01

    Coherent techniques for searches of gravitational-wave bursts effectively combine data from several detectors, taking into account differences in their responses. The efforts are now focused on the maximum likelihood principle as the most natural way to combine data, which can also be used without prior knowledge of the signal. Recent studies however have shown that straightforward application of the maximum likelihood method to gravitational waves with unknown waveforms can lead to inconsistencies and unphysical results such as discontinuity in the residual functional, or divergence of the variance of the estimated waveforms for some locations in the sky. So far the solutions to these problems have been based on rather different physical arguments. Following these investigations, we now find that all these inconsistencies stem from the rank deficiency of the underlying network response matrix. In this paper we show that the detection of gravitational-wave bursts with a network of interferometers belongs to the category of ill-posed problems. We then apply the method of Tikhonov regularization to resolve the rank deficiency and introduce a minimal regulator which yields a well-conditioned solution to the inverse problem for all locations on the sky

  4. Analytic family of post-merger template waveforms

    Science.gov (United States)

    Del Pozzo, Walter; Nagar, Alessandro

    2017-06-01

    Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility

  5. Stratigraphic imaging of sub-basalt sediments using waveform tomography of wide-angle seismic data

    Science.gov (United States)

    Sain, K.; Gao, F.; Pratt, G.; Zelt, C. A.

    2003-12-01

    The oil industry is interested in imaging the fine structures of sedimentary formations masked below basalt flows for commercial exploration of hydrocarbons. Seismic exploration of sediments hidden below high-velocity basalt cover is a difficult problem because near-vertical reflection data are contaminated with multiples, converted waves and scattering noise generated by interbeds, breccia and vesicles within the basalt. The noise becomes less prominent as the source-receiver offset increases, and the signals carrying sub-surface information stand out at the wide-angle range. The tomography of first arrival traveltime data can provide little information about the underlying low-velocity sediments. Traveltime inversion of wide-angle seismic data including both first arrivals and identifiable wide-angle reflected phases has been an important tool in the delineation of the large-scale velocity structure of sub-basalt sediments, although it lacks the small-scale velocity details. Here we apply 2-D full-waveform inversion ("waveform tomography") to wide-angle seismic data with a view to extracting the small-scale stratigraphic features of sedimentary formations. Results from both synthetic data, generated for a realistic earth model, and field dataset from the basalt covered Saurashtra peninsula, India, will be presented. This approach has potential to delineate thin sedimentary layers hidden below thick basalt cover also, and may serve as a powerful tool to image sedimentary basins, where they are covered by high-velocity materials like basalts, salts, carbonates, etc. in various parts of the world.

  6. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    Science.gov (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  7. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  8. Crosshole Tomography, Waveform Inversion, and Anisotropy: A Combined Approach Using Simulated Annealing

    Science.gov (United States)

    Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.

    2012-12-01

    of finite-time cooling schedules. We present the results of this approach for real and synthetically generated elastic TI data. After traveltime modelling, near offset data satisfied the half-cycle criterion. This gave us confidence that our horizontal velocity model was satisfactory, and we kept it constant while simulated annealing was run to determine the best-fit anisotropy profile. Once a low temperature was reached (so that minimizations to the objective function became rare), we constructed an average anisotropy model using accepted models which possessed a |E| within one standard deviation of the best fit model. This anisotropy model allowed the starting model for Waveform Tomography to satisfy the half-cycle first break criterion at large offsets. We believe that the success of this method is explained by the multipath nature of finite difference wave propagation, which does not suffer from the errors experienced by traveltime ray-tracing along the sharp velocity gradients present in the model.

  9. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  10. A novel PMT test system based on waveform sampling

    Science.gov (United States)

    Yin, S.; Ma, L.; Ning, Z.; Qian, S.; Wang, Y.; Jiang, X.; Wang, Z.; Yu, B.; Gao, F.; Zhu, Y.; Wang, Z.

    2018-01-01

    Comparing with the traditional test system based on a QDC and TDC and scaler, a test system based on waveform sampling is constructed for signal sampling of the 8"R5912 and the 20"R12860 Hamamatsu PMT in different energy states from single to multiple photoelectrons. In order to achieve high throughput and to reduce the dead time in data processing, the data acquisition software based on LabVIEW is developed and runs with a parallel mechanism. The analysis algorithm is realized in LabVIEW and the spectra of charge, amplitude, signal width and rising time are analyzed offline. The results from Charge-to-Digital Converter, Time-to-Digital Converter and waveform sampling are discussed in detailed comparison.

  11. Quantum optical arbitrary waveform manipulation and measurement in real time.

    Science.gov (United States)

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

  12. Transient waveform acquisition system for the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Young, K.G.; Burris, R.D.; Hillis, D.H.; Overbey, D.R.

    1984-10-01

    The transient waveform system described in this report is designed to acquire analog waveforms from the ELMO Bumpy Torus (EBT) diagnostic experiments. Pressure, density, synchrotron radiation, etc., are acquired and digitized with a Kinetic Systems TR812 transient recorder and associated modules located in a CAMAC crate. The system can simultaneously acquire, display, and transmit sets of data consisting of identification parameters and up to 1024 data points for 1 to 64 input signals (frequency range = 0.01 pulse/s to 100 kHz) of data every one or more minutes; thus, it can run continuously without operator intervention. The data are taken on a VAX 11/780 and transmitted to a data base on a DECSystem-10. To aid the programmer in making future modifications to the system, detailed documentation using the Yourdon structural methods has been given

  13. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  14. Image-domain full waveform inversion: Field data example

    KAUST Repository

    Zhang, Sanzong

    2014-08-05

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.

  15. Photonic arbitrary waveform generation applicable to multiband UWB communications.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.

  16. Image-domain full waveform inversion: Field data example

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2014-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.

  17. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-03-01

    Full Text Available Photoplethysmogram (PPG signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal’s vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.

  18. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms.

    Science.gov (United States)

    Elgendi, Mohamed; Liang, Yongbo; Ward, Rabab

    2018-03-11

    Photoplethysmogram (PPG) signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal's vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.

  19. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  20. Temporal changes of the inner core from waveform doublets

    Science.gov (United States)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  1. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andrews, John M. [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States)

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  2. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  3. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Science.gov (United States)

    Motohashi-Saigo, Miki; Hardison, Debra M.

    2009-01-01

    The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…

  4. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  5. DISECA - A Matlab code for dispersive waveform calculations

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Vilhelm, J.

    2011-01-01

    Roč. 38, č. 4 (2011), s. 526-531 ISSN 0266-352X R&D Projects: GA AV ČR IAA300460705 Institutional research plan: CEZ:AV0Z30460519 Keywords : velocity dispersion * synthetic waveform * seismic method Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.987, year: 2011 http://www.sciencedirect.com/science/article/pii/S0266352X11000425

  6. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  7. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    Science.gov (United States)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  8. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  9. Photoplethysmographic signal waveform index for detection of increased arterial stiffness

    International Nuclear Information System (INIS)

    Pilt, K; Meigas, K; Ferenets, R; Temitski, K; Viigimaa, M

    2014-01-01

    The aim of this research was to assess the validity of the photoplethysmographic (PPG) waveform index PPGAI for the estimation of increased arterial stiffness. For this purpose, PPG signals were recorded from 24 healthy subjects and from 20 type II diabetes patients. The recorded PPG signals were processed with the analysis algorithm developed and the waveform index PPGAI similar to the augmentation index (AIx) was calculated. As a reference, the aortic AIx was assessed and normalized for a heart rate of 75 bpm (AIx@75) by a SphygmoCor device. A strong correlation (r = 0.85) between the PPGAI and the aortic AIx@75 and a positive correlation of both indices with age were found. Age corrections for the indices PPGAI and AIx@75 as regression models from the signals of healthy subjects were constructed. Both indices revealed a significant difference between the groups of diabetes patients and healthy controls. However, the PPGAI provided the best statistical discrimination for the group of subjects with increased arterial stiffness. The waveform index PPGAI based on the inexpensive PPG technology can be considered as a perspective measure of increased arterial stiffness estimation in clinical screenings. (paper)

  10. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong

    2016-09-06

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.

  11. Nonspinning numerical relativity waveform surrogates: assessing the model

    Science.gov (United States)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  12. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  13. Flattening the inflaton potential beyond minimal gravity

    Directory of Open Access Journals (Sweden)

    Lee Hyun Min

    2018-01-01

    Full Text Available We review the status of the Starobinsky-like models for inflation beyond minimal gravity and discuss the unitarity problem due to the presence of a large non-minimal gravity coupling. We show that the induced gravity models allow for a self-consistent description of inflation and discuss the implications of the inflaton couplings to the Higgs field in the Standard Model.

  14. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  15. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  16. Minimalism and Speakers’ Intuitions

    Directory of Open Access Journals (Sweden)

    Matías Gariazzo

    2011-08-01

    Full Text Available Minimalism proposes a semantics that does not account for speakers’ intuitions about the truth conditions of a range of sentences or utterances. Thus, a challenge for this view is to offer an explanation of how its assignment of semantic contents to these sentences is grounded in their use. Such an account was mainly offered by Soames, but also suggested by Cappelen and Lepore. The article criticizes this explanation by presenting four kinds of counterexamples to it, and arrives at the conclusion that minimalism has not successfully answered the above-mentioned challenge.

  17. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  18. Graphical approach for multiple values logic minimization

    Science.gov (United States)

    Awwal, Abdul Ahad S.; Iftekharuddin, Khan M.

    1999-03-01

    Multiple valued logic (MVL) is sought for designing high complexity, highly compact, parallel digital circuits. However, the practical realization of an MVL-based system is dependent on optimization of cost, which directly affects the optical setup. We propose a minimization technique for MVL logic optimization based on graphical visualization, such as a Karnaugh map. The proposed method is utilized to solve signed-digit binary and trinary logic minimization problems. The usefulness of the minimization technique is demonstrated for the optical implementation of MVL circuits.

  19. [Minimally invasive coronary artery surgery].

    Science.gov (United States)

    Zalaquett, R; Howard, M; Irarrázaval, M J; Morán, S; Maturana, G; Becker, P; Medel, J; Sacco, C; Lema, G; Canessa, R; Cruz, F

    1999-01-01

    There is a growing interest to perform a left internal mammary artery (LIMA) graft to the left anterior descending coronary artery (LAD) on a beating heart through a minimally invasive access to the chest cavity. To report the experience with minimally invasive coronary artery surgery. Analysis of 11 patients aged 48 to 79 years old with single vessel disease that, between 1996 and 1997, had a LIMA graft to the LAD performed through a minimally invasive left anterior mediastinotomy, without cardiopulmonary bypass. A 6 to 10 cm left parasternal incision was done. The LIMA to the LAD anastomosis was done after pharmacological heart rate and blood pressure control and a period of ischemic pre conditioning. Graft patency was confirmed intraoperatively by standard Doppler techniques. Patients were followed for a mean of 11.6 months (7-15 months). All patients were extubated in the operating room and transferred out of the intensive care unit on the next morning. Seven patients were discharged on the third postoperative day. Duplex scanning confirmed graft patency in all patients before discharge; in two patients, it was confirmed additionally by arteriography. There was no hospital mortality, no perioperative myocardial infarction and no bleeding problems. After follow up, ten patients were free of angina, in functional class I and pleased with the surgical and cosmetic results. One patient developed atypical angina on the seventh postoperative month and a selective arteriography confirmed stenosis of the anastomosis. A successful angioplasty of the original LAD lesion was carried out. A minimally invasive left anterior mediastinotomy is a good surgical access to perform a successful LIMA to LAD graft without cardiopulmonary bypass, allowing a shorter hospital stay and earlier postoperative recovery. However, a larger experience and a longer follow up is required to define its role in the treatment of coronary artery disease.

  20. Theories of minimalism in architecture: Post scriptum

    Directory of Open Access Journals (Sweden)

    Stevanović Vladimir

    2012-01-01

    Full Text Available Owing to the period of intensive development in the last decade of XX century, architectural phenomenon called Minimalism in Architecture was remembered as the Style of the Nineties, which is characterized, morphologically speaking, by simplicity and formal reduction. Simultaneously with its development in practice, on a theoretical level several dominant interpretative models were able to establish themselves. The new millennium and time distance bring new problems; therefore this paper represents a discussion on specific theorization related to Minimalism in Architecture that can bear the designation of post scriptum, because their development starts after the constitutional period of architectural minimalist discourse. In XXI century theories, the problem of definition of minimalism remains important topic, approached by theorists through resolving on the axis: Modernism - Minimal Art - Postmodernism - Minimalism in Architecture. With regard to this, analyzed texts can be categorized in two groups: 1 texts of affirmative nature and historical-associative approach in which minimalism is identified with anything that is simple and reduced, in an idealizing manner, relied mostly on the existing hypotheses; 2 critically oriented texts, in which authors reconsider adequacy of the very term 'minimalism' in the context of architecture and take a metacritical attitude towards previous texts.

  1. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  2. Peripheral i.v. analysis (PIVA) of venous waveforms for volume assessment in patients undergoing haemodialysis.

    Science.gov (United States)

    Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S

    2017-12-01

    The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Minimal model holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Gopakumar, Rajesh

    2013-01-01

    We review the duality relating 2D W N minimal model conformal field theories, in a large-N ’t Hooft like limit, to higher spin gravitational theories on AdS 3 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  4. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  5. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  6. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  7. Minimal DBM Substraction

    DEFF Research Database (Denmark)

    David, Alexandre; Håkansson, John; G. Larsen, Kim

    In this paper we present an algorithm to compute DBM substractions with a guaranteed minimal number of splits and disjoint DBMs to avoid any redundance. The substraction is one of the few operations that result in a non-convex zone, and thus, requires splitting. It is of prime importance to reduce...

  8. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  9. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  10. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction.

    Science.gov (United States)

    Nikolova, Mila; Ng, Michael K; Tam, Chi-Pan

    2010-12-01

    Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonconvex nonsmooth minimization. In this paper, we deal with nonconvex nonsmooth minimization methods for image restoration and reconstruction. Our theoretical results show that the solution of the nonconvex nonsmooth minimization problem is composed of constant regions surrounded by closed contours and neat edges. The main goal of this paper is to develop fast minimization algorithms to solve the nonconvex nonsmooth minimization problem. Our experimental results show that the effectiveness and efficiency of the proposed algorithms.

  11. A New Wave Equation Based Source Location Method with Full-waveform Inversion

    KAUST Repository

    Wu, Zedong

    2017-05-26

    Locating the source of a passively recorded seismic event is still a challenging problem, especially when the velocity is unknown. Many imaging approaches to focus the image do not address the velocity issue and result in images plagued with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using an extended source. At the later stages the focusing of the image dominates the inversion allowing for high resolution source and velocity inversion. We also compute the source location explicitly and numerical tests show that we obtain good estimates of the source locations with this approach.

  12. Multisource full waveform inversion of marine streamer data with frequency selection

    KAUST Repository

    Huang, Yunsong; Schuster, Gerard T.

    2013-01-01

    Multisource migration with frequency selection is now extended to multisource full waveform inversion (FWI) of supergathers for marine streamer data. There are three advantages of this approach compared to conventional FWI for marine streamer data. 1. The multisource FWI method with frequency selection is computationally more efficient than conventional FWI. 2. A supergather requires more than an order of magnitude less storage than the the original data. 3. Frequency selection overcomes the acquisition mismatch between the observed data and the simulated multisource supergathers for marine data. This mismatch problem has prevented the efficient application of FWI to marine geometries in the space-time domain. Preliminary result of applying multisource FWI with frequency selection to a synthetic marine data set suggests it is at least four times more efficient than standard FWI.

  13. Tsunami waveform inversion by numerical finite-elements Green’s functions

    Directory of Open Access Journals (Sweden)

    A. Piatanesi

    2001-01-01

    Full Text Available During the last few years, the steady increase in the quantity and quality of the data concerning tsunamis has led to an increasing interest in the inversion problem for tsunami data. This work addresses the usually ill-posed problem of the hydrodynamical inversion of tsunami tide-gage records to infer the initial sea perturbation. We use an inversion method for which the data space consists of a given number of waveforms and the model parameter space is represented by the values of the initial water elevation field at a given number of points. The forward model, i.e. the calculation of the synthetic tide-gage records from an initial water elevation field, is based on the linear shallow water equations and is simply solved by applying the appropriate Green’s functions to the known initial state. The inversion of tide-gage records to determine the initial state results in the least square inversion of a rectangular system of linear equations. When the inversions are unconstrained, we found that in order to attain good results, the dimension of the data space has to be much larger than that of the model space parameter. We also show that a large number of waveforms is not sufficient to ensure a good inversion if the corresponding stations do not have a good azimuthal coverage with respect to source directivity. To improve the inversions we use the available a priori information on the source, generally coming from the inversion of seismological data. In this paper we show how to implement very common information about a tsunamigenic seismic source, i.e. the earthquake source region, as a set of spatial constraints. The results are very satisfactory, since even a rough localisation of the source enables us to invert correctly the initial elevation field.

  14. Minimal abdominal incisions

    Directory of Open Access Journals (Sweden)

    João Carlos Magi

    2017-04-01

    Full Text Available Minimally invasive procedures aim to resolve the disease with minimal trauma to the body, resulting in a rapid return to activities and in reductions of infection, complications, costs and pain. Minimally incised laparotomy, sometimes referred to as minilaparotomy, is an example of such minimally invasive procedures. The aim of this study is to demonstrate the feasibility and utility of laparotomy with minimal incision based on the literature and exemplifying with a case. The case in question describes reconstruction of the intestinal transit with the use of this incision. Male, young, HIV-positive patient in a late postoperative of ileotiflectomy, terminal ileostomy and closing of the ascending colon by an acute perforating abdomen, due to ileocolonic tuberculosis. The barium enema showed a proximal stump of the right colon near the ileostomy. The access to the cavity was made through the orifice resulting from the release of the stoma, with a lateral-lateral ileo-colonic anastomosis with a 25 mm circular stapler and manual closure of the ileal stump. These surgeries require their own tactics, such as rigor in the lysis of adhesions, tissue traction, and hemostasis, in addition to requiring surgeon dexterity – but without the need for investments in technology; moreover, the learning curve is reported as being lower than that for videolaparoscopy. Laparotomy with minimal incision should be considered as a valid and viable option in the treatment of surgical conditions. Resumo: Procedimentos minimamente invasivos visam resolver a doença com o mínimo de trauma ao organismo, resultando em retorno rápido às atividades, reduções nas infecções, complicações, custos e na dor. A laparotomia com incisão mínima, algumas vezes referida como minilaparotomia, é um exemplo desses procedimentos minimamente invasivos. O objetivo deste trabalho é demonstrar a viabilidade e utilidade das laparotomias com incisão mínima com base na literatura e

  15. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  16. Full-waveform data for building roof step edge localization

    Science.gov (United States)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  17. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    Science.gov (United States)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  18. Improved gravitational waveforms from spinning black hole binaries

    International Nuclear Information System (INIS)

    Porter, Edward K.; Sathyaprakash, B.S.

    2005-01-01

    The standard post-Newtonian approximation to gravitational waveforms, called T-approximants, from nonspinning black hole binaries are known not to be sufficiently accurate close to the last stable orbit of the system. A new approximation, called P-approximants, is believed to improve the accuracy of the waveforms rendering them applicable up to the last stable orbit. In this study we apply P-approximants to the case of a test particle in equatorial orbit around a Kerr black hole parameterized by a spin-parameter q that takes values between -1 and 1. In order to assess the performance of the two approximants we measure their effectualness (i.e., larger overlaps with the exact signal), and faithfulness (i.e., smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, that is orbits whose angular momentum is in the same sense as the spin angular momentum of the black hole, T-approximant templates obtain an effectualness of ∼0.99 for spins q 0.99 for all spins up to q=0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q>0. For q<0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family

  19. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  20. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-08-17

    One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.

  1. Optimal control of photoelectron emission by realistic waveforms

    Czech Academy of Sciences Publication Activity Database

    Solanpää, J.; Ciappina, Marcelo F.; Räsänen, J.

    2017-01-01

    Roč. 64, č. 17 (2017), s. 1784-1792 ISSN 0950-0340 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : above-threshold ionization * optimal control * waveforms Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.328, year: 2016

  2. Ultrafast chirped optical waveform recorder using a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  3. Plasma density calculation based on the HCN waveform data

    International Nuclear Information System (INIS)

    Chen Liaoyuan; Pan Li; Luo Cuiwen; Zhou Yan; Deng Zhongchao

    2004-01-01

    A method to improve the plasma density calculation is introduced using the base voltage and the phase zero points obtained from the HCN interference waveform data. The method includes making the signal quality higher by putting the signal control device and the analog-to-digit converters in the same location and charging them by the same power, and excluding the noise's effect according to the possible changing rate of the signal's phase, and to make the base voltage more accurate by dynamical data processing. (authors)

  4. Complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin

  5. A Denoising Method for LiDAR Full-Waveform Data

    Directory of Open Access Journals (Sweden)

    Xudong Lai

    2015-01-01

    Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.

  6. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    International Nuclear Information System (INIS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-01-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  7. Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants

    International Nuclear Information System (INIS)

    Navaii, Mehdi Lotfi; Sadhedi, Hamed; Jalali, Mohsen

    2013-01-01

    Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations.

  8. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  9. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    KAUST Repository

    Huang, Yunsong; Schuster, Gerard T.

    2017-01-01

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  10. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  11. Full Waveform Inversion with Multisource Frequency Selection of Marine Streamer Data

    KAUST Repository

    Huang, Yunsong

    2017-10-27

    The theory and practice of multisource full waveform inversion of marine supergathers are described with a frequency-selection strategy. The key enabling property of frequency selection is that it eliminates the crosstalk among sources, thus overcoming the aperture mismatch of marine multisource inversion. Tests on multisource full waveform inversion of synthetic marine data and Gulf of Mexico data show speedups of 4× and 8×, respectively, compared to conventional full waveform inversion.

  12. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  13. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  14. Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion

    KAUST Repository

    Choi, Yun Seok

    2011-09-01

    Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate-source modeling, as well as the Fourier transform of wavefields. As an alternative, we have developed the source-independent time-domain waveform inversion using convolved wavefields. Specifically, the misfit function consists of the convolution of the observed wavefields with a reference trace from the modeled wavefield, plus the convolution of the modeled wavefields with a reference trace from the observed wavefield. In this case, the source wavelet of the observed and the modeled wavefields are equally convolved with both terms in the misfit function, and thus, the effects of the source wavelets are eliminated. Furthermore, because the modeled wavefields play a role of low-pass filtering, the observed wavefields in the misfit function, the frequency-selection strategy from low to high can be easily adopted just by setting the maximum frequency of the source wavelet of the modeled wavefields; and thus, no filtering is required. The gradient of the misfit function is computed by back-propagating the new residual seismograms and applying the imaging condition, similar to reverse-time migration. In the synthetic data evaluations, our waveform inversion yields inverted models that are close to the true model, but demonstrates, as predicted, some limitations when random noise is added to the synthetic data. We also realized that an average of traces is a better choice for the reference trace than using a single trace. © 2011 Society of Exploration Geophysicists.

  15. GO JUPITER PWS EDITED EDR 10KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  16. GO JUPITER PWS EDITED EDR 1KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  17. Development of plasma current waveform adjusting system ZLJ for tokamak device HL-1

    International Nuclear Information System (INIS)

    Wang Shangbing; Hu Haotian; Tang Fangqun; Zhou Yongzheng; Chu Xiuzhong; Cheng Jiashun; Gao Yunxia

    1989-12-01

    The control of some typical Tokamak discharge waveforms has been achieved by using plasma current waveform adjusting system ZLJ in the ohmic heating of HL-1. The discharge waveforms include a series of regular plasma current waveforms with various slow rising rate, such as 80 kA, 450 ms long flat-topping; 100 kA, 200 ms rising; 200 ms falt-topping and 180 kA, 400 ms slow rising etc. The design principle of the system and the initial experimental results are described

  18. The ZOOM minimization package

    International Nuclear Information System (INIS)

    Fischler, Mark S.; Sachs, D.

    2004-01-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete

  19. Minimizing the Pacman effect

    International Nuclear Information System (INIS)

    Ritson, D.; Chou, W.

    1997-10-01

    The Pacman bunches will experience two deleterious effects: tune shift and orbit displacement. It is known that the tune shift can be compensated by arranging crossing planes 900 relative to each other at successive interaction points (lPs). This paper gives an analytical estimate of the Pacman orbit displacement for a single as well as for two crossings. For the latter, it can be minimized by using equal phase advances from one IP to another. In the LHC, this displacement is in any event small and can be neglected

  20. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  1. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  2. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.

    Science.gov (United States)

    Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James

    2010-09-01

    This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.

  3. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    Science.gov (United States)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-03-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  4. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.

  5. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  6. Expanding the frontiers of waveform imaging with Salvus

    Science.gov (United States)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Mechanical waves are natural harbingers of information. From medical ultrasound to the normal modes of Sun, wave motion is often our best window into the character of some underlying continuum. For over a century, geophysicists have been using this window to peer deep into the Earth, developing techniques that have gone on to underlie much of world's energy economy. As computers and numerical techniques have become more powerful over the last several decades, seismologists have begun to scale back classical simplifying approximations of wave propagation physics. As a result, we are now approaching the ideal of `full-waveform inversion'; maximizing the aperture of our window by taking the full complexity of wave motion into account.Salvus is a modern high-performance software suite which aims to bring recent developments in geophysical waveform inversion to new and exciting domains. In this short presentation we will look at the connections between these applications, with examples from non-destructive testing, medical imaging, seismic exploration, and (extra-) planetary seismology.

  7. Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns

    Directory of Open Access Journals (Sweden)

    Wonki Lee

    2018-03-01

    Full Text Available The electrocardiogram (ECG waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform pattern for matching and demonstrates that the approach can potentially be employed for individual biometric identification. Multi-cycle ECG signals were assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or fingers for considering various measurements. For biometric identification, our-fold cross validation was used in the experiments for assessing how the results of a statistical analysis will generalize to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean distances, were tested to compare the individual identification performances with a single channel of ECG signal (3-wire ECG. To evaluate the pattern matching for biometric identification, the ECG recordings for each subject were partitioned into training and test set. The suggested method obtained a maximum performance of 89.9% accuracy with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to 99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.

  8. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  9. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong

    2018-03-20

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  10. Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns.

    Science.gov (United States)

    Lee, Wonki; Kim, Seulgee; Kim, Daeeun

    2018-03-28

    The electrocardiogram (ECG) waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform pattern for matching and demonstrates that the approach can potentially be employed for individual biometric identification. Multi-cycle ECG signals were assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or fingers for considering various measurements. For biometric identification, our-fold cross validation was used in the experiments for assessing how the results of a statistical analysis will generalize to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean distances, were tested to compare the individual identification performances with a single channel of ECG signal (3-wire ECG). To evaluate the pattern matching for biometric identification, the ECG recordings for each subject were partitioned into training and test set. The suggested method obtained a maximum performance of 89.9% accuracy with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to 99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.

  11. Continuous-waveform constant-current isolated physiological stimulator

    Science.gov (United States)

    Holcomb, Mark R.; Devine, Jack M.; Harder, Rene; Sidorov, Veniamin Y.

    2012-04-01

    We have developed an isolated continuous-waveform constant-current physiological stimulator that is powered and controlled by universal serial bus (USB) interface. The stimulator is composed of a custom printed circuit board (PCB), 16-MHz MSP430F2618 microcontroller with two integrated 12-bit digital to analog converters (DAC0, DAC1), high-speed H-Bridge, voltage-controlled current source (VCCS), isolated USB communication and power circuitry, two isolated transistor-transistor logic (TTL) inputs, and a serial 16 × 2 character liquid crystal display. The stimulators are designed to produce current stimuli in the range of ±15 mA indefinitely using a 20V source and to be used in ex vivo cardiac experiments, but they are suitable for use in a wide variety of research or student experiments that require precision control of continuous waveforms or synchronization with external events. The device was designed with customization in mind and has features that allow it to be integrated into current and future experimental setups. Dual TTL inputs allow replacement by two or more traditional stimulators in common experimental configurations. The MSP430 software is written in C++ and compiled with IAR Embedded Workbench 5.20.2. A control program written in C++ runs on a Windows personal computer and has a graphical user interface that allows the user to control all aspects of the device.

  12. Layering of Structure in the North American Upper Mantle: Combining Short Period Constraints and Full Waveform Tomography

    Science.gov (United States)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2016-12-01

    Recent receiver function (RF) studies of the north American craton suggest the presence of layering within the cratonic lithosphere with significant lateral variations in the depth. However, the location and character of these discontinuities depends on assumptions made on a background 3D velocity model. On the other hand, the implementation of the Spectral Element Method (SEM) for the computation of the seismic wavefield in 3D structures is allowing improved resolution of volumetric structure in full waveform tomography. The corresponding computations are however very heavy and limit our ability to attain short enough periods to resolve short scale features such as the existence and lateral variations of discontinuities. In order to overcome these limitations, we have developed a methodology that combines full waveform inversion tomography and information provided by short period seismic observables. In a first step we constructed a 3D discontinuous radially anisotropic starting model combining 1D models calculated using RF and L and R wave dispersion data in a Bayesian framework using trans-dimensional MCMC inversion at a collection of 30 stations across the north American continent (Calò et al., 2016). This model was then interpolated and smoothed using a procedure based on residual homogenization (Capdeville et al. 2013) and serves as input model for full waveform tomography using a three-component waveform dataset previously collected (Yuan et al., 2014). The homogenization is necessary to avoid meshing problems and heavy SEM computations. In a second step, several iterations of the full waveform inversion are performed until convergence, using a regional SEM code for forward computations (RegSEM, Cupillard et al., 2012). Results of the inversion are volumetric velocity perturbations around the homogenized starting model, which are then added to the discontinuous 3D starting model. The final result is a multiscale discontinuous model containing both short and

  13. Changes of brachial arterial doppler waveform during immersion of the hand of young men in ice-cold water

    International Nuclear Information System (INIS)

    Kim, Young Goo

    1994-01-01

    To evaluate the changes of brachial arterial Doppler waveform during immersion of the hand of young men in ice-cold water. Doppler waveforms of brachial arteries in 11 young male patients were recorded before and during immersion of ipsilateral hand in ice-cold water(4-5 .deg. C). The procedure was repeated on separate days. Patterns of waveform during immersion were compared with the changes of pulsatility index. Four men showed high impedance waveforms, and 5 men showed low impedance waveforms during immersion both at the first and at the second study. Two men, however, showed high impedance waveforms at the first study and tow impedance waveforms at the second study. The pulsatility index rose and fell in high and low impedance waveforms, respectively. The changes of brachial arterial Doppler waveforms could be classified into high and low impedance patterns, probably reflecting the acute changes in downstream impedance during immersion of hand in ice-cold water

  14. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong

    2015-09-02

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the

  15. Minimally conscious state or cortically mediated state?

    Science.gov (United States)

    Naccache, Lionel

    2018-04-01

    Durable impairments of consciousness are currently classified in three main neurological categories: comatose state, vegetative state (also recently coined unresponsive wakefulness syndrome) and minimally conscious state. While the introduction of minimally conscious state, in 2002, was a major progress to help clinicians recognize complex non-reflexive behaviours in the absence of functional communication, it raises several problems. The most important issue related to minimally conscious state lies in its criteria: while behavioural definition of minimally conscious state lacks any direct evidence of patient's conscious content or conscious state, it includes the adjective 'conscious'. I discuss this major problem in this review and propose a novel interpretation of minimally conscious state: its criteria do not inform us about the potential residual consciousness of patients, but they do inform us with certainty about the presence of a cortically mediated state. Based on this constructive criticism review, I suggest three proposals aiming at improving the way we describe the subjective and cognitive state of non-communicating patients. In particular, I present a tentative new classification of impairments of consciousness that combines behavioural evidence with functional brain imaging data, in order to probe directly and univocally residual conscious processes.

  16. Near optimal pentamodes as a tool for guiding stress while minimizing compliance in 3d-printed materials: A complete solution to the weak G-closure problem for 3d-printed materials

    Science.gov (United States)

    Milton, Graeme W.; Camar-Eddine, Mohamed

    2018-05-01

    For a composite containing one isotropic elastic material, with positive Lame moduli, and void, with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average stress, σ0 , Gibiansky, Cherkaev, and Allaire provided a sharp lower bound Wf(σ0) on the minimum compliance energy σ0 :ɛ0 , in which ɛ0 is the average strain. Here we show these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites, and thus solve the weak G-closure problem for 3d-printed materials. The materials we use to achieve the extremal (σ0 ,ɛ0) -pairs are denoted as near optimal pentamodes. We also consider two-phase composites containing this isotropic elasticity material and a rigid phase with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average strain, ɛ0. For such composites, Allaire and Kohn provided a sharp lower bound W˜f(ɛ0) on the minimum elastic energy σ0 :ɛ0 . We show that these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites of the elastic and rigid phases, and thus solve the weak G-closure problem in this case too. The materials we use to achieve these extremal (σ0 ,ɛ0) -pairs are denoted as near optimal unimodes.

  17. Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver

    International Nuclear Information System (INIS)

    Oguzkurt, Levent; Yildirim, Tulin; Torun, Dilek; Tercan, Fahri; Kizilkilic, Osman; Niron, E. Alp

    2005-01-01

    Objective: To determine the incidence of abnormal hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver (FIL). Materials and methods: In this prospective study, 40 patients with diffuse FIL and 50 normal healthy adults who served as control group underwent hepatic vein (HV) Doppler ultrasonography. The patients with the diagnosis of FIL were 23 men (57.5%) and 17 women aged 30-62 years (mean age ± S.D., 42 ± 12 years). Subjects in the control group were 27 men (54%) and 23 women aged 34-65 years (mean age ± S.D., 45 ± 14 years). The diagnosis of FIL was confirmed with computed tomography density measurements. The waveforms of HV were classified into three groups: regular triphasic waveform, biphasic waveform without a reverse flow, and monophasic or flat waveform. Etiological factors for FIL were diabetes mellitus (DM), hyperlipidemia and obesity (body mass index > 25). Serum lipid profile was obtained from all the patients with FIL. Results: Seventeen of the 40 patients (43%) with FIL had an abnormal HV Doppler waveform, whereas only one of the 50 (2%) healthy subjects had an abnormal waveform. The difference in the distribution of normal Doppler waveform pattern between the patients and the control group was significant (P 0.05). There was not any correlation between the degree of fat infiltration and the hepatic vein waveform pattern (P = 0.60). Conclusion: Patients with fatty liver has a high rate of an abnormal hepatic vein Doppler waveform pattern which can be biphasic or monophasic. We could not find a relation between the etiological factors for FIL and the occurrence of an abnormal HV Doppler waveform

  18. Minimal Reducts with Grasp

    Directory of Open Access Journals (Sweden)

    Iris Iddaly Mendez Gurrola

    2011-03-01

    Full Text Available The proper detection of patient level of dementia is important to offer the suitable treatment. The diagnosis is based on certain criteria, reflected in the clinical examinations. From these examinations emerge the limitations and the degree in which each patient is in. In order to reduce the total of limitations to be evaluated, we used the rough set theory, this theory has been applied in areas of the artificial intelligence such as decision analysis, expert systems, knowledge discovery, classification with multiple attributes. In our case this theory is applied to find the minimal limitations set or reduct that generate the same classification that considering all the limitations, to fulfill this purpose we development an algorithm GRASP (Greedy Randomized Adaptive Search Procedure.

  19. Wavefront picking for 3D tomography and full-waveform inversion

    KAUST Repository

    AlTheyab, Abdullah

    2016-09-08

    We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using interactive software, first-break wavefronts were geometrically modeled on time slices with a minimal number of picks. We picked sparse time slices, performed traveltime tomography, and then compared the predicted traveltimes with the data in-between the picked slices. The picking interval was refined with iterations until the errors in traveltime predictions fell within the limits necessary to avoid cycle skipping in early arrivals FWI. This approach was applied to a 3D ocean-bottom-station data set. Our results indicate that wavefront picking has 28% fewer data slices to pick compared with picking traveltimes in shot gathers. In addition, by using sparse time samples for picking, data storage is reduced by 88%, and therefore allows for a faster visualization and quality control of the picks. Our final traveltime tomogram is sufficient as a starting model for early arrival FWI. © 2016 Society of Exploration Geophysicists.

  20. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  1. Radar Coincidence Imaging for Off-Grid Target Using Frequency-Hopping Waveforms

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2016-01-01

    Full Text Available Radar coincidence imaging (RCI is a high-resolution staring imaging technique without the limitation of the target relative motion. To achieve better imaging performance, sparse reconstruction is commonly used. While its performance is based on the assumption that the scatterers are located at the prediscretized grid-cell centers, otherwise, off-grid emerges and the performance of RCI degrades significantly. In this paper, RCI using frequency-hopping (FH waveforms is considered. The off-grid effects are analyzed, and the corresponding constrained Cramér-Rao bound (CCRB is derived based on the mean square error (MSE of the “oracle” estimator. For off-grid RCI, the process is composed of two stages: grid matching and off-grid error (OGE calibration, where two-dimension (2D band-excluded locally optimized orthogonal matching pursuit (BLOOMP and alternating iteration minimization (AIM algorithms are proposed, respectively. Unlike traditional sparse recovery methods, BLOOMP realizes the recovery in the refinement grids by overwhelming the shortages of coherent dictionary and is robust to noise and OGE. AIM calibration algorithm adaptively adjusts the OGE and, meanwhile, seeks the optimal target reconstruction result.

  2. Geophysical characterization of peatlands using crosshole GPR full-waveform inversion: Case study from a bog in northwestern Germany

    Science.gov (United States)

    Schmäck, J.; Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.; Bechtold, M.

    2017-12-01

    The characterization of peatlands is of particular interest, since areas with peat soils represent global hotspots for the exchange of greenhouse gases. Their effect on global warming depends on several parameters, like mean annual water level and land use. Models of greenhouse gas emissions and carbon accumulation in peatlands can be improved by including small-scale soil properties that e.g. act as gas traps and periodically release gases to the atmosphere during ebullition events. Ground penetrating radar (GPR) is well suited to non- or minimal invasively characterize and improve our understanding of dynamic processes that take place in the critical zone. It uses high frequency electromagnetic waves to image and characterize the dielectric permittivity and electrical conductivity of the critical zone, which can be related to hydrogeological properties like porosity, soil water content, salinity and clay content. In the last decade, the full-waveform inversion of crosshole GPR data has proved to be a powerful tool to improve the image resolution compared to standard ray-based methods. This approach was successfully applied to several different aquifers and was able to provide decimeter-scale resolution images including small-scale high contrast layers that can be related to zones of high porosity, zones of preferential flow or clay lenses. The comparison to independently measured e.g. logging data proved the reliability of the method. Here, for the first time crosshole GPR full-waveform inversion is used to image three peatland plots with different land use that are part of the "Ahlen-Falkenberger Moor peat bog complex" in northwestern Germany. The full-waveform inversion of the acquired data returned higher resolution images than standard ray-based GPR methods, and, is able to improve our understanding of subsurface structures. The comparison of the different plots is expected to provide new insights into gas content and gas trapping structures across different

  3. A survey on classical minimal surface theory

    CERN Document Server

    Meeks, William H

    2012-01-01

    Meeks and Pérez present a survey of recent spectacular successes in classical minimal surface theory. The classification of minimal planar domains in three-dimensional Euclidean space provides the focus of the account. The proof of the classification depends on the work of many currently active leading mathematicians, thus making contact with much of the most important results in the field. Through the telling of the story of the classification of minimal planar domains, the general mathematician may catch a glimpse of the intrinsic beauty of this theory and the authors' perspective of what is happening at this historical moment in a very classical subject. This book includes an updated tour through some of the recent advances in the theory, such as Colding-Minicozzi theory, minimal laminations, the ordering theorem for the space of ends, conformal structure of minimal surfaces, minimal annular ends with infinite total curvature, the embedded Calabi-Yau problem, local pictures on the scale of curvature and t...

  4. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    Science.gov (United States)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on

  5. On the convergence of nonconvex minimization methods for image recovery.

    Science.gov (United States)

    Xiao, Jin; Ng, Michael Kwok-Po; Yang, Yu-Fei

    2015-05-01

    Nonconvex nonsmooth regularization method has been shown to be effective for restoring images with neat edges. Fast alternating minimization schemes have also been proposed and developed to solve the nonconvex nonsmooth minimization problem. The main contribution of this paper is to show the convergence of these alternating minimization schemes, based on the Kurdyka-Łojasiewicz property. In particular, we show that the iterates generated by the alternating minimization scheme, converges to a critical point of this nonconvex nonsmooth objective function. We also extend the analysis to nonconvex nonsmooth regularization model with box constraints, and obtain similar convergence results of the related minimization algorithm. Numerical examples are given to illustrate our convergence analysis.

  6. The Quest for Minimal Quotients for Probabilistic Automata

    DEFF Research Database (Denmark)

    Eisentraut, Christian; Hermanns, Holger; Schuster, Johann

    2013-01-01

    One of the prevailing ideas in applied concurrency theory and verification is the concept of automata minimization with respect to strong or weak bisimilarity. The minimal automata can be seen as canonical representations of the behaviour modulo the bisimilarity considered. Together with congruence...... results wrt. process algebraic operators, this can be exploited to alleviate the notorious state space explosion problem. In this paper, we aim at identifying minimal automata and canonical representations for concurrent probabilistic models. We present minimality and canonicity results for probabilistic...... automata wrt. strong and weak bisimilarity, together with polynomial time minimization algorithms....

  7. On the square arc voltage waveform model in magnetic discharge lamp studies

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José

    2011-01-01

    The current number of magnetic and electronic ballast discharge lamps in power distribution systems is increasing because they perform better than incandescent lamps. This paper studies the magnetic discharge lamp modeling. In particular, the arc voltage waveform is analyzed and the limitations of the square waveform model are revealed from experimental measurements.

  8. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  9. Screening for aortoiliac lesions by visual interpretation of the common femoral Doppler waveform

    DEFF Research Database (Denmark)

    Eiberg, J P; Jensen, F; Grønvall Rasmussen, J B

    2001-01-01

    to study the accuracy of simple visual interpretation of the common femoral artery Doppler waveform for screening the aorto-iliac segment for significant occlusive disease.......to study the accuracy of simple visual interpretation of the common femoral artery Doppler waveform for screening the aorto-iliac segment for significant occlusive disease....

  10. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  11. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.

    Science.gov (United States)

    Lam, Frank; Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C , peripheral resistance R , aortic impedance r , and the inertia of blood L , to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.

  12. Influence of crystal orientation on magnetostriction waveform in grain orientated electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Kijima, Gou, E-mail: g-kijima@jfe-steel.co.jp [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, 210-0855 (Japan); Yamaguchi, Hiroi; Senda, Kunihiro; Hayakawa, Yasuyuki [Steel Research Laboratory, JFE Steel Corporation, Kurashiki, 712-8511 (Japan)

    2014-08-01

    Aiming to gain insight into the mechanisms of grain-oriented electrical steel sheet magnetostriction waveforms, we investigated the influence of crystal orientations. An increase in the β angle results in an increase in the amplitude of magnetostriction waveform, but does not affect the waveform itself. By slanting the excitation direction to simulate the change of the α angle, change in the magnetostriction waveform and a constriction–extension transition point in the steel plate was observed. The amplitude, however, was not significantly affected. We explained the nature of constriction–extension transition point in the magnetostriction waveform by considering the magnetization rotation. We speculated that the change of waveform resulting from the increase in the coating tensile stress can be attributed to the phenomenon of the magnetization rotation becoming hard to be generated due to the increase of magnetic anisotropy toward [001] axis. - Highlights: • β angle is related with the amplitude of magnetostriction waveform. • α angle is related with the magnetostriction waveform itself. • The effect of α angle can be controlled by the effect of coating tensile stress.

  13. Effects of waveform model systematics on the interpretation of GW150914

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K.M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, A. J. K.; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J.G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G.F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath Hoareau, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, Brian C J; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifir, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Van Bakel, N.; Van Beuzekom, Martin; Van Den Brand, J. F.J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Boyle, M.; Chu, I.W.T.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano-Vinuales, A.

    2017-01-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions,

  14. WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data.

    Science.gov (United States)

    Winslow, Raimond L; Granite, Stephen; Jurado, Christian

    2016-01-01

    The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs.

  15. Early arrival waveform inversion of shallow seismic land data

    KAUST Repository

    Hanafy, Sherif M.

    2013-09-22

    We estimate the near-surface velocity distribution over Wadi Qudaid in Saudi Arabia by applying early arrival waveform inversion (EWI) to shallow seismic land data collected with source-receiver offsets no longer than 232 m. The main purpose is to characterize the shallow subsurface for its water storage and reuse potential. To enhance the accuracy of EWI, we extracted a natural source wavelet from the data, and also corrected for the attenuation effects with an estimated factor Q. Results suggest that, compared to traveltime tomography, EWI can generate a highly resolved velocity tomogram from shallow seismic data. The more accurate EWI tomogram can make an economically important difference in assessing the storage potential of this wadi; in this case we find an increase of 18% of storage potential in the EWI tomogram relative to the traveltime tomogram. This approach suggests that FWI might be a more accurate means for economically characterizing the water storage potential for wadis’ throughout the world.

  16. Direct Synthesis of Microwave Waveforms for Quantum Computing

    Science.gov (United States)

    Raftery, James; Vrajitoarea, Andrei; Zhang, Gengyan; Leng, Zhaoqi; Srinivasan, Srikanth; Houck, Andrew

    Current state of the art quantum computing experiments in the microwave regime use control pulses generated by modulating microwave tones with baseband signals generated by an arbitrary waveform generator (AWG). Recent advances in digital analog conversion technology have made it possible to directly synthesize arbitrary microwave pulses with sampling rates of 65 gigasamples per second (GSa/s) or higher. These new ultra-wide bandwidth AWG's could dramatically simplify the classical control chain for quantum computing experiments, presenting potential cost savings and reducing the number of components that need to be carefully calibrated. Here we use a Keysight M8195A AWG to study the viability of such a simplified scheme, demonstrating randomized benchmarking of a superconducting qubit with high fidelity.

  17. Memory and convulsive stimulation: effects of stimulus waveform.

    Science.gov (United States)

    Spanis, C W; Squire, L R

    1981-09-01

    Electrical stimulation with brief pulses can produce a seizure requiring less energy than conventional sine-wave stimulation, and it has been suggested that brief-pulse stimulation might reduce the memory loss associated with electroconvulsive therapy (ECT). The authors evaluated the effects of electroconvulsive shock (ECS) on memory in mice by using various waveforms, current intensities, training-ECS intervals, pulse widths, and stimulus durations. When equated for ability to produce seizures, low-energy, brief-pulse stimulation caused as much amnesia as sine-wave stimulation and sometimes more. In the absence of comparisons of the amnesic effects of brief-pulse and sine-wave stimulation in humans, the use of brief pulses for administering ECT is unwarranted.

  18. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  19. Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin

    Science.gov (United States)

    Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva

    2017-10-01

    Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock

  20. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  1. Real time monitoring of moment magnitude by waveform inversion

    Science.gov (United States)

    Lee, J.; Friederich, W.; Meier, T.

    2012-01-01

    An instantaneous measure of the moment magnitude (Mw) of an ongoing earthquake is estimated from the moment rate function (MRF) determined in real-time from available seismic data using waveform inversion. Integration of the MRF gives the moment function from which an instantaneous Mw is derived. By repeating the inversion procedure at regular intervals while seismic data are coming in we can monitor the evolution of seismic moment and Mw with time. The final size and duration of a strong earthquake can be obtained within 12 to 15 minutes after the origin time. We show examples of Mw monitoring for three large earthquakes at regional distances. The estimated Mw is only weakly sensitive to changes in the assumed source parameters. Depending on the availability of seismic stations close to the epicenter, a rapid estimation of the Mw as a prerequisite for the assessment of earthquake damage potential appears to be feasible.

  2. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    Science.gov (United States)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  3. Full Waveform Inversion for Reservoir Characterization - A Synthetic Study

    KAUST Repository

    Zabihi Naeini, E.

    2017-05-26

    Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI) as an alternative tool for higher-resolution reservoir characterization. An important step in developing reservoir-oriented FWI is the implementation of facies-based rock physics constraints adapted from the classic methods. We show that such constraints can be incorporated into FWI by adding appropriately designed regularization terms to the objective function. The advantages of the proposed algorithm are demonstrated on both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models with pronounced lateral and vertical heterogeneity. The inversion results are explained using the theoretical radiation patterns produced by perturbations in the medium parameters.

  4. Full-waveform inversion: From near surface to deep

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-11-01

    The ancient Persian Gulf port city of Muscat provided a spectacular setting for the SEG\\'s 2013 Workshop on Full-waveform Inversion (FWI). This active R&D topic attracted about 36 oral presentations and 20 or so posters, which added up to three intense days of ideas, images, and discussion. FWI has progressed from academic research topic to commercial workflow component in roughly 10 years, with many case studies documenting improved imaging and business value and others documenting a definite need for improved understanding of algorithms and applicability. Along with fundamental research issues of worldwide importance, the meeting provided an opportunity to showcase implications of the Middle East\\'s particular exploration challenges for the further development of FWI.

  5. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  6. Reversible conduction block in peripheral nerve using electrical waveforms.

    Science.gov (United States)

    Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L

    2018-01-01

    Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.

  7. ABOUT WAVEFORM OF BRAKING CYLINDER FILLING IN FREIGHT CARS

    Directory of Open Access Journals (Sweden)

    L. V. Ursuliak

    2016-04-01

    Full Text Available Purpose. As part of the scientific paper it is necessary to study the waveform impact of the braking cylinders filling on longitudinal train dynamics at different modes of braking. At this one should estimate the level of maximum longitudinal forces and braking distance size in freight cars of various lengths. Methodology. In this paper we attempt to approximate the actual diagram of braking cylinders filling with rational functions of varying degrees. In selection of coefficients in the required functions the highest values of the longitudinal forces and braking distances were used as controlled parameters. They were compared with similar values obtained as a result of experimental rides. The level of longitudinal forces and braking distances amount were evaluated by means of mathematical modeling of train longitudinal vibrations, caused by different braking modes. Findings. At mathematical modeling was assumed that the train consists of 60 uniform four-axle gondola cars, weight of 80 tons, equipped with air dispenser No. 483 included in the median operation, composite braking blocks, and one locomotive VL-8. Train before braking has been pre-stretched. Various types of pneumatic braking (emergency, full service and adjusting braking of the freight train on the horizontal section of the track were simulated. As the calculation results were obtained values of the longitudinal forces, braking distances amounts and reduction time in speed at various braking modes. Originality. Waveform impact of the braking cylinders filling on the longitudinal forces level and braking distances amount in freight trains were investigated. Also the longitudinal loading of freight trains at various pneumatic braking was investigated. Practical value. Obtained results can be used to assess the level of largest longitudinal forces and braking distances in the freight trains of different lengths by mathematical modeling of different braking modes.

  8. Lossless compression of waveform data for efficient storage and transmission

    International Nuclear Information System (INIS)

    Stearns, S.D.; Tan, Li Zhe; Magotra, Neeraj

    1993-01-01

    Compression of waveform data is significant in many engineering and research areas since it can be used to alleviate data storage and transmission bandwidth. For example, seismic data are widely recorded and transmitted so that analysis can be performed on large amounts of data for numerous applications such as petroleum exploration, determination of the earth's core structure, seismic event detection and discrimination of underground nuclear explosions, etc. This paper describes a technique for lossless wave form data compression. The technique consists of two stages. The first stage is a modified form of linear prediction with discrete coefficients and the second stage is bi-level sequence coding. The linear predictor generates an error or residue sequence in a way such that exact reconstruction of the original data sequence can be accomplished with a simple algorithm. The residue sequence is essentially white Gaussian with seismic or other similar waveform data. Bi-level sequence coding, in which two sample sizes are chosen and the residue sequence is encoded into subsequences that alternate from one level to the other, further compresses the residue sequence. The principal feature of the two-stage data compression algorithm is that it is lossless, that is, it allows exact, bit-for-bit recovery of the original data sequence. The performance of the lossless compression algorithm at each stage is analyzed. The advantages of using bi-level sequence coding in the second stage are its simplicity of implementation, its effectiveness on data with large amplitude variations, and its near-optimal performance in encoding Gaussian sequences. Applications of the two-stage technique to typical seismic data indicates that an average number of compressed bits per sample close to the lower bound is achievable in practical situations

  9. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  10. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG.

    Science.gov (United States)

    Matysiak, Artur; Kordecki, Wojciech; Sielużycki, Cezary; Zacharias, Norman; Heil, Peter; König, Reinhard

    2013-07-01

    Grand means of time-varying signals (waveforms) across subjects in magnetoencephalography (MEG) and electroencephalography (EEG) are commonly computed as arithmetic averages and compared between conditions, for example, by subtraction. However, the prerequisite for these operations, homogeneity of the variance of the waveforms in time, and for most common parametric statistical tests also between conditions, is rarely met. We suggest that the heteroscedasticity observed instead results because waveforms may differ by factors and additive terms and follow a mixed model. We propose to apply the asinh-transformation to stabilize the variance in such cases. We demonstrate the homogeneous variance and the normal distributions of data achieved by this transformation using simulated waveforms, and we apply it to real MEG data and show its benefits. The asinh-transformation is thus an essential and useful processing step prior to computing and comparing grand mean waveforms in MEG and EEG. Copyright © 2013 Society for Psychophysiological Research.

  11. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  12. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    Science.gov (United States)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in

  13. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    Science.gov (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  14. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  15. Minimal dilaton model

    Directory of Open Access Journals (Sweden)

    Oda Kin-ya

    2013-05-01

    Full Text Available Both the ATLAS and CMS experiments at the LHC have reported the observation of the particle of mass around 125 GeV which is consistent to the Standard Model (SM Higgs boson, but with an excess of events beyond the SM expectation in the diphoton decay channel at each of them. There still remains room for a logical possibility that we are not seeing the SM Higgs but something else. Here we introduce the minimal dilaton model in which the LHC signals are explained by an extra singlet scalar of the mass around 125 GeV that slightly mixes with the SM Higgs heavier than 600 GeV. When this scalar has a vacuum expectation value well beyond the electroweak scale, it can be identified as a linearly realized version of a dilaton field. Though the current experimental constraints from the Higgs search disfavors such a region, the singlet scalar model itself still provides a viable alternative to the SM Higgs in interpreting its search results.

  16. Minimal mirror twin Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  17. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    Science.gov (United States)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-03-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes over-parametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret, and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  18. Non-minimally coupled tachyon and inflation

    International Nuclear Information System (INIS)

    Piao Yunsong; Huang Qingguo; Zhang Xinmin; Zhang Yuanzhong

    2003-01-01

    In this Letter, we consider a model of tachyon with a non-minimal coupling to gravity and study its cosmological effects. Regarding inflation, we show that only for a specific coupling of tachyon to gravity this model satisfies observations and solves various problems which exist in the single and multi tachyon inflation models. But noting in the string theory the coupling coefficient of tachyon to gravity is of order g s , which in general is very small, we can hardly expect that the non-minimally coupling of tachyon to gravity could provide a reasonable tachyon inflation scenario. Our work may be a meaningful try for the cosmological effect of tachyon non-minimally coupled to gravity

  19. Doppler Aliasing Reduction in Wide-Angle Synthetic Aperture Radar Using Phase Modulated Random Stepped-Frequency Waveforms

    National Research Council Canada - National Science Library

    Hyatt, Andrew W

    2006-01-01

    ...) waveforms in a Wide-Angle Synthetic Aperture Radar (WA-SAR) scenario. RSF waveforms have been demonstrated to have desirable properties which allow for cancelling of Doppler aliased scatterers in WA-SAR images...

  20. How to minimize wastes

    International Nuclear Information System (INIS)

    Ambolet, M.

    1988-10-01

    Actions undertaken by the CEA to decrease the stock of natural and depleted uranium are presented in this paper. Various wastes and residues are produced in uranium fabrication. If for some wastes or residues processing methods were found previously, for other storage was the rule. Facing growing problems of safety, bulkiness, and cost new treatments allow to decrease a great amount of wastes. Uranium fabrication cycle, wastes and residues are described. Processing of the different residues of operations and optimization of manufacture are indicated [fr

  1. Image denoising by a direct variational minimization

    Directory of Open Access Journals (Sweden)

    Pilipović Stevan

    2011-01-01

    Full Text Available Abstract In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.

  2. On minimizers of causal variational principles

    International Nuclear Information System (INIS)

    Schiefeneder, Daniela

    2011-01-01

    Causal variational principles are a class of nonlinear minimization problems which arise in a formulation of relativistic quantum theory referred to as the fermionic projector approach. This thesis is devoted to a numerical and analytic study of the minimizers of a general class of causal variational principles. We begin with a numerical investigation of variational principles for the fermionic projector in discrete space-time. It is shown that for sufficiently many space-time points, the minimizing fermionic projector induces non-trivial causal relations on the space-time points. We then generalize the setting by introducing a class of causal variational principles for measures on a compact manifold. In our main result we prove under general assumptions that the support of a minimizing measure is either completely timelike, or it is singular in the sense that its interior is empty. In the examples of the circle, the sphere and certain flag manifolds, the general results are supplemented by a more detailed analysis of the minimizers. (orig.)

  3. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  4. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    Science.gov (United States)

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  5. Generalized monotonicity from global minimization in fourth-order ODEs

    NARCIS (Netherlands)

    M.A. Peletier (Mark)

    2000-01-01

    textabstractWe consider solutions of the stationary Extended Fisher-Kolmogorov equation with general potential that are global minimizers of an associated variational problem. We present results that relate the global minimization property to a generalized concept of monotonicity of the solutions.

  6. KCUT, code to generate minimal cut sets for fault trees

    International Nuclear Information System (INIS)

    Han, Sang Hoon

    2008-01-01

    1 - Description of program or function: KCUT is a software to generate minimal cut sets for fault trees. 2 - Methods: Expand a fault tree into cut sets and delete non minimal cut sets. 3 - Restrictions on the complexity of the problem: Size and complexity of the fault tree

  7. On the Metric-based Approximate Minimization of Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giovanni; Bacci, Giorgio; Larsen, Kim Guldstrand

    2018-01-01

    In this paper we address the approximate minimization problem of Markov Chains (MCs) from a behavioral metric-based perspective. Specifically, given a finite MC and a positive integer k, we are looking for an MC with at most k states having minimal distance to the original. The metric considered...

  8. On the Metric-Based Approximate Minimization of Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giovanni; Bacci, Giorgio; Larsen, Kim Guldstrand

    2017-01-01

    We address the behavioral metric-based approximate minimization problem of Markov Chains (MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state MC of minimal distance to the original. By considering as metric the bisimilarity distance of Desharnais at al...

  9. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  10. Geometric Measure Theory and Minimal Surfaces

    CERN Document Server

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  11. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform?

    Science.gov (United States)

    Shelley, Kirk H; Jablonka, Denis H; Awad, Aymen A; Stout, Robert G; Rezkanna, Hoda; Silverman, David G

    2006-08-01

    The cardiac pulse is the predominant feature of the pulse oximeter (plethysmographic) waveform. Less obvious is the effect of ventilation on the waveform. There have been efforts to measure the effect of ventilation on the waveform to determine respiratory rate, tidal volume, and blood volume. We measured the relative strength of the effect of ventilation on the reflective plethysmographic waveform at three different sites: the finger, ear, and forehead. The plethysmographic waveforms from 18 patients undergoing positive pressure ventilation during surgery and 10 patients spontaneously breathing during renal dialysis were collected. The respiratory signal was isolated from the waveform using spectral analysis. It was found that the respiratory signal in the pulse oximeter waveform was more than 10 times stronger in the region of the head when compared with the finger. This was true with both controlled positive pressure ventilation and spontaneous breathing. A significant correlation was demonstrated between the estimated blood loss from surgical procedures and the impact of ventilation on ear plethysmographic data (r(s) = 0.624, P = 0.006).

  12. Surface Reconstruction and Image Enhancement via $L^1$-Minimization

    KAUST Repository

    Dobrev, Veselin; Guermond, Jean-Luc; Popov, Bojan

    2010-01-01

    A surface reconstruction technique based on minimization of the total variation of the gradient is introduced. Convergence of the method is established, and an interior-point algorithm solving the associated linear programming problem is introduced

  13. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of adhesive, input resistor, and voltage levels on waveform appearance and stylet probing behaviors.

    Science.gov (United States)

    Cervantes, Felix A; Backus, Elaine A

    2018-05-31

    Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9  Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9  Ohms) was performed. Intermediate Ri levels 10 7 and 10 8  Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa

  14. Reference respiratory waveforms by minimum jerk model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  15. Reference respiratory waveforms by minimum jerk model analysis

    International Nuclear Information System (INIS)

    Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi

    2015-01-01

    Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory

  16. Full Waveform Adjoint Seismic Tomography of the Antarctic Plate

    Science.gov (United States)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    Recent studies investigating the response and influence of the solid Earth on the evolution of the cryosphere demonstrate the need to account for 3D rheological structure to better predict ice sheet dynamics, stability, and future sea level impact, as well as to improve glacial isostatic adjustment models and more accurately measure ice mass loss. Critical rheological properties like mantle viscosity and lithospheric thickness may be estimated from shear wave velocity models that, for Antarctica, would ideally possess regional-scale resolution extending down to at least the base of the transition zone (i.e. 670 km depth). However, current global- and continental-scale seismic velocity models are unable to obtain both the resolution and spatial coverage necessary, do not take advantage of the full set of available Antarctic data, and, in most instance, employ traditional seismic imaging techniques that utilize limited seismogram information. We utilize 3-component earthquake waveforms from almost 300 Antarctic broadband seismic stations and 26 southern mid-latitude stations from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) between 2001-2003 and 2007-2016 to conduct a full-waveform adjoint inversion for Antarctica and surrounding regions of the Antarctic plate. Necessary forward and adjoint wavefield simulations are performed utilizing SPECFEM3D_GLOBE with the aid of the Texas Advanced Computing Center. We utilize phase observations from seismogram segments containing P, S, Rayleigh, and Love waves, including reflections and overtones, which are autonomously identified using FLEXWIN. The FLEXWIN analysis is carried out over a short (15-50 s) and long (initially 50-150 s) period band that target body waves, or body and surface waves, respectively. As our model is iteratively refined, the short-period corner of the long period band is gradually reduced to 25 s as the model converges over 20 linearized inversion iterations. We will briefly present this new high

  17. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    Science.gov (United States)

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  18. Reliability of pressure waveform analysis to determine correct epidural needle placement in labouring women.

    Science.gov (United States)

    Al-Aamri, I; Derzi, S H; Moore, A; Elgueta, M F; Moustafa, M; Schricker, T; Tran, D Q

    2017-07-01

    Pressure waveform analysis provides a reliable confirmatory adjunct to the loss-of-resistance technique to identify the epidural space during thoracic epidural anaesthesia, but its role remains controversial in lumbar epidural analgesia during labour. We performed an observational study in 100 labouring women of the sensitivity and specificity of waveform analysis to determine the correct location of the epidural needle. After obtaining loss-of-resistance, the anaesthetist injected 5 ml saline through the epidural needle (accounting for the volume already used in the loss-of-resistance). Sterile extension tubing, connected to a pressure transducer, was attached to the needle. An investigator determined the presence or absence of a pulsatile waveform, synchronised with the heart rate, on a monitor screen that was not in the view of the anaesthetist or the parturient. A bolus of 4 ml lidocaine 2% with adrenaline 5 μg.ml -1 was administered, and the epidural block was assessed after 15 min. Three women displayed no sensory block at 15 min. The results showed: epidural block present, epidural waveform present 93; epidural block absent, epidural waveform absent 2; epidural block present, epidural waveform absent 4; epidural block absent, epidural waveform present 1. Compared with the use of a local anaesthetic bolus to ascertain the epidural space, the sensitivity, specificity, positive and negative predictive values of waveform analysis were 95.9%, 66.7%, 98.9% and 33.3%, respectively. Epidural waveform analysis provides a simple adjunct to loss-of-resistance for confirming needle placement during performance of obstetric epidurals, however, further studies are required before its routine implementation in clinical practice. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  19. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    Science.gov (United States)

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  20. The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis

    Science.gov (United States)

    Bartman, Jacek; Kwiatkowski, Bogdan

    2018-04-01

    The present paper covers a review of documents that specify measurement methods of voltage waveform distortion. It also presents measurement stages of waveform components that are uncommon in the classic fundamentals of electrotechnics and signal theory, including the creation process of groups and subgroups of harmonics and interharmonics. Moreover, the paper discusses selected distortion factors of periodic waveforms and presents analyses that compare the values of these distortion indices. The measurements were carried out in the cycle per cycle mode and the measurement methodology that was used complies with the IEC 61000-4-7 norm. The studies showed significant discrepancies between the values of analyzed parameters.