Tohyama, Mikio
2015-01-01
What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...
Electronics via waveform analysis
Craig, Edwin C
1993-01-01
The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment.
Resolution analysis in full waveform inversion
Fichtner, A.; Trampert, J.
2011-01-01
We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Wavelet analysis of the impedance cardiogram waveforms
International Nuclear Information System (INIS)
Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K
2012-01-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Efficient data retrieval method for similar plasma waveforms in EAST
Energy Technology Data Exchange (ETDEWEB)
Liu, Ying, E-mail: liuying-ipp@szu.edu.cn [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Huang, Jianjun; Zhou, Huasheng; Wang, Fan [SZU-CASIPP Joint Laboratory for Applied Plasma, Shenzhen University, Shenzhen 518060 (China); Wang, Feng [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031 (China)
2016-11-15
Highlights: • The proposed method is carried out by means of bounding envelope and angle distance. • It allows retrieving for whole similar waveforms of any time length. • In addition, the proposed method is also possible to retrieve subsequences. - Abstract: Fusion research relies highly on data analysis due to its massive-sized database. In the present work, we propose an efficient method for searching and retrieving similar plasma waveforms in Experimental Advanced Superconducting Tokamak (EAST). Based on Piecewise Linear Aggregate Approximation (PLAA) for extracting feature values, the searching process is accomplished in two steps. The first one is coarse searching to narrow down the search space, which is carried out by means of bounding envelope. The second step is fine searching to retrieval similar waveforms, which is implemented by the angle distance. The proposed method is tested in EAST databases and turns out to have good performance in retrieving similar waveforms.
Waveform relaxation methods for implicit differential equations
P.J. van der Houwen; W.A. van der Veen
1996-01-01
textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems
Photonic arbitrary waveform generator based on Taylor synthesis method
DEFF Research Database (Denmark)
Liao, Shasha; Ding, Yunhong; Dong, Jianji
2016-01-01
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...
Digitizing and analysis of neutron generator waveforms
International Nuclear Information System (INIS)
Bryant, T.C.
1977-11-01
All neutron generator waveforms from units tested at the SLA neutron generator test site are digitized and the digitized data stored in the CDC 6600 tape library for display and analysis using the CDC 6600 computer. The digitizing equipment consists mainly of seven Biomation Model 8100 transient recorders, Digital Equipment Corporation PDP 11/20 computer, RK05 disk, seven-track magnetic tape transport, and appropriate DEC and SLA controllers and interfaces. The PDP 11/20 computer is programmed in BASIC with assembly language drivers. In addition to digitizing waveforms, this equipment is used for other functions such as the automated testing of multiple-operation electronic neutron generators. Although other types of analysis have been done, the largest use of the digitized data has been for various types of graphical displays using the CDC 6600 and either the SD4020 or DX4460 plotters
Analysis of Gradient Waveform in Magnetic Resonance Imaging
Directory of Open Access Journals (Sweden)
OU-YANG Shan-mei
2017-12-01
Full Text Available The accuracy of gradient pulse waveform affects image quality significantly in magnetic resonance imaging (MRI. Recording and analyzing the waveform of gradient pulse helps to make rapid and accurate diagnosis of spectrometer gradient hardware and/or pulse sequence. Using the virtual instrument software LabVIEW to control the high speed data acquisition card DAQ-2005, a multi-channel acquisition scheme was designed to collect the gradient outputs from a custom-made spectrometer. The collected waveforms were post-processed (i.e., histogram statistical analysis, data filtering and difference calculation to obtain feature points containing time and amplitude information. Experiments were carried out to validate the method, which is an auxiliary test method for the development of spectrometer and pulses sequence.
Designing waveforms for temporal encoding using a frequency sampling method
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2007-01-01
was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...
Full Waveform Inversion Using Oriented Time Migration Method
Zhang, Zhendong
2016-04-12
Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I
Lane marking detection based on waveform analysis and CNN
Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li
2017-06-01
Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.
Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan
2013-11-01
Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.
Jiang, Zhixing; Zhang, David; Lu, Guangming
2018-04-19
Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimal overlapping of waveform relaxation method for linear differential equations
International Nuclear Information System (INIS)
Yamada, Susumu; Ozawa, Kazufumi
2000-01-01
Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
Waveform shape analysis: extraction of physiologically relevant information from Doppler recordings.
Ramsay, M M; Broughton Pipkin, F; Rubin, P C; Skidmore, R
1994-05-01
1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure-flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or ice-packs. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.
Method and apparatus for resonant frequency waveform modulation
Taubman, Matthew S [Richland, WA
2011-06-07
A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.
Full Waveform Inversion Using Oriented Time Migration Method
Zhang, Zhendong
2016-01-01
Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have
A Denoising Method for LiDAR Full-Waveform Data
Directory of Open Access Journals (Sweden)
Xudong Lai
2015-01-01
Full Text Available Decomposition of LiDAR full-waveform data can not only enhance the density and positioning accuracy of a point cloud, but also provide other useful parameters, such as pulse width, peak amplitude, and peak position which are important information for subsequent processing. Full-waveform data usually contain some random noises. Traditional filtering algorithms always cause distortion in the waveform. λ/μ filtering algorithm is based on Mean Shift method. It can smooth the signal iteratively and will not cause any distortion in the waveform. In this paper, an improved λ/μ filtering algorithm is proposed, and several experiments on both simulated waveform data and real waveform data are implemented to prove the effectiveness of the proposed algorithm.
WAVEFORM ANALYSIS FOR THE EXTRACTION OF POST-FIRE VEGETATION CHARACTERISTICS
Directory of Open Access Journals (Sweden)
F. Pirotti
2012-08-01
Full Text Available Full-waveform is becoming increasingly available in today's LiDAR systems and the analysis of the full return signal can provide additional information on the reflecting surfaces. In this paper we present the results of an assessment on full-waveform analysis, as opposed to the more classic discrete return analysis, for discerning vegetation cover classes related to post-fire renovation. In the spring of 2011 an OPTECH ALTM sensor was used to survey an Alpine area of almost 20 km2 in the north of Italy. A forest fire event several years ago burned large patches of vegetation for a total of about 1.5 km2 . The renovation process in the area is varied because of the different interventions ranging from no intervention to the application of re-forestation techniques to accelerate the process of re-establishing protection forest. The LiDAR data was used to divide the study site into areas with different conditions in terms of re-establishment of the natural vegetation condition. The LiDAR survey provided both the full-waveform data in Optech's CSD+DGT (corrected sensor data and NDF+IDX (digitizer data with index file formats, and the discrete return in the LAS format. The method applied to the full-waveform uses canopy volume profiles obtained by modelling, whereas the method applied to discrete return uses point geometry and density indexes. The results of these two methods are assessed by ground truth obtained from sampling and comparison shows that the added information from the full-waveform does give a significant better discrimination of the vegetation cover classes.
Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2012-08-01
We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.
Javed, Faizan; Middleton, Paul M; Malouf, Philip; Chan, Gregory S H; Savkin, Andrey V; Lovell, Nigel H; Steel, Elizabeth; Mackie, James
2010-09-01
This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. Spectral powers were calculated from the low frequency (LF, 0.04-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands. In eight stable fluid overloaded patients (fluid removal of >2 L) not on alpha blockers, progressive reduction in relative blood volume during haemodialysis resulted in significant increase in LF and HF powers of PPG baseline and amplitude variability (P analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.
Energy Technology Data Exchange (ETDEWEB)
Soleimani, Effat; Mokhtari-Dizaji, Manijhe [Dept. of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fatouraee, Nasser [Dept. of Medical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saben, Hazhir [Dept. Radiology, Imaging Center of Imam Khomaini Hospital, Tehran Medical Sciences University, Tehran (Iran, Islamic Republic of)
2017-04-15
The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes.
International Nuclear Information System (INIS)
Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Fatouraee, Nasser; Saben, Hazhir
2017-01-01
The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes
Micro-seismic imaging using a source function independent full waveform inversion method
Wang, Hanchen; Alkhalifah, Tariq Ali
2018-01-01
hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms
International Nuclear Information System (INIS)
Lu Wei; Nystrom, Michelle M.; Parikh, Parag J.; Fooshee, David R.; Hubenschmidt, James P.; Bradley, Jeffrey D.; Low, Daniel A.
2006-01-01
The existing commercial software often inadequately determines respiratory peaks for patients in respiration correlated computed tomography. A semi-automatic method was developed for peak and valley detection in free-breathing respiratory waveforms. First the waveform is separated into breath cycles by identifying intercepts of a moving average curve with the inspiration and expiration branches of the waveform. Peaks and valleys were then defined, respectively, as the maximum and minimum between pairs of alternating inspiration and expiration intercepts. Finally, automatic corrections and manual user interventions were employed. On average for each of the 20 patients, 99% of 307 peaks and valleys were automatically detected in 2.8 s. This method was robust for bellows waveforms with large variations
Reference respiratory waveforms by minimum jerk model analysis
Energy Technology Data Exchange (ETDEWEB)
Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)
2015-09-15
Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy
Reference respiratory waveforms by minimum jerk model analysis
International Nuclear Information System (INIS)
Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi
2015-01-01
Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory
A New Waveform Signal Processing Method Based on Adaptive Clustering-Genetic Algorithms
International Nuclear Information System (INIS)
Noha Shaaban; Fukuzo Masuda; Hidetsugu Morota
2006-01-01
We present a fast digital signal processing method for numerical analysis of individual pulses from CdZnTe compound semiconductor detectors. Using Maxi-Mini Distance Algorithm and Genetic Algorithms based discrimination technique. A parametric approach has been used for classifying the discriminated waveforms into a set of clusters each has a similar signal shape with a corresponding pulse height spectrum. A corrected total pulse height spectrum was obtained by applying a normalization factor for the full energy peak for each cluster with a highly improvements in the energy spectrum characteristics. This method applied successfully for both simulated and real measured data, it can be applied to any detector suffers from signal shape variation. (authors)
Machine Learning Techniques for Arterial Pressure Waveform Analysis
Directory of Open Access Journals (Sweden)
João Cardoso
2013-05-01
Full Text Available The Arterial Pressure Waveform (APW can provide essential information about arterial wall integrity and arterial stiffness. Most of APW analysis frameworks individually process each hemodynamic parameter and do not evaluate inter-dependencies in the overall pulse morphology. The key contribution of this work is the use of machine learning algorithms to deal with vectorized features extracted from APW. With this purpose, we follow a five-step evaluation methodology: (1 a custom-designed, non-invasive, electromechanical device was used in the data collection from 50 subjects; (2 the acquired position and amplitude of onset, Systolic Peak (SP, Point of Inflection (Pi and Dicrotic Wave (DW were used for the computation of some morphological attributes; (3 pre-processing work on the datasets was performed in order to reduce the number of input features and increase the model accuracy by selecting the most relevant ones; (4 classification of the dataset was carried out using four different machine learning algorithms: Random Forest, BayesNet (probabilistic, J48 (decision tree and RIPPER (rule-based induction; and (5 we evaluate the trained models, using the majority-voting system, comparatively to the respective calculated Augmentation Index (AIx. Classification algorithms have been proved to be efficient, in particular Random Forest has shown good accuracy (96.95% and high area under the curve (AUC of a Receiver Operating Characteristic (ROC curve (0.961. Finally, during validation tests, a correlation between high risk labels, retrieved from the multi-parametric approach, and positive AIx values was verified. This approach gives allowance for designing new hemodynamic morphology vectors and techniques for multiple APW analysis, thus improving the arterial pulse understanding, especially when compared to traditional single-parameter analysis, where the failure in one parameter measurement component, such as Pi, can jeopardize the whole evaluation.
A new method for measuring the wall charge waveforms of AC PDP
International Nuclear Information System (INIS)
Liang Zhihu; Liu Zujun; Liu Chunliang
2004-01-01
A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two capacitors are respectively connected with these two groups of display electrodes in series, and a measuring circuit and a reference circuit are thus constructed. With the help of special processing, discharge takes place in the cells included in the measuring circuit under a normal drive voltage but no discharge takes place in the cells included in the reference circuit under a normal drive voltage. The wall charge waveforms are obtained from the voltage difference between the two capacitors. Using the method, the wall charge waveforms are measured during resetting period, addressing period and sustaining period for the 304.8 mm (12-inch) test PDP panel. The result shows that the wall voltage is about 96 V during the sustaining period. (authors)
Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation
International Nuclear Information System (INIS)
Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won
2000-01-01
Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch
Al-Aamri, I; Derzi, S H; Moore, A; Elgueta, M F; Moustafa, M; Schricker, T; Tran, D Q
2017-07-01
Pressure waveform analysis provides a reliable confirmatory adjunct to the loss-of-resistance technique to identify the epidural space during thoracic epidural anaesthesia, but its role remains controversial in lumbar epidural analgesia during labour. We performed an observational study in 100 labouring women of the sensitivity and specificity of waveform analysis to determine the correct location of the epidural needle. After obtaining loss-of-resistance, the anaesthetist injected 5 ml saline through the epidural needle (accounting for the volume already used in the loss-of-resistance). Sterile extension tubing, connected to a pressure transducer, was attached to the needle. An investigator determined the presence or absence of a pulsatile waveform, synchronised with the heart rate, on a monitor screen that was not in the view of the anaesthetist or the parturient. A bolus of 4 ml lidocaine 2% with adrenaline 5 μg.ml -1 was administered, and the epidural block was assessed after 15 min. Three women displayed no sensory block at 15 min. The results showed: epidural block present, epidural waveform present 93; epidural block absent, epidural waveform absent 2; epidural block present, epidural waveform absent 4; epidural block absent, epidural waveform present 1. Compared with the use of a local anaesthetic bolus to ascertain the epidural space, the sensitivity, specificity, positive and negative predictive values of waveform analysis were 95.9%, 66.7%, 98.9% and 33.3%, respectively. Epidural waveform analysis provides a simple adjunct to loss-of-resistance for confirming needle placement during performance of obstetric epidurals, however, further studies are required before its routine implementation in clinical practice. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
Computer model analysis of the radial artery pressure waveform.
Schwid, H A; Taylor, L A; Smith, N T
1987-10-01
Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.
The Influence of Measurement Methodology on the Accuracy of Electrical Waveform Distortion Analysis
Bartman, Jacek; Kwiatkowski, Bogdan
2018-04-01
The present paper covers a review of documents that specify measurement methods of voltage waveform distortion. It also presents measurement stages of waveform components that are uncommon in the classic fundamentals of electrotechnics and signal theory, including the creation process of groups and subgroups of harmonics and interharmonics. Moreover, the paper discusses selected distortion factors of periodic waveforms and presents analyses that compare the values of these distortion indices. The measurements were carried out in the cycle per cycle mode and the measurement methodology that was used complies with the IEC 61000-4-7 norm. The studies showed significant discrepancies between the values of analyzed parameters.
Waveform control for magnetic testers using a quasi-Newton method
International Nuclear Information System (INIS)
Yamamoto, Ken-ichi; Hanba, Shigeru
2008-01-01
A nonlinear iterative learning algorithm is proposed to make a voltage waveform in the secondary coil sinusoidal in this paper. The algorithm employs a globally convergent Jacobian-free quasi-Newton type solver that has a BFGS-like structure. This method functions well, and it is demonstrated using typical soft magnetic materials
Micro-seismic Imaging Using a Source Independent Waveform Inversion Method
Wang, Hanchen
2016-01-01
waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking
SGRAPH (SeismoGRAPHer): Seismic waveform analysis and integrated tools in seismology
Abdelwahed, Mohamed F.
2012-03-01
Although numerous seismological programs are currently available, most of them suffer from the inability to manipulate different data formats and the lack of embedded seismological tools. SeismoGRAPHer, or simply SGRAPH, is a new system for maintaining and analyzing seismic waveform data in a stand-alone, Windows-based application that manipulates a wide range of data formats. SGRAPH was intended to be a tool sufficient for performing basic waveform analysis and solving advanced seismological problems. The graphical user interface (GUI) utilities and the Windows functionalities, such as dialog boxes, menus, and toolbars, simplify the user interaction with the data. SGRAPH supports common data formats, such as SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and provides the ability to solve many seismological problems with built-in inversion tools. Loaded traces are maintained, processed, plotted, and saved as SAC, ASCII, or PS (post script) file formats. SGRAPH includes Generalized Ray Theory (GRT), genetic algorithm (GA), least-square fitting, auto-picking, fast Fourier transforms (FFT), and many additional tools. This program provides rapid estimation of earthquake source parameters, location, attenuation, and focal mechanisms. Advanced waveform modeling techniques are provided for crustal structure and focal mechanism estimation. SGRAPH has been employed in the Egyptian National Seismic Network (ENSN) as a tool assisting with routine work and data analysis. More than 30 users have been using previous versions of SGRAPH in their research for more than 3 years. The main features of this application are ease of use, speed, small disk space requirements, and the absence of third-party developed components. Because of its architectural structure, SGRAPH can be interfaced with newly developed methods or applications in seismology. A complete setup file, including the SGRAPH package with the online user guide, is available.
Remote Blood Pressure Waveform Sensing Method and Apparatus
National Research Council Canada - National Science Library
Antonelli, Lynn T
2008-01-01
The invention as disclosed is a non-contact method and apparatus for continuously monitoring a physiological event in a human or animal, such as blood pressure, which involves utilizing a laser-based...
DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E
2007-01-01
Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.
Zhang, Zhendong
2017-07-11
Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.
Automatic physiological waveform processing for FMRI noise correction and analysis.
Directory of Open Access Journals (Sweden)
Daniel J Kelley
2008-03-01
Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
International Nuclear Information System (INIS)
Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B
2009-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S
2017-12-01
The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Directory of Open Access Journals (Sweden)
Tan Zhou
2017-12-01
Full Text Available A plethora of information contained in full-waveform (FW Light Detection and Ranging (LiDAR data offers prospects for characterizing vegetation structures. This study aims to investigate the capacity of FW LiDAR data alone for tree species identification through the integration of waveform metrics with machine learning methods and Bayesian inference. Specifically, we first conducted automatic tree segmentation based on the waveform-based canopy height model (CHM using three approaches including TreeVaW, watershed algorithms and the combination of TreeVaW and watershed (TW algorithms. Subsequently, the Random forests (RF and Conditional inference forests (CF models were employed to identify important tree-level waveform metrics derived from three distinct sources, such as raw waveforms, composite waveforms, the waveform-based point cloud and the combined variables from these three sources. Further, we discriminated tree (gray pine, blue oak, interior live oak and shrub species through the RF, CF and Bayesian multinomial logistic regression (BMLR using important waveform metrics identified in this study. Results of the tree segmentation demonstrated that the TW algorithms outperformed other algorithms for delineating individual tree crowns. The CF model overcomes waveform metrics selection bias caused by the RF model which favors correlated metrics and enhances the accuracy of subsequent classification. We also found that composite waveforms are more informative than raw waveforms and waveform-based point cloud for characterizing tree species in our study area. Both classical machine learning methods (the RF and CF and the BMLR generated satisfactory average overall accuracy (74% for the RF, 77% for the CF and 81% for the BMLR and the BMLR slightly outperformed the other two methods. However, these three methods suffered from low individual classification accuracy for the blue oak which is prone to being misclassified as the interior live oak due
Error analysis of numerical gravitational waveforms from coalescing binary black holes
Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.
Micro-seismic imaging using a source function independent full waveform inversion method
Wang, Hanchen; Alkhalifah, Tariq
2018-03-01
At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.
Micro-seismic imaging using a source function independent full waveform inversion method
Wang, Hanchen
2018-03-26
At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.
Waveform control method for mitigating harmonics of inverter systems with nonlinear load
DEFF Research Database (Denmark)
Wang, Haoran; Zhu, Guorong; Fu, Xiaobin
2015-01-01
instability in the DC power system, lower its efficiency, and shorten the lifetime of the DC source. This paper presents a general waveform control method that can mitigate the injection of the low-frequency ripple current by the single-phase DC/AC inverter into the DC source. It also discusses the inhibiting......DC power systems connecting to single-phase DC/AC inverters with nonlinear loads will have their DC sources being injected with AC ripple currents containing a low-frequency component at twice the output voltage frequency of the inverter and also other current harmonics. Such a current may create...
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M
2014-12-11
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
Full-waveform detection of non-impulsive seismic events based on time-reversal methods
Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya
2017-12-01
We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May
Microseismic imaging using a source-independent full-waveform inversion method
Wang, Hanchen
2016-09-06
Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.
Microseismic imaging using a source-independent full-waveform inversion method
Wang, Hanchen
2016-01-01
Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the
Full Seismic Waveform Tomography of the Japan region using Adjoint Methods
Steptoe, Hamish; Fichtner, Andreas; Rickers, Florian; Trampert, Jeannot
2013-04-01
We present a full-waveform tomographic model of the Japan region based on spectral-element wave propagation, adjoint techniques and seismic data from dense station networks. This model is intended to further our understanding of both the complex regional tectonics and the finite rupture processes of large earthquakes. The shallow Earth structure of the Japan region has been the subject of considerable tomographic investigation. The islands of Japan exist in an area of significant plate complexity: subduction related to the Pacific and Philippine Sea plates is responsible for the majority of seismicity and volcanism of Japan, whilst smaller micro-plates in the region, including the Okhotsk, and Okinawa and Amur, part of the larger North America and Eurasia plates respectively, contribute significant local intricacy. In response to the need to monitor and understand the motion of these plates and their associated faults, numerous seismograph networks have been established, including the 768 station high-sensitivity Hi-net network, 84 station broadband F-net and the strong-motion seismograph networks K-net and KiK-net in Japan. We also include the 55 station BATS network of Taiwan. We use this exceptional coverage to construct a high-resolution model of the Japan region from the full-waveform inversion of over 15,000 individual component seismograms from 53 events that occurred between 1997 and 2012. We model these data using spectral-element simulations of seismic wave propagation at a regional scale over an area from 120°-150°E and 20°-50°N to a depth of around 500 km. We quantify differences between observed and synthetic waveforms using time-frequency misfits allowing us to separate both phase and amplitude measurements whilst exploiting the complete waveform at periods of 15-60 seconds. Fréchet kernels for these misfits are calculated via the adjoint method and subsequently used in an iterative non-linear conjugate-gradient optimization. Finally, we employ
Energy Technology Data Exchange (ETDEWEB)
Hirayama, A; Eguchi, T [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)
1996-04-10
Among the numerical calculation methods for steady-state wave-making problems, the panel shift Rankine source (PSRS) method has the advantages of rather precise determination of wave pattern of practical ship types, and short calculation period. The wave pattern around the hull was calculated by means of the PSRS method. The waveform analysis was carried out for the wave, to obtain an amplitude function of the original ship type. Based on the amplitude function, a ship type improvement method aiming at the optimization of ship type was provided using a conditional calculus of variation. A Series 60 (Cb=0.6) ship type was selected for the ship type improvement, to apply this technique. It was suggested that optimum design can be made for reducing the wave making resistance by means of this method. For the improvement of Series 60 ship type using this method, a great degree of reduction in the wave making resistance was recognized from the results of numerical waveform analysis. It was suggested that the ship type improvement aiming at the reduction of wave-making resistance can be made in shorter period and by smaller labor compared with the method using a waveform analysis of cistern tests. 5 refs., 9 figs.
Extension of frequency-based dissimilarity for retrieving similar plasma waveforms
International Nuclear Information System (INIS)
Hochin, Teruhisa; Koyama, Katsumasa; Nakanishi, Hideya; Kojima, Mamoru
2008-01-01
Some computer-aided assistance in finding the waveforms similar to a waveform has become indispensable for accelerating data analysis in the plasma experiments. For the slowly-varying waveforms and those having time-sectional oscillation patterns, the methods using the Fourier series coefficients of waveforms in calculating the dissimilarity have successfully improved the performance in retrieving similar waveforms. This paper treats severely-varying waveforms, and proposes two extensions to the dissimilarity of waveforms. The first extension is to capture the difference of the importance of the Fourier series coefficients of waveforms against frequency. The second extension is to consider the outlines of waveforms. The correctness of the extended dissimilarity is experimentally evaluated by using the metrics used in evaluating that of the information retrieval, i.e. precision and recall. The experimental results show that the extended dissimilarity could improve the correctness of the similarity retrieval of plasma waveforms
An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.
Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan
2018-04-01
In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.
Accurate Methods for Signal Processing of Distorted Waveforms in Power Systems
Directory of Open Access Journals (Sweden)
Langella R
2007-01-01
Full Text Available A primary problem in waveform distortion assessment in power systems is to examine ways to reduce the effects of spectral leakage. In the framework of DFT approaches, line frequency synchronization techniques or algorithms to compensate for desynchronization are necessary; alternative approaches such as those based on the Prony and ESPRIT methods are not sensitive to desynchronization, but they often require significant computational burden. In this paper, the signal processing aspects of the problem are considered; different proposals by the same authors regarding DFT-, Prony-, and ESPRIT-based advanced methods are reviewed and compared in terms of their accuracy and computational efforts. The results of several numerical experiments are reported and analysed; some of them are in accordance with IEC Standards, while others use more open scenarios.
Page, Juliet A.; Hodgdon, Kathleen K.; Krecker, Peg; Cowart, Robbie; Hobbs, Chris; Wilmer, Clif; Koening, Carrie; Holmes, Theresa; Gaugler, Trent; Shumway, Durland L.;
2014-01-01
The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods.
Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method
Liu, Xiwu; Guo, Zhiqi; Han, Xu
2018-06-01
A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically
Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission
Directory of Open Access Journals (Sweden)
Maillet Emmanuel
2015-01-01
Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.
Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan
2018-04-01
Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.
International Nuclear Information System (INIS)
Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre
2011-01-01
Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.
Pulse contour analysis of arterial waveform in a high fidelity human patient simulator.
Persona, Paolo; Saraceni, Elisabetta; Facchin, Francesca; Petranzan, Enrico; Parotto, Matteo; Baratto, Fabio; Ori, Carlo; Rossi, Sandra
2017-10-03
The measurement of cardiac output (CO) may be useful to improve the assessment of hemodynamics during simulated scenarios. The purpose of this study was to evaluate the feasibility of introducing an uncalibrated pulse contour device (MostCare, Vytech, Vygon, Padova, Italy) into the simulation environment. MostCare device was plugged to a clinical monitor and connected to the METI human patient simulator (HPS) to obtain a continuous arterial waveform analysis and CO calculation. In six different simulated clinical scenarios (baseline, ventricular failure, vasoplegic shock, hypertensive crisis, hypovolemic shock and aortic stenosis), the HPS-CO and the MostCare-CO were simultaneously recorded. The level of concordance between the two methods was assessed by the Bland and Altman analysis. 150-paired CO values were obtained. The HPS-CO values ranged from 2.3 to 6.6 L min -1 and the MostCare-CO values from 2.8 to 6.4 L min -1 . The mean difference between HPS-CO and MostCare-CO was - 0.3 L min -1 and the limits of agreement were - 1.5 and 0.9 L min -1 . The percentage of error was 23%. A good correlation between HPS-CO and MostCare-CO was observed in each scenario of the study (r = 0.88). Although MostCare-CO tended to underestimate the CO over the study period, good agreements were found between the two methods. Therefore, a pulse contour device can be integrated into the simulation environment, offering the opportunity to create new simulated clinical settings.
Micro-seismic Imaging Using a Source Independent Waveform Inversion Method
Wang, Hanchen
2016-04-18
Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG
Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets
Directory of Open Access Journals (Sweden)
Wang Hongyan
2016-01-01
Full Text Available Based on the idea of the waveform agility in cognitive radars，the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.
Zhang, Zhendong; Alkhalifah, Tariq Ali
2017-01-01
Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate
Pellett, G. L.; Adams, B. R.
1983-01-01
A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.
Hocking, Kyle M; Sileshi, Ban; Baudenbacher, Franz J; Boyer, Richard B; Kohorst, Kelly L; Brophy, Colleen M; Eagle, Susan S
2016-10-01
Unrecognized hemorrhage and unguided resuscitation is associated with increased perioperative morbidity and mortality. The authors investigated peripheral venous waveform analysis (PIVA) as a method for quantitating hemorrhage as well as iatrogenic fluid overload during resuscitation. The authors conducted a prospective study on Yorkshire Pigs (n = 8) undergoing hemorrhage, autologous blood return, and administration of balanced crystalloid solution beyond euvolemia. Intra-arterial blood pressure, electrocardiogram, and pulse oximetry were applied to each subject. Peripheral venous pressure was measured continuously through an upper extremity standard peripheral IV catheter and analyzed with LabChart. The primary outcome was comparison of change in the first fundamental frequency (f1) of PIVA with standard and invasive monitoring and shock index (SI). Hemorrhage, return to euvolemia, and iatrogenic fluid overload resulted in significantly non-zero slopes of f1 amplitude. There were no significant differences in heart rate or mean arterial pressure, and a late change in SI. For the detection of hypovolemia the PIVA f1 amplitude change generated an receiver operator curves (ROC) curve with an area under the curve (AUC) of 0.93; heart rate AUC = 0.61; mean arterial pressure AUC = 0.48, and SI AUC = 0.72. For hypervolemia the f1 amplitude generated an ROC curve with an AUC of 0.85, heart rate AUC = 0.62, mean arterial pressure AUC = 0.63, and SI AUC = 0.65. In this study, PIVA demonstrated a greater sensitivity for detecting acute hemorrhage, return to euvolemia, and iatrogenic fluid overload compared with standard monitoring and SI. PIVA may provide a low-cost, minimally invasive monitoring solution for monitoring and resuscitating patients with perioperative hemorrhage.
International Nuclear Information System (INIS)
Berthe, P.M.
2013-01-01
In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr
A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion
CUI, C.; Hou, W.
2017-12-01
Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.
Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants
International Nuclear Information System (INIS)
Navaii, Mehdi Lotfi; Sadhedi, Hamed; Jalali, Mohsen
2013-01-01
Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations.
Desai, K M; Gingell, J C; Skidmore, R; Follett, D H
1987-11-01
A new method is described for evaluating arteriogenic impotence by means of noninvasive quantification of penile Doppler arterial waveforms using computerised analysis based on the Laplace Transform model. The haemodynamic changes occurring during a papaverine-induced erection in healthy potent volunteers have been recorded by this technique, which has also been shown to be capable of discriminating between a normal and an abnormal penile arterial supply in an initial study of potent and impotent men.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located
Shelley, Kirk H; Awad, Aymen A; Stout, Robert G; Silverman, David G
2006-04-01
In the process of determining oxygen saturation, the pulse oximeter functions as a photoelectric plethysmograph. By analyzing how the frequency spectrum of the pulse oximeter waveform changes over time, new clinically relevant features can be extracted. Thirty patients undergoing general anesthesia for abdominal surgery had their pulse oximeter, airway pressure and CO(2) waveforms collected (50 Hz). The pulse oximeter waveform was analyzed with a short-time Fourier transform using a moving 4096 point Hann window of 82 seconds duration. The frequency signal created by positive pressure ventilation was extracted using a peak detection algorithm in the frequency range of ventilation (0.08-0.4 Hz = 5-24 breaths/minute). The respiratory rate derived in this manner was compared to the respiratory rate as determined by CO(2) detection. In total, 52 hours of telemetry data were analyzed. The respiratory rate measured from the pulse oximeter waveform was found to have a 0.89 linear correlation when compared to CO(2) detection and airway pressure change. the bias was 0.03 breath/min, SD was 0.557 breath/min and the upper and lower limits of agreement were 1.145 and -1.083 breath/min respectively. The presence of motion artifact proved to be the primary cause of failure of this technique. Joint time frequency analysis of the pulse oximeter waveform can be used to determine the respiratory rate of ventilated patients and to quantify the impact of ventilation on the waveform. In addition, when applied to the pulse oximeter waveform new clinically relevant features were observed.
Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.
Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter
2007-01-01
The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...
A New Wave Equation Based Source Location Method with Full-waveform Inversion
Wu, Zedong; Alkhalifah, Tariq Ali
2017-01-01
with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using
Directory of Open Access Journals (Sweden)
Lutao Liu
2018-04-01
Full Text Available In this paper, a system for identifying eight kinds of radar waveforms is explored. The waveforms are the binary phase shift keying (BPSK, Costas codes, linear frequency modulation (LFM and polyphase codes (including P1, P2, P3, P4 and Frank codes. The features of power spectral density (PSD, moments and cumulants, instantaneous properties and time-frequency analysis are extracted from the waveforms and three new features are proposed. The classifier is support vector machine (SVM, which is optimized by artificial bee colony (ABC algorithm. The system shows well robustness, excellent computational complexity and high recognition rate under low signal-to-noise ratio (SNR situation. The simulation results indicate that the overall recognition rate is 92% when SNR is −4 dB.
Directory of Open Access Journals (Sweden)
Florian Schumacher
2016-01-01
Full Text Available Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth’s interior remains of high interest in Earth sciences. Here, we give a description from a user’s and programmer’s perspective of the highly modular, flexible and extendable software package ASKI–Analysis of Sensitivity and Kernel Inversion–recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T. [Nagoya Univ., Nagoya (Japan). Research Center for Seismology and Volcanology; Shimizu, S. [Japan National Oil Co., Chiba (Japan); Asakawa, E. [JGI Inc., Tokyo (Japan); Kamei, R.; Matsuoka, T. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering
2005-07-01
The JAPEX/JNOC/GSC et al. Mallik 3L-38 and 4L-38 test wells were subjected to repeated cross-well seismic surveys before and during the gas production test from the gas-hydrate-bearing layer at a depth of about 905 to 920 m. High-resolution velocity images in the gas-hydrate-bearing layer were obtained using the frequency-domain nonlinear waveform inversion method. An acoustic waveform inversion method was used along with the frequency-domain approach in order to detect the change in acoustic properties of the gas-hydrate-bearing layer resulting from gas production. The layered structures with small lateral heterogeneities were reconstructed by tomography analysis of preprocessed waveform data using a smaller number of source-receiver pairs. Preliminary results reveal high velocity and very high attenuation in the gas-hydrate-bearing layers. No obvious velocity decreases were noted. Information for further detailed processing was also gathered.
A Concealed Car Extraction Method Based on Full-Waveform LiDAR Data
Directory of Open Access Journals (Sweden)
Chuanrong Li
2016-01-01
Full Text Available Concealed cars extraction from point clouds data acquired by airborne laser scanning has gained its popularity in recent years. However, due to the occlusion effect, the number of laser points for concealed cars under trees is not enough. Thus, the concealed cars extraction is difficult and unreliable. In this paper, 3D point cloud segmentation and classification approach based on full-waveform LiDAR was presented. This approach first employed the autocorrelation G coefficient and the echo ratio to determine concealed cars areas. Then the points in the concealed cars areas were segmented with regard to elevation distribution of concealed cars. Based on the previous steps, a strategy integrating backscattered waveform features and the view histogram descriptor was developed to train sample data of concealed cars and generate the feature pattern. Finally concealed cars were classified by pattern matching. The approach was validated by full-waveform LiDAR data and experimental results demonstrated that the presented approach can extract concealed cars with accuracy more than 78.6% in the experiment areas.
Capdeville, Yann; Métivier, Ludovic
2018-05-01
Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different imaging techniques currently used, including the so-called full waveform inversion (FWI), are based on limited frequency band data. Such data are not sensitive to the true earth model, but to a smooth version of it. This smooth version can be related to the true model by the homogenization technique. Homogenization for wave propagation in deterministic media with no scale separation, such as geological media, has been recently developed. With such an asymptotic theory, it is possible to compute an effective medium valid for a given frequency band such that effective waveforms and true waveforms are the same up to a controlled error. In this work we make the link between limited frequency band inversion, mainly FWI, and homogenization. We establish the relation between a true model and an FWI result model. This relation is important for a proper interpretation of FWI images. We numerically illustrate, in the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover, it appears that the homogenized FWI model is quite independent of the FWI parametrization, as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor is, in each of our tests, always a good choice. We show how the homogenization can help to understand FWI behaviour and help to improve its robustness and convergence by efficiently constraining the solution space of the inverse problem.
Overview of intelligent data retrieval methods for waveforms and images in massive fusion databases
Energy Technology Data Exchange (ETDEWEB)
Vega, J. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Murari, A. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padua (Italy); Pereira, A.; Portas, A.; Ratta, G.A.; Castro, R. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)
2009-06-15
JET database contains more than 42 Tbytes of data (waveforms and images) and it doubles its size about every 2 years. ITER database is expected to be orders of magnitude above this quantity. Therefore, data access in such huge databases can no longer be efficiently based on shot number or temporal interval. Taking into account that diagnostics generate reproducible signal patterns (structural shapes) for similar physical behaviour, high level data access systems can be developed. In these systems, the input parameter is a pattern and the outputs are the shot numbers and the temporal locations where similar patterns appear inside the database. These pattern oriented techniques can be used for first data screening of any type of morphological aspect of waveforms and images. The article shows a new technique to look for similar images in huge databases in a fast an efficient way. Also, previous techniques to search for similar waveforms and to retrieve time-series data or images containing any kind of patterns are reviewed.
International Nuclear Information System (INIS)
Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil
2011-01-01
We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity in the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, ν=10 -2,-3,-4,-5,-6 , that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v kick end /(cν 2 )=0.04474±0.00007 and v kick max /(cν 2 )=0.05248±0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of template banks or for calibrating analytic models such
Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana
2015-04-01
In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside
Seismic waveform classification using deep learning
Kong, Q.; Allen, R. M.
2017-12-01
MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.
DEFF Research Database (Denmark)
Troelsen, Jens; Meincke, Peter; Breinbjerg, Olav
2000-01-01
into account. To the knowledge of the authors the AWE technique has not previously been applied to a MoM solution based on this kind of integral equation. It is the purpose of this paper to investigate the use of the AWE technique as a tool to obtain a fast frequency sweep of the field scattered......In many radar applications it is necessary to determine the scattering from an object over a wide frequency band. The asymptotic waveform evaluation (AWE), which is a moment matching (MM) technique, constitutes a method to this end. In general, MM techniques provide a reduced-order model...
The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust
Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard
2017-04-01
The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that
A New Wave Equation Based Source Location Method with Full-waveform Inversion
Wu, Zedong
2017-05-26
Locating the source of a passively recorded seismic event is still a challenging problem, especially when the velocity is unknown. Many imaging approaches to focus the image do not address the velocity issue and result in images plagued with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using an extended source. At the later stages the focusing of the image dominates the inversion allowing for high resolution source and velocity inversion. We also compute the source location explicitly and numerical tests show that we obtain good estimates of the source locations with this approach.
Venugopalan, Shreyas; Savvides, Marios; Griofa, Marc O; Cohen, Ken
2014-08-01
Over the past two decades, there have been a lot of advances in the field of pattern analyses for biomedical signals, which have helped in both medical diagnoses and in furthering our understanding of the human body. A relatively recent area of interest is the utility of biomedical signals in the field of biometrics, i.e., for user identification. Seminal work in this domain has already been done using electrocardiograph (ECG) signals. In this paper, we discuss our ongoing work in using a relatively recent modality of biomedical signals-a cardio-synchronous waveform measured using a Radio-Frequency Impedance-Interrogation (RFII) device for the purpose of user identification. Compared to an ECG setup, this device is noninvasive and measurements can be obtained easily and quickly. Here, we discuss the feasibility of reducing the dimensions of these signals by projecting onto various subspaces while still preserving interuser discriminating information. We compare the classification performance using classical dimensionality reduction methods such as principal component analysis (PCA), independent component analysis (ICA), random projections, with more recent techniques such as K-SVD-based dictionary learning. We also report the reconstruction accuracies in these subspaces. Our results show that the dimensionality of the measured signals can be reduced by 60 fold while maintaining high user identification rates.
Reliability of pulse waveform separation analysis: effects of posture and fasting.
Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone
2017-03-01
Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong; Alkhalifah, Tariq Ali
2016-01-01
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
The optimized gradient method for full waveform inversion and its spectral implementation
Wu, Zedong
2016-03-28
At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
International Nuclear Information System (INIS)
Hu, Xiao-feng; Chen, Xiang; Wei, Ming
2013-01-01
Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.
International Nuclear Information System (INIS)
Jang, W; Han, J; Kim, I Y; Park, J; Kim, J-S; Cho, J W; Koh, S-B; Chung, S J; Kim, H-T
2013-01-01
In this study, we analyzed the waveform characteristics of resting tremor by accelerometer recordings in patients with drug-induced parkinsonism (DIP) and Parkinson's disease (PD). We prospectively recruited 12 patients with tremulous PD and 12 patients with DIP presenting with resting tremor. Tremor was recorded from the more affected side and was recorded twice for a 60 s period in each patient. Peak frequency, amplitude and all harmonic peaks were obtained, and the asymmetry of the decay of the autocorrelation function, third momentum and time-reversal invariance were also computed using a mathematical algorithm. Among the parameters used in the waveform analysis, the harmonic ratio, time-reversal invariance and asymmetric decay of the autocorrelation function were different between PD and DIP at a statistically significant level (all p < 0.01). The total harmonic peak power and third momentum in the time series were not significantly different. The clinical characteristics of DIP patients may be similar to those of PD patients in some cases, which makes the clinical differentiation between DIP and PD challenging. Our study shows that the identification of parameters reflecting waveform asymmetry might be helpful in differentiating between DIP and PD. (note)
Energy Technology Data Exchange (ETDEWEB)
Pazos, Enrique [Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Dorband, Ernst Nils [Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Nagar, Alessandro [Dipartimento di Fisica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino (Italy); Palenzuela, Carlos [Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Schnetter, Erik [Center for Computation and Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Tiglio, Manuel [Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State University, Baton Rouge, LA 70803 (United States)
2007-06-21
We present a method for extracting gravitational waves from numerical spacetimes which generalizes and refines one of the standard methods based on the Regge-Wheeler-Zerilli perturbation formalism. At the analytical level, this generalization allows a much more general class of slicing conditions for the background geometry, and is thus not restricted to Schwarzschild-like coordinates. At the numerical level, our approach uses high-order multi-block methods, which improve both the accuracy of our simulations and of our extraction procedure. In particular, the latter is simplified since there is no need for interpolation, and we can afford to extract accurate waves at large radii with only little additional computational effort. We then present fully nonlinear three-dimensional numerical evolutions of a distorted Schwarzschild black hole in Kerr-Schild coordinates with an odd parity perturbation and analyse the improvement that we gain from our generalized wave extraction, comparing our new method to the standard one. In particular, we analyse in detail the quasinormal frequencies of the extracted waves, using both methods. We do so by comparing the extracted waves with one-dimensional high resolution solutions of the corresponding generalized Regge-Wheeler equation. We explicitly see that the errors in the waveforms extracted with the standard method at fixed, finite extraction radii do not converge to zero with increasing resolution. We find that even with observers as far out as R = 80M-which is larger than what is commonly used in state-of-the-art simulations-the assumption in the standard method that the background is close to having Schwarzschild-like coordinates increases the error in the extracted waves considerably. Furthermore, those errors are dominated by the extraction method itself and not by the accuracy of our simulations. For extraction radii between 20M and 80M and for the resolutions that we use in this paper, our new method decreases the errors
International Nuclear Information System (INIS)
Pazos, Enrique; Dorband, Ernst Nils; Nagar, Alessandro; Palenzuela, Carlos; Schnetter, Erik; Tiglio, Manuel
2007-01-01
We present a method for extracting gravitational waves from numerical spacetimes which generalizes and refines one of the standard methods based on the Regge-Wheeler-Zerilli perturbation formalism. At the analytical level, this generalization allows a much more general class of slicing conditions for the background geometry, and is thus not restricted to Schwarzschild-like coordinates. At the numerical level, our approach uses high-order multi-block methods, which improve both the accuracy of our simulations and of our extraction procedure. In particular, the latter is simplified since there is no need for interpolation, and we can afford to extract accurate waves at large radii with only little additional computational effort. We then present fully nonlinear three-dimensional numerical evolutions of a distorted Schwarzschild black hole in Kerr-Schild coordinates with an odd parity perturbation and analyse the improvement that we gain from our generalized wave extraction, comparing our new method to the standard one. In particular, we analyse in detail the quasinormal frequencies of the extracted waves, using both methods. We do so by comparing the extracted waves with one-dimensional high resolution solutions of the corresponding generalized Regge-Wheeler equation. We explicitly see that the errors in the waveforms extracted with the standard method at fixed, finite extraction radii do not converge to zero with increasing resolution. We find that even with observers as far out as R = 80M-which is larger than what is commonly used in state-of-the-art simulations-the assumption in the standard method that the background is close to having Schwarzschild-like coordinates increases the error in the extracted waves considerably. Furthermore, those errors are dominated by the extraction method itself and not by the accuracy of our simulations. For extraction radii between 20M and 80M and for the resolutions that we use in this paper, our new method decreases the errors
Adaptive phase k-means algorithm for waveform classification
Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin
2018-01-01
Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.
Yang, Can; Fan, Wenfang; Juhlin, Christopher
2010-05-01
Time lapse analysis of seismic data is very important for CO2 storage projects. Therefore, we have tested traveltime and waveform tomography methods to detect velocity changes in a CO2 injection reservoir using synthetic time lapse data. The structural model tested is based on the CO2SINK injection site at Ketzin, Germany where CO2 is being injected at about 630-650 m into a saline aquifer. First, we created synthetic time lapse moving source profiling (MSP) data, also known as walkaway profiling. The velocity model used for modeling was based on well logging and lithological information in the injection borehole. Gassmann fluid substitution was used to calculate the reservoir velocity after injection. In this substitution, we assumed a saturation of CO2 of 30%. The model velocity of the reservoir changed from 2750 m/s (before injection) to 2150 m/s (after injection). A 2D finite difference code available in Seismic Unix (www.cwp.mines.edu) was used. 60 source points were distributed along a surface line. The distance from the injection well was between 150m and 858m, with an interval of 12m. We recorded 21 channels at receiver depths from 470m to 670m, with an interval of 10m. The injection layer was assumed to be between 629m and 650m depth. The wavelet used for the synthetic data was a Gaussian derivative with an average frequency of 60Hz. Then first arrivals were picked on both data sets and used as input data for traveltime tomography. For traveltime tomography, the PS_tomo program was used. Since no data were recorded above 470m, the initial velocity model used above this depth was the true velocity model. Below 470m, the initial velocity model increases linearly from 3000m/s to 3250m/s. After inversion, the reservoir velocity and an anhydrite layer (high velocity layer) can be seen clearly in the final inverted velocity models. Using these velocity models as starting models, we performed waveform tomography in the frequency domain using a program supplied by
Analysis of PKP scattering using mantle mixing simulations and axisymmetric 3D waveforms
Haugland, Samuel M.; Ritsema, Jeroen; van Keken, Peter E.; Nissen-Meyer, Tarje
2018-03-01
The scattering of PKP waves in the lower mantle produces isolated signals before the PKIKP phase. We explore whether these so-called PKIKP precursors can be related to wave scattering off mid ocean ridge basalt (MORB) fragments that have been advected in the deep mantle throughout geologic time. We construct seismic models of small-scale (>20 km) heterogeneity in the lower mantle informed by mantle mixing simulations from Brandenburg et al. (2008) and generate PKIKP precursors using 3D, axisymmetric waveform simulations up to 0.75 Hz. We consider two end-member geodynamic models with fundamentally different distributions of MORB in the lower mantle. Our results suggest that the accumulation of MORB at the base of the mantle is a viable hypothesis for the origin of PKP scattering. We find that the strength of the PKIKP precursor amplitudes is consistent with P wave speed heterogeneity of 0.1-0.2%, as reported previously. The radial distribution of MORB has a profound effect on the strength of PKIKP precursors. Simulation of PKIKP precursors for models with an increasing MORB concentration in the lowermost 500 km of the mantle appears to reproduce most accurately the strength of PKIKP precursors in Global Seismic Network waveforms. These models assume that MORB has an excess density of at least 7%. Additional simulations of more complex geodynamic models will better constrain the geodynamic conditions to explain the significant variability of PKP scattering strength.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries
International Nuclear Information System (INIS)
Field, Scott E; Hesthaven, Jan S; Lau, Stephen R
2009-01-01
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild black holes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational 'master functions', our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.
Harmonic arbitrary waveform generator
Roberts, Brock Franklin
2017-11-28
High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Directory of Open Access Journals (Sweden)
2016-10-01
Full Text Available This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016.]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom and an 11-dimensional nonprecessing effective-one-body (EOB model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR. Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016.], and we quote updated component masses of 35_{-3}^{+5} M_{⊙} and 30_{-4}^{+3} M_{⊙} (where errors correspond to 90% symmetric credible intervals. We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Directory of Open Access Journals (Sweden)
F. Pirotti
2013-10-01
Full Text Available For a correct use of metrics derived from processing of the full-waveform return signal from airborne laser scanner sensors any correlation which is not related to properties of the reflecting target must be known and, if possible, removed. In the following article we report on an analysis of correlation between several metrics extracted from the full-waveform return signal and scan characteristics (mainly range and type of land-cover (urban, grasslands, forests. The metrics taken in consideration are the amplitude, normalized amplitude, width (full width at half maximum, asymmetry indicators, left and right energy content, and the cross-section calculated from width and normalized amplitude considering the range effect. The results show that scan geometry in this case does not have a significant impact scans over forest cover, except for range affecting amplitude and width distribution. Over complex targets such as vegetation canopy, other factors such as incidence angle have little meaning, therefore corrections of range effect are the most meaningful. A strong correlation with the type of land-cover is also shown by the distribution of the values of the metrics in the different areas taken in consideration.
Lin, Hongxiang; Azuma, Takashi; Qu, Xiaolei; Takagi, Shu
2017-03-01
In this work, we construct a multi-frequency accelerating strategy for the contrast source inversion (CSI) method using pulse data in the time domain. CSI is a frequency-domain inversion method for ultrasound waveform tomography that does not require the forward solver through the process of reconstruction. Several prior researches show that the CSI method has a good performance of convergence and accuracy in the low-center-frequency situation. In contrast, utilizing the high-center-frequency data leads to a high-resolution reconstruction but slow convergence on large numbers of grid. Our objective is to take full advantage of all low frequency components from pulse data with the high-center-frequency data measured by the diagnostic device. First we process the raw data in the frequency domain. Then multi-frequency accelerating strategy helps restart CSI in the current frequency using the last iteration result obtained from the lower frequency component. The merit of multi- frequency accelerating strategy is that computational burden decreases at the first few iterations. Because the low frequency component of dataset computes on the coarse grid with assuming a fixed number of points per wavelength. In the numerical test, the pulse data were generated by the K-wave simulator and have been processed to meet the computation of the CSI method. We investigate the performance of the multi-frequency and single-frequency reconstructions and conclude that the multi-frequency accelerating strategy significantly enhances the quality of the reconstructed image and simultaneously reduces the average computational time for any iteration step.
Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong
2018-03-01
Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.
Phase-space topography characterization of nonlinear ultrasound waveforms.
Dehghan-Niri, Ehsan; Al-Beer, Helem
2018-03-01
Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Norbert Pfeifer
2008-08-01
Full Text Available Airborne laser scanning (ALS is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2 and additional classification variables from full-waveform (FWF ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original
Sensitivity analysis for elastic full-waveform inversion in VTI media
Kamath, Nishant
2014-08-05
Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.
Full Waveform Analysis for Long-Range 3D Imaging Laser Radar
Directory of Open Access Journals (Sweden)
Wallace AndrewM
2010-01-01
Full Text Available The new generation of 3D imaging systems based on laser radar (ladar offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique.
Sensitivity analysis for elastic full-waveform inversion in VTI media
Kamath, Nishant; Tsvankin, Ilya
2014-01-01
Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green's function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.
Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit
DEFF Research Database (Denmark)
Henningsen, Louise; Haase, Nicolai; Pedersen, Ulf Gøttrup
2015-01-01
the proportion of intensive care unit (ICU) patients with shock who at the time of resuscitation fulfilled the prerequisites for using the arterial waveform-derived variables. METHODS: This was a prospective cohort study performed at six ICUs. The study included consecutive adult patients with shock (20 patients...... per ICU) who received fluid resuscitation on the first day of shock. The fulfilment or not of the prerequisites (sedation, sinus rhythm and controlled ventilation with tidal volumes > 7 ml/kg) was registered at the time of the first fluid resuscitation episode and at fluid resuscitation episodes......% CI: 46-65) were on controlled ventilation and 50% (95% CI: 39-61) received tidal volumes of more than 7 ml/kg. Only 23% (95% CI: 14-33) of the patients fulfilled all four prerequisites. CONCLUSIONS: Less than a quarter of the ICU patients with shock fulfilled all the prerequisites for the use...
Programmable waveform controller
International Nuclear Information System (INIS)
Yeh, H.T.
1979-01-01
A programmable waveform controller (PWC) was developed for voltage waveform generation in the laboratory. It is based on the Intel 8080 family of chips. The hardware uses the modular board approach, sharing a common 44-pin bus. The software contains two separate programs: the first generates a single connected linear ramp waveform and is capable of bipolar operation, linear interpolation between input data points, extended time range, and cycling; the second generates four independent square waveforms with variable duration and amplitude
Czech Academy of Sciences Publication Activity Database
Hrubcová, Pavla; Vavryčuk, Václav; Boušková, Alena; Bohnhoff, M.
2016-01-01
Roč. 121, č. 2 (2016), s. 881-902 ISSN 2169-9313 R&D Projects: GA ČR GA13-08971S; GA MŠk LM2010008; GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : crustal structure * waveform stacking * microearthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.350, year: 2016
DEFF Research Database (Denmark)
Senturk, O.S.; Hava, A.M.
2011-01-01
This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...
Human processing of short temporal intervals as revealed by an ERP waveform analysis
Directory of Open Access Journals (Sweden)
Yoshitaka eNakajima
2011-12-01
Full Text Available To clarify the time course over which the human brain processes information about durations up to ~300 ms, we reanalyzed the data that were previously reported by Mitsudo et al. (2009 using a multivariate analysis method. Event-related potentials were recorded from 19 scalp electrodes on 11 (9 original and 2 additional participants while they judged whether two neighboring empty time intervals—called t1 and t2 and marked by three tone bursts—had equal durations. There was also a control condition in which the participants were presented the same temporal patterns but without a judgment task. In the present reanalysis, we sought to visualize how the temporal patterns were represented in the brain over time. A correlation matrix across channels was calculated for each temporal pattern. Geometric separations between the correlation matrices were calculated, and subjected to multidimensional scaling. We performed such analyses for a moving 100-ms time window after the t1 presentations. In the windows centered at < 100 ms after the t2 presentation, the analyses revealed the local maxima of categorical separation between temporal patterns of perceptually equal durations versus perceptually unequal durations, both in the judgment condition and in the control condition. Such categorization of the temporal patterns was prominent only in narrow temporal regions. The analysis indicated that the participants determined whether the two neighboring time intervals were of equal duration mostly within 100 ms after the presentation of the temporal patterns. A very fast brain activity was related to the perception of elementary temporal patterns without explicit judgments. This is consistent with the findings of Mitsudo et al., and it is in line with the processing time hypothesis proposed by Nakajima et al. (2004. The validity of the correlation matrix analyses turned out to be an effective tool to grasp the overall responses of the brain to temporal
Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit
DEFF Research Database (Denmark)
Hennings, Louise Inkeri; Haase, Nicolai; Pedersen, Ulf Gøttrup
2015-01-01
INTRODUCTION: It is difficult to identify the patients who will respond to fluid therapy, but the arterial waveform-derived variables have reasonably predictive values for fluid responsiveness. However, the patient must fulfil a number of prerequisites for these variables to be valid. We assessed...... of arterial waveform-derived variables to predict fluid responsiveness. Thus, these variables may be of limited use during resuscitation in the ICU. FUNDING: none. TRIAL REGISTRATION: not relevant....
Creese, Andrew J; Smart, Jade; Cooper, Helen J
2013-05-21
Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers. The resulting tandem mass spectra are composite, containing fragments from multiple precursor ions. The benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for proteomics have been demonstrated by a number of groups, but previously work has focused on extending proteome coverage generally. Here, we present a systematic study of the benefits of FAIMS for a key challenge in proteomics, that of peptide isomers. We have applied FAIMS to the analysis of a phosphopeptide library comprising the sequences GPSGXVpSXAQLX(K/R) and SXPFKXpSPLXFG(K/R), where X = ADEFGLSTVY. The library has defined limits enabling us to make valid conclusions regarding FAIMS performance. The library contains numerous sequence inversions and structural isomers. In addition, there are large numbers of theoretical localization variants, allowing false localization rates to be determined. The FAIMS approach is compared with reversed-phase liquid chromatography and strong cation exchange chromatography. The FAIMS approach identified 35% of the peptide library, whereas LC-MS/MS alone identified 8% and LC-MS/MS with strong cation exchange chromatography prefractionation identified 17.3% of the library.
Waveform inversion for acoustic VTI media in frequency domain
Wu, Zedong; Alkhalifah, Tariq Ali
2016-01-01
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current
Pisupati, P.B.
2017-01-01
During a seismic experiment, mechanical waves are usually generated by various manmade sources. These waves propagate in the subsurface and are recorded at receivers. Modern seismic exploration methods analyze them to infer the mechanical properties of the subsurface; this is commonly referred as
Waveform analysis of crosshole GPR data collected in heterogeneous chalk deposits
DEFF Research Database (Denmark)
Keskinen, Johanna; Nielsen, Lars; Zibar, Majken Caroline Looms
2014-01-01
Chalks are important reservoirs for groundwater production onshore Denmark and for hydrocarbons in the North Sea Basin. Therefore this rock type is studied extensively with geological and geophysical methods. Ground-penetrating radar (GPR) tomography is used to characterize fine-scale reservoir...
Fang, Lei; Fang, Min; Guo, Min-Min
2016-12-27
To reveal the force mechanism for therapeutic effect of pushing manipulation with one-finger meditation. A total of 15 participants were recruited in this study and assigned to an expert group, a skilled group and a novice group, with 5 participants in each group. Mechanical signals were collected from a biomechanical testing platform, and these data were further observed via similarity analysis and cluster analysis. Comparing the force waveforms of manipulation revealed that the manipulation forces were similar between the expert group and the skilled group (P>0.05). The mean value of vertical force was 9.8 N, and 95% CI rang from 6.37 to 14.70 N, but there were significant differences compared with the novice group (PPushing manipulation with one-finger meditation is a kind of light stimulation manipulation on the acupoint, and force characteristics of double waveforms continuously alternated during manual operation.
Directory of Open Access Journals (Sweden)
Andre Lamert
2018-03-01
Full Text Available We present and compare two flexible and effective methodologies to predict disturbance zones ahead of underground tunnels by using elastic full-waveform inversion. One methodology uses a linearized, iterative approach based on misfit gradients computed with the adjoint method while the other uses iterative, gradient-free unscented Kalman filtering in conjunction with a level-set representation. Whereas the former does not involve a priori assumptions on the distribution of elastic properties ahead of the tunnel, the latter introduces a massive reduction in the number of explicit model parameters to be inverted for by focusing on the geometric form of potential disturbances and their average elastic properties. Both imaging methodologies are validated through successful reconstructions of simple disturbances. As an application, we consider an elastic multiple disturbance scenario. By using identical synthetic time-domain seismograms as test data, we obtain satisfactory, albeit different, reconstruction results from the two inversion methodologies. The computational costs of both approaches are of the same order of magnitude, with the gradient-based approach showing a slight advantage. The model parameter space reduction approach compensates for this by additionally providing a posteriori estimates of model parameter uncertainty. Keywords: Tunnel seismics, Full waveform inversion, Seismic waves, Level-set method, Adjoint method, Kalman filter
Software for analysis of waveforms acquired by digital Doppler broadening spectrometer
International Nuclear Information System (INIS)
Vlcek, M; Čížek, J; Procházka, I
2013-01-01
High-resolution digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation was recently developed and tested. In this spectrometer pulses from high purity Ge (HPGe) detectors are sampled in the real time by fast digitizers and subsequently analyzed off-line by software. We present description of the software routines used for pulse shape analysis in two spectrometer configurations: (i) semi-digital setup in which detector pulses shaped in spectroscopic amplifiers (SA's) are digitized; (ii) pure digital setup in which pulses from detector pre-amplifiers are digitized directly. Software developed in this work will be freely available in the form of source code and pre-compiled binaries.
Li, W.; Cui, Q.; Gao, Y.; Wei, R.; Zhou, Y.; Yu, J.
2017-12-01
The 410 km discontinuity is the upper boundary of the mantle transition zone. Seismic detections on the structure and morphology of the 410 km discontinuity are helpful to understand the compositions of the Earth's interior and the relevant geodynamics. In this paper, we select the broadband P waveforms of an intermediate earthquake that occurred in the Ryukyu subduction zone and retrieved from the China Digital Seismograph Network, and study the fine velocity structure around the 410 km discontinuity by matching the observed triplicated waveforms with the theoretical ones. Our results reveal that (1) the 410 km discontinuity beneath the East China Sea is mostly a sharp boundary with a small-scale uplift of 8-15 km and a gradient boundary up to 20 km in the most southern part, and (2) there exist a low velocity layer atop the 410 km discontinuity with the thickness of 50-62 km and P-wave velocity decrease of 0.5%-1.5%, and (3) a high velocity anomaly with P-wave decrease of 1.0%-3.0% below 440 km. Combining with the previous topographic results in this area, we speculate that the high velocity anomaly is relevant to the stagnancy of the western Pacific slab in the mantle transition zone, the decomposition of phase E in the slab results in the increase of water content, which would cause the uplift of the 410 km discontinuity, and the low velocity layer atop the discontinuity should be related to the partial melting of the mantle peridotite induced by the dehydration of the hydrous minerals.
Retrieving rupture history using waveform inversions in time sequence
Yi, L.; Xu, C.; Zhang, X.
2017-12-01
The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.
Developed vibration waveform monitoring unit for CBM
International Nuclear Information System (INIS)
Hamada, T.; Hotsuta, K.; Hirose, I.; Morita, E.
2007-01-01
In nuclear power plants, many rotating machines such as pumps and fans are in use. Shikoku Research Institute Inc. has recently developed easy-to-use tools to facilitate the maintenance of such equipment. They include a battery-operated vibration waveform monitoring unit which allows unmanned vibration monitoring on a regular basis and data collection even from intermittently operating equipment, a waveform data collector which can be used for easy collection, storage, control, and analysis of raw vibration waveform data during normal operation, and vibration analysis and evaluation tools. A combination of these tools has a high potential for optimization of rotating equipment maintenance. (author)
Microseismic event location by master-event waveform stacking
Grigoli, F.; Cesca, S.; Dahm, T.
2016-12-01
Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We
Chiao, Hao-Yu; Chou, Chang-Yi; Tzeng, Yuan-Sheng; Wang, Chih-Hsin; Chen, Shyi-Gen; Dai, Niann-Tzyy
2018-02-01
Adequate fluid titration during the initial resuscitation period of major burn patients is crucial. This study aimed to evaluate the feasibility and efficacy of a goal-directed fluid resuscitation protocol that used hourly urine output plus the arterial waveform analysis FloTrac (Edwards LifeSciences, Irvine, Calif) system for major burns to avoid fluid overload. We conducted a retrospective cohort study of 43 major burn patients at the Tri-Service General Hospital after the Formosa Fun Coast Dust Explosion on June 27, 2015. Because of the limited capacity of intensive care units (ICUs), 23 intubated patients were transferred from the burn wards or emergency department to the ICU within 24 hours. Fluid administration was adjusted to achieve a urine output of 30 to 50 mL/h, cardiac index greater than 2.5 L/min/m, and stroke volume variation (SVV) less than 12%. The hourly crystalloid fluid infusion rate was titrated based on SVV and hourly urine output. Of the 23 critically burned patients admitted to the ICU, 13 patients who followed the goal-directed fluid resuscitation protocol within 12 hours postburn were included in the analysis. The mean age (years) was 21.8, and the mean total body surface area (TBSA) burned (%) was 68.0. The mean Revised Baux score was 106.8. All patients sustained inhalation injury. The fluid volumes administered to patients in the first 24 hours and the second 24 hours (mL/kg/% total body surface area) were 3.62 ± 1.23 and 2.89 ± 0.79, respectively. The urine outputs in the first 24 hours and the second 24 hours (mL/kg/h) were 1.13 ± 0.66 and 1.53 ± 0.87, respectively. All patients achieved the established goals within 32 hours postburn. In-hospital mortality rate was 0%. The SVV-based goal-directed fluid resuscitation protocol leads to less unnecessary fluid administration during the early resuscitation phase. Clinicians can efficaciously manage the dynamic body fluid changes in major burn patients under the guidance of the protocol.
Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo
2016-09-01
This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.
Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.
Multifunction waveform generator for EM receiver testing
Chen, Kai; Jin, Sheng; Deng, Ming
2018-01-01
In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.
Sparse Frequency Waveform Design for Radar-Embedded Communication
Directory of Open Access Journals (Sweden)
Chaoyun Mai
2016-01-01
Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.
Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms
National Research Council Canada - National Science Library
Ardolino, Richard S
2007-01-01
This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...
He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.
2016-04-01
Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and
Best waveform score for diagnosing keratoconus
Directory of Open Access Journals (Sweden)
Allan Luz
2013-12-01
Full Text Available PURPOSE: To test whether corneal hysteresis (CH and corneal resistance factor (CRF can discriminate between keratoconus and normal eyes and to evaluate whether the averages of two consecutive measurements perform differently from the one with the best waveform score (WS for diagnosing keratoconus. METHODS: ORA measurements for one eye per individual were selected randomly from 53 normal patients and from 27 patients with keratoconus. Two groups were considered the average (CH-Avg, CRF-Avg and best waveform score (CH-WS, CRF-WS groups. The Mann-Whitney U-test was used to evaluate whether the variables had similar distributions in the Normal and Keratoconus groups. Receiver operating characteristics (ROC curves were calculated for each parameter to assess the efficacy for diagnosing keratoconus and the same obtained for each variable were compared pairwise using the Hanley-McNeil test. RESULTS: The CH-Avg, CRF-Avg, CH-WS and CRF-WS differed significantly between the normal and keratoconus groups (p<0.001. The areas under the ROC curve (AUROC for CH-Avg, CRF-Avg, CH-WS, and CRF-WS were 0.824, 0.873, 0.891, and 0.931, respectively. CH-WS and CRF-WS had significantly better AUROCs than CH-Avg and CRF-Avg, respectively (p=0.001 and 0.002. CONCLUSION: The analysis of the biomechanical properties of the cornea through the ORA method has proved to be an important aid in the diagnosis of keratoconus, regardless of the method used. The best waveform score (WS measurements were superior to the average of consecutive ORA measurements for diagnosing keratoconus.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
Analysis of new actuation methods for capacitive shunt micro switchs
Directory of Open Access Journals (Sweden)
Ben Sassi S
2016-01-01
Full Text Available This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM. Based on Galerkin approximation, a single degree of freedom dynamic model is developed and limit-cycle solutions are calculated using the Finite Difference Method (FDM. In addition to the harmonic waveform signal, we apply novel actuation waveform signals to simulate the frequency-response. We show that, biased signals, using a square wave signal reduces significantly the pull-in voltage compared to the triangular and harmonic signal . Finally, these results are validated experimentally.
Zhang, Dongliang
2013-01-01
To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.
Metering error quantification under voltage and current waveform distortion
Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran
2017-09-01
With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.
Tanioka, Yuichiro
2017-04-01
After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami
Augmented kludge waveforms for detecting extreme-mass-ratio inspirals
Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.
2017-08-01
The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.
Workflows for Full Waveform Inversions
Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas
2017-04-01
Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.
Compressive full waveform lidar
Yang, Weiyi; Ke, Jun
2017-05-01
To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full
Ahmed, Sajid
2016-11-24
Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.
DEFF Research Database (Denmark)
Senturk, Osman Selcuk; Hava, Ahmet M.
2009-01-01
current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...
Directory of Open Access Journals (Sweden)
Wouter D Weeda
Full Text Available The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately.
Temperature analysis with voltage-current time differential operation of electrochemical sensors
Energy Technology Data Exchange (ETDEWEB)
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl
2018-01-02
A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.
Full waveform inversion based on scattering angle enrichment with application to real dataset
Wu, Zedong; Alkhalifah, Tariq Ali
2015-01-01
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density
An Overview of Radar Waveform Optimization for Target Detection
Directory of Open Access Journals (Sweden)
Wang Lulu
2016-10-01
Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.
Multichannel waveform display system
International Nuclear Information System (INIS)
Kolvankar, V.G.
1989-01-01
For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.
2017-05-26
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Facies Constrained Elastic Full Waveform Inversion
Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali
2017-01-01
Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.
Krylov subspace acceleration of waveform relaxation
Energy Technology Data Exchange (ETDEWEB)
Lumsdaine, A.; Wu, Deyun [Univ. of Notre Dame, IN (United States)
1996-12-31
Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing
2017-05-01
We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the
WFCatalog: A catalogue for seismological waveform data
Trani, Luca; Koymans, Mathijs; Atkinson, Malcolm; Sleeman, Reinoud; Filgueira, Rosa
2017-09-01
This paper reports advances in seismic waveform description and discovery leading to a new seismological service and presents the key steps in its design, implementation and adoption. This service, named WFCatalog, which stands for waveform catalogue, accommodates features of seismological waveform data. Therefore, it meets the need for seismologists to be able to select waveform data based on seismic waveform features as well as sensor geolocations and temporal specifications. We describe the collaborative design methods and the technical solution showing the central role of seismic feature catalogues in framing the technical and operational delivery of the new service. Also, we provide an overview of the complex environment wherein this endeavour is scoped and the related challenges discussed. As multi-disciplinary, multi-organisational and global collaboration is necessary to address today's challenges, canonical representations can provide a focus for collaboration and conceptual tools for agreeing directions. Such collaborations can be fostered and formalised by rallying intellectual effort into the design of novel scientific catalogues and the services that support them. This work offers an example of the benefits generated by involving cross-disciplinary skills (e.g. data and domain expertise) from the early stages of design, and by sustaining the engagement with the target community throughout the delivery and deployment process.
International Nuclear Information System (INIS)
Deville, J.P.
1998-01-01
Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)
Simultaneous hit finding and timing method for pulse shape analysis of drift chamber signals
Energy Technology Data Exchange (ETDEWEB)
Schaile, D; Schaile, O; Schwarz, J
1986-01-01
An algorithm for the analysis of the digitized signal waveform of drift chamber pulses is described which yields a good multihit resolution and an accurate drift time determination with little processing time. The method has been tested and evaluated with measured pulse shapes from the full size prototype of the OPAL central detector which were digitized by 100 MHz FADCs. (orig.).
Simultaneous hit finding and timing method for pulse shape analysis of drift chamber signals
Energy Technology Data Exchange (ETDEWEB)
Schaile, D; Schaile, O; Schwarz, J
1986-01-01
An algorithm for the analysis of the digitized signal waveform of drift chamber pulses is described which yields a good multihit resolution and an accurate drift time determination with little processing time. The method has been tested and evaluated with measured pulse shapes from the full size prototype of the OPAL central detector which were digitized by 100 MHz FADCs.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.
2008-04-01
We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.
Methods of Multivariate Analysis
Rencher, Alvin C
2012-01-01
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit
Kobayashi, Kazuyoshi; Imagama, Shiro; Ito, Zenya; Ando, Kei; Hida, Tetsuro; Ito, Kenyu; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki
2017-01-01
OBJECTIVE Corrective surgery for spinal deformities can lead to neurological complications. Several reports have described spinal cord monitoring in surgery for spinal deformity, but only a few have included patients younger than 20 years with adolescent idiopathic scoliosis (AIS). The goal of this study was to evaluate the characteristics of cases with intraoperative transcranial motor evoked potential (Tc-MEP) waveform deterioration during posterior corrective fusion for AIS. METHODS A prospective database was reviewed, comprising 68 patients with AIS who were treated with posterior corrective fusion in a prospective database. A total of 864 muscles in the lower extremities were chosen for monitoring, and acceptable baseline responses were obtained from 819 muscles (95%). Intraoperative Tc-MEP waveform deterioration was defined as a decrease in intraoperative amplitude of ≥ 70% of the control waveform. Age, Cobb angle, flexibility, operative time, estimated blood loss (EBL), intraoperative body temperature, blood pressure, number of levels fused, and correction rate were examined in patients with and without waveform deterioration. RESULTS The patients (3 males and 65 females) had an average age of 14.4 years (range 11-19 years). The mean Cobb angles before and after surgery were 52.9° and 11.9°, respectively, giving a correction rate of 77.4%. Fourteen patients (20%) exhibited an intraoperative waveform change, and these occurred during incision (14%), after screw fixation (7%), during the rotation maneuver (64%), during placement of the second rod after the rotation maneuver (7%), and after intervertebral compression (7%). Most waveform changes recovered after decreased correction or rest. No patient had a motor deficit postoperatively. In multivariate analysis, EBL (OR 1.001, p = 0.085) and number of levels fused (OR 1.535, p = 0.045) were associated with waveform deterioration. CONCLUSIONS Waveform deterioration commonly occurred during rotation maneuvers
Directory of Open Access Journals (Sweden)
Gabriel Oltean
Full Text Available The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms, efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer, and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination. The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the
Oltean, Gabriel; Ivanciu, Laura-Nicoleta
2016-01-01
The design and verification of complex electronic systems, especially the analog and mixed-signal ones, prove to be extremely time consuming tasks, if only circuit-level simulations are involved. A significant amount of time can be saved if a cost effective solution is used for the extensive analysis of the system, under all conceivable conditions. This paper proposes a data-driven method to build fast to evaluate, but also accurate metamodels capable of generating not-yet simulated waveforms as a function of different combinations of the parameters of the system. The necessary data are obtained by early-stage simulation of an electronic control system from the automotive industry. The metamodel development is based on three key elements: a wavelet transform for waveform characterization, a genetic algorithm optimization to detect the optimal wavelet transform and to identify the most relevant decomposition coefficients, and an artificial neuronal network to derive the relevant coefficients of the wavelet transform for any new parameters combination. The resulted metamodels for three different waveform families are fully reliable. They satisfy the required key points: high accuracy (a maximum mean squared error of 7.1x10-5 for the unity-based normalized waveforms), efficiency (fully affordable computational effort for metamodel build-up: maximum 18 minutes on a general purpose computer), and simplicity (less than 1 second for running the metamodel, the user only provides the parameters combination). The metamodels can be used for very efficient generation of new waveforms, for any possible combination of dependent parameters, offering the possibility to explore the entire design space. A wide range of possibilities becomes achievable for the user, such as: all design corners can be analyzed, possible worst-case situations can be investigated, extreme values of waveforms can be discovered, sensitivity analyses can be performed (the influence of each parameter on the
Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory
Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi
2018-03-01
With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.
Integration and interpolation of sampled waveforms
International Nuclear Information System (INIS)
Stearns, S.D.
1978-01-01
Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed
DEFF Research Database (Denmark)
Olivarius, Signe
of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...
Koyama, Yasuaki; Wada, Takafumi; Lohman, Brandon D; Takamatsu, Yuka; Matsumoto, Junichi; Fujitani, Shigeki; Taira, Yasuhiko
2013-10-01
The objective of the study is to demonstrate the utility of near-infrared spectroscopy (NIRS) in evaluating chest compression (CC) quality in cardiac arrest (CA) patients as well as determine its prognosis predictive value. We present a nonconsecutive case series of adult patients with CA whose cardiopulmonary resuscitation (CPR) was monitored with NIRS and collected the total hemoglobin concentration change (ΔcHb), the tissue oxygen index (TOI), and the ΔTOI to assess CC quality in a noninvasive fashion. During CPR, ΔcHb displayed waveforms monitor, which we regarded as a surrogate for CC quality. Total hemoglobin concentration change waveforms responded accurately to variations or cessations of CCs. In addition, a TOI greater than 40% measured upon admission appears to be significant in predicting patient's outcome. Of 15 patients, 6 had a TOI greater than 40% measured upon admission, and 67% of the latter were in return of spontaneous circulation after CPR and were found to be significantly different between return of spontaneous circulation and death (P = .047; P < .05). Near-infrared spectroscopy reliably assesses the quality of CCs in patients with CA demonstrated by synchronous waveforms during CPR and possible prognostic predictive value, although further investigation is warranted. © 2013 Elsevier Inc. All rights reserved.
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Classification of morphologic changes in photoplethysmographic waveforms
Directory of Open Access Journals (Sweden)
Tigges Timo
2016-09-01
Full Text Available An ever increasing number of research is examining the question to what extent physiological information beyond the blood oxygen saturation could be drawn from the photoplethysmogram. One important approach to elicit that information from the photoplethysmogram is the analysis of its waveform. One prominent example for the value of photoplethysmographic waveform analysis in cardiovascular monitoring that has emerged is hemodynamic compensation assessment in the peri-operative setting or trauma situations, as digital pulse waveform dynamically changes with alterations in vascular tone or pulse wave velocity. In this work, we present an algorithm based on modern machine learning techniques that automatically finds individual digital volume pulses in photoplethysmographic signals and sorts them into one of the pulse classes defined by Dawber et al. We evaluate our approach based on two major datasets – a measurement study that we conducted ourselves as well as data from the PhysioNet MIMIC II database. As the results are satisfying we could demonstrate the capabilities of classification algorithms in the automated assessment of the digital volume pulse waveform measured by photoplethysmographic devices.
Waveform digitizing at 500 MHz
International Nuclear Information System (INIS)
Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.
1988-01-01
Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10 -10 . To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the (π + → μ + ν, μ + → e + ν/bar /nu//) decay sequence in scintillator. We report on the design and construction of 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February-May 1988 run showing performance of the system for the observation of the above decay. 8 figs
Waveform digitizing at 500 MHz
International Nuclear Information System (INIS)
Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.
1988-01-01
Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10/sup /minus/10/. To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the π + → μ + → e + ν/bar /nu// decay sequence in scintillator. We report on the design and construction of over 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February--May 1988 run showing performance of the system for the observation of the above decay. 9 figs
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Directory of Open Access Journals (Sweden)
S. Lee
2018-05-01
Full Text Available We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0, as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011–2016, excluding the summer season (i.e., June to September. We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho
2018-05-01
We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
International Nuclear Information System (INIS)
Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.
1985-09-01
A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 μs conversion time and stored in an on-board memory accessible through CAMAC
A new optimization approach for source-encoding full-waveform inversion
Moghaddam, P.P.; Keers, H.; Herrmann, F.J.; Mulder, W.A.
2013-01-01
Waveform inversion is the method of choice for determining a highly heterogeneous subsurface structure. However, conventional waveform inversion requires that the wavefield for each source is computed separately. This makes it very expensive for realistic 3D seismic surveys. Source-encoding waveform
International Nuclear Information System (INIS)
Alverbro, Karin
2010-01-01
Many decision-making situations today affect humans and the environment. In practice, many such decisions are made without an overall view and prioritise one or other of the two areas. Now and then these two areas of regulation come into conflict, e.g. the best alternative as regards environmental considerations is not always the best from a human safety perspective and vice versa. This report was prepared within a major project with the aim of developing a framework in which both the environmental aspects and the human safety aspects are integrated, and decisions can be made taking both fields into consideration. The safety risks have to be analysed in order to be successfully avoided and one way of doing this is to use different kinds of risk analysis methods. There is an abundance of existing methods to choose from and new methods are constantly being developed. This report describes some of the risk analysis methods currently available for analysing safety and examines the relationships between them. The focus here is mainly on human safety aspects
Waveform Catalog, Extreme Mass Ratio Binary (Capture)
National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...
Source-independent elastic waveform inversion using a logarithmic wavefield
Choi, Yun Seok
2012-01-01
The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.
SURFACE FITTING FILTERING OF LIDAR POINT CLOUD WITH WAVEFORM INFORMATION
Directory of Open Access Journals (Sweden)
S. Xing
2017-09-01
Full Text Available Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from “WATER (Watershed Allied Telemetry Experimental Research” are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
2011-11-01
National Center for Health Workforce Analysis. Projected supply, demand and short- ages of registered nurses : 2000–2020, 2002. 41Urzua, J., et al... paediatric crural and brachial blood pressure index. J 278 Hum Hypertens 21: 415-417, 2007. 279 7. Fung P, Dumont G, Ries C, Mott C, Ansermino M
Towards full waveform ambient noise inversion
Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas
2018-01-01
In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure
Full Waveform Inversion for Reservoir Characterization - A Synthetic Study
Zabihi Naeini, E.; Kamath, N.; Tsvankin, I.; Alkhalifah, Tariq Ali
2017-01-01
Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI
Solanki, K.; Hauksson, E.; Kanamori, H.; Wu, Y.; Heaton, T.; Boese, M.
2007-12-01
We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel
2014-07-01
We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a
International Nuclear Information System (INIS)
Berthomier, Charles
1975-01-01
A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr
Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro; Yamasoba, Tatsuya
2014-09-01
Glottal area waveform (GAW) analysis is widely used in the assessment of vocal fold vibration by high-speed digital imaging (HSDI). Because normative GAW data obtained from a large number of subjects have not been reported, we conducted a prospective study to obtain normative results for GAW analysis of HSDI findings and clarify normal variations associated with gender and age. Vocally healthy adults were divided into a young group (aged ≤ 35 years) and an elderly group (aged ≥ 65 years). The configuration and size of the glottal area were assessed at different phases of the glottal cycle, and gender- and age-related differences were evaluated. A total of 26 young subjects (nine men and 17 women; mean age: 27 years) and 20 elderly subjects (eight men and 12 women; mean age: 73 years) were investigated. The glottal area at different points of the glottal cycle showed a negative correlation with frequency. Although the GAW parameters of young women appeared to be different from those of the other subgroups, the differences were not statistically significant. Young women predominantly had a triangular- or vase-shaped glottal configuration at all frequencies, whereas the other subgroups showed various glottal shapes. The present study clarified gender- and age-related differences of GAW parameters obtained with HSDI. Young women were likely to show different glottal configurations and different responses to frequency changes from those of young men, elderly men, and elderly women. Phonosurgeons should pay attention to the normal variations detected in the present study. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Shelly, David R.; Hardebeck, Jeanne L.; Ellsworth, William L.; Hill, David P.
2016-01-01
In microseismicity analyses, reliable focal mechanisms can typically be obtained for only a small subset of located events. We address this limitation here, presenting a framework for determining robust focal mechanisms for entire populations of very small events. To achieve this, we resolve relative P and S wave polarities between pairs of waveforms by using their signed correlation coefficients—a by-product of previously performed precise earthquake relocation. We then use cluster analysis to group events with similar patterns of polarities across the network. Finally, we apply a standard mechanism inversion to the grouped data, using either catalog or correlation-derived P wave polarity data sets. This approach has great potential for enhancing analyses of spatially concentrated microseismicity such as earthquake swarms, mainshock-aftershock sequences, and industrial reservoir stimulation or injection-induced seismic sequences. To demonstrate its utility, we apply this technique to the 2014 Long Valley Caldera earthquake swarm. In our analysis, 85% of the events (7212 out of 8494 located by Shelly et al. [2016]) fall within five well-constrained mechanism clusters, more than 12 times the number with network-determined mechanisms. Of the earthquakes we characterize, 3023 (42%) have magnitudes smaller than 0.0. We find that mechanism variations are strongly associated with corresponding hypocentral structure, yet mechanism heterogeneity also occurs where it cannot be resolved by hypocentral patterns, often confined to small-magnitude events. Small (5–20°) rotations between mechanism orientations and earthquake location trends persist when we apply 3-D velocity models and might reflect a geometry of en echelon, interlinked shear, and dilational faulting.
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah
2014-09-01
Correlated waveforms have a number of applications in different fields, such as radar and communication. It is very easy to generate correlated waveforms using infinite alphabets, but for some of the applications, it is very challenging to use them in practice. Moreover, to generate infinite alphabet constant envelope correlated waveforms, the available research uses iterative algorithms, which are computationally very expensive. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method map the Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability-density-function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. To generate equiprobable symbols, the area of each region is kept same. If the requirement is to have each symbol with its own unique probability, the proposed scheme allows us that as well. Although, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
Propagation compensation by waveform predistortion
Halpin, Thomas F.; Urkowitz, Harry; Maron, David E.
Certain modifications of the Cobra Dane radar are considered, particularly modernization of the waveform generator. For wideband waveforms, the dispersive effects of the ionosphere become increasingly significant. The technique of predistorting the transmitted waveform so that a linear chirp is received after two-way passage is one way to overcome that dispersion. This approach is maintained for the modified system, but with a specific predistortion waveform well suited to the modification. The appropriate form of predistortion was derived in an implicit form of time as a function of frequency. The exact form was approximated by Taylor series and pseudo-Chebyshev approximation. The latter proved better, as demonstrated by the resulting smaller loss in detection sensitivity, less coarsening of range resolution, and a lower peak sidelobe. The effects of error in determining the plasma delay constant were determined and are given in graphical form. A suggestion for in-place determination of the plasma delay constant is given.
Directory of Open Access Journals (Sweden)
Sushma Tejwani
Full Text Available In this study, spectral analysis of the deformation signal from Corvis-ST (CoST and reflected light intensity from ocular response analyzer (ORA was performed to evaluate biomechanical concordance with each other.The study was non-interventional, observational, cross-sectional and involved 188 eyes from 94 normal subjects. Three measurements were made on each eye with ORA and CoST each and then averaged for each device. The deformation signal from CoST and reflected light intensity (applanation signal from ORA was compiled for all the eyes. The ORA signal was inverted about a line joining the two applanation peaks. All the signals were analyzed with Fourier series. The area under the signal curves (AUC, root mean square (RMS of all the harmonics, lower order (LO included 1st and 2nd order harmonic, higher order (HO up to 6th harmonic, CoST deformation amplitude (DA, corneal hysteresis (CH and corneal resistance factor (CRF were analyzed.The device variables and those calculated by Fourier transform were statistically significantly different between CoST and ORA. These variables also differed between the eyes of the same subject. There was also statistically significant influence of eyes (left vs. right on the differences in a sub-set of RMS variables only. CH and CRF differed statistically significantly between the eyes of subject (p<0.001 but not DA (p = 0.65.CoST was statistically significantly different from ORA. CoST may be useful in delineating true biomechanical differences between the eyes of a subject as it reports deformation.
COMPUTER METHODS OF GENETIC ANALYSIS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.
Kolakowski, Beata M; D'Agostino, Paul A; Chenier, Claude; Mester, Zoltán
2007-11-01
Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples.
Advanced Waveform Simulation for Seismic Monitoring
2008-09-01
velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range
Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J
2014-01-01
The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.
Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure
Zielinski, Todd M.; Hettrick, Doug; Cho, Yong
2010-04-01
Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid
2016-01-13
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Generation of correlated finite alphabet waveforms using gaussian random variables
Ahmed, Sajid; Alouini, Mohamed-Slim; Jardak, Seifallah
2016-01-01
Various examples of methods and systems are provided for generation of correlated finite alphabet waveforms using Gaussian random variables in, e.g., radar and communication applications. In one example, a method includes mapping an input signal comprising Gaussian random variables (RVs) onto finite-alphabet non-constant-envelope (FANCE) symbols using a predetermined mapping function, and transmitting FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The FANCE waveforms can be based upon the mapping of the Gaussian RVs onto the FANCE symbols. In another example, a system includes a memory unit that can store a plurality of digital bit streams corresponding to FANCE symbols and a front end unit that can transmit FANCE waveforms through a uniform linear array of antenna elements to obtain a corresponding beampattern. The system can include a processing unit that can encode the input signal and/or determine the mapping function.
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Directory of Open Access Journals (Sweden)
Scott E. Field
2014-07-01
Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in
Statistical gravitational waveform models: What to simulate next?
Doctor, Zoheyr; Farr, Ben; Holz, Daniel E.; Pürrer, Michael
2017-12-01
Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1=χ2. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in q ∈[1 ,3 ] and χ1∈[-0.5 ,0.5 ], the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3 ×10-5. Our approach could in principle use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are ˜1 order of magnitude lower than the errors from using Latin-hypercube or square training grids.
HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD
Directory of Open Access Journals (Sweden)
Mehmet YUMURTACI
2009-01-01
Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.
Induced waveform transitions of dissipative solitons
Kochetov, Bogdan A.; Tuz, Vladimir R.
2018-01-01
The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.
Solving seismological problems using sgraph program: II-waveform modeling
International Nuclear Information System (INIS)
Abdelwahed, Mohamed F.
2012-01-01
One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.
Eskandar, E N; Optican, L M; Richmond, B J
1992-10-01
1. In the companion paper we reported on the activity of neurons in the inferior temporal (IT) cortex during a sequential pattern matching task. In this task a sample stimulus was followed by a test stimulus that was either a match or a nonmatch. Many of the neurons encoded information about the patterns of both current and previous stimuli in the temporal modulation of their responses. 2. A simple information processing model of visual memory can be formed with just four steps: 1) encode the current stimulus; 2) recall the code of a remembered stimulus; 3) compare the two codes; 4) and decide whether they are similar or different. The analysis presented in the first paper suggested that some IT neurons were performing the comparison step of visual memory. 3. We propose that IT neurons participate in the comparison of temporal waveforms related to vision and memory by multiplying them together. This product could form the basis of a crosscorrelation-based comparison. 4. We tested our hypothesis by fitting a simple multiplicative model to data from IT neurons. The model generated waveforms in separate memory and visual channels. The waveforms arising from the two channels were then multiplied on a point by point basis to yield the output waveform. The model was fitted to the actual neuronal data by a gradient descent method to find the best fit waveforms that also had the lowest total energy. 5. The multiplicative model fit the neuronal responses quite well. The multiplicative model made consistently better predictions of the actual response waveforms than did an additive model. Furthermore, the fit was better when the actual relationship between the responses and the sample and test stimuli were preserved than when that relationship was randomized. 6. We infer from the superior fit of the multiplicative model that IT neurons are multiplying temporally modulated waveforms arising from separate visual and memory systems in the comparison step of visual memory.
Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries
International Nuclear Information System (INIS)
Damour, Thibault; Nagar, Alessandro
2007-01-01
We address the problem of constructing high-accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes. We work within the effective-one-body (EOB) framework and propose a methodology for improving the current (waveform) implementations of this framework based on understanding, element by element, the physics behind each feature of the waveform and on systematically comparing various EOB-based waveforms with exact waveforms obtained by numerical relativity approaches. The present paper focuses on small-mass-ratio nonspinning binary systems, which can be conveniently studied by Regge-Wheeler-Zerilli-type methods. Our results include (i) a resummed, 3 PN-accurate description of the inspiral waveform, (ii) a better description of radiation reaction during the plunge, (iii) a refined analytic expression for the plunge waveform, (iv) an improved treatment of the matching between the plunge and ring-down waveforms. This improved implementation of the EOB approach allows us to construct complete analytic waveforms which exhibit a remarkable agreement with the exact ones in modulus, frequency, and phase. In particular, the analytic and numerical waveforms stay in phase, during the whole process, within ±1.1% of a cycle. We expect that the extension of our methodology to the comparable-mass case will be able to generate comparably accurate analytic waveforms of direct use for the ground-based network of interferometric detectors of gravitational waves
Bellman, Richard Ernest
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology
Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2016-08-01
We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns
Directory of Open Access Journals (Sweden)
Wonki Lee
2018-03-01
Full Text Available The electrocardiogram (ECG waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform pattern for matching and demonstrates that the approach can potentially be employed for individual biometric identification. Multi-cycle ECG signals were assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or fingers for considering various measurements. For biometric identification, our-fold cross validation was used in the experiments for assessing how the results of a statistical analysis will generalize to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean distances, were tested to compare the individual identification performances with a single channel of ECG signal (3-wire ECG. To evaluate the pattern matching for biometric identification, the ECG recordings for each subject were partitioned into training and test set. The suggested method obtained a maximum performance of 89.9% accuracy with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to 99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.
Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns.
Lee, Wonki; Kim, Seulgee; Kim, Daeeun
2018-03-28
The electrocardiogram (ECG) waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform pattern for matching and demonstrates that the approach can potentially be employed for individual biometric identification. Multi-cycle ECG signals were assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or fingers for considering various measurements. For biometric identification, our-fold cross validation was used in the experiments for assessing how the results of a statistical analysis will generalize to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean distances, were tested to compare the individual identification performances with a single channel of ECG signal (3-wire ECG). To evaluate the pattern matching for biometric identification, the ECG recordings for each subject were partitioned into training and test set. The suggested method obtained a maximum performance of 89.9% accuracy with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to 99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.
Czech Academy of Sciences Publication Activity Database
Fischer, Tomáš; Michálek, J.
2008-01-01
Roč. 52, č. 4 (2008), s. 493-511 ISSN 0039-3169 R&D Projects: GA ČR(CZ) GA205/06/1780 Grant - others:GA UK(CZ) 105707 Institutional research plan: CEZ:AV0Z30120515 Keywords : earthquake swarms * relative location * waveform similarity * seismic activity * West Bohemia/Vogtland Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008
Ismail, Aishah; Bhatti, Mehwish S; Faye, Ibrahima; Lu, Cheng Kai; Laude, Augustinus; Tang, Tong Boon
2018-06-06
To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake. This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p groups in several ocular pulse waveform parameters, namely MBR (overall, vessel, tissue), BOT (overall), rising rate (overall), and falling rate (vessel), all with p group, but not within the habitual group. The temporal changes in parameters MBR (vessel, tissue), skew (overall, vessel), BOT (overall, vessel), rising rate (overall), falling rate (overall, vessel), and FAI (tissue) were significant for both groups (habitual and non-habitual) in response to caffeine intake. The experiment results demonstrated caffeine does modulate OBF significantly and response differently in non-habitual and habitual groups. Among all ten parameters, MBR and BOT were identified as the suitable biomarkers to differentiate between the two groups.
Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations
Directory of Open Access Journals (Sweden)
Xiaowen Zhang
2018-02-01
Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.
Optimal current waveforms for brushless permanent magnet motors
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
3D Electric Waveforms of Solar Wind Turbulence
Kellogg, P. J.; Goetz, K.; Monson, S. J.
2018-01-01
Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.
A square wave is the most efficient and reliable waveform for resonant actuation of micro switches
Ben Sassi, S.; Khater, M. E.; Najar, F.; Abdel-Rahman, E. M.
2018-05-01
This paper investigates efficient actuation methods of shunt MEMS switches and other parallel-plate actuators. We start by formulating a multi-physics model of the micro switch, coupling the nonlinear Euler-Bernoulli beam theory with the nonlinear Reynolds equation to describe the structural and fluidic domains, respectively. The model takes into account fringing field effects as well as mid-plane stretching and squeeze film damping nonlinearities. Static analysis is undertaken using the differential quadrature method (DQM) to obtain the pull-in voltage, which is verified by means of the finite element model and validated experimentally. We develop a reduced order model employing the Galerkin method for the structural domain and DQM for the fluidic domain. The proposed waveforms are intended to be more suitable for integrated circuit standards. The dynamic response of the micro switch to harmonic, square and triangular waveforms are evaluated and compared experimentally and analytically. Low voltage actuation is obtained using dynamic pull-in with the proposed waveforms. In addition, global stability analysis carried out for the three signals shows advantages of employing the square signal as the actuation method in enhancing the performance of the micro switch in terms of actuation voltage, switching time, and sensitivity to initial conditions.
Multiparameter Elastic Full Waveform Inversion With Facies Constraints
Zhang, Zhendong
2017-08-17
Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.
Multivariate analysis: models and method
International Nuclear Information System (INIS)
Sanz Perucha, J.
1990-01-01
Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis
Multivariate analysis methods in physics
International Nuclear Information System (INIS)
Wolter, M.
2007-01-01
A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru
Methods in algorithmic analysis
Dobrushkin, Vladimir A
2009-01-01
…helpful to any mathematics student who wishes to acquire a background in classical probability and analysis … This is a remarkably beautiful book that would be a pleasure for a student to read, or for a teacher to make into a year's course.-Harvey Cohn, Computing Reviews, May 2010
Communication Network Analysis Methods.
Farace, Richard V.; Mabee, Timothy
This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…
Directory of Open Access Journals (Sweden)
Hidetoshi Nakanishi
2015-11-01
Full Text Available A laser terahertz emission microscope (LTEM can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL, photoluminescence (PL, and laser beam induced current (LBIC, as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.
Complementing Gender Analysis Methods.
Kumar, Anant
2016-01-01
The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang
2017-01-01
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion
Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves
Yuan, Y. O.; Simons, F. J.; Bozdag, E.
2014-12-01
We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
STOCHASTIC METHODS IN RISK ANALYSIS
Directory of Open Access Journals (Sweden)
Vladimíra OSADSKÁ
2017-06-01
Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.
Basic methods of isotope analysis
International Nuclear Information System (INIS)
Ochkin, A.V.; Rozenkevich, M.B.
2000-01-01
The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru
Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P
1983-01-01
A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.
Directory of Open Access Journals (Sweden)
Irene Y. H. Gu
2007-01-01
Full Text Available This paper describes an efficient yet accurate methodology for estimating system damping. The proposed technique is based on linear dynamic system theory and the Hilbert damping analysis. The proposed technique requires capacitor switching waveforms only. The detected envelope of the intrinsic transient portion of the voltage waveform after capacitor bank energizing and its decay rate along with the damped resonant frequency are used to quantify effective X/R ratio of a system. Thus, the proposed method provides complete knowledge of system impedance characteristics. The estimated system damping can also be used to evaluate the system vulnerability to various PQ disturbances, particularly resonance phenomena, so that a utility may take preventive measures and improve PQ of the system.
Closed-loop waveform control of boost inverter
DEFF Research Database (Denmark)
Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran
2016-01-01
The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...
Experimental validation of waveform relaxation technique for power ...
Indian Academy of Sciences (India)
damping controller drawn our attention to a potential convergence problem which ... method was originally proposed as a method of parallelizing the numerical integration of very. Figure 2 ..... to it the features of an industrial real-time operating system. ..... Odeh F and Ruehli A 1985 Waveform relaxation: Theory and practice.
Elastic reflection waveform inversion with variable density
Li, Yuanyuan
2017-08-17
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.
Probabilistic methods for rotordynamics analysis
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Analysis of Precision of Activation Analysis Method
DEFF Research Database (Denmark)
Heydorn, Kaj; Nørgaard, K.
1973-01-01
The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...
Analysis apparatus and method of analysis
International Nuclear Information System (INIS)
1976-01-01
A continuous streaming method developed for the excution of immunoassays is described in this patent. In addition, a suitable apparatus for the method was developed whereby magnetic particles are automatically employed for the consecutive analysis of a series of liquid samples via the RIA technique
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS
Directory of Open Access Journals (Sweden)
Mohammad Daneshzand
2017-08-01
Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...
Improving waveform inversion using modified interferometric imaging condition
Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen
2018-02-01
Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.
WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data.
Winslow, Raimond L; Granite, Stephen; Jurado, Christian
2016-01-01
The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs.
Seismic design and analysis methods
International Nuclear Information System (INIS)
Varpasuo, P.
1993-01-01
Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two
Seismic waveform modeling over cloud
Luo, Cong; Friederich, Wolfgang
2016-04-01
With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.
International Nuclear Information System (INIS)
Feng, H.; Frank, K.T.; Kaye, S.
1987-01-01
The PBX-M (Princeton Beta Experiment) is an unique Tokamak experiment designed to run with a highly indented plasma. The shaping control will be accomplished through a closed-loop power supply control system. The system will make use of sixteen pre-programmed reference signals and twenty signals taken from direct measurements as input to an analog computer. Through a matrix conversion in the analog computer, these input signals will be used to generate eight control signals to control the eight power supplies. The pre-programmed reference signals will be created using a Macintosh personal computer interfaced to CAMAC (Comptuer Automated Measurement And Control) hardware for down-loading waveforms. The reference signals will be created on the Macintosh by the physics operators, utilizing the full graphics capability of the system. These waveforms are transferred to CAMAC memory, which are then strobed in real time through digital-to-analog converters and fed into the analog computer. The overall system (both hardware and software) is designed to be fail-safe. Specific features of the system, such as load inhibit and discharge inhibit, are discussed
Gas stream analysis using voltage-current time differential operation of electrochemical sensors
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl
2018-01-02
A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
Auto-correlation based intelligent technique for complex waveform presentation and measurement
International Nuclear Information System (INIS)
Rana, K P S; Singh, R; Sayann, K S
2009-01-01
Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.
Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver
International Nuclear Information System (INIS)
Oguzkurt, Levent; Yildirim, Tulin; Torun, Dilek; Tercan, Fahri; Kizilkilic, Osman; Niron, E. Alp
2005-01-01
Objective: To determine the incidence of abnormal hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver (FIL). Materials and methods: In this prospective study, 40 patients with diffuse FIL and 50 normal healthy adults who served as control group underwent hepatic vein (HV) Doppler ultrasonography. The patients with the diagnosis of FIL were 23 men (57.5%) and 17 women aged 30-62 years (mean age ± S.D., 42 ± 12 years). Subjects in the control group were 27 men (54%) and 23 women aged 34-65 years (mean age ± S.D., 45 ± 14 years). The diagnosis of FIL was confirmed with computed tomography density measurements. The waveforms of HV were classified into three groups: regular triphasic waveform, biphasic waveform without a reverse flow, and monophasic or flat waveform. Etiological factors for FIL were diabetes mellitus (DM), hyperlipidemia and obesity (body mass index > 25). Serum lipid profile was obtained from all the patients with FIL. Results: Seventeen of the 40 patients (43%) with FIL had an abnormal HV Doppler waveform, whereas only one of the 50 (2%) healthy subjects had an abnormal waveform. The difference in the distribution of normal Doppler waveform pattern between the patients and the control group was significant (P 0.05). There was not any correlation between the degree of fat infiltration and the hepatic vein waveform pattern (P = 0.60). Conclusion: Patients with fatty liver has a high rate of an abnormal hepatic vein Doppler waveform pattern which can be biphasic or monophasic. We could not find a relation between the etiological factors for FIL and the occurrence of an abnormal HV Doppler waveform
Energy Technology Data Exchange (ETDEWEB)
Methner, M.M.; Bowman, J.D.
1998-03-01
Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.
Categorisation of full waveform data provided by laser scanning devices
Ullrich, Andreas; Pfennigbauer, Martin
2011-11-01
In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.
Centered Differential Waveform Inversion with Minimum Support Regularization
Kazei, Vladimir
2017-05-26
Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.
Synthetic tsunami waveform catalogs with kinematic constraints
Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid
2017-07-01
In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.
Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.
Lam, Frank; Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S
2017-01-01
Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C , peripheral resistance R , aortic impedance r , and the inertia of blood L , to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.
Pulsatile pipe flow transition: Flow waveform effects
Brindise, Melissa C.; Vlachos, Pavlos P.
2018-01-01
Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.
SWOT ANALYSIS ON SAMPLING METHOD
Directory of Open Access Journals (Sweden)
CHIS ANCA OANA
2014-07-01
Full Text Available Audit sampling involves the application of audit procedures to less than 100% of items within an account balance or class of transactions. Our article aims to study audit sampling in audit of financial statements. As an audit technique largely used, in both its statistical and nonstatistical form, the method is very important for auditors. It should be applied correctly for a fair view of financial statements, to satisfy the needs of all financial users. In order to be applied correctly the method must be understood by all its users and mainly by auditors. Otherwise the risk of not applying it correctly would cause loose of reputation and discredit, litigations and even prison. Since there is not a unitary practice and methodology for applying the technique, the risk of incorrectly applying it is pretty high. The SWOT analysis is a technique used that shows the advantages, disadvantages, threats and opportunities. We applied SWOT analysis in studying the sampling method, from the perspective of three players: the audit company, the audited entity and users of financial statements. The study shows that by applying the sampling method the audit company and the audited entity both save time, effort and money. The disadvantages of the method are difficulty in applying and understanding its insight. Being largely used as an audit method and being a factor of a correct audit opinion, the sampling method’s advantages, disadvantages, threats and opportunities must be understood by auditors.
Development of rupture process analysis method for great earthquakes using Direct Solution Method
Yoshimoto, M.; Yamanaka, Y.; Takeuchi, N.
2010-12-01
Conventional rupture process analysis methods using teleseismic body waves were based on ray theory. Therefore, these methods have the following problems in applying to great earthquakes such as 2004 Sumatra earthquake: (1) difficulty in computing all later phases such as the PP reflection phase, (2) impossibility of computing called “W phase”, the long period phase arriving before S wave, (3) implausibility of hypothesis that the distance is far enough from the observation points to the hypocenter compared to the fault length. To solve above mentioned problems, we have developed a new method which uses the synthetic seismograms computed by the Direct Solution Method (DSM, e.g. Kawai et al. 2006) as Green’s functions. We used the DSM software (http://www.eri.u-tokyo.ac.jp/takeuchi/software/) for computing the Green’s functions up to 1 Hz for the IASP91 (Kennett and Engdahl, 1991) model, and determined the final slip distributions using the waveform inversion method (Kikuchi et al. 2003). First we confirmed whether the Green’s functions computed by DSM were accurate in higher frequencies up to 1 Hz. Next we performed the rupture process analysis of this new method for Mw8.0 (GCMT) large Solomon Islands earthquake on April 1, 2007. We found that this earthquake consisted of two asperities and the rupture propagated across the subducting Sinbo ridge. The obtained slip distribution better correlates to the aftershock distributions than existing method. Furthermore, this new method keep same accuracy of existing method (which has the advantage of calculating) with respect to direct P-wave and reflection phases near the source, and also accurately calculate the later phases such a PP-wave.
A nonlinear approach of elastic reflection waveform inversion
Guo, Qiang
2016-09-06
Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.
A nonlinear approach of elastic reflection waveform inversion
Guo, Qiang; Alkhalifah, Tariq Ali
2016-01-01
Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
International Nuclear Information System (INIS)
Tsunesada, Yoshiki; Tatsumi, Daisuke; Kanda, Nobuyuki; Nakano, Hiroyuki; Ando, Masaki; Sasaki, Misao; Tagoshi, Hideyuki; Takahashi, Hirotaka
2005-01-01
Gravitational radiation from a slightly distorted black hole with ringdown waveform is well understood in general relativity. It provides a probe for direct observation of black holes and determination of their physical parameters, masses and angular momenta (Kerr parameters). For ringdown searches using data of gravitational wave detectors, matched filtering technique is useful. In this paper, we describe studies on problems in matched filtering analysis in realistic gravitational wave searches using observational data. Above all, we focus on template constructions, matches or signal-to-noise ratios (SNRs), detection probabilities for Galactic events, and accuracies in evaluation of waveform parameters or black hole hairs. In template design for matched filtering, search parameter ranges and template separations are determined by requirements from acceptable maximum loss of SNRs, detection efficiencies, and computational costs. In realistic searches using observational data, however, effects of nonstationary noises cause decreases of SNRs, and increases of errors in waveform parameter determinations. These problems will potentially arise in any matched filtering searches for any kind of waveforms. To investigate them, we have performed matched filtering analysis for artificial ringdown signals which are generated with Monte-Carlo technique and injected into the TAMA300 observational data. We employed an efficient method to construct a bank of ringdown filters recently proposed by Nakano et al., and use a template bank generated from a criterion such that losses of SNRs of any signals do not exceed 2%. We found that this criterion is fulfilled in ringdown searches using TAMA300 data, by examining distribution of SNRs of simulated signals. It is also shown that with TAMA300 sensitivity, the detection probability for Galactic ringdown events is about 50% for black holes of masses greater than 20M · with SNR>10. The accuracies in waveform parameter estimations are
Strategies for the characteristic extraction of gravitational waveforms
International Nuclear Information System (INIS)
Babiuc, M. C.; Bishop, N. T.; Szilagyi, B.; Winicour, J.
2009-01-01
We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Ψ 4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Ψ 4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves.
Evaluation of surface-wave waveform modeling for lithosphere velocity structure
Chang, Tao-Ming
Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.
Pick- and waveform-based techniques for real-time detection of induced seismicity
Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.
2018-05-01
The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.
Efficient full waveform inversion using the excitation representation of the source wavefield
Kalita, Mahesh; Alkhalifah, Tariq Ali
2017-01-01
Full waveform inversion (FWI) is an iterative method of data-fitting, aiming at high-resolution recovery of the unknown model parameters. However, its conventional implementation is a cumbersome process, requiring a long computational time and large
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah; Schuster, Gerard T.
2015-01-01
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
Data Analysis Methods for Paleogenomics
DEFF Research Database (Denmark)
Avila Arcos, Maria del Carmen
(Danmarks Grundforskningfond) 'Centre of Excellence in GeoGenetics' grant, with additional funding provided by the Danish Council for Independent Research 'Sapere Aude' programme. The thesis comprises five chapters, all of which represent different projects that involved the analysis of massive amounts......, thanks to the introduction of NGS and the implementation of data analysis methods specific for each project. Chapters 1 to 3 have been published in peer-reviewed journals and Chapter 4 is currently in review. Chapter 5 consists of a manuscript describing initial results of an ongoing research project......The work presented in this thesis is the result of research carried out during a three-year PhD at the Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, under supervision of Professor Tom Gilbert. The PhD was funded by the Danish National Research Foundation...
Energy Technology Data Exchange (ETDEWEB)
Weitman, J; Daaverhoeg, N; Farvolden, S
1970-07-01
In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.
Full-waveform inversion of GPR data for civil engineering applications
van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry
2014-05-01
Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride
COMPETITIVE INTELLIGENCE ANALYSIS - SCENARIOS METHOD
Directory of Open Access Journals (Sweden)
Ivan Valeriu
2014-07-01
Full Text Available Keeping a company in the top performing players in the relevant market depends not only on its ability to develop continually, sustainably and balanced, to the standards set by the customer and competition, but also on the ability to protect its strategic information and to know in advance the strategic information of the competition. In addition, given that economic markets, regardless of their profile, enable interconnection not only among domestic companies, but also between domestic companies and foreign companies, the issue of economic competition moves from the national economies to the field of interest of regional and international economic organizations. The stakes for each economic player is to keep ahead of the competition and to be always prepared to face market challenges. Therefore, it needs to know as early as possible, how to react to others’ strategy in terms of research, production and sales. If a competitor is planning to produce more and cheaper, then it must be prepared to counteract quickly this movement. Competitive intelligence helps to evaluate the capabilities of competitors in the market, legally and ethically, and to develop response strategies. One of the main goals of the competitive intelligence is to acknowledge the role of early warning and prevention of surprises that could have a major impact on the market share, reputation, turnover and profitability in the medium and long term of a company. This paper presents some aspects of competitive intelligence, mainly in terms of information analysis and intelligence generation. Presentation is theoretical and addresses a structured method of information analysis - scenarios method – in a version that combines several types of analysis in order to reveal some interconnecting aspects of the factors governing the activity of a company.
What is the best site for measuring the effect of ventilation on the pulse oximeter waveform?
Shelley, Kirk H; Jablonka, Denis H; Awad, Aymen A; Stout, Robert G; Rezkanna, Hoda; Silverman, David G
2006-08-01
The cardiac pulse is the predominant feature of the pulse oximeter (plethysmographic) waveform. Less obvious is the effect of ventilation on the waveform. There have been efforts to measure the effect of ventilation on the waveform to determine respiratory rate, tidal volume, and blood volume. We measured the relative strength of the effect of ventilation on the reflective plethysmographic waveform at three different sites: the finger, ear, and forehead. The plethysmographic waveforms from 18 patients undergoing positive pressure ventilation during surgery and 10 patients spontaneously breathing during renal dialysis were collected. The respiratory signal was isolated from the waveform using spectral analysis. It was found that the respiratory signal in the pulse oximeter waveform was more than 10 times stronger in the region of the head when compared with the finger. This was true with both controlled positive pressure ventilation and spontaneous breathing. A significant correlation was demonstrated between the estimated blood loss from surgical procedures and the impact of ventilation on ear plethysmographic data (r(s) = 0.624, P = 0.006).
Gravimetric and titrimetric methods of analysis
International Nuclear Information System (INIS)
Rives, R.D.; Bruks, R.R.
1983-01-01
Gravimetric and titrimetric methods of analysis are considered. Methods of complexometric titration are mentioned, as well as methods of increasing sensitivity in titrimetry. Gravimetry and titrimetry are applied during analysis for traces of geological materials
DISECA - A Matlab code for dispersive waveform calculations
Czech Academy of Sciences Publication Activity Database
Gaždová, Renata; Vilhelm, J.
2011-01-01
Roč. 38, č. 4 (2011), s. 526-531 ISSN 0266-352X R&D Projects: GA AV ČR IAA300460705 Institutional research plan: CEZ:AV0Z30460519 Keywords : velocity dispersion * synthetic waveform * seismic method Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.987, year: 2011 http://www.sciencedirect.com/science/article/pii/S0266352X11000425
International Nuclear Information System (INIS)
Eom, Kyeong Tae; Namkung, Sook; Bae, Sang Hoon; Choi, Young Hee
1999-01-01
To evaluate the relationship between the waveform of the right hepatic vein and the histological grade and stage in patients with chronic hepatitis B. Eighty-seven patients with chronic hepatitis B were examined prospectively by one sonographer. In each patient, Doppler waveform of the right hepatic vein was obtained. Doppler waveform was classified into 3 type, type 0; normal triphasic pattern, type 1; reduced amplitude of phasic oscillation and no reverse flow phase, and type 2; completely flat flow pattern. In the same session, an ultrasound guided liver biopsy was performed and submitted to one pathologist for grading and staging. Duplex doppler ultrasonography of the right hepatic vein was also performed in 12 control subjects with no evidence of liver or heart disease. The doppler waveform was compared with the histologic severity and a statistical analysis was performed. In the control group, all cases had type 0 waveform. In the hepatitis group, there were type 0 waveform in 61 cases (70.1%), type 1 waveform in 22 cases (25.3%) and type 2 waveform in 4 cases (4.6%). The frequency of abnormal waveform is significantly higher in patients with grade 3-4 and stage 3-4 than grade and stage 1-2 (p>0.005). In the hepatitis group, the venous pulsatility index (VPI) was 0.17-0.69 (mean 0.41), and decreased in the highest and mean values when increasing the histologic scores. However, it was nor significant statistically (p>0.05). The frequency of abnormal waveform was correlated with the histologic severity in patients with chronic hepatitis B. The highest and mean values of the VPI were also correlated. However 70.1% of the patients with chronic hepatitis B showed normal waveform. So doppler ultrasonogram of the hepatic vein may be useful for the diagnosis and the differential diagnosis from cirrhosis in patients with chronic hepatitis B by combination of doppler waveform and venous pulsatility index.
Waveform inversion for acoustic VTI media in frequency domain
Wu, Zedong
2016-09-06
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.
Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array
Bouchoucha, Taha; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2015-01-01
In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.
Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array
Bouchoucha, Taha
2015-04-19
In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.
Doppler waveform study as indicator of change of portal pressure after administration of octreotide
Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz
2016-01-01
Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043
A novel PMT test system based on waveform sampling
Yin, S.; Ma, L.; Ning, Z.; Qian, S.; Wang, Y.; Jiang, X.; Wang, Z.; Yu, B.; Gao, F.; Zhu, Y.; Wang, Z.
2018-01-01
Comparing with the traditional test system based on a QDC and TDC and scaler, a test system based on waveform sampling is constructed for signal sampling of the 8"R5912 and the 20"R12860 Hamamatsu PMT in different energy states from single to multiple photoelectrons. In order to achieve high throughput and to reduce the dead time in data processing, the data acquisition software based on LabVIEW is developed and runs with a parallel mechanism. The analysis algorithm is realized in LabVIEW and the spectra of charge, amplitude, signal width and rising time are analyzed offline. The results from Charge-to-Digital Converter, Time-to-Digital Converter and waveform sampling are discussed in detailed comparison.
Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms
Directory of Open Access Journals (Sweden)
Mohamed Elgendi
2018-03-01
Full Text Available Photoplethysmogram (PPG signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal’s vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.
Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms.
Elgendi, Mohamed; Liang, Yongbo; Ward, Rabab
2018-03-11
Photoplethysmogram (PPG) signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal's vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.
Velocity Building by Reflection Waveform Inversion without Cycle-skipping
Guo, Qiang
2017-05-26
Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization images to combine the migration velocity analysis (MVA) objectives (given here by RWI) and the FWI ones. However, RWI may still encounter cycle-skipping at far offsets if the velocity model is highly inaccurate. Similar to MVA, RWI is devoted to focusing reflection data to its true image positions, yet because of the cycle skipping potential we tend to initially use only near offsets. To make the inversion procedure more robust, we introduce the extended image into our RWI. Extending the model perturbations (or image) allows us to better fit the data at larger offsets even with an inaccurate velocity. Thus, we implement a nested approach to optimize the velocity and extended image simultaneously using the objective function of RWI. We slowly reduce the extension, as the image becomes focused, to allow wavepath updates from far offsets to near as a natural progression from long wavelength updates to shorter ones. Applications on synthetic data demonstrate the effectiveness of our method without much additional cost to RWI.
Transient waveform acquisition system for the ELMO Bumpy Torus
International Nuclear Information System (INIS)
Young, K.G.; Burris, R.D.; Hillis, D.H.; Overbey, D.R.
1984-10-01
The transient waveform system described in this report is designed to acquire analog waveforms from the ELMO Bumpy Torus (EBT) diagnostic experiments. Pressure, density, synchrotron radiation, etc., are acquired and digitized with a Kinetic Systems TR812 transient recorder and associated modules located in a CAMAC crate. The system can simultaneously acquire, display, and transmit sets of data consisting of identification parameters and up to 1024 data points for 1 to 64 input signals (frequency range = 0.01 pulse/s to 100 kHz) of data every one or more minutes; thus, it can run continuously without operator intervention. The data are taken on a VAX 11/780 and transmitted to a data base on a DECSystem-10. To aid the programmer in making future modifications to the system, detailed documentation using the Yourdon structural methods has been given
Image-domain full waveform inversion: Field data example
Zhang, Sanzong
2014-08-05
The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.
Image-domain full waveform inversion: Field data example
Zhang, Sanzong; Schuster, Gerard T.
2014-01-01
The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.
Full Waveform Inversion Using Nonlinearly Smoothed Wavefields
Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.
2017-01-01
The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.
Full Waveform Inversion Using Nonlinearly Smoothed Wavefields
Li, Y.
2017-05-26
The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.
SeisFlows-Flexible waveform inversion software
Modrak, Ryan T.; Borisov, Dmitry; Lefebvre, Matthieu; Tromp, Jeroen
2018-06-01
SeisFlows is an open source Python package that provides a customizable waveform inversion workflow and framework for research in oil and gas exploration, earthquake tomography, medical imaging, and other areas. New methods can be rapidly prototyped in SeisFlows by inheriting from default inversion or migration classes, and code can be tested on 2D examples before application to more expensive 3D problems. Wave simulations must be performed using an external software package such as SPECFEM3D. The ability to interface with external solvers lends flexibility, and the choice of SPECFEM3D as a default option provides optional GPU acceleration and other useful capabilities. Through support for massively parallel solvers and interfaces for high-performance computing (HPC) systems, inversions with thousands of seismic traces and billions of model parameters can be performed. So far, SeisFlows has run on clusters managed by the Department of Defense, Chevron Corp., Total S.A., Princeton University, and the University of Alaska, Fairbanks.
Directory of Open Access Journals (Sweden)
Predrag Pejovic
2013-12-01
Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.
Analysis methods (from 301 to 351)
International Nuclear Information System (INIS)
Analysis methods of materials used in the nuclear field (uranium, plutonium and their compounds, zirconium, magnesium, water...) and determination of impurities. Only reliable methods are selected [fr
Design of pulse waveform for waveform division multiple access UWB wireless communication system.
Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu
2014-01-01
A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.
SCA Waveform Development for Space Telemetry
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
Directory of Open Access Journals (Sweden)
Kirk H. Shelley
2012-02-01
Full Text Available The photoplethysmographic waveform sits at the core of the most used, and arguably the most important, clinical monitor, the pulse oximeter. Interestingly, the pulse oximeter was discovered while examining an artifact during the development of a noninvasive cardiac output monitor. This article will explore the response of the pulse oximeter waveform to various modes of ventilation. Modern digital signal processing is allowing for a re-examination of this ubiquitous signal. The effect of ventilation on the photoplethysmographic waveform has long been thought of as a source of artifact. The primary goal of this article is to improve the understanding of the underlying physiology responsible for the observed phenomena, thereby encouraging the utilization of this understanding to develop new methods of patient monitoring. The reader will be presented with a review of respiratory physiology followed by numerous examples of the impact of ventilation on the photoplethysmographic waveform.
Alian, Aymen A; Shelley, Kirk H
2012-01-01
The photoplethysmographic waveform sits at the core of the most used, and arguably the most important, clinical monitor, the pulse oximeter. Interestingly, the pulse oximeter was discovered while examining an artifact during the development of a noninvasive cardiac output monitor. This article will explore the response of the pulse oximeter waveform to various modes of ventilation. Modern digital signal processing is allowing for a re-examination of this ubiquitous signal. The effect of ventilation on the photoplethysmographic waveform has long been thought of as a source of artifact. The primary goal of this article is to improve the understanding of the underlying physiology responsible for the observed phenomena, thereby encouraging the utilization of this understanding to develop new methods of patient monitoring. The reader will be presented with a review of respiratory physiology followed by numerous examples of the impact of ventilation on the photoplethysmographic waveform.
Photoplethysmographic signal waveform index for detection of increased arterial stiffness
International Nuclear Information System (INIS)
Pilt, K; Meigas, K; Ferenets, R; Temitski, K; Viigimaa, M
2014-01-01
The aim of this research was to assess the validity of the photoplethysmographic (PPG) waveform index PPGAI for the estimation of increased arterial stiffness. For this purpose, PPG signals were recorded from 24 healthy subjects and from 20 type II diabetes patients. The recorded PPG signals were processed with the analysis algorithm developed and the waveform index PPGAI similar to the augmentation index (AIx) was calculated. As a reference, the aortic AIx was assessed and normalized for a heart rate of 75 bpm (AIx@75) by a SphygmoCor device. A strong correlation (r = 0.85) between the PPGAI and the aortic AIx@75 and a positive correlation of both indices with age were found. Age corrections for the indices PPGAI and AIx@75 as regression models from the signals of healthy subjects were constructed. Both indices revealed a significant difference between the groups of diabetes patients and healthy controls. However, the PPGAI provided the best statistical discrimination for the group of subjects with increased arterial stiffness. The waveform index PPGAI based on the inexpensive PPG technology can be considered as a perspective measure of increased arterial stiffness estimation in clinical screenings. (paper)
DTI analysis methods : Voxel-based analysis
Van Hecke, Wim; Leemans, Alexander; Emsell, Louise
2016-01-01
Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does
Bayesian methods for data analysis
Carlin, Bradley P.
2009-01-01
Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors
Within-footprint roughness measurements using ICESat/GLAS waveform and LVIS elevation
International Nuclear Information System (INIS)
Li, Xiaolu; Xu, Kai; Xu, Lijun
2016-01-01
The surface roughness is an important characteristic over an ice sheet or glacier, since it is an identification of boundary-layer meteorology and is an important limiter on the accuracy of surface-height measurements. In this paper, we propose a simulation method to derive the within-footprint roughness (called simulation-derived roughness) using ICESat/GLAS echo waveform, laser vegetation imaging sensor (LVIS) elevations, and laser profile array (LPA) images of ICESat/GLAS. By dividing the within-footprint surface into several elements, a simulation echo waveform can be obtained as the sum of the elementary pulses reflected from each surface element. The elevation of the surface elements, which is utilized to get the return time of the elementary pulses, is implemented based on an LVIS interpolated elevation using a radial basis function (RBF) neural network. The intensity of the elementary pulses can be obtained from the thresholded LPA images. Based on the return time and the intensity of the elementary pulses, we used the particle swarm optimization (PSO) method to approximate the simulation waveform to the ICESat/GLAS echo waveform. The full width at half maximum) (FWHM) of the elementary pulse was extracted from the simulation waveform for estimating the simulation-derived roughness. By comparing with the elevation-derived roughness (derived from the elevation) and the waveform-derived roughness (derived from the ICESat/GLAS waveform), the proposed algorithm can exclude the slope effect from waveform width broadening for describing the roughness of the surface elements. (paper)
Substoichiometric method in the simple radiometric analysis
International Nuclear Information System (INIS)
Ikeda, N.; Noguchi, K.
1979-01-01
The substoichiometric method is applied to simple radiometric analysis. Two methods - the standard reagent method and the standard sample method - are proposed. The validity of the principle of the methods is verified experimentally in the determination of silver by the precipitation method, or of zinc by the ion-exchange or solvent-extraction method. The proposed methods are simple and rapid compared with the conventional superstoichiometric method. (author)
Waveform Design for Wireless Power Transfer
Clerckx, Bruno; Bayguzina, Ekaterina
2016-12-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.
Principles of waveform diversity and design
Wicks, Michael
2011-01-01
This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is
Signal processing in noise waveform radar
Kulpa, Krzysztof
2013-01-01
This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
.... Such methods include those based upon spectrophotometry, flame emission spectrometry and atomic absorption spectroscopy, as well as gravimetry, titrimetry and the use of ion-selective electrodes...
Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation
Jardak, Seifallah
2014-04-01
Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location
Data mining technique for fast retrieval of similar waveforms in Fusion massive databases
International Nuclear Information System (INIS)
Vega, J.; Pereira, A.; Portas, A.; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Santos, M.; Sanchez, E.; Pajares, G.
2008-01-01
Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system
Data mining technique for fast retrieval of similar waveforms in Fusion massive databases
Energy Technology Data Exchange (ETDEWEB)
Vega, J. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N. [Departamento de Informatica y Automatica, UNED, Madrid (Spain); Santos, M. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain); Sanchez, E. [Asociacion EURATOM/CIEMAT Para Fusion, Madrid (Spain); Pajares, G. [Departamento de Arquitectura de Computadores y Automatica, UCM, Madrid (Spain)
2008-01-15
Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with 'similar' waveforms. Here we introduce a new technique for rapid searching and retrieval of 'similar' signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable 'similar' waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.
Mergers of black-hole binaries with aligned spins: Waveform characteristics
International Nuclear Information System (INIS)
Kelly, Bernard J.; Baker, John G.; Centrella, Joan; Boggs, William D.; McWilliams, Sean T.
2011-01-01
We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission--an implicit rotating source. We further apply the late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, ±2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state of the final black hole formed in the merger. We provide an explicit model for the merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with the original numerical waveforms for system masses above ∼150M · . This model may be directly applicable to gravitational-wave detection of intermediate-mass black-hole mergers.
'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole
International Nuclear Information System (INIS)
Babak, Stanislav; Fang Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.
2007-01-01
One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these
International Nuclear Information System (INIS)
Altinkaya, Naime; Koc, Zafer; Ulusan, Serife; Demir, Senay; Gurel, Kamil
2011-01-01
Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V max ) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P max were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.
Plasma density calculation based on the HCN waveform data
International Nuclear Information System (INIS)
Chen Liaoyuan; Pan Li; Luo Cuiwen; Zhou Yan; Deng Zhongchao
2004-01-01
A method to improve the plasma density calculation is introduced using the base voltage and the phase zero points obtained from the HCN interference waveform data. The method includes making the signal quality higher by putting the signal control device and the analog-to-digit converters in the same location and charging them by the same power, and excluding the noise's effect according to the possible changing rate of the signal's phase, and to make the base voltage more accurate by dynamical data processing. (authors)
Probabilistic methods in combinatorial analysis
Sachkov, Vladimir N
2014-01-01
This 1997 work explores the role of probabilistic methods for solving combinatorial problems. These methods not only provide the means of efficiently using such notions as characteristic and generating functions, the moment method and so on but also let us use the powerful technique of limit theorems. The basic objects under investigation are nonnegative matrices, partitions and mappings of finite sets, with special emphasis on permutations and graphs, and equivalence classes specified on sequences of finite length consisting of elements of partially ordered sets; these specify the probabilist
Methods in quantitative image analysis.
Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M
1996-05-01
The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value
Moyer's method of mixed dentition analysis: a meta-analysis ...
African Journals Online (AJOL)
The applicability of tables derived from the data Moyer used to other ethnic groups has ... This implies that Moyer's method of prediction may have population variations. ... Key Words: meta-analysis, mixed dentition analysis, Moyer's method
Waveform Analysis of UWB GPR Antennas
Directory of Open Access Journals (Sweden)
Julia Armesto
2009-03-01
Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.
Applying critical analysis - main methods
Directory of Open Access Journals (Sweden)
Miguel Araujo Alonso
2012-02-01
Full Text Available What is the usefulness of critical appraisal of literature? Critical analysis is a fundamental condition for the correct interpretation of any study that is subject to review. In epidemiology, in order to learn how to read a publication, we must be able to analyze it critically. Critical analysis allows us to check whether a study fulfills certain previously established methodological inclusion and exclusion criteria. This is frequently used in conducting systematic reviews although eligibility criteria are generally limited to the study design. Critical analysis of literature and be done implicitly while reading an article, as in reading for personal interest, or can be conducted in a structured manner, using explicit and previously established criteria. The latter is done when formally reviewing a topic.
A multi-channel waveform digitizer system
International Nuclear Information System (INIS)
Bieser, F.; Muller, W.F.J.
1990-01-01
The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.; Alkhalifah, Tariq Ali
2015-01-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi
Trial Sequential Methods for Meta-Analysis
Kulinskaya, Elena; Wood, John
2014-01-01
Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…
Source-independent elastic waveform inversion using a logarithmic wavefield
Choi, Yun Seok; Min, Dong Joon
2012-01-01
The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi; Sun, Bingbing
2018-01-01
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like
Multiparameter Elastic Full Waveform Inversion With Facies Constraints
Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi
2017-01-01
Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic
Generation of correlated finite alphabet waveforms using gaussian random variables
Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim
2014-01-01
, the proposed scheme is general, the main focus of this paper is to generate finite alphabet waveforms for multiple-input multiple-output radar, where correlated waveforms are used to achieve desired beampatterns. © 2014 IEEE.
Cervantes, Felix A; Backus, Elaine A
2018-05-31
Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9 Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9 Ohms) was performed. Intermediate Ri levels 10 7 and 10 8 Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa
Hybrid methods for cybersecurity analysis :
Energy Technology Data Exchange (ETDEWEB)
Davis, Warren Leon,; Dunlavy, Daniel M.
2014-01-01
Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and
Microparticle analysis system and method
Morrison, Dennis R. (Inventor)
2007-01-01
A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.
Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.
2012-04-01
Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC
Development of optoelectronic monitoring system for ear arterial pressure waveforms
Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando
1994-02-01
Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.
Manicke, Nicholas E.; Belford, Michael
2015-05-01
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
Infinitesimal methods of mathematical analysis
Pinto, J S
2004-01-01
This modern introduction to infinitesimal methods is a translation of the book Métodos Infinitesimais de Análise Matemática by José Sousa Pinto of the University of Aveiro, Portugal and is aimed at final year or graduate level students with a background in calculus. Surveying modern reformulations of the infinitesimal concept with a thoroughly comprehensive exposition of important and influential hyperreal numbers, the book includes previously unpublished material on the development of hyperfinite theory of Schwartz distributions and its application to generalised Fourier transforms and harmon
Development of advanced MCR task analysis methods
International Nuclear Information System (INIS)
Na, J. C.; Park, J. H.; Lee, S. K.; Kim, J. K.; Kim, E. S.; Cho, S. B.; Kang, J. S.
2008-07-01
This report describes task analysis methodology for advanced HSI designs. Task analyses was performed by using procedure-based hierarchical task analysis and task decomposition methods. The results from the task analysis were recorded in a database. Using the TA results, we developed static prototype of advanced HSI and human factors engineering verification and validation methods for an evaluation of the prototype. In addition to the procedure-based task analysis methods, workload estimation based on the analysis of task performance time and analyses for the design of information structure and interaction structures will be necessary
Current status of methods for shielding analysis
International Nuclear Information System (INIS)
Engle, W.W.
1980-01-01
Current methods used in shielding analysis and recent improvements in those methods are discussed. The status of methods development is discussed based on needs cited at the 1977 International Conference on Reactor Shielding. Additional areas where methods development is needed are discussed
International Nuclear Information System (INIS)
Kwon, Kye-Si
2010-01-01
In situ techniques to measure the drop-on-demand (DOD) drop formation curve and the instantaneous jetting speed curve are developed such that ligament behavior and satellite behavior of inkjet droplets can be analyzed effectively. It is known that the droplet jetting behavior differs by ink properties and the driving waveform voltage. In this study, to reduce possible droplet placement errors due to satellite drops or long ligaments during printing, waveform effects on drop formation are investigated based on the measured DOD drop formation curve and the instantaneous jetting speed curve. Experimental results show that a dwell time greater than the so-called efficient dwell time was effective in reducing placement errors due to satellite drops during the printing process
Frequency domain, waveform inversion of laboratory crosswell radar data
Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.
2010-01-01
A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.
A long source area of the 1906 Colombia-Ecuador earthquake estimated from observed tsunami waveforms
Yamanaka, Yusuke; Tanioka, Yuichiro; Shiina, Takahiro
2017-12-01
The 1906 Colombia-Ecuador earthquake induced both strong seismic motions and a tsunami, the most destructive earthquake in the history of the Colombia-Ecuador subduction zone. The tsunami propagated across the Pacific Ocean, and its waveforms were observed at tide gauge stations in countries including Panama, Japan, and the USA. This study conducted slip inverse analysis for the 1906 earthquake using these waveforms. A digital dataset of observed tsunami waveforms at the Naos Island (Panama) and Honolulu (USA) tide gauge stations, where the tsunami was clearly observed, was first produced by consulting documents. Next, the two waveforms were applied in an inverse analysis as the target waveform. The results of this analysis indicated that the moment magnitude of the 1906 earthquake ranged from 8.3 to 8.6. Moreover, the dominant slip occurred in the northern part of the assumed source region near the coast of Colombia, where little significant seismicity has occurred, rather than in the southern part. The results also indicated that the source area, with significant slip, covered a long distance, including the southern, central, and northern parts of the region.[Figure not available: see fulltext.
Waveform inversion of lateral velocity variation from wavefield source location perturbation
Choi, Yun Seok
2013-09-22
It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.
2D acoustic-elastic coupled waveform inversion in the Laplace domain
Bae, Hoseuk
2010-04-01
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion
Energy Technology Data Exchange (ETDEWEB)
Nagumo, S; Muraoka, S; Takahashi, T [OYO Corp., Tokyo (Japan)
1997-10-22
Concerning the analysis of data obtained by the seismic reflection method, migration in the very shallow layer is discussed. When the dip angle of the reflection plane involved is disclosed by DMO conversion, the amount of migration (travelling sideways) can be calculated by use of simple geometrical formulas though on the presumption that the sector velocity is constant. Categorized into this technique are such methods as DMO conversion migration, direct dip migration, F-K method, and finite difference method. This means that waveforms are not damaged by migration processing although elongation occurs due to time base conversion. When it is taken into account that waveform distortion is generally grave in the migration related methods widely in use, this feature has to be said valuable in holding information on faults. This is especially advantageous in the very shallow layer because the amount of migration is proportionally larger when the level is deeper and, in addition, migration processing is useful when it is necessary to know more accurately the character of the fault plane. 8 figs.
Liu, Lu; Fei, Tong; Luo, Yi; Guo, Bowen
2017-01-01
This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source
West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID
2011-09-27
Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.
Parametric Methods for Order Tracking Analysis
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm
2017-01-01
Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...
Prototype of a transient waveform recording ASIC
Qin, J.; Zhao, L.; Cheng, B.; Chen, H.; Guo, Y.; Liu, S.; An, Q.
2018-01-01
The paper presents the design and measurement results of a transient waveform recording ASIC based on the Switched Capacitor Array (SCA) architecture. This 0.18 μm CMOS prototype device contains two channels and each channel employs a SCA of 128 samples deep, a 12-bit Wilkinson ADC and a serial data readout. A series of tests have been conducted and the results indicate that: a full 1 V signal voltage range is available, the input analog bandwidth is approximately 450 MHz and the sampling speed is adjustable from 0.076 to 3.2 Gsps (Gigabit Samples Per Second). For precision waveform timing extraction, careful calibration of timing intervals between samples is conducted to improve the timing resolution of such chips, and the timing precision of this ASIC is proved to be better than 15 ps RMS.
Programmable Clock Waveform Generation for CCD Readout
Energy Technology Data Exchange (ETDEWEB)
Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.
2006-07-01
Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.
Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.
2018-03-01
Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.
The delayed neutron method of uranium analysis
International Nuclear Information System (INIS)
Wall, T.
1989-01-01
The technique of delayed neutron analysis (DNA) is discussed. The DNA rig installed on the MOATA reactor, the assay standards and the types of samples which have been assayed are described. Of the total sample throughput of about 55,000 units since the uranium analysis service began, some 78% has been concerned with analysis of uranium ore samples derived from mining and exploration. Delayed neutron analysis provides a high sensitivity, low cost uranium analysis method for both uranium exploration and other applications. It is particularly suitable for analysis of large batch samples and for non-destructive analysis over a wide range of matrices. 8 refs., 4 figs., 3 tabs
Full-waveform inversion: Filling the gaps
Beydoun, Wafik B.
2015-09-01
After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1
Radiochemistry and nuclear methods of analysis
International Nuclear Information System (INIS)
Ehmann, W.D.; Vance, D.
1991-01-01
This book provides both the fundamentals of radiochemistry as well as specific applications of nuclear techniques to analytical chemistry. It includes such areas of application as radioimmunoassay and activation techniques using very short-lined indicator radionuclides. It emphasizes the current nuclear methods of analysis such as neutron activation PIXE, nuclear reaction analysis, Rutherford backscattering, isotope dilution analysis and others
Computational methods in power system analysis
Idema, Reijer
2014-01-01
This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Constructing an Intelligent Patent Network Analysis Method
Directory of Open Access Journals (Sweden)
Chao-Chan Wu
2012-11-01
Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.
Intelligent Adjustment of Printhead Driving Waveform Parameters for 3D Electronic Printing
Directory of Open Access Journals (Sweden)
Lin Na
2017-01-01
Full Text Available In practical applications of 3D electronic printing, a major challenge is to adjust the printhead for a high print resolution and accuracy. However, an exhausting manual selective process inevitably wastes a lot of time. Therefore, in this paper, we proposed a new intelligent adjustment method, which adopts artificial bee colony algorithm to optimize the printhead driving waveform parameters for getting the desired printhead state. Experimental results show that this method can quickly and accuracy find out the suitable combination of driving waveform parameters to meet the needs of applications.
Image-domain full waveform inversion
Zhang, Sanzong
2013-08-20
The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.
Image-domain full waveform inversion
Zhang, Sanzong; Schuster, Gerard T.
2013-01-01
The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.
Full-waveform data for building roof step edge localization
Słota, Małgorzata
2015-08-01
Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.
Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms
Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng
2013-04-01
Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.
Text analysis methods, text analysis apparatuses, and articles of manufacture
Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M
2014-10-28
Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.
LPI Radar Waveform Recognition Based on Time-Frequency Distribution
Directory of Open Access Journals (Sweden)
Ming Zhang
2016-10-01
Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
2013-01-01
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
Nuclear analysis methods. Rudiments of radiation protection
International Nuclear Information System (INIS)
Roth, E.
1998-01-01
The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)
Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B
2011-04-25
We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.
Seismic Full Waveform Modeling & Imaging in Attenuating Media
Guo, Peng
Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than
Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits
International Nuclear Information System (INIS)
Han, Wen-Biao
2016-01-01
In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)
Doppler waveforms of the hepatic veins in children with diffuse fatty infiltration of the liver
International Nuclear Information System (INIS)
Uzun, Hakan; Yazici, Burhan; Erdogmus, Besir; Kocabay, Kenan; Buyukkaya, Ramazan; Buyukkaya, Ayla; Yazgan, Omer
2009-01-01
Objective: The aim of this study was to investigate the effect of fatty infiltration of the liver (FIL) on the Doppler waveform pattern in the hepatic veins of obese children. Methods: In this prospective study, 59 patients with diffuse FIL and 45 normal healthy children who served as control group underwent hepatic vein B-mod and duplex Doppler sonography. The Doppler sonography spectrum of the right hepatic vein was classified into three groups: triphasic waveform, biphasic waveform, and monophasic or flat waveform. Results: There was a statistically significant difference in the phasicity of hepatic venous flow between patients and control subjects (p < 0.001). The Doppler flow pattern in the right hepatic vein was triphasic in 28 (47.5%), biphasic in 28 (47.5%), and monophasic in 3 (5%) children with fatty liver, while it was triphasic in 43 (95.6%) and biphasic in 2 (4.4%) control subjects. There was an inverse correlation between the sonographic grade of fatty infiltration of the liver and the phasicity of hepatic venous flow (r = -0.479, p < 0.001). Conclusions: Abnormal right hepatic vein Doppler waveform, biphasic as well as monophasic, can be seen in healthy obese children with diffuse FIL.
Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities
Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.
2006-01-01
NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.
Codesign of Beam Pattern and Sparse Frequency Waveforms for MIMO Radar
Directory of Open Access Journals (Sweden)
Chaoyun Mai
2015-01-01
Full Text Available Multiple-input multiple-output (MIMO radar takes the advantages of high degrees of freedom for beam pattern design and waveform optimization, because each antenna in centralized MIMO radar system can transmit different signal waveforms. When continuous band is divided into several pieces, sparse frequency radar waveforms play an important role due to the special pattern of the sparse spectrum. In this paper, we start from the covariance matrix of the transmitted waveform and extend the concept of sparse frequency design to the study of MIMO radar beam pattern. With this idea in mind, we first solve the problem of semidefinite constraint by optimization tools and get the desired covariance matrix of the ideal beam pattern. Then, we use the acquired covariance matrix and generalize the objective function by adding the constraint of both constant modulus of the signals and corresponding spectrum. Finally, we solve the objective function by the cyclic algorithm and obtain the sparse frequency MIMO radar waveforms with desired beam pattern. The simulation results verify the effectiveness of this method.
Microlocal methods in the analysis of the boundary element method
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...
Statistical methods for categorical data analysis
Powers, Daniel
2008-01-01
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Development of Ultraviolet Spectrophotometric Method for Analysis ...
African Journals Online (AJOL)
HP
Method for Analysis of Lornoxicam in Solid Dosage. Forms. Sunit Kumar Sahoo ... testing. Mean recovery was 100.82 % for tablets. Low values of % RSD indicate .... Saharty E, Refaat YS, Khateeb ME. Stability-. Indicating. Spectrophotometric.
International Nuclear Information System (INIS)
Tsunashima, Yoshikazu; Sakae, Takeji; Shioyama, Yoshiyuki; Kagei, Kenji; Terunuma, Toshiyuki; Nohtomi, Akihiro; Akine, Yasuyuki
2004-01-01
Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use
BUILDING EDGE DETECTION USING SMALL-FOOTPRINT AIRBORNE FULL-WAVEFORM LIDAR DATA
Directory of Open Access Journals (Sweden)
J.-C. Michelin
2012-07-01
Full Text Available The full-waveform lidar technology allows a complete access to the information related to the emitted and backscattered laser signals. Although most of the common applications of full-waveform lidar are currently dedicated to the study of forested areas, some recent studies have shown that airborne full-waveform data is relevant for urban area analysis. We extend the field to pattern recognition with a focus on retrieval. Our proposed approach combines two steps. In a first time, building edges are coarsely extracted. Then, a physical model based on the lidar equation is used to retrieve a more accurate position of the estimated edge than the size of the lidar footprint. Another consequence is the estimation of more accurate planimetric positions of the extracted echoes.
Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics
Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan
2011-01-01
"We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."
Directory of Open Access Journals (Sweden)
Deniss Stepins
2015-01-01
Full Text Available Electromagnetic interference (EMI is one of the major problems of switching power converters. This paper is devoted to switching frequency modulation used for conducted EMI suppression in switching power converters. Comprehensive theoretical analysis of switching power converter conducted EMI spectrum and EMI attenuation due the use of traditional ramp and multislope ramp modulation waveforms is presented. Expressions to calculate EMI spectrum and attenuation are derived. Optimization procedure of the multislope ramp modulation waveform is proposed to get maximum benefits from switching frequency modulation for EMI reduction. Experimental verification is also performed to prove that the optimized multislope ramp modulation waveform is very useful solution for effective EMI reduction in switching power converters.
An introduction to numerical methods and analysis
Epperson, James F
2013-01-01
Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to
Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture
Sanfilippo, Antonio P [Richland, WA; Cowell, Andrew J [Kennewick, WA; Gregory, Michelle L [Richland, WA; Baddeley, Robert L [Richland, WA; Paulson, Patrick R [Pasco, WA; Tratz, Stephen C [Richland, WA; Hohimer, Ryan E [West Richland, WA
2012-03-20
Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture are described according to some aspects. In one aspect, a hypothesis analysis method includes providing a hypothesis, providing an indicator which at least one of supports and refutes the hypothesis, using the indicator, associating evidence with the hypothesis, weighting the association of the evidence with the hypothesis, and using the weighting, providing information regarding the accuracy of the hypothesis.
Elastic reflection based waveform inversion with a nonlinear approach
Guo, Qiang; Alkhalifah, Tariq Ali
2017-01-01
Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing
2018-03-01
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Elastic reflection based waveform inversion with a nonlinear approach
Guo, Qiang
2017-08-16
Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhendong
2018-03-20
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
van Alem, Anouk P.; Chapman, Fred W.; Lank, Paula; Hart, Augustinus A. M.; Koster, Rudolph W.
2003-01-01
Background: Evidence suggests that biphasic waveforms are more effective than monophasic waveforms for defibrillation in out-of-hospital cardiac arrest (OHCA), yet their performance has only been compared in un-blinded studies. Methods and results: We compared the success of biphasic truncated
Relating Actor Analysis Methods to Policy Problems
Van der Lei, T.E.
2009-01-01
For a policy analyst the policy problem is the starting point for the policy analysis process. During this process the policy analyst structures the policy problem and makes a choice for an appropriate set of methods or techniques to analyze the problem (Goeller 1984). The methods of the policy
Nodal method for fast reactor analysis
International Nuclear Information System (INIS)
Shober, R.A.
1979-01-01
In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
Energy Technology Data Exchange (ETDEWEB)
Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping [School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu (China); School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Tian, Shulin; Zeng, Hao [School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu (China); Qiu, Lei [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)
2014-04-15
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping
2014-04-01
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
International Nuclear Information System (INIS)
Yang, Kuojun; Guo, Lianping; Tian, Shulin; Zeng, Hao; Qiu, Lei
2014-01-01
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition
Inelastic analysis methods for piping systems
International Nuclear Information System (INIS)
Boyle, J.T.; Spence, J.
1980-01-01
The analysis of pipework systems which operate in an environment where local inelastic strains are evident is one of the most demanding problems facing the stress analyst in the nuclear field. The spatial complexity of even the most modest system makes a detailed analysis using finite element techniques beyond the scope of current computer technology. For this reason the emphasis has been on simplified methods. It is the aim of this paper to provide a reasonably complete, state-of-the-art review of inelastic pipework analysis methods and to attempt to highlight areas where reliable information is lacking and further work is needed. (orig.)
Early Cambrian wave-formed shoreline deposits
DEFF Research Database (Denmark)
Clemmensen, Lars B; Glad, Aslaug Clemmensen; Pedersen, Gunver Krarup
2017-01-01
-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal....... During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well...
Waveform design for wireless power transfer
Clerckx, B; Bayguzina, E
2016-01-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity ...
Excitation methods for energy dispersive analysis
International Nuclear Information System (INIS)
Jaklevic, J.M.
1976-01-01
The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed
Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch
Lin, Tsui-Tsai
In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Performance Prediction of Constrained Waveform Design for Adaptive Radar
2016-11-01
the famous Woodward quote, having a ubiquitous feeling for all radar waveform design (and performance prediction) researchers , that is found at the end...discuss research that develops performance prediction models to quantify the impact on SINR when an amplitude constraint is placed on a radar waveform...optimize the radar perfor- mance for the particular scenario and tasks. There have also been several survey papers on various topics in waveform design for
Song, C.; Ge, Z.
2017-12-01
The boundary region between Alxa Block and Ordos Block is an area of stress concentration with strong seismicity and frequent small earthquakes. However, the knowledge of this area is limited since only a few seismic stations were deployed in this area. The 2015 Ms5.8 Alxa Left Banner Earthquake on April 15 is the largest one occurred in the surroundings since the 1976 Ms6.2 Bayinmuren Earthquake. Abundant stations built in the northern part of Chinese North-South Seismic Belt recorded this event sequence well within short distance, which provides us a great opportunity to carry out studies. We use these data to obtain a mean 1-D layered velocity structure via iterative inversion based on both travel time and waveform misfits. Then we use the travel time difference between data and synthetic seismograms to relocate the epicenter. Finally we invert the best double-couple focal mechanism and centroid depths of the source. As the result, the source is located at (39.7027° N, 106.4207° E) with a depth of 18 km and Mw 5.28. Nodal plane Ⅰ has strike 86°, dip angle 90° and slip angle -3°, while plane Ⅱ has strike 176°, dip angle 87° and slip angle 180°. Considering the dynamic structure of regional fault zone, we believe this earthquake is caused by a nearly pure left-lateral strike-slip fault with nodal plane Ⅰ being the fault plane. The seismogenic structure is likely to be an E-W striking buried fault nearby. There develops several groups of NE, NEE and E-W striking faults in Jilantai tectonic zone, parts of which have been verified by geophysical investigations. But we still know little about the dynamic nature of them. From our study, the corresponding fault of this event may indicate all groups of faults with same E-W strike has the common character of large-dip left-lateral strike-slip. Moreover, there may be some buried faults being newly born or not found yet. These results could be an important supplement to the future research of seismicity and
Koster, Rudolph W.; Dorian, Paul; Chapman, Fred W.; Schmitt, Paul W.; O'Grady, Sharon G.; Walker, Robert G.
2004-01-01
Background We compared efficacy of and pain felt after biphasic truncated exponential (BTE) and monophasic damped sine (MDS) shocks in patients undergoing external cardioversion of atrial fibrillation (AF). Methods Patients with AF were randomized to BTE or MDS waveform cardioversion. Successive
Application of weighted early-arrival waveform inversion to shallow land data
Yu, Han; Zhang, Dongliang; Wang, Xin
2014-01-01
predictions and shows that the effects of noise and unpredicted amplitude variations in the inversion are reduced using this weighted early arrival waveform inversion (WEWI). We also apply this method to a 2D land data set for estimating the near
Gravitational waveforms for neutron star binaries from binary black hole simulations
Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew
2016-03-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.
Patterns of digital volume pulse waveform and pulse transit time in ...
African Journals Online (AJOL)
In this study the digital volume pulse wave and the pulse transit time of the thumb and big toe were analyzed in young and older subjects some of whom were hypertensive. We aimed to study the components and patterns of the pulse waveform and the pulse transit time and how they might change. Material and Methods: ...
Full Waveform Inversion for Reservoir Characterization - A Synthetic Study
Zabihi Naeini, E.
2017-05-26
Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI) as an alternative tool for higher-resolution reservoir characterization. An important step in developing reservoir-oriented FWI is the implementation of facies-based rock physics constraints adapted from the classic methods. We show that such constraints can be incorporated into FWI by adding appropriately designed regularization terms to the objective function. The advantages of the proposed algorithm are demonstrated on both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models with pronounced lateral and vertical heterogeneity. The inversion results are explained using the theoretical radiation patterns produced by perturbations in the medium parameters.
A strategy for evaluating pathway analysis methods.
Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques
2017-10-13
Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth
Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.
2013-12-01
Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal
Advances in waveform-agile sensing for tracking
Sira, Sandeep Prasad
2009-01-01
Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic wav
Instrumental methods of analysis, 7th edition
International Nuclear Information System (INIS)
Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr.
1988-01-01
The authors have prepared an organized and generally polished product. The book is fashioned to be used as a textbook for an undergraduate instrumental analysis course, a supporting textbook for graduate-level courses, and a general reference work on analytical instrumentation and techniques for professional chemists. Four major areas are emphasized: data collection and processing, spectroscopic instrumentation and methods, liquid and gas chromatographic methods, and electrochemical methods. Analytical instrumentation and methods have been updated, and a thorough citation of pertinent recent literature is included
Effects of waveform model systematics on the interpretation of GW150914
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.
2017-05-01
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
A sheath model for arbitrary radiofrequency waveforms
Turner, M. M.; Chabert, Pascal
2012-10-01
The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.
Efficient blind search for similar-waveform earthquakes in years of continuous seismic data
Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.
2017-12-01
Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.
Bouchoucha, Taha
2017-01-23
In multiple-input multiple-out (MIMO) radar, for desired transmit beampatterns, appropriate correlated waveforms are designed. To design such waveforms, conventional MIMO radar methods use two steps. In the first step, the waveforms covariance matrix, R, is synthesized to achieve the desired beampattern. While in the second step, to realize the synthesized covariance matrix, actual waveforms are designed. Most of the existing methods use iterative algorithms to solve these constrained optimization problems. The computational complexity of these algorithms is very high, which makes them difficult to use in practice. In this paper, to achieve the desired beampattern, a low complexity discrete-Fourier-transform based closed-form covariance matrix design technique is introduced for a MIMO radar. The designed covariance matrix is then exploited to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms for the desired beampattern. The proposed technique can be used to design waveforms for large antenna array to change the beampattern in real time. It is also shown that the number of transmitted symbols from each antenna depends on the beampattern and is less than the total number of transmit antenna elements.
Limitations of systemic accident analysis methods
Directory of Open Access Journals (Sweden)
Casandra Venera BALAN
2016-12-01
Full Text Available In terms of system theory, the description of complex accidents is not limited to the analysis of the sequence of events / individual conditions, but highlights nonlinear functional characteristics and frames human or technical performance in relation to normal functioning of the system, in safety conditions. Thus, the research of the system entities as a whole is no longer an abstraction of a concrete situation, but an exceeding of the theoretical limits set by analysis based on linear methods. Despite the issues outlined above, the hypothesis that there isn’t a complete method for accident analysis is supported by the nonlinearity of the considered function or restrictions, imposing a broad vision of the elements introduced in the analysis, so it can identify elements corresponding to nominal parameters or trigger factors.
Application of Software Safety Analysis Methods
International Nuclear Information System (INIS)
Park, G. Y.; Hur, S.; Cheon, S. W.; Kim, D. H.; Lee, D. Y.; Kwon, K. C.; Lee, S. J.; Koo, Y. H.
2009-01-01
A fully digitalized reactor protection system, which is called the IDiPS-RPS, was developed through the KNICS project. The IDiPS-RPS has four redundant and separated channels. Each channel is mainly composed of a group of bistable processors which redundantly compare process variables with their corresponding setpoints and a group of coincidence processors that generate a final trip signal when a trip condition is satisfied. Each channel also contains a test processor called the ATIP and a display and command processor called the COM. All the functions were implemented in software. During the development of the safety software, various software safety analysis methods were applied, in parallel to the verification and validation (V and V) activities, along the software development life cycle. The software safety analysis methods employed were the software hazard and operability (Software HAZOP) study, the software fault tree analysis (Software FTA), and the software failure modes and effects analysis (Software FMEA)
Spatial analysis statistics, visualization, and computational methods
Oyana, Tonny J
2015-01-01
An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...
Advanced analysis methods in particle physics
Energy Technology Data Exchange (ETDEWEB)
Bhat, Pushpalatha C.; /Fermilab
2010-10-01
Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.
Review of strain buckling: analysis methods
International Nuclear Information System (INIS)
Moulin, D.
1987-01-01
This report represents an attempt to review the mechanical analysis methods reported in the literature to account for the specific behaviour that we call buckling under strain. In this report, this expression covers all buckling mechanisms in which the strains imposed play a role, whether they act alone (as in simple buckling under controlled strain), or whether they act with other loadings (primary loading, such as pressure, for example). Attention is focused on the practical problems relevant to LMFBR reactors. The components concerned are distinguished by their high slenderness ratios and by rather high thermal levels, both constant and variable with time. Conventional static buckling analysis methods are not always appropriate for the consideration of buckling under strain. New methods must therefore be developed in certain cases. It is also hoped that this review will facilitate the coding of these analytical methods to aid the constructor in his design task and to identify the areas which merit further investigation
Analysis of mixed data methods & applications
de Leon, Alexander R
2013-01-01
A comprehensive source on mixed data analysis, Analysis of Mixed Data: Methods & Applications summarizes the fundamental developments in the field. Case studies are used extensively throughout the book to illustrate interesting applications from economics, medicine and health, marketing, and genetics. Carefully edited for smooth readability and seamless transitions between chaptersAll chapters follow a common structure, with an introduction and a concluding summary, and include illustrative examples from real-life case studies in developmental toxicolog
Scope-Based Method Cache Analysis
DEFF Research Database (Denmark)
Huber, Benedikt; Hepp, Stefan; Schoeberl, Martin
2014-01-01
The quest for time-predictable systems has led to the exploration of new hardware architectures that simplify analysis and reasoning in the temporal domain, while still providing competitive performance. For the instruction memory, the method cache is a conceptually attractive solution, as it req......The quest for time-predictable systems has led to the exploration of new hardware architectures that simplify analysis and reasoning in the temporal domain, while still providing competitive performance. For the instruction memory, the method cache is a conceptually attractive solution...
Quantitative analysis method for ship construction quality
Directory of Open Access Journals (Sweden)
FU Senzong
2017-03-01
Full Text Available The excellent performance of a ship is assured by the accurate evaluation of its construction quality. For a long time, research into the construction quality of ships has mainly focused on qualitative analysis due to a shortage of process data, which results from limited samples, varied process types and non-standardized processes. Aiming at predicting and controlling the influence of the construction process on the construction quality of ships, this article proposes a reliability quantitative analysis flow path for the ship construction process and fuzzy calculation method. Based on the process-quality factor model proposed by the Function-Oriented Quality Control (FOQC method, we combine fuzzy mathematics with the expert grading method to deduce formulations calculating the fuzzy process reliability of the ordinal connection model, series connection model and mixed connection model. The quantitative analysis method is applied in analyzing the process reliability of a ship's shaft gear box installation, which proves the applicability and effectiveness of the method. The analysis results can be a useful reference for setting key quality inspection points and optimizing key processes.
Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling
Baca, A. J.; Polet, J.
2014-12-01
The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on
Piping dynamic analysis by the synthesis method
International Nuclear Information System (INIS)
Bezler, P.; Curreri, J.R.
1976-01-01
Since piping systems are a frequent source of noise and vibrations, their efficient dynamic analysis is imperative. As an alternate to more conventional analyses methods, an application of the synthesis method to piping vibrations analyses is demonstrated. Specifically, the technique is illustrated by determining the normal modes and natural frequencies of a composite bend from the normal mode and natural frequency data of two component parts. A comparison of the results to those derived for the composite bend by other techniques is made
Probabilistic Analysis Methods for Hybrid Ventilation
DEFF Research Database (Denmark)
Brohus, Henrik; Frier, Christian; Heiselberg, Per
This paper discusses a general approach for the application of probabilistic analysis methods in the design of ventilation systems. The aims and scope of probabilistic versus deterministic methods are addressed with special emphasis on hybrid ventilation systems. A preliminary application...... of stochastic differential equations is presented comprising a general heat balance for an arbitrary number of loads and zones in a building to determine the thermal behaviour under random conditions....
Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar
Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.
2017-12-01
Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Chemical analysis by nuclear methods. v. 2
International Nuclear Information System (INIS)
Alfassi, Z.B.
1998-01-01
'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay
Numerical methods in software and analysis
Rice, John R
1992-01-01
Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm
Reversible conduction block in peripheral nerve using electrical waveforms.
Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L
2018-01-01
Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.
Bouchoucha, Taha
2015-05-01
Multiple Input Multiple Output (MIMO) radar systems has attracted lately a lot of attention thanks to its advantage over the classical phased array radar systems. We site among these advantages the improvement of parametric identifiability, achievement of higher spatial resolution and design of complex beampatterns. In colocated multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest in order to increase the Signal to Noise Ratio (SNR) and reduce any undesired signal and thus improve the detection process. This problem is also known as transmit beampattern design. To achieve this goal, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate the actual transmitted waveforms. Both steps require constrained optimization. Most of the existing methods use iterative algorithms to solve these problems, therefore their computational complexity is very high which makes them hard to use in practice especially for real time radar applications. In this paper, we provide a closed-form solution to design the covariance matrix for a given beampattern in the three dimensional space using planar arrays, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms. The proposed algorithm exploits the two-dimensional discrete Fourier transform which is implemented using fast Fourier transform algorithm. Consequently, the computational complexity of the proposed beampattern solution is very low allowing it to be used for large arrays to change the beampattern in real time. We also show that the number of required snapshots in each waveform depends on the beampattern and that it is less than the total number of transmit antennas. In addition, we show that the proposed waveform design method can be used with non symmetric beampatterns. The performance of our proposed algorithm compares
Nonlinear structural analysis using integrated force method
Indian Academy of Sciences (India)
A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.
Modern methods of wine quality analysis
Directory of Open Access Journals (Sweden)
Галина Зуфарівна Гайда
2015-06-01
Full Text Available In this paper physical-chemical and enzymatic methods of quantitative analysis of the basic wine components were reviewed. The results of own experiments were presented for the development of enzyme- and cell-based amperometric sensors on ethanol, lactate, glucose, arginine
International Nuclear Information System (INIS)
Bhadelia, R.A.; Wolpert, S.M.
1998-01-01
Our purpose was to assess the effect of alterations in the cranial venous outflow on cerebrospinal fluid (CSF) flow waveforms using phase-contrast MRI. Thirteen healthy subjects were assessed for CSF flow and cerebral vascular flow at the C2-3 level, both before and after jugular venous compression (JVC). The flow waveforms were assessed both as an aggregate, and after dividing subjects in two groups based on percent jugular venous flow (PJVF) i. e. jugular outflow expressed as percent of cerebral arterial inflow. Group 1: 7 subjects with PJVF more than and including median (predominantly jugular outflow); Group 2: 6 subjects with PJVF less than median (predominantly extra-jugular outflow). CSF waveforms: JVC produced rounding of contours and flattening of dicrotic waves, with the effect being greater in group 1 than group 2. In group 1, systolic upslopes of the waveforms increased. No significant aggregate amplitude changes were noted; amplidutes increased in group 1 (P = 0.001), and decreased in group 2 (P = 0.03). Temporal interval to the maximum CSF systolic flow significantly increased in group 1. Vascular flow: Arterial flow significantly decreased in group 1. Jugular flow significantly decreased in both groups. The results suggest that CSF flow waveforms are sensitive to alterations in the cranial venous outflow. Changes in group 1 are most likely because of an elevation in intracranial pressure. Analysis of CSF flow waveforms appears a promising noninvasive tool for assessment of cranial compartment. (orig.)
Application of digital waveform processing to position-sensitive proportional counter
International Nuclear Information System (INIS)
Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo
1995-01-01
In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)
Multiple predictor smoothing methods for sensitivity analysis
International Nuclear Information System (INIS)
Helton, Jon Craig; Storlie, Curtis B.
2006-01-01
The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present
Economic analysis of alternative LLW disposal methods
International Nuclear Information System (INIS)
Foutes, C.E.
1987-01-01
The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis
Reliability and risk analysis methods research plan
International Nuclear Information System (INIS)
1984-10-01
This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program
Multiple predictor smoothing methods for sensitivity analysis.
Energy Technology Data Exchange (ETDEWEB)
Helton, Jon Craig; Storlie, Curtis B.
2006-08-01
The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.
Spectroscopic Chemical Analysis Methods and Apparatus
Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)
2018-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
Computational methods for nuclear criticality safety analysis
International Nuclear Information System (INIS)
Maragni, M.G.
1992-01-01
Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)
Frequency-domain waveform inversion using the unwrapped phase
Choi, Yun Seok; Alkhalifah, Tariq Ali
2011-01-01
Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion
A pulse generator of arbitrary shaped waveform
International Nuclear Information System (INIS)
Jiang Jiayou; Chen Zhihao
2011-01-01
The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)
PIXE - a new method for elemental analysis
International Nuclear Information System (INIS)
Johansson, S.A.E.
1983-01-01
With elemental analysis we mean the determination of which chemical elements are present in a sample and of their concentration. This is an old and important problem in chemistry. The earliest methods were purely chemical and many such methods are still used. However, various methods based on physical principles have gradually become more and more important. One such method is neutron activation. When the sample is bombarded with neutrons it becomes radioactive and the various radioactive isotopes produced can be identified by the radiation they emit. From the measured intensity of the radiation one can calculate how much of a certain element that is present in the sample. Another possibility is to study the light emitted when the sample is excited in various ways. A spectroscopic investigation of the light can identify the chemical elements and allows also a determination of their concentration in the sample. In the same way, if a sample can be brought to emit X-rays, this radiation is also characteristic for the elements present and can be used to determine the elemental concentration. One such X-ray method which has been developed recently is PIXE. The name is an acronym for Particle Induced X-ray Emission and indicates the principle of the method. Particles in this context means heavy, charged particles such as protons and a-particles of rather high energy. Hence, in PIXE-analysis the sample is irradiated in the beam of an accelerator and the emitted X-rays are studied. (author)
Rectangular waveform linear transformer driver module design
International Nuclear Information System (INIS)
Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin
2014-01-01
Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)
Fischer, Christoph; Domer, Benno; Wibmer, Thomas; Penzel, Thomas
2017-03-01
Photoplethysmography has been used in a wide range of medical devices for measuring oxygen saturation, cardiac output, assessing autonomic function, and detecting peripheral vascular disease. Artifacts can render the photoplethysmogram (PPG) useless. Thus, algorithms capable of identifying artifacts are critically important. However, the published PPG algorithms are limited in algorithm and study design. Therefore, the authors developed a novel embedded algorithm for real-time pulse waveform (PWF) segmentation and artifact detection based on a contour analysis in the time domain. This paper provides an overview about PWF and artifact classifications, presents the developed PWF analysis, and demonstrates the implementation on a 32-bit ARM core microcontroller. The PWF analysis was validated with data records from 63 subjects acquired in a sleep laboratory, ergometry laboratory, and intensive care unit in equal parts. The output of the algorithm was compared with harmonized experts' annotations of the PPG with a total duration of 31.5 h. The algorithm achieved a beat-to-beat comparison sensitivity of 99.6%, specificity of 90.5%, precision of 98.5%, and accuracy of 98.3%. The interrater agreement expressed as Cohen's kappa coefficient was 0.927 and as F-measure was 0.990. In conclusion, the PWF analysis seems to be a suitable method for PPG signal quality determination, real-time annotation, data compression, and calculation of additional pulse wave metrics such as amplitude, duration, and rise time.
Design of a 9-loop quasi-exponential waveform generator.
Banerjee, Partha; Shukla, Rohit; Shyam, Anurag
2015-12-01
We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.
Dependability Analysis Methods For Configurable Software
International Nuclear Information System (INIS)
Dahll, Gustav; Pulkkinen, Urho
1996-01-01
Configurable software systems are systems which are built up by standard software components in the same way as a hardware system is built up by standard hardware components. Such systems are often used in the control of NPPs, also in safety related applications. A reliability analysis of such systems is therefore necessary. This report discusses what configurable software is, and what is particular with respect to reliability assessment of such software. Two very commonly used techniques in traditional reliability analysis, viz. failure mode, effect and criticality analysis (FMECA) and fault tree analysis are investigated. A real example is used to illustrate the discussed methods. Various aspects relevant to the assessment of the software reliability in such systems are discussed. Finally some models for quantitative software reliability assessment applicable on configurable software systems are described. (author)
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav; Adamová, Petra; Doubravová, Jana; Jakoubková, Hana
2017-01-01
Roč. 88, č. 5 (2017), s. 1303-1315 ISSN 0895-0695 R&D Projects: GA ČR GC16-19751J Institutional support: RVO:67985530 Keywords : double-couple earthquakes * focal mechanism determination * seismic moment Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 3.275, year: 2016
Closed form of optimal current waveform for class-F PA up to fourth ...
Indian Academy of Sciences (India)
PA and its dual, usually referred as inverse class-F PA, current and voltage ... voltage waveforms provides a number of advantages in the process of PA design ... RF PA design approaches with waveform theory and experimental waveform.
Cask crush pad analysis using detailed and simplified analysis methods
International Nuclear Information System (INIS)
Uldrich, E.D.; Hawkes, B.D.
1997-01-01
A crush pad has been designed and analyzed to absorb the kinetic energy of a hypothetically dropped spent nuclear fuel shipping cask into a 44-ft. deep cask unloading pool at the Fluorinel and Storage Facility (FAST). This facility, located at the Idaho Chemical Processing Plant (ICPP) at the Idaho national Engineering and Environmental Laboratory (INEEL), is a US Department of Energy site. The basis for this study is an analysis by Uldrich and Hawkes. The purpose of this analysis was to evaluate various hypothetical cask drop orientations to ensure that the crush pad design was adequate and the cask deceleration at impact was less than 100 g. It is demonstrated herein that a large spent fuel shipping cask, when dropped onto a foam crush pad, can be analyzed by either hand methods or by sophisticated dynamic finite element analysis using computer codes such as ABAQUS. Results from the two methods are compared to evaluate accuracy of the simplified hand analysis approach
Advanced Analysis Methods in High Energy Physics
Energy Technology Data Exchange (ETDEWEB)
Pushpalatha C. Bhat
2001-10-03
During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.
Lossless compression of waveform data for efficient storage and transmission
International Nuclear Information System (INIS)
Stearns, S.D.; Tan, Li Zhe; Magotra, Neeraj
1993-01-01
Compression of waveform data is significant in many engineering and research areas since it can be used to alleviate data storage and transmission bandwidth. For example, seismic data are widely recorded and transmitted so that analysis can be performed on large amounts of data for numerous applications such as petroleum exploration, determination of the earth's core structure, seismic event detection and discrimination of underground nuclear explosions, etc. This paper describes a technique for lossless wave form data compression. The technique consists of two stages. The first stage is a modified form of linear prediction with discrete coefficients and the second stage is bi-level sequence coding. The linear predictor generates an error or residue sequence in a way such that exact reconstruction of the original data sequence can be accomplished with a simple algorithm. The residue sequence is essentially white Gaussian with seismic or other similar waveform data. Bi-level sequence coding, in which two sample sizes are chosen and the residue sequence is encoded into subsequences that alternate from one level to the other, further compresses the residue sequence. The principal feature of the two-stage data compression algorithm is that it is lossless, that is, it allows exact, bit-for-bit recovery of the original data sequence. The performance of the lossless compression algorithm at each stage is analyzed. The advantages of using bi-level sequence coding in the second stage are its simplicity of implementation, its effectiveness on data with large amplitude variations, and its near-optimal performance in encoding Gaussian sequences. Applications of the two-stage technique to typical seismic data indicates that an average number of compressed bits per sample close to the lower bound is achievable in practical situations
Spatial Analysis Methods of Road Traffic Collisions
DEFF Research Database (Denmark)
Loo, Becky P. Y.; Anderson, Tessa Kate
Spatial Analysis Methods of Road Traffic Collisions centers on the geographical nature of road crashes, and uses spatial methods to provide a greater understanding of the patterns and processes that cause them. Written by internationally known experts in the field of transport geography, the book...... outlines the key issues in identifying hazardous road locations (HRLs), considers current approaches used for reducing and preventing road traffic collisions, and outlines a strategy for improved road safety. The book covers spatial accuracy, validation, and other statistical issues, as well as link...
Simple gas chromatographic method for furfural analysis.
Gaspar, Elvira M S M; Lopes, João F
2009-04-03
A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSDfurfurals will contribute to characterise and quantify their presence in the human diet.
Accuracy of binary black hole waveform models for aligned-spin binaries
Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2016-05-01
Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.
Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le
2016-08-01
The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.
Choi, Yun Seok
2012-05-02
Conventional multi-source waveform inversion using an objective function based on the least-square misfit cannot be applied to marine streamer acquisition data because of inconsistent acquisition geometries between observed and modelled data. To apply the multi-source waveform inversion to marine streamer data, we use the global correlation between observed and modelled data as an alternative objective function. The new residual seismogram derived from the global correlation norm attenuates modelled data not supported by the configuration of observed data and thus, can be applied to multi-source waveform inversion of marine streamer data. We also show that the global correlation norm is theoretically the same as the least-square norm of the normalized wavefield. To efficiently calculate the gradient, our method employs a back-propagation algorithm similar to reverse-time migration based on the adjoint-state of the wave equation. In numerical examples, the multi-source waveform inversion using the global correlation norm results in better inversion results for marine streamer acquisition data than the conventional approach. © 2012 European Association of Geoscientists & Engineers.
Neutron activation analysis: principle and methods
International Nuclear Information System (INIS)
Reddy, A.V.R.; Acharya, R.
2006-01-01
Neutron activation analysis (NAA) is a powerful isotope specific nuclear analytical technique for simultaneous determination of elemental composition of major, minor and trace elements in diverse matrices. The technique is capable of yielding high analytical sensitivity and low detection limits (ppm to ppb). Due to high penetration power of neutrons and gamma rays, NAA experiences negligible matrix effects in the samples of different origins. Depending on the sample matrix and element of interest NAA technique is used non-destructively, known as instrumental neutron activation analysis (INAA), or through chemical NAA methods. The present article describes principle of NAA, different methods and gives a overview some applications in the fields like environment, biology, geology, material sciences, nuclear technology and forensic sciences. (author)
Digital dream analysis: a revised method.
Bulkeley, Kelly
2014-10-01
This article demonstrates the use of a digital word search method designed to provide greater accuracy, objectivity, and speed in the study of dreams. A revised template of 40 word search categories, built into the website of the Sleep and Dream Database (SDDb), is applied to four "classic" sets of dreams: The male and female "Norm" dreams of Hall and Van de Castle (1966), the "Engine Man" dreams discussed by Hobson (1988), and the "Barb Sanders Baseline 250" dreams examined by Domhoff (2003). A word search analysis of these original dream reports shows that a digital approach can accurately identify many of the same distinctive patterns of content found by previous investigators using much more laborious and time-consuming methods. The results of this study emphasize the compatibility of word search technologies with traditional approaches to dream content analysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Numerical methods and analysis of multiscale problems
Madureira, Alexandre L
2017-01-01
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
Qualitative data analysis a methods sourcebook
Miles, Matthew B; Saldana, Johnny
2014-01-01
The Third Edition of Miles & Huberman's classic research methods text is updated and streamlined by Johnny SaldaNa, author of The Coding Manual for Qualitative Researchers. Several of the data display strategies from previous editions are now presented in re-envisioned and reorganized formats to enhance reader accessibility and comprehension. The Third Edition's presentation of the fundamentals of research design and data management is followed by five distinct methods of analysis: exploring, describing, ordering, explaining, and predicting. Miles and Huberman's original research studies are profiled and accompanied with new examples from SaldaNa's recent qualitative work. The book's most celebrated chapter, "Drawing and Verifying Conclusions," is retained and revised, and the chapter on report writing has been greatly expanded, and is now called "Writing About Qualitative Research." Comprehensive and authoritative, Qualitative Data Analysis has been elegantly revised for a new generation of qualitative r...
An exergy method for compressor performance analysis
Energy Technology Data Exchange (ETDEWEB)
McGovern, J A; Harte, S [Trinity Coll., Dublin (Ireland)
1995-07-01
An exergy method for compressor performance analysis is presented. The purpose of this is to identify and quantify defects in the use of a compressor`s shaft power. This information can be used as the basis for compressor design improvements. The defects are attributed to friction, irreversible heat transfer, fluid throttling, and irreversible fluid mixing. They are described, on a common basis, as exergy destruction rates and their locations are identified. The method can be used with any type of positive displacement compressor. It is most readily applied where a detailed computer simulation program is available for the compressor. An analysis of an open reciprocating refrigeration compressor that used R12 refrigerant is given as an example. The results that are presented consist of graphs of the instantaneous rates of exergy destruction according to the mechanisms involved, a pie chart of the breakdown of the average shaft power wastage by mechanism, and a pie chart with a breakdown by location. (author)
Methods for genetic linkage analysis using trisomies.
Feingold, E; Lamb, N E; Sherman, S L
1995-01-01
Certain genetic disorders are rare in the general population, but more common in individuals with specific trisomies. Examples of this include leukemia and duodenal atresia in trisomy 21. This paper presents a linkage analysis method for using trisomic individuals to map genes for such traits. It is based on a very general gene-specific dosage model that posits that the trait is caused by specific effects of different alleles at one or a few loci and that duplicate copies of "susceptibility" ...
Machine Learning Methods for Production Cases Analysis
Mokrova, Nataliya V.; Mokrov, Alexander M.; Safonova, Alexandra V.; Vishnyakov, Igor V.
2018-03-01
Approach to analysis of events occurring during the production process were proposed. Described machine learning system is able to solve classification tasks related to production control and hazard identification at an early stage. Descriptors of the internal production network data were used for training and testing of applied models. k-Nearest Neighbors and Random forest methods were used to illustrate and analyze proposed solution. The quality of the developed classifiers was estimated using standard statistical metrics, such as precision, recall and accuracy.
Safety relief valve alternate analysis method
International Nuclear Information System (INIS)
Adams, R.H.; Javid, A.; Khatua, T.P.
1981-01-01
An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)
Analysis and comparison of biometric methods
Zatloukal, Filip
2011-01-01
The thesis deals with biometrics and biometric systems and the possibility to use these systems in the enterprise. Aim of this study is an analysis and description of selected types of biometric identification methods and their advantages and shortcomings. The work is divided into two parts. The first part is theoretical, describes the basic concepts of biometrics, biometric identification criteria, currently used identification systems, the ways of biometric systems use, performance measurem...
Statistical trend analysis methods for temporal phenomena
International Nuclear Information System (INIS)
Lehtinen, E.; Pulkkinen, U.; Poern, K.
1997-04-01
We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods
Statistical trend analysis methods for temporal phenomena
Energy Technology Data Exchange (ETDEWEB)
Lehtinen, E.; Pulkkinen, U. [VTT Automation, (Finland); Poern, K. [Poern Consulting, Nykoeping (Sweden)
1997-04-01
We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods. 14 refs, 10 figs.
Analysis Method for Integrating Components of Product
Energy Technology Data Exchange (ETDEWEB)
Choi, Jun Ho [Inzest Co. Ltd, Seoul (Korea, Republic of); Lee, Kun Sang [Kookmin Univ., Seoul (Korea, Republic of)
2017-04-15
This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.
Analysis Method for Integrating Components of Product
International Nuclear Information System (INIS)
Choi, Jun Ho; Lee, Kun Sang
2017-01-01
This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.
Probabilistic methods in fire-risk analysis
International Nuclear Information System (INIS)
Brandyberry, M.D.
1989-01-01
The first part of this work outlines a method for assessing the frequency of ignition of a consumer product in a building and shows how the method would be used in an example scenario utilizing upholstered furniture as the product and radiant auxiliary heating devices (electric heaters, wood stoves) as the ignition source. Deterministic thermal models of the heat-transport processes are coupled with parameter uncertainty analysis of the models and with a probabilistic analysis of the events involved in a typical scenario. This leads to a distribution for the frequency of ignition for the product. In second part, fire-risk analysis as currently used in nuclear plants is outlines along with a discussion of the relevant uncertainties. The use of the computer code COMPBRN is discussed for use in the fire-growth analysis along with the use of response-surface methodology to quantify uncertainties in the code's use. Generalized response surfaces are developed for temperature versus time for a cable tray, as well as a surface for the hot gas layer temperature and depth for a room of arbitrary geometry within a typical nuclear power plant compartment. These surfaces are then used to simulate the cable tray damage time in a compartment fire experiment
Resolution analysis by random probing
Fichtner, Andreas; van Leeuwen, T.
2015-01-01
We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full‐waveform
An unconventional method of quantitative microstructural analysis
International Nuclear Information System (INIS)
Rastani, M.
1995-01-01
The experiment described here introduces a simple methodology which could be used to replace the time-consuming and expensive conventional methods of metallographic and quantitative analysis of thermal treatment effect on microstructure. The method is ideal for the microstructural evaluation of tungsten filaments and other wire samples such as copper wire which can be conveniently coiled. Ten such samples were heat treated by ohmic resistance at temperatures which were expected to span the recrystallization range. After treatment, the samples were evaluated in the elastic recovery test. The normalized elastic recovery factor was defined in terms of these deflections. Experimentally it has shown that elastic recovery factor depends on the degree of recrystallization. In other words this factor is used to determine the fraction of unrecrystallized material. Because the elastic recovery method examines the whole filament rather than just one section through the filament as in metallographical method, it more accurately measures the degree of recrystallization. The method also takes a considerably shorter time and cost compared to the conventional method
Homotopy analysis method for neutron diffusion calculations
International Nuclear Information System (INIS)
Cavdar, S.
2009-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on a fundamental concept in differential geometry and topology, the homotopy. It has proved useful for problems involving algebraic, linear/non-linear, ordinary/partial differential and differential-integral equations being an analytic, recursive method that provides a series sum solution. It has the advantage of offering a certain freedom for the choice of its arguments such as the initial guess, the auxiliary linear operator and the convergence control parameter, and it allows us to effectively control the rate and region of convergence of the series solution. HAM is applied for the fixed source neutron diffusion equation in this work, which is a part of our research motivated by the question of whether methods for solving the neutron diffusion equation that yield straightforward expressions but able to provide a solution of reasonable accuracy exist such that we could avoid analytic methods that are widely used but either fail to solve the problem or provide solutions through many intricate expressions that are likely to contain mistakes or numerical methods that require powerful computational resources and advanced programming skills due to their very nature or intricate mathematical fundamentals. Fourier basis are employed for expressing the initial guess due to the structure of the problem and its boundary conditions. We present the results in comparison with other widely used methods of Adomian Decomposition and Variable Separation.
Detector Simulation: Data Treatment and Analysis Methods
Apostolakis, J
2011-01-01
Detector Simulation in 'Data Treatment and Analysis Methods', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '4.1 Detector Simulation' of Chapter '4 Data Treatment and Analysis Methods' with the content: 4.1 Detector Simulation 4.1.1 Overview of simulation 4.1.1.1 Uses of detector simulation 4.1.2 Stages and types of simulation 4.1.2.1 Tools for event generation and detector simulation 4.1.2.2 Level of simulation and computation time 4.1.2.3 Radiation effects and background studies 4.1.3 Components of detector simulation 4.1.3.1 Geometry modeling 4.1.3.2 External fields 4.1.3.3 Intro...
Data Analysis Methods for Library Marketing
Minami, Toshiro; Kim, Eunja
Our society is rapidly changing to information society, where the needs and requests of the people on information access are different widely from person to person. Library's mission is to provide its users, or patrons, with the most appropriate information. Libraries have to know the profiles of their patrons, in order to achieve such a role. The aim of library marketing is to develop methods based on the library data, such as circulation records, book catalogs, book-usage data, and others. In this paper we discuss the methodology and imporatnce of library marketing at the beginning. Then we demonstrate its usefulness through some examples of analysis methods applied to the circulation records in Kyushu University and Guacheon Library, and some implication that obtained as the results of these methods. Our research is a big beginning towards the future when library marketing is an unavoidable tool.
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl
2018-01-02
A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
Phosphorus analysis in milk samples by neutron activation analysis method
International Nuclear Information System (INIS)
Oliveira, R.M. de; Cunha, I.I.L.
1991-01-01
The determination of phosphorus in milk samples by instrumental thermal neutron activation analysis is described. The procedure involves a short irradiation in a nuclear reactor and measurement of the beta radiation emitted by phosphorus - 32 after a suitable decay period. The sources of error were studied and the established method was applied to standard reference materials of known phosphorus content. (author)
Waveform LiDAR across forest biomass gradients
Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.
2011-12-01
Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.
The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility
Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman
2013-11-01
In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.
Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.
Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M
2018-01-17
In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.
Methods of charged-particle activation analysis
International Nuclear Information System (INIS)
Chaudhri, M. Anwar; Chaudhri, M. Nasir; Jabbar, Q.; Nadeem, Q.
2006-01-01
The accuracy of Chaudhri's method for charged-particle activation analysis published in J. Radioanal. Chem. (1977) v. 37 p. 243 has been further demonstrated by extensive calculations. The nuclear reactions 12 C(d,n) 13 N, 63 Cu( 3 He,p) 65 Zn, 107 Ag(α,n) 110 In and 208 Pb(d,p) 209 Pb, the cross sections of which were easily available, have been examined for the detection of 12 C, 63 Cu, 107 Ag and 208 Pb, respectively, in matrices of Cu, Zr and Pb, at the bombarding energies of 4 - 22 MeV. The 'standard' is assumed to be in a carbon matrix. It has been clearly demonstrated that Chaudhri's method, which makes the charged particle activation analysis as simple as neutron activation analysis, provides results which are almost identical to, or only about 1-2 % different, from the results obtained using the full 'Activity Equation' involving solving complex integrals. It is valid even when the difference in the average atomic weights of matrices of the standard and the sample is large. (author)
Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009
Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie
2011-01-01
Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill
Le Bras, R.; Rozhkov, M.; Bobrov, D.; Kitov, I. O.; Sanina, I.
2017-12-01
Association of weak seismic signals generated by low-magnitude aftershocks of the DPRK underground tests into event hypotheses represent a challenge for routine automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization, due to the relatively low station density of the International Monitoring System (IMS) seismic network. Since 2011, as an alternative, the IDC has been testing various prototype techniques of signal detection and event creation based on waveform cross correlation. Using signals measured by seismic stations of the IMS from DPRK explosions as waveform templates, the IDC detected several small (estimated mb between 2.2 and 3.6) seismic events after two DPRK tests conducted on September 9, 2016 and September 3, 2017. The obtained detections were associated with reliable event hypothesis and then used to locate these events relative to the epicenters of the DPRK explosions. We observe high similarity of the detected signals with the corresponding waveform templates. The newly found signals also correlate well between themselves. In addition, the values of the signal-to-noise ratios (SNR) estimated using the traces of cross correlation coefficients, increase with template length (from 5 s to 150 s), providing strong evidence in favour of their spatial closeness, which allows interpreting them as explosion aftershocks. We estimated the relative magnitudes of all aftershocks using the ratio of RMS amplitudes of the master and slave signal in the cross correlation windows characterized by the highest SNR. Additional waveform data from regional non-IMS stations MDJ and SEHB provide independent validation of these aftershock hypotheses. Since waveform templates from any single master event may be sub-efficient at some stations, we have also developed a method of joint usage of the DPRK and the biggest aftershocks templates to build more robust event hypotheses.
Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng
2017-04-01
The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.
Development and analysis of finite volume methods
International Nuclear Information System (INIS)
Omnes, P.
2010-05-01
This document is a synthesis of a set of works concerning the development and the analysis of finite volume methods used for the numerical approximation of partial differential equations (PDEs) stemming from physics. In the first part, the document deals with co-localized Godunov type schemes for the Maxwell and wave equations, with a study on the loss of precision of this scheme at low Mach number. In the second part, discrete differential operators are built on fairly general, in particular very distorted or nonconforming, bidimensional meshes. These operators are used to approach the solutions of PDEs modelling diffusion, electro and magneto-statics and electromagnetism by the discrete duality finite volume method (DDFV) on staggered meshes. The third part presents the numerical analysis and some a priori as well as a posteriori error estimations for the discretization of the Laplace equation by the DDFV scheme. The last part is devoted to the order of convergence in the L2 norm of the finite volume approximation of the solution of the Laplace equation in one dimension and on meshes with orthogonality properties in two dimensions. Necessary and sufficient conditions, relatively to the mesh geometry and to the regularity of the data, are provided that ensure the second-order convergence of the method. (author)
Creep analysis by the path function method
International Nuclear Information System (INIS)
Akin, J.E.; Pardue, R.M.
1977-01-01
The finite element method has become a common analysis procedure for the creep analysis of structures. The most recent programs are designed to handle a general class of material properties and are able to calculate elastic, plastic, and creep components of strain under general loading histories. The constant stress approach is too crude a model to accurately represent the actual behaviour of the stress for large time steps. The true path of a point in the effective stress-effective strain (sigmasup(e)-epsilonsup(c)) plane is often one in which the slope is rapidly changing. Thus the stress level quickly moves away from the initial stress level and then gradually approaches the final one. The result is that the assumed constant stress level quickly becomes inaccurate. What is required is a better method of approximation of the true path in the sigmasup(e)-epsilonsup(c) space. The method described here is called the path function approach because it employs an assumed function to estimate the motion of points in the sigmasup(e)-epsilonsup(c) space. (Auth.)
Earthquake Hazard Analysis Methods: A Review
Sari, A. M.; Fakhrurrozi, A.
2018-02-01
One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.
Femtosecond Nanofocusing with Full Optical Waveform Control
International Nuclear Information System (INIS)
Berweger, Samuel; Atkin, Joanna M.; Xu, Xiaoji G.; Olmon, Robert L.; Raschke, Markus Bernd
2011-01-01
The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.
Full waveform inversion for mechanized tunneling reconnaissance
Lamert, Andre; Musayev, Khayal; Lambrecht, Lasse; Friederich, Wolfgang; Hackl, Klaus; Baitsch, Matthias
2016-04-01
In mechanized tunnel drilling processes, exploration of soil structure and properties ahead of the tunnel boring machine can greatly help to lower costs and improve safety conditions during drilling. We present numerical full waveform inversion approaches in time and frequency domain of synthetic acoustic data to detect different small scale structures representing potential obstacles in front of the tunnel boring machine. With the use of sensitivity kernels based on the adjoint wave field in time domain and in frequency domain it is possible to derive satisfactory models with a manageable amount of computational load. Convergence to a suitable model is assured by the use of iterative model improvements and gradually increasing frequencies. Results of both, time and frequency approach, will be compared for different obstacle and source/receiver setups. They show that the image quality strongly depends on the used receiver and source positions and increases significantly with the use of transmission waves due to the installed receivers and sources at the surface and/or in bore holes. Transmission waves lead to clearly identified structure and position of the obstacles and give satisfactory guesses for the wave speed. Setups using only reflected waves result in blurred objects and ambiguous position of distant objects and allow to distinguish heterogeneities with higher or lower wave speed, respectively.
Sensitivity analysis of the Two Geometry Method
International Nuclear Information System (INIS)
Wichers, V.A.
1993-09-01
The Two Geometry Method (TGM) was designed specifically for the verification of the uranium enrichment of low enriched UF 6 gas in the presence of uranium deposits on the pipe walls. Complications can arise if the TGM is applied under extreme conditions, such as deposits larger than several times the gas activity, small pipe diameters less than 40 mm and low pressures less than 150 Pa. This report presents a comprehensive sensitivity analysis of the TGM. The impact of the various sources of uncertainty on the performance of the method is discussed. The application to a practical case is based on worst case conditions with regards to the measurement conditions, and on realistic conditions with respect to the false alarm probability and the non detection probability. Monte Carlo calculations were used to evaluate the sensitivity for sources of uncertainty which are experimentally inaccessible. (orig.)
Blood proteins analysis by Raman spectroscopy method
Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.
2016-04-01
This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.
Moessbauer lineshape analysis by the DISPA method
International Nuclear Information System (INIS)
Miglierini, M.; Sitek, J.
1986-01-01
To evaluate the Moessbauer spectral parameters and hence, the structural and magnetic properties the lineshape should be known. A plot of dispersion versus absorption (DISPA plot) for a pure Lorentzian gives a perfect circle. Directions and magnitudes of DISPA distortions from this reference circle point out the kind of line-broadening mechanism observed. A possibility of the application of the DISPA technique in the Moessbauer lineshape analysis is dealt with in this paper. The method is verified on Moessbauer spectra of sodium nitroprusside, natural iron, and stainless steel. The lineshape of an amorphous metallic alloy Fe 40 Ni 40 B 20 is studied by means of the DISPA plots. (author)
Electromagnetic compatibility methods, analysis, circuits, and measurement
Weston, David A
2016-01-01
Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.
Method and apparatus for simultaneous spectroelectrochemical analysis
Chatterjee, Sayandev; Bryan, Samuel A; Schroll, Cynthia A; Heineman, William R
2013-11-19
An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.