Attosecond electron wave packet interferometry
International Nuclear Information System (INIS)
Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.
2006-01-01
Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.
Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation
International Nuclear Information System (INIS)
Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.
2006-01-01
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility
revivals of Rydberg wave packets
International Nuclear Information System (INIS)
Bluhm, R.; Kostelecky, V.A.; Tudose, B.
1998-01-01
We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour
Revivals of Rydberg wave packets
International Nuclear Information System (INIS)
Bluhm, R.; Kostelecky, V.A.; Tudose, B.
1998-01-01
We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior
International Nuclear Information System (INIS)
Robinett, R.W.
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems
High Angular Momentum Rydberg Wave Packets
Wyker, Brendan
2011-12-01
High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.
Shaarawi, Amr Mohamed
In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.
Revivals of Quantum Wave Packets
Bluhm, Robert; Kostelecky, Alan; Porter, James; Tudose, Bogdan
1997-01-01
We present a generic treatment of wave-packet revivals for quantum-mechanical systems. This treatment permits a classification of certain ideal revival types. For example, wave packets for a particle in a one-dimensional box are shown to exhibit perfect revivals. We also examine the revival structure of wave packets for quantum systems with energies that depend on two quantum numbers. Wave packets in these systems exhibit quantum beats in the initial motion as well as new types of long-term r...
Scattering of accelerated wave packets
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Dynamics of quantum wave packets
International Nuclear Information System (INIS)
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K 2 ), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses
Time evolution of wave packets on nanostructures
International Nuclear Information System (INIS)
Prunele, E de
2005-01-01
Time evolution of wave packets on nanostructures is studied on the basis of a three-dimensional solvable model with singular interactions (de Prunele 1997 J. Phys. A: Math. Gen. 30 7831). In particular, methods and tools are provided to determine time independent upper bounds for the overlap of the normalized time-dependent wave packet with the time independent normalized wave packet concentrated at an arbitrarily chosen vertex of the nanosystem. The set of upper bounds referring to all initial positions of the wave packet and all overlaps are summarized in a matrix. The analytical formulation allows a detailed study for arbitrary geometrical configurations. Time evolution on truncated quasicrystalline systems has been found to be site selective, depending on the position of the initial wave packet
Revivals of quantum wave packets in graphene
International Nuclear Information System (INIS)
Krueckl, Viktor; Kramer, Tobias
2009-01-01
We investigate the propagation of wave packets on graphene in a perpendicular magnetic field and the appearance of collapses and revivals in the time evolution of an initially localized wave packet. The wave-packet evolution in graphene differs drastically from the one in an electron gas and shows a rich revival structure similar to the dynamics of highly excited Rydberg states. We present a novel numerical wave-packet propagation scheme in order to solve the effective single-particle Dirac-Hamiltonian of graphene and show how the collapse and revival dynamics is affected by the presence of disorder. Our effective numerical method is of general interest for the solution of the Dirac equation in the presence of potentials and magnetic fields.
Dispersionless wave packets in Dirac materials
International Nuclear Information System (INIS)
Jakubský, Vít; Tušek, Matěj
2017-01-01
We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.
Spreading of a relativistic wave packet
International Nuclear Information System (INIS)
Almeida, C.; Jabs, A.
1983-01-01
A simple general proof that the spreading velocity of a relativistic free wave packet of the Broglie waves is limited is presented. For a wide class of packets it is confirmed that the limit is the velocity of light, and it is shown how this limit is approached when the width Δp of the wave packet in momentum space tends to infinity and the minimum width σ(t=o) in ordinary space tends to zero. (Author) [pt
International Nuclear Information System (INIS)
Naumov, D.V.
2013-01-01
In this paper we discuss some aspects of the theory of wave packets. We consider a popular non-covariant Gaussian model used in various applications and show that it predicts too slow a longitudinal dispersion rate for relativistic particles. We revise this approach by considering a covariant model of Gaussian wave packets, and examine our results by inspecting a wave packet of an arbitrary form. A general formula for the time dependence of the dispersion of a wave packet of an arbitrary form is found. Finally, we give a transparent interpretation of the disappearance of the wave function over time due to the dispersion - a feature often considered undesirable, but which is unavoidable for wave packets. We find, starting with simple examples, proceeding with their generalizations and finally by considering the continuity equation, that the integral over time of both the flux and probability densities is asymptotically proportional to the factor 1/|x| 2 in the rest frame of the wave packet, just as in the case of an ensemble of classical particles
Dispersionless wave packets in Dirac materials
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít; Tušek, M.
2017-01-01
Roč. 378, MAR (2017), s. 171-182 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GJ15-07674Y; GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum systems * wave packets * dispersion * dirac materials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016
The Evolution and Revival Structure of Localized Quantum Wave Packets
Bluhm, Robert; Kostelecky, Alan; Porter, James
1995-01-01
Localized quantum wave packets can be produced in a variety of physical systems and are the subject of much current research in atomic, molecular, chemical, and condensed-matter physics. They are particularly well suited for studying the classical limit of a quantum-mechanical system. The motion of a localized quantum wave packet initially follows the corresponding classical motion. However, in most cases the quantum wave packet spreads and undergoes a series of collapses and revivals. We pre...
Microwave Ionization of an Atomic Electron Wave Packet
International Nuclear Information System (INIS)
Noel, Michael W.; Ko, Lung; Gallagher, T. F.
2001-01-01
A short microwave pulse is used to ionize a lithium Rydberg wave packet launched from the core at a well-defined phase of the field. We observe a strong dependence on the relative phase between the motion of the wave packet and the oscillations of the field. This phase dependent ionization is also studied as a function of the relative frequency. Our experimental observations are in good qualitative agreement with a one-dimensional classical model of wave packet ionization
A time-frequency analysis of wave packet fractional revivals
International Nuclear Information System (INIS)
Ghosh, Suranjana; Banerji, J
2007-01-01
We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals
Wave-packet revivals for quantum systems with nondegenerate energies
International Nuclear Information System (INIS)
Bluhm, R.; Tudose, B.
1996-01-01
The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur. (orig.)
2016-09-01
respectively. A length of dispersive fiber and a computer are used to first “decode” the optical interference signal into dispersed optical wave-packet...AWARD NUMBER: W81XWH-15-1-0008 TITLE: Cost-Effective Magnetoencephalography Based on Time-Encoded Optical Fiber Interferometry for Epilepsy...10 Dec 2014 - 9 Jun 2016 4. TITLE AND SUBTITLE 5a.16 CONTRACT NUMBER Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus Diagnosis 5b
Collective neutrino oscillations and neutrino wave packets
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)
2017-09-01
Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Wave packet construction in three-dimensional quantum billiards
Indian Academy of Sciences (India)
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits.
Do Free Quantum-Mechanical Wave Packets Always Spread?
Klein, James R.
1980-01-01
The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…
Controlling the spreading of wave packets of a dissociating molecule
DEFF Research Database (Denmark)
Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm
2007-01-01
A first-order perturbation theoretic approach within the electric-dipole approximation is used to study the time evolution of wave packets created by linearly chirped laser pulses on a repulsive potential of Br-2. Our calculations show that negatively chirped pulses focus the wave packet in the F...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of ..... In this context, let us divide the wave packet .... wave packet with special attention to the time evolution of its components associ- ated with ...
Manifestations of wave packet revivals in the moments of observables
International Nuclear Information System (INIS)
Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.
2004-01-01
Using a generic Hamiltonian that models wave packet propagation in a Kerr-like medium, matter wave field dynamics in Bose-Einstein condensation, etc., we show that distinctive signatures of wave packet revivals and fractional revivals are displayed by the time evolution of the expectation values of appropriate observables, enabling selective identification of different fractional revivals
Exact wave packet decoherence dynamics in a discrete spectrum environment
International Nuclear Information System (INIS)
Tu, Matisse W Y; Zhang Weimin
2008-01-01
We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.
Wave packets, Maslov indices, and semiclassical quantization
International Nuclear Information System (INIS)
Littlejohn, R.G.
1989-01-01
The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)
Construction of localized atomic wave packets
International Nuclear Information System (INIS)
Ranjani, S Sree; Kapoor, A K; Panigrahi, P K
2010-01-01
It is shown that highly localized solitons can be created in lower dimensional Bose-Einstein condensates (BECs), trapped in a regular harmonic trap, by temporally varying the trap frequency. A BEC confined in such a trap can be effectively used to construct a pulsed atomic laser emitting coherent atomic wave packets. In addition to having a complete control over the spatio-temporal dynamics of the solitons, we can separate the equation governing the Kohn mode (centre of mass motion). We investigate the effect of the temporal modulation of the trap frequency on the spatio-temporal dynamics of the bright solitons and also on the Kohn mode. The dynamics of the solitons and the variations in the Kohn mode with time are compared with those in a BEC confined in a trap with unmodulated trap frequency.
International Nuclear Information System (INIS)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-01-01
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Coulomb Final State Interactions for Gaussian Wave Packets
Wiedemann, Urs Achim; Heinz, Ulrich W
1999-01-01
Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.
Engineering and manipulating exciton wave packets
Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.
2017-05-01
When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.
Scattering of wave packets with phases
Energy Technology Data Exchange (ETDEWEB)
Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)
2017-03-09
A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Massachusetts Bay - Internal wave packets digitized from SAR imagery
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...
Transfer of a wave packet in double-well potential
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Resonance-assisted decay of nondispersive wave packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.
Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B
2011-02-10
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.
Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom
DEFF Research Database (Denmark)
Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard
2017-01-01
Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...
Attosecond Electron Wave Packet Dynamics in Strong Laser Fields
International Nuclear Information System (INIS)
Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.
2005-01-01
We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes
Airy Wave Packets Accelerating in Space-Time
Kondakci, H. Esat; Abouraddy, Ayman F.
2018-04-01
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.
Attosecond Two-Photon Interferometry for Doubly Excited States of Helium
International Nuclear Information System (INIS)
Feist, J.; Nagele, S.; Burgdoerfer, J.; Ticknor, C.; Collins, L. A.; Schneider, B. I.
2011-01-01
We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible noncoincident single-electron spectra. We analyze the interferometric signal in terms of a semianalytical model which is validated by a numerical solution of the time-dependent two-electron Schroedinger equation in its full dimensionality.
Zeno dynamics in wave-packet diffraction spreading
Energy Technology Data Exchange (ETDEWEB)
Porras, Miguel A. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Rios Rosas 21, ES-28003 Madrid (Spain); Luis, Alfredo; Gonzalo, Isabel [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, ES-28040 Madrid (Spain); Sanz, Angel S. [Instituto de Fisica Fundamental-CSIC, Serrano 123, ES-28006 Madrid (Spain)
2011-11-15
We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.
Squeezing a wave packet with an angular-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G M [Departamento de Ciencias Exatas, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com, E-mail: agmschmidt@pq.cnpq.br
2009-06-19
We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses {mu}({theta}), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field.
Squeezing a wave packet with an angular-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G M
2009-01-01
We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses μ(θ), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field
Observation of moving wave packets reveals their quantum state
International Nuclear Information System (INIS)
Leonhardt, U.; Raymer, M.G.
1996-01-01
We show how to infer the quantum state of a wave packet from position probability distributions measured during the packet close-quote s motion in an arbitrary potential. We assume a nonrelativistic one-dimensional or radial wave packet. Temporal Fourier transformation and spatial sampling with respect to a newly found set of functions project the density-matrix elements out of the probability distributions. The sampling functions are derivatives of products of regular and irregular wave functions. We note that the ability to infer quantum states in this way depends on the structure of the Schroedinger equation. copyright 1996 The American Physical Society
Gabor Wave Packet Method to Solve Plasma Wave Equations
International Nuclear Information System (INIS)
Pletzer, A.; Phillips, C.K.; Smithe, D.N.
2003-01-01
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach
Simulation of the collapse and dissipation of Langmuir wave packets
International Nuclear Information System (INIS)
Newman, D.L.; Winglee, R.M.; Robinson, P.A.; Glanz, J.; Goldman, M.V.
1990-01-01
The collapse of isolated Langmuir wave packets is studied numerically in two dimensions using both particle-in-cell (PIC) simulations and by integrating the Zakharov partial differential equations (PDE's). The initial state consists of a localized Langmuir wave packet in an ion background that either is uniform or has a profile representative of the density wells in which wave packets form during strong plasma turbulence. Collapse thresholds are determined numerically and compared to analytical estimates. A model in which Langmuir damping is significantly stronger than Landau damping is constructed which, when included in the PDE simulations, yields good agreement with the collapse dynamics observed in PIC simulations for wave packets with initial wave energy densities small compared to the thermal level. For more intense initial Langmuir fields, collapse is arrested in PIC simulations at lower field strengths than in PDE simulations. Neither nonlinear saturation of the density perturbation nor fluid electron nonlinearities can account for the difference between simulation methods in this regime. However, at these wave levels inhomogeneous electron heating and coherent jets of transit-time accelerated electrons in phase space are observed, resulting in further enhancement of wave damping and the consequent reduction of fields in the PIC simulations
Angular momentum transport with twisted exciton wave packets
Zang, Xiaoning; Lusk, Mark T.
2017-10-01
A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.
State reconstruction of one-dimensional wave packets
Krähmer, D. S.; Leonhardt, U.
1997-12-01
We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.
Quantum wave-packet revivals in circular billiards
International Nuclear Information System (INIS)
Robinett, R.W.; Heppelmann, S.
2002-01-01
We examine the long-term time dependence of Gaussian wave packets in a circular infinite well (billiard) system and find that there are approximate revivals. For the special case of purely m=0 states (central wave packets with no momentum) the revival time is T rev (m=0) =8μR 2 /(ℎ/2π)π, where μ is the mass of the particle, and the revivals are almost exact. For all other wave packets, we find that T rev (m≠0) =(π 2 /2)T rev (m=0) ≅5T rev (m=0) and the nature of the revivals becomes increasingly approximate as the average angular momentum or number of m≠0 states is increased. The dependence of the revival structure on the initial position, energy, and angular momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals, namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis
Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma
Vasquez, Bernard J.
1993-01-01
The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.
Cherenkov Radiation Control via Self-accelerating Wave-packets.
Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun
2017-08-18
Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.
Pump-dump iterative squeezing of vibrational wave packets.
Chang, Bo Y; Sola, Ignacio R
2005-12-22
The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.
Universal potential-barrier penetration by initially confined wave packets
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2007-01-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary
Universal potential-barrier penetration by initially confined wave packets
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
Square-integrable wave packets from the Volkov solutions
International Nuclear Information System (INIS)
Zakowicz, Stephan
2005-01-01
Rigorous mathematical proofs of some properties of the Volkov solutions are presented, which describe the motion of a relativistic charged Dirac particle in a classical, plane electromagnetic wave. The Volkov solutions are first rewritten in a convenient form, which clearly reveals some of the symmetries of the underlying Dirac equation. Assuming continuity and boundedness of the electromagnetic vector potential, it is shown how one may construct square-integrable wave packets from momentum distributions in the space C 0 ∞ (R 3 ) 4 . If, in addition, the vector potential is C 1 and the derivative is bounded, these wave packets decay in space faster than any polynomial and fulfill the Dirac equation. The mapping which takes momentum distributions into wave packets is shown to be isometric with respect to the L 2 (R 3 ) 4 norm and may therefore be continuously extended to a mapping from L 2 (R 3 ) 4 . For a momentum function in L 1 (R 3 ) 4 intersection L 2 (R 3 ) 4 , an integral representation of this extension is presented
Square-Integrable Wave Packets from the Volkov Solutions
Zakowicz, S
2004-01-01
Rigorous mathematical proofs of some properties of the Volkov solutions are presented, which describe the motion of a relativistic charged Dirac particle in a classical, plane electromagnetic wave. The Volkov solutions are first rewritten in a convenient form, which clearly reveals some of the symmetries of the underlying Dirac equation. Assuming continuity and boundedness of the electromagnetic vector potential, it is shown how one may construct square-integrable wave packets from momentum distributions in the space $\\mathcal{C}^{\\infty}_0(\\mathbb{R}^3)^4$. If, in addition, the vector potential is $\\mathcal{C}^1$ and the derivative is bounded, these wave packets decay in space faster than any polynomial and fulfill the Dirac equation. The mapping which takes momentum distributions into wave packets is shown to be isometric with respect to the $L^2(\\mathbb{R}^3)^4$ norm and may therefore be continuously extended to a mapping from $L^2(\\mathbb{R}^3)^4$. For a momen! tum function in $L^1(\\mathbb{R}^3)^4 \\cap L^...
Geometrical aspects in optical wave-packet dynamics.
Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto
2006-12-01
We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.
Runge-Lenz wave packet in multichannel Stark photoionization
International Nuclear Information System (INIS)
Texier, F.
2005-01-01
In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial
Energy and Information Transfer Via Coherent Exciton Wave Packets
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The
Theoretical prediction of a rotating magnon wave packet in ferromagnets.
Matsumoto, Ryo; Murakami, Shuichi
2011-05-13
We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.
Riemann zeta function from wave-packet dynamics
DEFF Research Database (Denmark)
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments
International Nuclear Information System (INIS)
Bialynicki-Birula, I.; Bialynicka-Birula, Z.
1996-01-01
Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence
Wave packet formulation of the boomerang model for resonant electron--molecule scattering
International Nuclear Information System (INIS)
McCurdy, C.W.; Turner, J.L.
1983-01-01
A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra
Aeroacoustic directivity via wave-packet analysis of mean or base flows
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Dynamics of electron wave packet in a disordered chain with delayed nonlinear response
International Nuclear Information System (INIS)
Zhu Hongjun; Xiong Shijie
2010-01-01
We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
International Nuclear Information System (INIS)
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
International Nuclear Information System (INIS)
Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi
2007-01-01
The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature
Wave packets in quantum cosmology and the cosmological constant
International Nuclear Information System (INIS)
Kiefer, C.
1990-01-01
Wave packets are constructed explicitly in minisuperspace of quantum gravity corresponding to a Friedmann universe containing a conformally coupled scalar field with and without a cosmological constant. The construction is performed in close analogy to the case of constructing coherent states in quantum mechanics. Various examples are also depicted numerically. The corresponding lorentzian path integrals are evaluated for some cases. It is emphasized that the new concept of time in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum mechanics. Connection is also made to recent investigations predicting a vanishing cosmological constant. It is shown that the fact of whether this result is generic or not depends on where the boundary conditions are imposed in the configuration space. (orig.)
Wave-packet approach to Rydberg resonances in dissociative recombination
International Nuclear Information System (INIS)
Morisset, Sabine; Pichl, Lukas; Orel, Ann E.; Schneider, Ioan F.
2007-01-01
We report the time-dependent approach to resonant electron capture into Rydberg states in collisions with molecular cations at low impact energy, as an alternative to the method based on multichannel quantum defect theory (MQDT), and present the results for the HD + ion. The propagation of the initial wave function on 13 Rydberg states (besides one valence state) correctly describes the indirect dissociative recombination mechanism in the time domain. Notably, the nonlocal coupling operator between the ionization and dissociation channels is accounted for in the indirect process, extending previous work on the case of direct coupling. The present approach compares to the MQDT framework with remarkable precision: resonant structures in the cross section correctly emerge from the wave-packet propagation; the time-dependent result also forms a cross section envelope for the dense series of ultrafine MQDT resonances corresponding to the quasicontinuous part of the Rydberg state manifold
Quantum wave packet study of D+OF reaction
International Nuclear Information System (INIS)
Kurban, M.; Karabulut, E.; Tutuk, R.; Goektas, F.
2010-01-01
The quantum dynamics of the D+OF reaction on the adiabatic potential energy surface of the ground 1 3 A ' state has been studied by using a time-dependent quantum real wave packet method. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been calculated by J-shifting the J = 0 results by means of capture model. Then, the integral cross sections and initial state selected rate constants have been calculated. The initial state-selected reaction probabilities and reaction cross section show threshold but not manifest any resonances and the initial state selected rate constants are sensitive to the temperature.
Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
International Nuclear Information System (INIS)
Higuchi, Hisashi; Takatsuka, Kazuo
2002-01-01
The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is investigated. A couple of measures (indicators) that detect the extent of chaos in wave-packet dynamics on coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature, since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled potential functions
Coherent wave packet dynamics in a double-well potential in cavity
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Hanbury Brown–Twiss Effect with Wave Packets
Directory of Open Access Journals (Sweden)
Tabish Qureshi
2017-11-01
Full Text Available The Hanbury Brown–Twiss (HBT effect, at the quantum level, is essentially an interference of one particle with another, as opposed to interference of a particle with itself. Conventional treatments of identical particles encounter difficulties while dealing with entanglement. A recently introduced label-free approach to indistinguishable particles is described, and is used to analyze the HBT effect. Quantum wave-packets have been used to provide a better understanding of the quantum interpretation of the HBT effect. The effect is demonstrated for two independent particles governed by Bose–Einstein or Fermi–Dirac statistics. The HBT effect is also analyzed for pairs of entangled particles. Surprisingly, entanglement has almost no effect on the interference seen in the HBT effect. In the light of the results, an old quantum optics experiment is reanalyzed, and it is argued that the interference seen in that experiment is not a consequence of non-local correlations between the photons, as is commonly believed. Quanta 2017; 6: 61–69.
Wave-packet revival for the Schroedinger equation with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.
2006-01-01
We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones
The Generation Mechanism of Airy—Bessel Wave Packets in Free Space
International Nuclear Information System (INIS)
Ren Zhi-Jun; Ying Chao-Fu; Fan Chang-Jiang; Wu Qiong
2012-01-01
Localized optical Airy—Bessel configuration wave packets were first generated on the basis of a grating-telescope combination [Nat. Photon. 4(2010) 103]. By studying the spatially induced group velocity dispersion effect of ultrashort pulsed Bessel beams during propagation, we find the universal physical foundation of generating Airy—Bessel wave packets (ABWs) in free space. The research results are expected to open up more common channels for generating stable linear localized ABWs
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Totzeck, Michael
The intention of this chapter is to provide a fast and comprehensive overview of the principles of interferometry and the various types of interferometer, including interferogram evaluation and applications. Due to the age and the importance of the subject, you can find a number of monographs [16.1,2,3,4] and book chapters [16.5] in the literature. The number of original papers on optical interferometry is far too large to even attempt complete coverage in this chapter. Whenever possible, review papers are cited. Original papers are cited according to their aptness as starting points into the subject. This, however, reflects my personal judgment. Even if you do not share my opinion, you should find the references therein useful.
Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward
1991-01-01
The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
International Nuclear Information System (INIS)
Ono, Akira; Horiuchi, Hisashi.
1996-01-01
The first purpose of this report is to present an extended AMD model which can generally describe such minor branching processes by removing the restriction on the one-body distribution function. This is done not by generalizing the wave packets to arbitrary single-particle wave functions but by representing the diffused and/or deformed wave packet as an ensemble of Gaussian wave packets. In other words, stochastic displacements are given to the wave packets in phase space so that the ensemble-average of the time evolution of the one-body distribution function is essentially equivalent to the solution of Vlasov equation which does not have any restriction on the shape of wave packets. This new model is called AMD-V. Although AMD-V is equivalent to Vlasov equation in the instantaneous time evolution of the one-body distribution function for an AMD wave function, AMD-V describes the branching into channels and the fluctuation of the mean field which are caused by the spreading or the splitting of the single-particle wave function. The second purpose of this report is to show the drastic effect of this new stochastic process of wave packet splitting on the dynamics of heavy ion collisions, especially in the fragmentation mechanism. We take the 40 Ca + 40 Ca system at the incident energy 35 MeV/nucleon. It will be shown that the reproduction of data by the AMD-V calculation is surprisingly good. We will see that the effect of the wave packet diffusion is crucially important to remove the spurious binary feature of the AMD calculation and to enable the multi-fragment final state. (J.P.N.)
Disentangling stellar activity from exoplanetary signals with interferometry
Directory of Open Access Journals (Sweden)
Ligi Roxanne
2015-01-01
Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, aﬀecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.
Evolution of a wave packet scattered by a one-dimensional potential
Energy Technology Data Exchange (ETDEWEB)
Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A
2013-06-30
We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)
Evolution of a wave packet scattered by a one-dimensional potential
International Nuclear Information System (INIS)
Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A
2013-01-01
We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Comparison of a noncausal with a causal relativistic wave-packet evolution
International Nuclear Information System (INIS)
Castro, A.N. de; Jabs, A.
1991-01-01
In order to study causality violation in more detail we contrast the Klein-Gordon wave packet of Rosenstein und Usher with the Dirac wave packet of Bakke and Wergeland. Both packets are initially localized with exponentially bounded tails but just outside the condition of the general Hegerfeldt theorem for causality violation. It turns out that the wave packet of Bakke and Wergeland exhibits all the features investigated by Rosenstein and Usher, except that it never violates relativistic causality. Thus none of those features, in particular the back- and forerunners emerging from the light cone, can be held responsible for causality violation, and the Ruijsenaars integral is not necessarily a measure of the amount of causality violation. (orig.)
Extended wave-packet model to calculate energy-loss moments of protons in matter
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
Directory of Open Access Journals (Sweden)
S.-D. Zhang
2000-10-01
Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides
Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference.
Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Yan, Tian-Min; Cong, Shu-Lin
2008-04-07
The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other. By varying laser parameters, the interference of dissociating wave packets can be controlled, and the dissociation probabilities of Br2 molecules on the three excited states can be changed to different degrees. The branching ratio of Br*/(Br+Br*) is calculated as a function of pulse delay time and phase difference.
Isolated drops from capillary jets by means of Gaussian wave packets
Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose
2017-11-01
The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm
2012-01-01
containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...... selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....
Wave packet fractional revivals in a one-dimensional Rydberg atom
International Nuclear Information System (INIS)
Veilande, Rita; Bersons, Imants
2007-01-01
We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time
Production and manipulation of wave packets from ultracold atoms in an optical lattice
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Winter, Nils
2013-01-01
of the system. The modulation technique also allows for a controllable transfer (deexcitation) of atoms from such wave packets to a state bound by the lattice. Thus, it acts as a beam splitter for matter waves that can selectively address different bands, enabling the preparation of atoms in localized states...
Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet
International Nuclear Information System (INIS)
Ignatovich, V.K.
2001-01-01
It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein’s general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential – such
Numerical study of the time evolution of a wave packet in quantum mechanics
International Nuclear Information System (INIS)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Wave packet dynamics and photofragmentation in time-dependent quadratic potentials
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1996-01-01
We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...
Quantum Mechanics in the Gaussian wave-packet phase space representation: Dynamics
International Nuclear Information System (INIS)
Mizrahi, S.S.
1985-01-01
The Heisenberg and Liouville dynamical equations are mapped using the Wave-Packet Phase Space Representation. A semiclassical perturbative expansion is introduced - the Quasi-Causal Approximation - for the Green function and an expression for transition probabilities is derived up to the first order. (Author) [pt
Global time asymmetry as a consequence of a wave packets theorem
International Nuclear Information System (INIS)
Castagnino, Mario A.; Gueron, Jorge; Ordonez, Adolfo R.
2002-01-01
When t→∞ any wave packet in the Liouvillian representation of the density matrices becomes a Hardy class function from below. This fact, in the global frame of the Reichenbach diagram, is used to explain the observed global time asymmetry of the universe
Review of inelastic losses of UCN and quantum mechanics of the de Broglie wave packet
International Nuclear Information System (INIS)
Ignatovich, V.K.; Utsuro, M.
1998-01-01
Different inelastic processes of ultracold neutrons (UCN) losses in traps are considered. A hypothesis of the de Broglie singular wave-packet description of the neutron wave-function to explain anomalous losses of UCN is proposed. An experiment to check the hypothesis and its results are discussed
International Nuclear Information System (INIS)
Doncheski, M.A.; Robinett, R.W.
2002-01-01
Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures
Long-term evolution and revival structure of Rydberg wave packets
International Nuclear Information System (INIS)
Bluhm, R.
1995-01-01
It is known that, after formation, a Rydberg wave packet undergoes a series of collapses and revivals within a time period called the revival time, t rev , at the end of which it is close to its original shape. We study the behavior of Rydberg wave packets on time scales much greater than t rev . We show that after a few revival cycles the wave packet ceases to reform at multiples of the revival time. Instead, a new series of collapses and revivals commences, culminating after a time period t sr >>t rev with the formation of a wave packet that more closely resembles the initial packet than does the full revival at time t rev . Furthermore, at times that are rational fractions of t sr , the square of the autocorrelation function exhibits large peaks with periodicities that can be expressed as fractions of the revival time t rev . These periodicities indicate a new type of fractional revival occurring for times much greater than t rev . A theoretical explanation of these effects is outlined. ((orig.))
Mesoscopic states in graphene in magnetic field: collapse and revival of wave packets
International Nuclear Information System (INIS)
Demikhovskij, V.Ya.; Telezhnikov, A.V.; Frolova, E.V.; Kravets, N.A.
2013-01-01
The effects of wave packet collapse and revival in monolayer and bilayer graphene at an external perpendicular magnetic field are described. The evolution of electron wave packets, which are a superposition of the states with quantum numbers n around that of some Landau level n 0 was studied. The probability densities as well as average velocities of the packet center were calculated analytically and then visualized. The initial wave packet consisting only of positive energy decomposed into several subpackets at the moments t = (m/n)T R , where T R is the revival time and m, n are the mutually prime integers. Besides, it is shown that the behavior of a wave packet containing the states of both energy bands (with E n > 0 and E n < 0) is more complicated. Such packet splits into two parts, which rotate with a cyclotron frequency in the opposite directions, and then experience collapse and revival. The structure of multipole electromagnetic radiation of these packets is analyzed.
Extracting continuum information from Ψ(t) in time-dependent wave-packet calculations
International Nuclear Information System (INIS)
Madsen, L. B.; Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Fernandez, J.
2007-01-01
The theory of measurement projection operators in grid-based time-dependent wave-packet calculations involving electronic continua in atoms and molecules is discussed. A hierarchy of projection operators relevant in their individual restricted configuration spaces is presented. At asymptotically large distances from the scattering or interaction center the projection operators involve plane waves only. To reach this asymptotic regime, however, large propagation times and large boxes may be required. At somewhat smaller distances from the scattering center, the projection operators are expressed in terms of analytical single-center Coulomb scattering waves with incoming wave boundary conditions. If propagation of the wave packet to these asymptotic regimes is impeded, the projection operators involve the exact scattering states which are not readily available in the wave-packet calculation and hence must be supplied by an additional, typically very demanding, calculation. The present approach suggests an exact way of analyzing the timely problem of the one-electron continuum in nonperturbative calculations. A key feature is that the propagated wave packet includes every interaction of the full Hamiltonian. The practicality of the proposed method is illustrated by the nontrivial example of strong-field ionization of the molecular hydrogen ion. Finally, the extension of the presented ideas to single and double ionization of two-electron systems is discussed
Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard
2011-01-01
The Norrish Type I reaction in the S1 (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels...
International Nuclear Information System (INIS)
Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing
2013-01-01
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth
Frame properties of wave packet systes in L^2 (R^d)
DEFF Research Database (Denmark)
Christensen, Ole; Rahimi, Asghar
2008-01-01
Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...
Monte Carlo Wave Packet Theory of Dissociative Double Ionization
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2009-01-01
Nuclear dynamics in strong-field double ionization processes is predicted using a stochastic Monte Carlo wave packet technique. Using input from electronic structure calculations and strong-field electron dynamics the description allows for field-dressed dynamics within a given molecule as well...
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach
International Nuclear Information System (INIS)
Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Piña, Ll.; Rubayo-Soneira, J.
2012-01-01
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.
Energy Technology Data Exchange (ETDEWEB)
Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)
2016-06-15
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)
Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach
Energy Technology Data Exchange (ETDEWEB)
Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)
2012-08-07
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
Energy Technology Data Exchange (ETDEWEB)
Buoninfante, Luca [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); University of Groningen, Van Swinderen Institute, Groningen (Netherlands); Lambiase, Gaetano [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); Mazumdar, Anupam [University of Groningen, Van Swinderen Institute, Groningen (Netherlands); University of Groningen, Kapteyn Astronomical Institute, Groningen (Netherlands)
2018-01-15
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1/r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future. (orig.)
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.
2018-04-01
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets
International Nuclear Information System (INIS)
Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod
2005-01-01
The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described
Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....
Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers
Energy Technology Data Exchange (ETDEWEB)
Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)
2009-05-01
We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.
Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics
Diaz-Torres, Alexis; Wiescher, Michael
2018-05-01
A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.
Wave packet revivals in a graphene quantum dot in a perpendicular magnetic field
International Nuclear Information System (INIS)
Torres, J. J.; Romera, E.
2010-01-01
We study the time evolution of localized wave packets in graphene quantum dots in a perpendicular magnetic field, focusing on the quasiclassical and revival periodicities, for different values of the magnetic field intensities in a theoretical framework. We have considered contributions of the two inequivalent points in the Brillouin zone. The revival time has been found as an observable that shows the break valley degeneracy.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br
2008-04-14
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.
2008-01-01
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them
Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model
Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira
2018-02-01
We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.
Delocalization of charge and current in a chiral quasiparticle wave packet
Sarkar, Subhajit
2018-03-01
A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Study of the wave packet treatment of neutrino oscillation at Daya Bay
Energy Technology Data Exchange (ETDEWEB)
An, F.P. [East China Univ. of Science and Technology, Shanghai (China). Inst. of Modern Physics; Balantekin, A.B. [Wisconsin Univ., Madison, WI (United States); Band, H.R. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Collaboration: Daya Bay Collaboration; and others
2017-09-15
The disappearance of reactor anti ν{sub e} observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ{sub rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of anti ν{sub e} acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 x 10{sup -17} < σ{sub rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10{sup -14}
International Nuclear Information System (INIS)
Chowdhury, P; Majumdar, A S; Sinha, S; Home, D; Mousavi, S V; Mozaffari, M R
2012-01-01
The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Second, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass dependence of both the position detection probabilities and the mean arrival time vanishes in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case. (paper)
Study of the wave packet treatment of neutrino oscillation at Daya Bay
Daya Bay Collaboration
2017-09-01
The disappearance of reactor \\bar{ν }_e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ _{rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of \\bar{ν }_e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 × 10^{-17}< σ _{rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^{-14} ≲ σ _ {rel} < 0.23, and an upper limit of σ _ {rel}<0.20 (which corresponds to σ _x ≳ 10^{-11} {cm }) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin ^22θ _{13} and Δ m^2_{32} within the plane wave model.
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...
Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses
International Nuclear Information System (INIS)
De, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Ben-Itzhak, I.; Cocke, C. L.; Znakovskaya, I.; Kling, M. F.; Litvinyuk, I. V.
2011-01-01
We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.
Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses
de, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Znakovskaya, I.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Kling, M. F.; Litvinyuk, I. V.; Ben-Itzhak, I.; Cocke, C. L.
2011-10-01
We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.
Balanced detection for self-mixing interferometry to improve signal-to-noise ratio
Zhao, Changming; Norgia, Michele; Li, Kun
2018-01-01
We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.
International Nuclear Information System (INIS)
Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin
2007-01-01
An attosecond ionization gating is achieved using a few-cycle laser pulse in combination with its second harmonic. With this gating, the generation of the electron wave packet (EWP) is coherently controlled, and an isolated EWP of about 270 as is generated. An isolated broadband attosecond extreme ultraviolet pulse with a bandwidth of about 75 eV can also be generated using this gating, which can be used for EWP measurements as efficiently as a 50-as pulse, allowing one to measure a wide range of ultrafast dynamics not normally accessible before
On the definition of the momentum of an Alfven wave packet
International Nuclear Information System (INIS)
Khudik, V.N.
1993-01-01
The different definitions of the momentum of a wave disturbance are considered, corresponding to the invariance of the Lagrangian with respect to different kinds of translation in magnetohydrodynamics. It is shown that the value of the momentum of an Alfven wave packet calculated using the definition accepted in the electrodynamics of continuous media is not the same as the total momentum of the particles in the medium and the electromagnetic field in the region within which the packet is localized. 5 refs., 2 figs
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Probability distribution of wave packet delay time for strong overlapping of resonance levels
International Nuclear Information System (INIS)
Lyuboshits, V.L.
1983-01-01
Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed
The coupled three-dimensional wave packet approach to reactive scattering
Marković, Nikola; Billing, Gert D.
1994-01-01
A recently developed scheme for time-dependent reactive scattering calculations using three-dimensional wave packets is applied to the D+H2 system. The present method is an extension of a previously published semiclassical formulation of the scattering problem and is based on the use of hyperspherical coordinates. The convergence requirements are investigated by detailed calculations for total angular momentum J equal to zero and the general applicability of the method is demonstrated by solving the J=1 problem. The inclusion of the geometric phase is also discussed and its effect on the reaction probability is demonstrated.
Energy-flux characterization of conical and space-time coupled wave packets
International Nuclear Information System (INIS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-01-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
The role of ro-vibrational coupling in the revival dynamics of diatomic molecular wave packets
International Nuclear Information System (INIS)
Banerji, J; Ghosh, Suranjana
2006-01-01
We study the revival and fractional revivals of a diatomic molecular wave packet of circular states whose weighing coefficients are peaked about a vibrational quantum number ν-bar and a rotational quantum number j-bar. Furthermore, we show that the interplay between the rotational and vibrational motion is determined by a parameter γ =√D/C, where D is the dissociation energy and C is inversely proportional to the reduced mass of the two nuclei. Using I 2 and H 2 as examples, we show, both analytically and visually (through animations), that for γ>>ν-bar, j-bar, the rotational and vibrational time scales are so far apart that the ro-vibrational motion gets decoupled and the revival dynamics depends essentially on one time scale. For γ∼ν-bar, j-bar, on the other hand, the evolution of the wave packet depends crucially on both the rotational and vibrational time scales of revival. In the latter case, an interesting rotational-vibrational fractional revival is predicted and explained
Vatasescu, Mihaela
2012-05-01
We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.
International Nuclear Information System (INIS)
Wyatt, Robert E.; Kouri, Donald J.; Hoffman, David K.
2000-01-01
The quantum trajectory method (QTM) was recently developed to solve the hydrodynamic equations of motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are integrated for N fluid elements (particles) moving under the influence of both the force from the potential surface and from the quantum potential. In this study, distributed approximating functionals (DAFs) are used on a uniform grid to compute the necessary derivatives in the equations of motion. Transformations between the physical grid where the particle coordinates are defined and the uniform grid are handled through a Jacobian, which is also computed using DAFs. A difficult problem associated with computing derivatives on finite grids is the edge problem. This is handled effectively by using DAFs within a least squares approach to extrapolate from the known function region into the neighboring regions. The QTM-DAF is then applied to wave packet transmission through a one-dimensional Eckart potential. Emphasis is placed upon computation of the transmitted density and wave function. A problem that develops when part of the wave packet reflects back into the reactant region is avoided in this study by introducing a potential ramp to sweep the reflected particles away from the barrier region. (c) 2000 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)
2008-04-15
Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)
International Nuclear Information System (INIS)
Yuan Kaijun; Sun Zhigang; Cong Shulin; Wang Senming; Yu Jie; Lou Nanquan
2005-01-01
An approach used for steering the wave packet dynamics and the population transfer between electronic states of the Na 2 molecule by a pair of femtosecond laser pulses is demonstrated. Four controlling schemes, i.e., four different combinations of time delays (intuitive and counterintuitive sequences) and frequency detunings (positive and negative detunings), are discussed in detail. The light-induced potentials are used to describe the wave packet dynamics and population transfer. The numerical results show that the wave packet excited by femtosecond laser pulses oscillates drastically on 2 1 Π g state with time. The efficiency of controlling population transfer from the X 1 Σ g + to2 1 Π g states of Na 2 is nearly 100% for the schemes of the counterintuitive sequence pulses with positive and negative detunings
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
Tracking nuclear wave-packet dynamics in molecular oxygen ions with few-cycle infrared laser pulses
International Nuclear Information System (INIS)
De, S.; Bocharova, I. A.; Magrakvelidze, M.; Ray, D.; Cao, W.; Thumm, U.; Cocke, C. L.; Bergues, B.; Kling, M. F.; Litvinyuk, I. V.
2010-01-01
We have tracked nuclear wave-packet dynamics in doubly charged states of molecular oxygen using few-cycle infrared laser pulses. Bound and dissociating wave packets were launched and subsequently probed via a pair of 8-fs pulses of 790 nm radiation. Ionic fragments from the dissociating molecules were monitored by velocity-map imaging. Pronounced oscillations in the delay-dependent kinetic energy release spectra were observed. The occurrence of vibrational revivals permits us to identify the potential curves of the O 2 dication which are most relevant to the molecular dynamics. These studies show the accessibility to the dynamics of such higher-charged molecules.
Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.
2017-08-01
Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer
On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator
International Nuclear Information System (INIS)
Dubois, Daniel M.
2008-01-01
A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential
Determining the wavelength of Langmuir wave packets at the Earth's bow shock
Directory of Open Access Journals (Sweden)
V. V. Krasnoselskikh
2011-03-01
Full Text Available The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earth's electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Control and dynamics of attosecond electron wave packets in strong laser fields
International Nuclear Information System (INIS)
Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.
2005-01-01
Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
Energy Technology Data Exchange (ETDEWEB)
Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2016-12-01
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.
Wave Packet Simulation of Nonadiabatic Dynamics in Highly Excited 1,3-Dibromopropane
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan
2008-01-01
]. In the experiment. DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a torsional motion of the bromomethylene groups with a vibrational period of 680 is is activated upon excitation. The Rydberg state decays to a valence state, causing a dissociation of one...... of the carbon bromine bonds oil a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the Simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore. the Simulations provide insight into how...... the torsion motion influences the bond breakage, and C we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy redistribution (IVR)....
Generic short-time propagation of sharp-boundaries wave packets
Granot, E.; Marchewka, A.
2005-11-01
A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.
Wave packet methods for the direct calculation of energy-transfer moments in molecular collisions
International Nuclear Information System (INIS)
Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G.
1999-01-01
The authors present a new wave packet based theory for the direct calculation of energy-transfer moments in molecular collision processes. This theory does not contain any explicit reference to final state information associated with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments for a wide range of translational energies in a single calculation. Two applications of the theory are made that demonstrate its viability; one is to collinear He + H 2 and the other to collinear He + CS 2 (with two active vibrational modes in CS 2 ). The results of these applications agree well with earlier results based on explicit calculation of transition probabilities
The motion of a Dirac wave packet in a gravitational field
International Nuclear Information System (INIS)
Pietropaolo, F.; Toller, M.
1983-01-01
It is studied the motion of a test particle provided with spin in a gravitational field with a nonvanishing torsion with the aim of clarifying the relationship between the approach based on the balance equations for energy, momentum and angular momentum and the approach based directly on a semiclassical approximation of the Dirac equation. The balance equations in the pole-dipole approximation are applied to a Dirac wave packet minimally coupled to the gravitational field and it is shown that, in this particular case, it is possible to compute the dipole moments of energy current, which are essential for a correct calculation of the motion of the centre of the particle and of the precession of its spin
Magnetized Langmuir wave packets excited by a strong beam-plasma interaction
International Nuclear Information System (INIS)
Pelletier, G.; Sol, H.; Asseo, E.
1988-01-01
The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Czech Academy of Sciences Publication Activity Database
Řeřucha, Šimon; Buchta, Zdeněk; Šarbort, Martin; Lazar, Josef; Číp, Ondřej
2012-01-01
Roč. 12, č. 10 (2012), s. 14095-14112 ISSN 1424-8220 R&D Projects: GA ČR GAP102/10/1813; GA MŠk ED0017/01/01; GA MPO FR-TI2/705; GA MPO FR-TI1/241; GA MŠk EE2.3.30.0054 Institutional support: RVO:68081731 Keywords : digital signal processing * homodyne detection * laser interferometry * optical metrology Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.953, year: 2012
Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry
Aldawood, Ali
2012-04-01
Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
On the development and evolution of nonlinear ion acoustic wave packets
Directory of Open Access Journals (Sweden)
A. M. Hamza
2005-09-01
Full Text Available A simple model of ion fluctuations (ion acoustic and ion cyclotron fluctuations for example driven by an electron current which leads to intermittent fluctuations when the linear growth rate exceeds the wave packet dispersion rate is analized. The normalized fluctuation amplitude eφ0/T can be much larger than the mass ratio (me/mi level predicted by the conventional quasilinear theory or Manheimer's theory (see references in this document, and where φ0 represents the amplitude of the main peak of the ion fluctuations. Although the ion motion is linear, intermittency is produced by the strong nonlinear electron response, which causes the electron momentum input to the ion fluctuations to be spatially localized. We treat the 1-D case because it is especially simple from an intuitive and analytical point of view, but it is readily apparent and one can put forward the conjecture that the effect occurs in a three dimensional magnetized plasma. The 1-D analysis, as shown in this manuscript will clearly help identify the subtle difference between turbulence as conventionally understood and intermittency as it occurs in space and laboratory plasmas. Keywords. Meteorology and atmospheric dynamics (Turbulence – Ionosphere (Wave-particles interactions – Space plasma physics (Waves and instabilities
On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics
International Nuclear Information System (INIS)
Narnhofer, H.; Wreszinski, W.F.
2014-01-01
We prove a quantum version of the second law of thermodynamics: the (quantum) Boltzmann entropy increases if the initial (zero time) density matrix decoheres, a condition generally satisfied in Nature. It is illustrated by a model of wave-packet reduction, the Coleman–Hepp model, along the framework introduced by Sewell (2005) in his approach to the quantum measurement problem. Further models illustrate the monotonic-versus-non-monotonic behavior of the quantum Boltzmann entropy in time. As a last closely related topic, decoherence, which was shown by Narnhofer and Thirring (1999) to enforce macroscopic purity in the case of quantum K systems, is analyzed within a different class of quantum chaotic systems, viz. the quantum Anosov models as defined by Emch, Narnhofer, Sewell and Thirring (1994). A review of the concept of quantum Boltzmann entropy, as well as of some of the rigorous approaches to the quantum measurement problem within the framework of Schrödinger dynamics, is given, together with an overview of the C* algebra approach, which encompasses the relevant notions and definitions in a comprehensive way
Energy Technology Data Exchange (ETDEWEB)
Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)
2007-05-15
Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.
Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver
2017-09-01
Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.
International Nuclear Information System (INIS)
Qin, Chaochao; Zhang, Lili; Zhang, Xianzhou; Liu, Yufang; Qiu, Xuejun
2016-01-01
The coherent control of interference between dissociating wave packets of the HD + molecules generated by a pair of time-delayed and phase-locked femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method. The density function in both coordinate and momentum representation are presented and discussed. It is demonstrated that the interference pattern is observed in both coordinate and momentum density functions. The interference undergoes a π-phase shift when the delay time between the two phase-locked femtosecond laser pulses is changed by half an optical period. In particular, the number of interference fringes, the fringe spacing in the R-dependent density distribution |ψ(R)| 2 , and the modulation period of the energy-dependent distribution of the fragments P(E) can be tuned by two phase-locked femtosecond pulses. (paper)
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
Theoretical calculations on dissociative double ionization of H2 and D2 in short intense laser pulses using the Monte Carlo wave packet technique are presented for several different field intensities, wavelengths, and pulse durations. We find convincing agreement between theory and experimental...... results for the kinetic energy release spectra of the nuclei. Besides the correctly predicted spectra the Monte Carlo wave packet method offers insight into the nuclear dynamics during the pulse and makes it possible to address the origin of different structures observed in the spectra. Three......-photon resonances in the singly ionized molecule and charge-resonance-enhanced ionization are shown to be the main processes responsible for the observed nuclear energy distributions....
Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics
Directory of Open Access Journals (Sweden)
E. Romera
2012-12-01
Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach
International Nuclear Information System (INIS)
Nguyen-Dang, T.; Chateauneuf, F.; Manoli, S.; Atabek, O.; Keller, A.
1997-01-01
The dynamics of multielectron dissociative ionization (MEDI) of H 2 in an intense IR laser pulse are investigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the successive ionizations of H 2 are expressed in terms of field-free Born-Oppenheimer (BO) potential energy surfaces (PES) by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transformation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still described by field-free BO electronic states while the ionized ones are described by Airy functions. In the adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instantaneous electric field of the laser and such an ionized electron can have a negative total energy. As a consequence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be brought into resonance with states of the parent species. This construction gives a picture in which wave packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet propagation scheme to an effective five-channel problem has been obtained for the description of the first dissociative ionization process in H 2 by using Fano's formalism [U. Fano, Phys. Rev. 124, 1866 (1961)] to analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of Fano's solutions. With this algorithm, the effect that continuous ionization of H 2 has on the dissociation dynamics of the H 2 + ion has been investigated. In comparison with results that would be obtained if the first ionization of H 2 was impulsive, the wave-packet dynamics of the H 2 + ion prepared continuously by tunnel ionization are markedly nonadiabatic. (Abstract Truncated)
Energy Technology Data Exchange (ETDEWEB)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2017-01-15
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
International Nuclear Information System (INIS)
Ning, Ma; Mei-Shan, Wang; Chuan-Lu, Yang; Xiao-Guang, Ma; De-Hua, Wang
2010-01-01
Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of 6 1 σ + state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes. (atomic and molecular physics)
International Nuclear Information System (INIS)
Delande, D.; Sacha, K.; Zakrzewski, J.
2002-01-01
We show that combination of a linearly polarized resonant microwave field and a parallel static electric field may be used to create a non-dispersive electronic wave packet in Rydberg atoms. The static electric field allows for manipulation of the shape of the elliptical trajectory the wave packet is propagating on. Exact quantum numerical calculations for realistic experimental parameters show that the wave packet evolving on a linear orbit can be very easily prepared in a laboratory either by a direct optical excitation or by preparing an atom in an extremal Stark state and then slowly switching on the micro wave field. The latter scheme seems to be very resistant to experimental imperfections. Once the wave packet on the linear orbit is excited, the static field may be used to manipulate the shape of the orbit. (author)
International Nuclear Information System (INIS)
Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.
1995-01-01
The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities
International Nuclear Information System (INIS)
Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun
2002-01-01
We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field
DEFF Research Database (Denmark)
Gerberding, Oliver; Diekmann, Christian; Kullmann, Joachim
2015-01-01
Precision phase readout of optical beat note signals is one of the core techniques required for inter-satellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts...
International Nuclear Information System (INIS)
Dupret, K.; Delande, D.
1996-01-01
We study the time propagation of an initially localized wave packet for a generic one-dimensional time-independent system, using the open-quote open-quote nonlinear wave-packet dynamics close-quote close-quote [S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 67, 664 (1991)], a semiclassical approximation using a local linearization of the wave packet in the vicinity of classical reference trajectories. Several reference trajectories are needed to describe the behavior of the full wave packet. The introduction of action-angle variables allows us to obtain a simple analytic expression for the autocorrelation function, and to show that a universal behavior (quantum collapses, quantum revivals, etc.) is obtained via interferences between the reference trajectories. A connection with the standard WKB approach is established. Finally, we apply the nonlinear wave-packet dynamics to the case of the hydrogen atom in a weak magnetic field, and show that the semiclassical expressions obtained by nonlinear wave-packet dynamics are extremely accurate. copyright 1996 The American Physical Society
Experimental study of turbulent-jet wave packets and their acoustic efficiency
Breakey, David E. S.; Jordan, Peter; Cavalieri, André V. G.; Nogueira, Petrônio A.; Léon, Olivier; Colonius, Tim; Rodríguez, Daniel
2017-12-01
This paper details the statistical and time-resolved analysis of the relationship between the near-field pressure fluctuations of unforced, subsonic free jets (0.4 ≤M ≤0.6 ) and their far-field sound emissions. Near-field and far-field microphone measurements were taken on a conical array close to the jets and an azimuthal ring at 20∘ to the jet axis, respectively. Recent velocity and pressure measurements indicate the presence of linear wave packets in the near field by closely matching predictions from the linear homogenous parabolized stability equations, but the agreement breaks down both beyond the end of the potential core and when considering higher order statistical moments, such as the two-point coherence. Proper orthogonal decomposition (POD), interpreted in terms of inhomogeneous linear models using the resolvent framework allows us to understand these discrepancies. A new technique is developed for projecting time-domain pressure measurements onto a statistically obtained POD basis, yielding the time-resolved activity of each POD mode and its correlation with the far field. A single POD mode, interpreted as an optimal high-gain structure that arises due to turbulent forcing, captures the salient near-field-far-field correlation signature; further, the signatures of the next two modes, understood as suboptimally forced structures, suggest that these POD modes represent higher order, acoustically important near-field behavior. An existing Green's-function-based technique is used to make far-field predictions, and results are interpreted in terms of POD/resolvent modes, indicating the acoustic importance of this higher order behavior. The technique is extended to provide time-domain far-field predictions.
‘Superluminal paradox’ in wave packet propagation and its quantum mechanical resolution
Energy Technology Data Exchange (ETDEWEB)
Sokolovski, D., E-mail: dgsokol15@gmail.com [Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Akhmatskaya, E. [Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia (Spain)
2013-12-15
We analyse in detail the reshaping mechanism leading to apparently ‘superluminal’ advancement of a wave packet traversing a classically forbidden region. In the coordinate representation, a barrier is shown to act as an effective beamsplitter, recombining envelopes of the freely propagating pulse with various spacial shifts. Causality ensures that none of the constituent envelopes are advanced with respect to free propagation, yet the resulting pulse is advanced due to a peculiar interference effect, similar to the one responsible for ‘anomalous’ values which occur in Aharonov’s ‘weak measurements’. In the momentum space, the effect is understood as a bandwidth phenomenon, where the incident pulse probes local, rather than global, analytical properties of the transmission amplitude T(p). The advancement is achieved when T(p) mimics locally an exponential behaviour, similar to the one occurring in Berry’s ‘superoscillations’. Seen in a broader quantum mechanical context, the ‘paradox’ is but a consequence of an attempt to obtain ‘which way?’ information without destroying the interference between the pathways of interest. This explains, to a large extent, the failure to adequately describe tunnelling in terms of a single ‘tunnelling time’. -- Highlights: •Apparent superluminality is described in the language of quantum measurements. •A barrier acts as a beamsplitter delaying copies of the initial pulse. •In the coordinate space the effect is similar to what occurs in ‘weak measurements’. •In the momentum space it relies on superoscillations in the transmission amplitude. •It is an interference effect, unlikely to be explained in simpler physical terms.
LISA time-delay interferometry zero-signal solution: Geometrical properties
International Nuclear Information System (INIS)
Tinto, Massimo; Larson, Shane L.
2004-01-01
Time-delay interferometry (TDI) is the data processing technique needed for generating interferometric combinations of data measured by the multiple Doppler readouts available onboard the three Laser Interferometer Space Antenna (LISA) spacecraft. Within the space of all possible interferometric combinations TDI can generate, we have derived a specific combination that has zero response to the gravitational wave signal, and called it the zero-signal solution (ZSS). This is a two-parameter family of linear combinations of the generators of the TDI space, and its response to a gravitational wave becomes null when these two parameters coincide with the values of the angles of the source location in the sky. Remarkably, the ZSS does not rely on any assumptions about the gravitational waveform, and in fact it works for waveforms of any kind. Our approach is analogous to the data analysis method introduced by Guersel and Tinto in the context of networks of Earth-based, wideband, interferometric gravitational wave detectors observing in coincidence a gravitational wave burst. The ZSS should be regarded as an application of the Guersel and Tinto method to the LISA data
Time-dependent wave-packet study of the direct low-energy dissociative recombination of HD+
International Nuclear Information System (INIS)
Orel, A. E.
2000-01-01
Wave-packet methods involving the numerical solution of the time-dependent Schroedinger equation have been used with great success in the calculation of cross sections for dissociative recombination of molecular ions by electron impact in the high energy region where the ''boomerang'' model [L. Dube and A. Herzenberg, Phys. Rev. A 11, 1314 (1975)] is valid. We extend this method to study low-energy dissociative recombination where this approximation is no longer appropriate. We apply the method to the ''direct'' low-energy dissociative recombination of HD + . Our results are in excellent agreement with calculations using the multichannel quantum defect method. (c) 2000 The American Physical Society
Kreisbeck, C; Kramer, T; Molina, R A
2017-04-20
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
International Nuclear Information System (INIS)
Lyuboshitz, V.L.
1982-01-01
The time development of nuclear reactions at a large density of levels is investigated using the theory of overlapping resonances. The analytical expression for the function describing the time delay probability distribution of a wave packet is obtained in the framework of the model of n equi - valent channels. It is shown that a relative fluctuation of the time delay at the stage of the compound nucleus is snall. The possibility is discussed of increasing the duration of nuclear raactions with rising excitation energy
Energy Technology Data Exchange (ETDEWEB)
Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje
2012-10-01
We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.
International Nuclear Information System (INIS)
Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.
2014-01-01
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin
2018-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.
Czech Academy of Sciences Publication Activity Database
Krupka, M.; Kálal, M.; Dostál, Jan; Dudžák, Roman; Juha, Libor
2017-01-01
Roč. 12, Aug (2017), s. 1-6, č. článku C08012. ISSN 1748-0221 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : magnetic-field measurements * fully automated-analysis * laser-produced plasmas * image processing * interferometry * plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016
International Nuclear Information System (INIS)
Brito, P.E. de; Nazareno, H.N.
2012-01-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
DEFF Research Database (Denmark)
Marquetand, P.; Materny, A.; Henriksen, Niels Engholm
2004-01-01
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...
Czech Academy of Sciences Publication Activity Database
Krupka, Michal; Kálal, Milan; Dostál, Jan; Dudžák, Roman; Juha, Libor
2017-01-01
Roč. 12, August (2017), č. článku C08012. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Image processing * Interferometry * Plasma diagnostics - interferometry * Spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.
2018-01-01
We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.
Quantification of the neutron dark-field imaging signal in grating interferometry
Czech Academy of Sciences Publication Activity Database
Grünzweig, C.; Kopeček, Jaromír; Betz, B.; Kaestner, A.; Jefimovs, K.; Kohlbrecher, J.; Gasser, U.; Bunk, O.; David, C.; Lehmann, E.; Donath, T.; Pfeiffer, F.
2012-01-01
Roč. 88, č. 12 (2012), "125104-1"-"125104-6" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : neutron scattering (including small-angle scattering) * atom and neutron interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012
Zhu, Yu; Liu, Zhigang; Deng, Wen; Deng, Zhongwen
2018-05-01
Frequency-scanning interferometry (FSI) using an external cavity diode laser (ECDL) is essential for many applications of the absolute distance measurement. However, owing to the hysteresis and creep of the piezoelectric actuator inherent in the ECDL, the optical frequency scanning exhibits a nonlinearity that seriously affects the phase extraction accuracy of the interference signal and results in the reduction of the measurement accuracy. To suppress the optical frequency nonlinearity, a harmonic frequency synthesis method for shaping the desired input signal instead of the original triangular wave is presented. The effectiveness of the presented shaping method is demonstrated through the comparison of the experimental results. Compared with an incremental Renishaw interferometer, the standard deviation of the displacement measurement of the FSI system is less than 2.4 μm when driven by the shaped signal.
On the propagation velocity of a wave packet in an amplifying medium
International Nuclear Information System (INIS)
Bukhman, N S
2001-01-01
It is shown that the delay time of a weak signal propagating in an amplifying medium on the wings of the spectral amplification line may be shorter than the time of propagation of the signal with the velocity of light in vacuum. It is found that in this case, the time dependence of the signal is exactly 'reconstructed' at the point of detection, and the detection of the signal continues even if it is abruptly terminated at the point of transmission. It is also shown that using the complex time of group delay of the signal, it is possible to improve the accuracy of the results in the first order of dispersion theory within this approximation. (physical foundations of quantum electronics)
International Nuclear Information System (INIS)
Chwiej, T; Szafran, B
2013-01-01
We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)
Chwiej, T; Szafran, B
2013-04-17
We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.
Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs
Smilansky, Uzy; Schanz, Holger
2018-02-01
We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.
Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.
2018-01-01
We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.
International Nuclear Information System (INIS)
Brito, P E de; Nazareno, H N
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use computer algebra systems in solving problems of quantum mechanics. We obtained the degeneracy of the spectrum of eigenvalues in a very clear way. Through the use of a computer algebra system we show graphs of the probability density associated with different eigenvalues as well as compare such functions for some degenerate states, which helps us to visualize the physics of the problem. We also present a semiclassical model which gives a physical insight regarding the paradoxical fact that eigenfunctions associated with opposite angular momenta and different energy eigenvalues have the same probability density. Finally, by solving the time-dependent Schroedinger equation we obtain the time evolution of a wave packet that at time zero was considered to be localized in a definite region of the lattice. The centroid of such a packet performs an orbit similar to that obtained in the classical treatment of a particle in a magnetic field
International Nuclear Information System (INIS)
Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.
1991-01-01
We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy
Boer, JF De; Tearney, G. J.; Bouma, BE
2008-01-01
Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and loW coher ence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Directory of Open Access Journals (Sweden)
F. S. Kuo
2007-02-01
Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Distortion of gravitational-wave packets due to their self-gravity
International Nuclear Information System (INIS)
Kocsis, Bence; Loeb, Abraham
2007-01-01
When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW pulses from the final plunge of black hole binaries, leading to the evolution of the GW profile as a function of the radial distance from the source. The distortion depends on the total GW energy released ε and the duration of the emission τ, scaled by the total binary mass M. The effect should be relevant in finite box simulations where the waveforms are extracted within a radius of 2 M. For characteristic emission parameters at the final plunge between binary black holes of arbitrary spins, this effect could distort the simulated GW templates for LIGO and LISA by a fraction of 10 -3 . Accounting for the wave distortion would significantly decrease the waveform extraction errors in numerical simulations
Spontaneous wave packet reduction
International Nuclear Information System (INIS)
Ghirardi, G.C.
1994-06-01
There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs
The high accuracy data processing system of laser interferometry signals based on MSP430
Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong
2009-07-01
Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.
Energy Technology Data Exchange (ETDEWEB)
Jakob, B.
2006-10-10
In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)
International Nuclear Information System (INIS)
Roldao, C.G.; Padula, S.S.
1994-01-01
Preliminary results of the χ 2 analysis where data on kaon interferometry, obtained from the E859 Collaboration of the AGS/Brookhaven Nat.Lab., are compared with results of a hadronic resonance production model are presented. The main goal is to test the resolution power of the method here discussed when applied to the two-dimensional kaon interferometry
Signal-to-noise based local decorrelation compensation for speckle interferometry applications
International Nuclear Information System (INIS)
Molimard, Jerome; Cordero, Raul; Vautrin, Alain
2008-01-01
Speckle-based interferometric techniques allow assessing the whole-field deformation induced on a specimen due to the application of load. These high sensitivity optical techniques yield fringe images generated by subtracting speckle patterns captured while the specimen undergoes deformation. The quality of the fringes, and in turn the accuracy of the deformation measurements, strongly depends on the speckle correlation. Specimen rigid body motion leads to speckle decorrelation that, in general, cannot be effectively counteracted by applying a global translation to the involved speckle patterns. In this paper, we propose a recorrelation procedure based on the application of locally evaluated translations. The proposed procedure implies dividing the field into several regions, applying a local translation, and calculating, in every region, the signal-to-noise ratio (SNR). Since the latter is a correlation indicator (the noise increases with the decorrelation) we argue that the proper translation is that which maximizes the locally evaluated SNR. The search of the proper local translations is, of course, an interactive process that can be facilitated by using a SNR optimization algorithm. The performance of the proposed recorrelation procedure was tested on two examples. First, the SNR optimization algorithm was applied to fringe images obtained by subtracting simulated speckle patterns. Next, it was applied to fringe images obtained by using a shearography optical setup from a specimen subjected to mechanical deformation. Our results show that the proposed SNR optimization method can significantly improve the reliability of measurements performed by using speckle-based techniques
Kaon interferometry as signal for the QCD phase transition at RHIC
International Nuclear Information System (INIS)
Bernard, S.; Maruhn, J.A.; Greiner, W.; Rischke, D.H.
1997-01-01
Pion and kaon correlations in relativistic nuclear collisions are studied in the framework of boost-invariant, cylindrically symmetric hydrodynamics. It is investigated how the inverse widths, R out , R side , of the two-particle correlation functions in out- and side-direction depend on the average transverse momentum K perpendicular to of the particle pair, the initial energy density ε 0 , and the equation of state of the system. The QCD transition leads to a time delay in the expansion of the system and consequently to an enhancement of the ratio R out /R side . This time-delay signal is found to be particularly strong for large average transverse momenta K perpendicular to ∝1 GeV and initial energy densities accessible at RHIC, ε 0 ∝10-20 GeV fm -3 . Neutral kaon pair correlation functions, which are not influenced by final state Coulomb effects and less contaminated by resonance decays than pion correlation functions, seem to be the ideal tool to detect this collective time-delay signature of the QCD transition. (orig.)
Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio
2018-02-01
We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.
Feld, R.; Slob, E. C.; Thorbecke, J.
2015-12-01
Creating virtual sources at locations where physical receivers have measured a response is known as seismic interferometry. A much appreciated benefit of interferometry is its independence of the actual source locations. The use of ambient noise as actual source is therefore not uncommon in this field. Ambient noise can be commercial noise, like for example mobile phone signals. For GPR this can be useful in cases where it is not possible to place a source, for instance when it is prohibited by laws and regulations. A mono-static GPR antenna can measure ambient noise. Interferometry by auto-correlation (AC) places a virtual source on this antenna's position, without actually transmitting anything. This can be used for pavement damage inspection. Earlier work showed very promising results with 2D numerical models of damaged pavement. 1D and 2D heterogeneities were compared, both modelled in a 2D pavement world. In a 1D heterogeneous model energy leaks away to the sides, whereas in a 2D heterogeneous model rays can reflect and therefore still add to the signal reconstruction (see illustration). In the first case the amount of stationary points is strictly limited, while in the other case the amount of stationary points is very large. We extend these models to a 3D world and optimise an experimental configuration. The illustration originates from the journal article under submission 'Non-destructive pavement damage inspection by mono-static GPR without transmitting anything' by R. Feld, E.C. Slob, and J.W. Thorbecke. (a) 2D heterogeneous pavement model with three irregular-shaped misalignments between the base and subbase layer (marked by arrows). Mono-antenna B-scan positions are shown schematically. (b) Ideal output: a real source at the receiver's position. The difference w.r.t. the trace found in the middle is shown. (c) AC output: a virtual source at the receiver's position. There is a clear overlap with the ideal output.
van Harrevelt, Rob; van Hemert, Marc C.
2000-04-01
A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer
2018-04-01
Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.
International Nuclear Information System (INIS)
Baudon, J.; Robert, J.
2004-01-01
Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)
Iterative supervirtual refraction interferometry
Al-Hagan, Ola
2014-05-02
In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.
Iterative supervirtual refraction interferometry
Al-Hagan, Ola; Hanafy, Sherif M.; Schuster, Gerard T.
2014-01-01
In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.
Bharadwaj, P.; Wang, X.; Schuster, Gerard T.; McIntosh, K.
2013-01-01
The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability
Bharadwaj, P.
2013-01-10
The theory of supervirtual interferometry is modified so that free-surface related multiple refractions can be used to enhance the signal-to-noise ratio (SNR) of primary refraction events by a factor proportional to√Ns, where Ns is the number of post-critical sources for a specified refraction multiple. We also show that refraction multiples can be transformed into primary refraction events recorded at virtual hydrophones located between the actual hydrophones. Thus, data recorded by a coarse sampling of ocean bottom seismic (OBS) stations can be transformed, in principle, into a virtual survey with P times more OBS stations, where P is the order of the visible free-surface related multiple refractions. The key assumption is that the refraction arrivals are those of head waves, not pure diving waves. The effectiveness of this method is validated with both synthetic OBS data and an OBS data set recorded offshore from Taiwan. Results show the successful reconstruction of far-offset traces out to a source-receiver offset of 120 km. The primary supervirtual traces increase the number of pickable first arrivals from approximately 1600 to more than 3100 for a subset of the OBS data set where the source is only on one side of the recording stations. In addition, the head waves associated with the first-order free-surface refraction multiples allow for the creation of six new common receiver gathers recorded at virtual OBS station located about half way between the actual OBS stations. This doubles the number of OBS stations compared to the original survey and increases the total number of pickable traces from approximately 1600 to more than 6200. In summary, our results with the OBS data demonstrate that refraction interferometry can sometimes more than quadruple the number of usable traces, increase the source-receiver offsets, fill in the receiver line with a denser distribution of OBS stations, and provide more reliable picking of first arrivals. Apotential liability
Sirohi, Rajpal S.
2002-03-01
Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications
International Nuclear Information System (INIS)
Zhang, Zhaojun; Zhang, Dong H.
2014-01-01
Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD 3 in J 0 = 1, 2 rotationally excited initial states with k 0 = 0 − J 0 (the projection of CHD 3 rotational angular momentum on its C 3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K 0 ) equal to k 0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD 3 with respect to the relative velocity between the reagents H and CHD 3 . However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K 0 specified cross sections for the K 0 = k 0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K 0 averaging for the J 0 = 1, 2 initial states with all different k 0 are essentially identical to the corresponding CS and CC results for the J 0 = 0 initial state, meaning that the initial rotational excitation of CHD 3 up to J 0 = 2, regardless of its initial k 0 , does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J 0 = 1, 2 initial states are the same as those for the J 0 = 0 initial state
He, Haixiang; Zhu, Weimin; Su, Wenli; Dong, Lihui; Li, Bin
2018-03-08
The H + + H 2 reaction and its isotopic variants as the simplest triatomic ion-molecule reactive system have been attracting much interests, however there are few studies on the titled reaction at state-to-state level until recent years. In this work, accurate state-to-state quantum dynamics studies of the titled reaction have been carried out by a reactant Jacobi coordinate-based time-dependent wave packet approach on diabatic potential energy surfaces constructed by Kamisaka et al. Product ro-vibrational state-resolved information has been calculated for collision energies up to 0.2 eV with maximal total angular momentum J = 40. The necessity of including all K-component for accounting the Coriolis coupling for the reaction has been illuminated. Competitions between the two product channels, (D + + HD' → D' + + HD and D + + HD' → H + + DD') were investigated. Total integral cross sections suggest that resonances enhance the reactivity of channel D + + HD'→ H + + DD', however, resonances depress the reactivity of the another channel D + + HD' → D' + + HD. The structures of the differential cross sections are complicated and depend strongly on collision energies of the two channels and also on the product rotational states. All of the product ro-vibrational state-resolved differential cross sections for this reaction do not exhibit rigorous backward-forward symmetry which may indicate that the lifetimes of the intermediate resonance complexes should not be that long. The dynamical observables of this deuterated isotopic reaction are quite different from the reaction of H + + H 2 → H 2 + H + reported previously.
Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice
2017-03-02
The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.
International Nuclear Information System (INIS)
Foxall, W; Vincent, P; Walter, W
1999-01-01
We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT-underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An
Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.
Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).
Photon exchange and decoherence in neutron interferometry
International Nuclear Information System (INIS)
Sulyok, G.
2011-01-01
The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de
Symmetric large momentum transfer for atom interferometry with BECs
Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration
2017-04-01
We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).
Energy Technology Data Exchange (ETDEWEB)
Mouret, L
2002-11-01
The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)
Energy Technology Data Exchange (ETDEWEB)
Mouret, L
2002-11-01
The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)
Interferometry with polarised neutrons
International Nuclear Information System (INIS)
Badurek, G.
1978-01-01
This paper aimed to give an outline of what might be expected from an extension of polarized beam techniques in neutron interferometry and how it could be achieved properly and what is the present state of this special field of interferometry
Optical interferometry in astronomy
International Nuclear Information System (INIS)
Monnier, John D
2003-01-01
Here I review the current state of the field of optical stellar interferometry, concentrating on ground-based work although a brief report of space interferometry missions is included. We pause both to reflect on decades of immense progress in the field as well as to prepare for a new generation of large interferometers just now being commissioned (most notably, the CHARA, Keck and VLT Interferometers). First, this review summarizes the basic principles behind stellar interferometry needed by the lay-physicist and general astronomer to understand the scientific potential as well as technical challenges of interferometry. Next, the basic design principles of practical interferometers are discussed, using the experience of past and existing facilities to illustrate important points. Here there is significant discussion of current trends in the field, including the new facilities under construction and advanced technologies being debuted. This decade has seen the influence of stellar interferometry extend beyond classical regimes of stellar diameters and binary orbits to new areas such as mapping the accretion discs around young stars, novel calibration of the cepheid period-luminosity relation, and imaging of stellar surfaces. The third section is devoted to the major scientific results from interferometry, grouped into natural categories reflecting these current developments. Lastly, I consider the future of interferometry, highlighting the kinds of new science promised by the interferometers coming on-line in the next few years. I also discuss the longer-term future of optical interferometry, including the prospects for space interferometry and the possibilities of large-scale ground-based projects. Critical technological developments are still needed to make these projects attractive and affordable
3D super-virtual refraction interferometry
Lu, Kai; AlTheyab, Abdullah; Schuster, Gerard T.
2014-01-01
Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place
Principles of Stellar Interferometry
Glindemann, Andreas
2011-01-01
Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...
Progress in electron- and ion-interferometry
Energy Technology Data Exchange (ETDEWEB)
Hasselbach, Franz [Institut fuer Angewandte Physik der Universitaet Tuebingen, Auf der Morgenstelle 10, D-72076 Tuebingen (Germany)], E-mail: franz.hasselbach@uni-tuebingen.de
2010-01-15
. In the context of holography, methods have been developed to record holograms without modulation of the biprism fringes by waves diffracted at the edges of the biprism filament. This simplifies the reconstruction of holograms and the evaluation of interferograms (taken, e.g. to extract a spectrum by Fourier analysis of the fringe system) significantly. A major section is devoted to the influence of electromagnetic and gravito-inertial potentials and fields on the quantum mechanical phase of matter waves: the Aharonov-Bohm effect, the inertial Aharonov-Bohm effect and its realization, the Sagnac effect and Sagnac experiments with atoms, superfluid helium, Bose-Einstein condensates, electrons and ions and their potential as rotation sensors are discussed. Moellenstedt and Wohland discovered in a crossed beam analyzer (Wien filter) an optical element for charged particles that shifts wave packets longitudinally that transverse a Wien filter on laterally separated paths. This new optical element rendered it possible to measure coherence lengths and the spectrum of charged particle waves by visibility- and Fourier-spectroscopy, to perform a 'Welcher Weg' experiment, to re-establish seemingly lost longitudinal coherence in an interferometer for charged particles and to realize a decoherence free quantum eraser. A precision test of decoherence according to a proposal from Anglin and Zurek and biprism interferences with helium atoms close the section on first-order coherence experiments. The topics of the last section are Hanbury Brown-Twiss correlations and an antibuching experiment of free electrons.
Progress in electron- and ion-interferometry
International Nuclear Information System (INIS)
Hasselbach, Franz
2010-01-01
. In the context of holography, methods have been developed to record holograms without modulation of the biprism fringes by waves diffracted at the edges of the biprism filament. This simplifies the reconstruction of holograms and the evaluation of interferograms (taken, e.g. to extract a spectrum by Fourier analysis of the fringe system) significantly. A major section is devoted to the influence of electromagnetic and gravito-inertial potentials and fields on the quantum mechanical phase of matter waves: the Aharonov-Bohm effect, the inertial Aharonov-Bohm effect and its realization, the Sagnac effect and Sagnac experiments with atoms, superfluid helium, Bose-Einstein condensates, electrons and ions and their potential as rotation sensors are discussed. Moellenstedt and Wohland discovered in a crossed beam analyzer (Wien filter) an optical element for charged particles that shifts wave packets longitudinally that transverse a Wien filter on laterally separated paths. This new optical element rendered it possible to measure coherence lengths and the spectrum of charged particle waves by visibility- and Fourier-spectroscopy, to perform a 'Welcher Weg' experiment, to re-establish seemingly lost longitudinal coherence in an interferometer for charged particles and to realize a decoherence free quantum eraser. A precision test of decoherence according to a proposal from Anglin and Zurek and biprism interferences with helium atoms close the section on first-order coherence experiments. The topics of the last section are Hanbury Brown-Twiss correlations and an antibuching experiment of free electrons.
Ando, Koji
2018-03-01
A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-21
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
Balanced detection for self-mixing interferometry.
Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele
2017-01-15
We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Parsimonious Surface Wave Interferometry
Li, Jing; Hanafy, Sherif; Schuster, Gerard T.
2017-01-01
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Vibration insensitive interferometry
Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.
2017-11-01
The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.
Wave-packet dynamics in quantum wells
DEFF Research Database (Denmark)
Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.
1995-01-01
It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems...... that the carriers in a quantum well can behave as an ensemble of classical particles and produce a transport like photocurrent....
Angularly resolved electron wave packet interferences
International Nuclear Information System (INIS)
Varju, K; Johnsson, P; Mauritsson, J; Remetter, T; Ruchon, T; Ni, Y; Lepine, F; Kling, M; Khan, J; Schafer, K J; Vrakking, M J J; L'Huillier, A
2006-01-01
We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation
Angularly resolved electron wave packet interferences
Energy Technology Data Exchange (ETDEWEB)
Varju, K [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Johnsson, P [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Mauritsson, J [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Remetter, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ruchon, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ni, Y [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Lepine, F [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Kling, M [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Khan, J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Vrakking, M J J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden)
2006-09-28
We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...
Nonlocality of a free atomic wave packet
International Nuclear Information System (INIS)
Haug, F.; Freyberger, M.; Wodkiewicz, K.
2004-01-01
A simple model allows us to study the nonclassical behavior of slowly moving atoms interacting with a quantized field. Atom and field become entangled and their joint state can be identified as a mesoscopic 'Schroedinger cat'. By introducing appropriate observables for atom and field and by analyzing correlations between them based on a Bell-type inequality we can show the corresponding nonclassical behavior
Scope of neutron interferometry
International Nuclear Information System (INIS)
Rauch, H.
1978-01-01
This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged
Space Interferometry Science Working Group
Ridgway, Stephen T.
1992-12-01
Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.
Antihydrogen Experiment Gravity Interferometry Spectroscopy
Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M
The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.
Interferometry and synthesis in radio astronomy
Thompson, A Richard; Swenson Jr , George W
2017-01-01
This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...
Hariharan, P
1992-01-01
This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus
International Nuclear Information System (INIS)
Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.
1992-01-01
Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)
Speckle interferometry of asteroids
International Nuclear Information System (INIS)
Drummond, J.
1988-01-01
By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated
Directory of Open Access Journals (Sweden)
Massimo Tinto
2014-08-01
Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.
Nonstationary signals phase-energy approach-theory and simulations
Klein, R; Braun, S; 10.1006/mssp.2001.1398
2001-01-01
Modern time-frequency methods are intended to deal with a variety of nonstationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling extraction of signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave- packet decomposition. The dynamic filters also enable the reconstruction of the ...
Precision measurement with atom interferometry
International Nuclear Information System (INIS)
Wang Jin
2015-01-01
Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. (topical review)
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Spaceborne intensity interferometry via spacecraft formation flight
Ribak, Erez N.; Gurfil, Pini; Moreno, Coral
2012-07-01
Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.
Theory of supervirtual refraction interferometry
Bharadwaj, Pawan; Schuster, Gerard T.; Mallinson, Ian; Dai, Wei
2012-01-01
Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the
Parsimonious refraction interferometry
Hanafy, Sherif
2016-09-06
We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.
Directory of Open Access Journals (Sweden)
P. Senthilkumaran
2012-01-01
Full Text Available Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI, a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams.
Parsimonious refraction interferometry
Hanafy, Sherif; Schuster, Gerard T.
2016-01-01
We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.
Practical optical interferometry imaging at visible and infrared wavelengths
Buscher, David F
2015-01-01
Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...
Interferometry using undulator sources
International Nuclear Information System (INIS)
Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K.
1996-01-01
Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in Soft X-Ray Projection Lithography, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), 18, 1089, and D. Attwood et al., Appl. Opt. 32, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg et al., in Extreme Ultra Lithography, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg et al., Proc. SPIE 2437, to be published, and K. Goldberg et al., J. Vac. Sci. Technol. B 13, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. copyright 1996 American Institute of Physics
Parsimonious Refraction Interferometry and Tomography
Hanafy, Sherif; Schuster, Gerard T.
2017-01-01
We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves
Phase Referencing in Optical Interferometry
Filho, Mercedes E.; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie
2008-01-01
One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...
Extreme ultraviolet interferometry
Energy Technology Data Exchange (ETDEWEB)
Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-12-01
EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources
International Nuclear Information System (INIS)
1993-09-01
The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument's components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200 angstrom wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency
Landau-Zener-Stueckelberg interferometry
Energy Technology Data Exchange (ETDEWEB)
Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)
2010-07-15
A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.
Landau-Zener-Stueckelberg interferometry
International Nuclear Information System (INIS)
Shevchenko, S.N.; Ashhab, S.; Nori, Franco
2010-01-01
A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.
Kaon interferometry; Interferometria de kaons
Energy Technology Data Exchange (ETDEWEB)
Roldao, C.G.; Padula, S.S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)
1994-06-01
Preliminary results of the {chi}{sup 2} analysis where data on kaon interferometry, obtained from the E859 Collaboration of the AGS/Brookhaven Nat.Lab., are compared with results of a hadronic resonance production model are presented. The main goal is to test the resolution power of the method here discussed when applied to the two-dimensional kaon interferometry. 11 refs., 2 figs.; e-mail: roldao at axp.ift.unesp.br; padula at axp.ift.unesp.br.
Phase estimation in optical interferometry
Rastogi, Pramod
2014-01-01
Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre
Complete positivity and neutron interferometry
International Nuclear Information System (INIS)
Benatti, F.; Floreanini, R.
1999-01-01
We analyze the dynamics of neutron beams in interferometry experiments using quantum dynamical semigroups. We show that these experiments could provide stringent limits on the non-standard, dissipative terms appearing in the extended evolution equations. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Special topics in infrared interferometry. [Michelson interferometer development
Hanel, R. A.
1985-01-01
Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.
Multi-Axis Heterodyne Interferometry (MAHI)
Thorpe, James
. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.
Precision Geodesy via Radio Interferometry.
Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F
1972-10-27
Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.
Generalized interferometry - I: theory for interstation correlations
Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian
2017-02-01
Earth structure. Not making any restrictive assumptions on the nature of the wavefield sources, our theory can be applied to earthquake and ambient noise data, either separately or combined. This allows us (i) to locate earthquakes using interstation correlations and without knowledge of the origin time, (ii) to unify the earthquake-based two-station method and noise correlations without the need to exclude either of the two data types, and (iii) to eliminate the requirement to remove earthquake signals from noise recordings prior to the computation of correlation functions. In addition to the basic theory for acoustic wavefields, we present numerical examples for 2-D media, an extension to the most general viscoelastic case, and a method for the design of optimal processing schemes that eliminate the forward modelling error completely. This work is intended to provide a comprehensive theoretical foundation of full-waveform interferometry by correlation, and to suggest improvements to current passive monitoring methods.
Holographic interferometry in construction analysis
Energy Technology Data Exchange (ETDEWEB)
Hartikainen, T.
1995-12-31
In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)
Holographic interferometry of high pressure
International Nuclear Information System (INIS)
McIlwain, M.E.
1987-01-01
Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented
From master slave interferometry to complex master slave interferometry: theoretical work
Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian
2018-03-01
A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.
Future Looks Bright for Interferometry
2008-09-01
First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility
Signal processing methods for in-situ creep specimen monitoring
Guers, Manton J.; Tittmann, Bernhard R.
2018-04-01
Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.
Experimental demonstration of deep frequency modulation interferometry.
Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán
2016-01-25
Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.
Geometric phase modulation for stellar interferometry
International Nuclear Information System (INIS)
Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.
2002-01-01
Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer
Chromatic dispersion effects in ultra-low coherence interferometry
Energy Technology Data Exchange (ETDEWEB)
Lychagov, V V; Ryabukho, V P [N.G.Chernyshevsky Saratov State University (Russian Federation)
2015-06-30
We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that is an order of magnitude greater than the pulse width. (interferometry)
3D super-virtual refraction interferometry
Lu, Kai
2014-08-05
Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.
Bounding the Higgs boson width through interferometry.
Dixon, Lance J; Li, Ye
2013-09-13
We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.
Application of deconvolution interferometry with both Hi-net and KiK-net data
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Space Interferometry Mission Instrument Mechanical Layout
Aaron, K.; Stubbs, D.; Kroening, K.
2000-01-01
The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).
Some applications of holographic interferometry in biomechanics
Ebbeni, Jean P. L.
1992-03-01
Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.
Interferometry of high energy nuclear collisions
International Nuclear Information System (INIS)
Padula, S.S.
1990-01-01
The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)
Analytic approximations for inside-outside interferometry
Energy Technology Data Exchange (ETDEWEB)
Padula, S.S.; Gyulassy, M. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)
1990-07-30
Analytical expressions for pion interferometry are derived illustrating the competing effects of various non-ideal aspects of inside-outside cascade dynamics at energies {proportional to}200 AGeV. (orig.).
High-contrast Nulling Interferometry Techniques Project
National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...
Fundamental physics research and neutron interferometry
Energy Technology Data Exchange (ETDEWEB)
Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)
1996-08-01
The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)
Novel Polarimetric SAR Interferometry Algorithms, Phase I
National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...
Super-virtual refraction interferometry: Theory
Bharadwaj, Pawan
2011-01-01
Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.
2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry
International Nuclear Information System (INIS)
Kawahata, Kazuo; Okajima, Shigeki
2000-01-01
Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)
Energy Technology Data Exchange (ETDEWEB)
Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)
2010-04-21
Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.
Spherical grating based x-ray Talbot interferometry
Energy Technology Data Exchange (ETDEWEB)
Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)
2015-11-15
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and
Spherical grating based x-ray Talbot interferometry
International Nuclear Information System (INIS)
Cong, Wenxiang; Xi, Yan; Wang, Ge
2015-01-01
Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and
Understanding the spreading of a Gaussian wave packet using the ...
Indian Academy of Sciences (India)
ploiting the machinery of the Bohmian model of quantum mechanics, the way the wave ... inexactness of quantum theory seems to be eliminated by ensuring a ... In this paper, keeping aside the subtle conceptual debates concerning the.
Quantum teleportation of nonclassical wave packets: An effective multimode theory
Energy Technology Data Exchange (ETDEWEB)
Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira [Department of Applied Physics, University of Tokyo, Tokyo (Japan)
2011-07-15
We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.
Wave packet construction in three-dimensional quantum billiards ...
Indian Academy of Sciences (India)
E-mail: mannu_711@yahoo.co.in. MS received 14 ... The motivation to extend the study to a three-dimensional (3D) system is .... with a GWP centred around the central value of the principle quantum number n0 instead of a GWP ...... Cubical and parallelepiped billiards are the potential candidates for the creation of arti-.
Fine structure of large amplitude chorus wave packets
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.
2014-01-01
Roč. 41, č. 2 (2014), s. 293-299 ISSN 0094-8276 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : whistler-mode chorus * waveform measurements * nonlinear phenomena Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013GL058889/abstract
Wave Packet Based Statistical Approach to Complex-Forming Reactions
Energy Technology Data Exchange (ETDEWEB)
Guo, Hua [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry and Chemical Biology
2017-12-06
Combustion represents a key chemical process in energy consumption in modern societies and a clear and comprehensive understanding of the elemental reactions in combustion is of great importance to a number of challenging areas such as engine efficiency and environmental protection. In this award, we proposed to develop new theoretical tools to understand elemental chemical processes in combustion environments. With the support of this DOE grant, we have made significant advances in developing new and more efficient and accurate algorithms to characterize reaction dynamics.
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
Parsimonious Refraction Interferometry and Tomography
Hanafy, Sherif
2017-02-04
We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
The Lindley paradox in optical interferometry
International Nuclear Information System (INIS)
Mauri, Camillo; Paris, Matteo G.A.
2016-01-01
The so-called Lindley paradox is a counterintuitive statistical effect where the Bayesian and frequentist approaches to hypothesis testing give radically different answers, depending on the choice of the prior distribution. In this paper we address the occurrence of the Lindley paradox in optical interferometry and discuss its implications for high-precision measurements. In particular, we focus on phase estimation by Mach–Zehnder interferometers and show how to mitigate the conflict between the two approaches by using suitable priors. - Highlights: • We address the occurence of Lindley paradox in interferometry and discuss its implications for high-precision measurements. • We show how to mitigate the conflict between Bayesian and frequentist approach to interferometry using suitable priors. • Our results apply to calibration of homodyne detectors for quantum tomography.
A system for airborne SAR interferometry
DEFF Research Database (Denmark)
Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan
1996-01-01
Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets......) the status of the airborne interferometry activities at DCRS, including the present system configuration, recent results, and some scientific applications of the system....
Samuel A. Werner Pioneer of Neutron Interferometry
International Nuclear Information System (INIS)
Klein, Anthony
2005-01-01
Full text: In 1975, Sam Werner and his collaborators on the staff of the Scientific Laboratory of the Ford Motor Company carried out one of the pioneering experiments in neutron interferometry at the 2MW University of Michigan research reactor. It was the famous COW Experiment on gravitationally induced quantum interference. Shortly thereafter he moved to the University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. The Interferometry and Coherence session at this conference has been organized in his honour and the collected papers presented by his friends, collaborators and former students form his Festschrift. (author)
Multi-link laser interferometry architecture for interspacecraft displacement metrology
Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.
2018-03-01
Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.
Global astrometry with the space interferometry mission
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry
International Nuclear Information System (INIS)
Achiwa, Norio; Ebisawa, Toru
1998-03-01
The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)
Precision measurements with atom interferometry
Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.
2017-04-01
Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601
Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)
International Nuclear Information System (INIS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.
2012-01-01
A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (∼15–50 km/s), jet length (∼20–100 cm), and 3D expansion.
Green's function representations for seismic interferometry
Wapenaar, C.P.A.; Fokkema, J.T.
2006-01-01
The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered
Basic radio interferometry for future lunar missions
Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino
2014-01-01
In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,
Monitoring civil infrastructure using satellite radar interferometry
Chang, L.
2015-01-01
Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,
Photopolymer for Optical Holography and Holographic Interferometry
Czech Academy of Sciences Publication Activity Database
Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.
2010-01-01
Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf
Super-virtual refraction interferometry: an engineering field data example
Hanafy, Sherif M.
2012-10-01
The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.
All-optical optoacoustic microscope based on wideband pulse interferometry.
Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis
2016-05-01
Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.
Super-virtual refraction interferometry: an engineering field data example
Hanafy, Sherif M.; Alhagan, Ola
2012-01-01
The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul
2017-08-25
Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.
Mechanical Strain Measurement from Coda Wave Interferometry
Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.
2017-12-01
Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the
Time-delay interferometry for LISA
International Nuclear Information System (INIS)
Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.
2002-01-01
LISA (Laser Interferometer Space Antenna) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases or frequencies of laser beams exchanged between three remote spacecraft. We previously showed how, with lasers of identical frequencies on stationary spacecraft, the measurement of twelve time series of Doppler shifts could be combined to cancel exactly the phase noise of the lasers and the Doppler fluctuations due to noninertial motions of the six optical benches, while preserving gravitational wave signals. Here we generalize those results on gravitational wave detection with time-delay interferometry to the expected LISA instrument. The six lasers have different center frequencies (in the nominal LISA configuration these center frequencies may well differ by several hundred megahertz) and the distances between spacecraft pairs will change with time (these slowly varying orbital Doppler shifts are expected to be up to tens of megahertz). We develop time-delay data combinations which, as previously, preserve gravitational waves and exactly cancel the leading noise source (phase fluctuations of the six lasers); these data combinations then imply transfer functions for the remaining system noises. Using these, we plot frequency and phase power spectra for modeled system noises in the unequal Michelson combination X and the symmetric Sagnac combination ζ. Although optical bench noise can no longer be cancelled exactly, with the current LISA specifications it is suppressed to negligible levels. It is known that the presently anticipated laser center frequency differences and the orbital Doppler drifts introduce another source of phase noise, arising from the onboard oscillators required to track the photodetector fringes. For the presently planned mission, our analysis indeed demonstrates that noise from current-generation ultrastable oscillators would, if uncorrected, dominate the LISA noise budget. To meet the
Self-mixing interferometry: a novel yardstick for mechanical metrology
Donati, Silvano
2016-11-01
A novel configuration of interferometry, SMI (self-mixing interferometry), is described in this paper. SMI is attractive because it doesn't require any optical part external to the laser and can be employed in a variety of measurements - indeed it is sometimes indicated as the "interferometer for measuring without an interferometer". On processing the phase carried by the optical field upon propagation to the target under test, a number of applications have been developed, including traditional measurements related to metrology and mechanical engineering - like displacement, distance, small-amplitude vibrations, attitude angles, velocity, as well as new measurements, like mechanical stress-strain hysterisis and microstructure/MEMS electro-mechanical response. In another field, sensing of motility finds direct application in a variety of biophysical measurements, like blood pulsation, respiratory sounds, chest acoustical impedance, and blood velocity profile. And, we may also look at the amplitude of the returning signal in a SMI, and we can measure weak optical echoes - for return loss and isolation factor measurements, CD readout and scroll sensing, and THz-wave detection. Last, the fine details of the SMI waveform reveal physical parameters of the laser like the laser linewidth, coherence length, and alpha factor. Worth to be noted, SMI is also a coherent detection scheme, and measurement close to the quantum limit of received field with minimum detectable displacements of 100 pm/√Hz are currently achieved upon operation on diffusive targets, whereas in detection mode returning signal can be sensed down to attenuations of -80dB.
Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian
2018-03-20
The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.
Kinetic Titration Series with Biolayer Interferometry
Frenzel, Daniel; Willbold, Dieter
2014-01-01
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647
Optical interferometry for biology and medicine
Nolte, David D
2012-01-01
This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...
Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).
Energy Technology Data Exchange (ETDEWEB)
Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.
Enhanced Interferometry with Programmable Spatial Light Modulator
2010-06-07
Interferometry, Spatial Light Modulator, Surface Accuracy, Optics, Mirror, Zernike , Freeform Optics, Null Testing, Hartman, Wavefront 16. SECURITY...S L M P ix e l- c a m Tilted Flat Mirror L a s e r PV. ± 3.4 λ -Tilt by the flat mirror, ~7 waves ~ 14 fringes Interferogram 3D view (Various...Interferogram ( 3D view) x- profile y- profile (Various waveplates and telescopes not shown) SLM can compensate tilted wavefronts with an accuracy of
Laser interferometry for the Big Bang Observer
Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl
2006-01-01
The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.
Laser interferometry for the Big Bang Observer
Energy Technology Data Exchange (ETDEWEB)
Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)
2006-08-07
The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.
Signal Processing in Cold Atom Interferometry-Based INS
2014-03-27
angular rotation. Additionally, because of their particle nature, the atoms may be treated as inertial masses and their movement is used to determine the...G(τ)δβ(τ) = Φ(∆t)xi + wdi where β(t) is a Brownian motion process with dispersion Q, andΦ is the discrete-time state transition matrix [14]. That is...identity matrix, I. βA and βG are 3 × 1 vectors of independent, unity Brownian motions, that is, βA(t) ∼ N (0, t · I) and βG(t) ∼ N (0, t · I). The rate
Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor
Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.
2013-01-01
The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.
Development of Speckle Interferometry Algorithm and System
International Nuclear Information System (INIS)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-01-01
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Crest Factor Reduction in MC-CDMA Employing Carrier Interferometry Codes
Directory of Open Access Journals (Sweden)
Natarajan Balasubramaniam
2004-01-01
Full Text Available This paper addresses signal compactness issues in MC-CDMA employing carrier interferometry codes using the measure of crest factor (CF. Carrier interferometry codes, applied to N -carrier MC-CDMA systems, enable 2N users to simultaneously share the system bandwidth with minimal degradation in performance (relative to the N -orthogonal-user case. First, for a fully loaded ( K=N and K=2N users MC-CDMA system with practical values of N , it is shown that the CF in downlink transmission demonstrates desirable properties of low mean and low variance. The downlink CF degrades when the number of users in the system decreases. Next, the high CF observed in the uplink is characterized and the poor CF in a partially loaded downlink as well as uplink is effectively combated using Schroeder's analytical CF reduction techniques.
Actively stabilized optical fiber interferometry technique for online/in-process surface measurement
International Nuclear Information System (INIS)
Wang Kaiwei; Martin, Haydn; Jiang Xiangqian
2008-01-01
In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm
Attosecond-resolved photoionization of chiral molecules.
Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y
2017-12-08
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Yamamoto, M.; Nishida, K.; Takeda, T.
2012-12-01
Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the
Phase-shift interferometry with a digital photocamera
International Nuclear Information System (INIS)
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses
Atom Interferometry for Fundamental Physics and Gravity Measurements in Space
Kohel, James M.
2012-01-01
Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.
Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry
International Nuclear Information System (INIS)
Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P
2006-01-01
Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio
International Nuclear Information System (INIS)
Brombin, M.; Zilli, E.; Giudicotti, L.; Boboc, A.; Murari, A.
2009-01-01
A systematic comparison between the line integrated electron density derived from interferometry and polarimetry at JET has been carried out. For the first time the reliability of the measurements of the Cotton-Mouton effect has been analyzed for a wide range of main plasma parameters and the possibility to evaluate the electron density directly from polarimetric data has been studied. The purpose of this work is to recover the interferometric data with the density derived from the measured Cotton-Mouton effect, when the fringe jump phenomena occur. The results show that the difference between the line integrated electron density from interferometry and polarimetry is with one fringe (1.143x10 19 m -2 ) for more than 90% of the cases. It is possible to consider polarimetry as a satisfactory alternative method to interferometry to measure the electron density and it could be used to recover interferometric signal when a fringe jumps occurs, preventing difficulties for the real-time control of many experiments at the JET machine.
Probing dark energy with atom interferometry
International Nuclear Information System (INIS)
Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.
2015-01-01
Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry
Probing dark energy with atom interferometry
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)
2015-03-01
Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.
Baseline-dependent averaging in radio interferometry
Wijnholds, S. J.; Willis, A. G.; Salvini, S.
2018-05-01
This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.
Frequency scanning interferometry for CLIC component fiducialisation
Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department
2016-01-01
We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.
Spin dynamics in polarized neutron interferometry
International Nuclear Information System (INIS)
Buchelt, R.J.
2000-05-01
Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental
Nonlinear Kalman filters for calibration in radio interferometry
Tasse, C.
2014-06-01
The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that
Fast sub-electron detectors review for interferometry
Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe
2016-08-01
New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA
Persistent Scatterer Interferometry using Sentinel-1 Data
Monserrat, Oriol; Crosetto, Michele; Devanthery, Nuria; Cuevas-Gonzalez, Maria; Qihuan, Huang; Barra, Anna; Crippa, Bruno
2016-04-01
This work will be focused on the deformation measurement and monitoring using SAR imagery from the C-band Sentinel-1, a space mission funded by the European Union and carried out by the European Space Agency (ESA) within the Copernicus Programme. The work will firstly address the data processing and analysis procedure implemented by the authors. This includes both Persistent Scatterer Interferometry (PSI) tools to analyse large stacks of SAR images (say, typically more than 20 images), and Differential SAR Interferometry (DInSAR) tools to analyse short SAR image stacks. The work will discuss the characteristics of the main products derived by using Sentinel-1 DInSAR and PSI: deformation maps, deformation velocity maps, deformation time series, residual topographic error, etc. The analysis will be carried out over different types of land use area, e.g. urban, peri-urban and rural areas. The deformation monitoring based on Sentinel-1 data will be compared with the monitoring based on data from pre-existing missions, e.g. C-band ERS and Envisat, X-band TerraSAR-X and CosmoSkyMed, etc. The comparison will concern different study areas, mainly located in Italy and Spain.
Astronomical optical interferometry, II: Astrophysical results
Directory of Open Access Journals (Sweden)
Jankov S.
2011-01-01
Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.
Observations of binary stars by speckle interferometry
International Nuclear Information System (INIS)
Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.
1980-01-01
This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)
GLINT. Gravitational-wave laser INterferometry triangle
Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine
2017-11-01
When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.
The effects of orbital motion on LISA time delay interferometry
International Nuclear Information System (INIS)
Cornish, Neil J; Hellings, Ronald W
2003-01-01
In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be cancelled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables α (t), β (t) and γ (t) will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable ζ (t). The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Δ Sagnac variables, one of which accomplishes the same goal as ζ (t) to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, X(t), Y(t) and Z(t), which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of ∼5 Hz Hz -1/2
Isotope Analysis of Uranium by Interferometry; Analyse isotopique de l'uranium par interferometrie
Energy Technology Data Exchange (ETDEWEB)
Leicknam, J P [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1962-07-01
Among the optical methods which may be used to make isotopic measurements of {sup 235}U interferometry gives promising results. An apparatus is described which has a photomultiplier as receiver; the source must therefore have characteristics (intensity, stability, fineness of emitted rays) which have led to the use of electrode-less discharge tubes whose methods of production and excitation are given. An example of calibration is given. (author) [French] Parmi les methodes optiques permettant le dosage isotopique de l'uranium 235, l'interferometrie est une technique qui donne des resultats prometteurs. On decrit ici un appareil ayant un photo-multiplicateur comme recepteur; la source doit donc avoir des caracteristiques (intensite, stabilite, finesse des raies emises) qui ont conduit a utiliser des tubes a decharge sans electrode dont on indique la fabrication et le mode d'excitation. Un exemple d'etalonnage est enfin donne. (auteur)
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Resolving power test of 2-D K+ K+ interferometry
International Nuclear Information System (INIS)
Padula, Sandra S.; Roldao, Christiane G.
1999-01-01
Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)
Development of a Multi-Point Microwave Interferometry (MPMI) Method
Energy Technology Data Exchange (ETDEWEB)
Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.
Enhancing core-diffracted arrivals by supervirtual interferometry
Bharadwaj, P.
2013-12-03
A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.
All-Sky Interferometry with Spherical Harmonic Transit Telescopes
Energy Technology Data Exchange (ETDEWEB)
Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.
2013-02-01
In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.
Xia, Haiyun; Zhang, Chunxi
2010-03-01
An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 microm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.
Seeing Stars - Intensity Interferometry in the Laboratory & on the Ground
Carlile, Colin; Dravins, Dainis
2018-04-01
In many ways it is a golden age for astronomy. Spectacular new discoveries, for example the detection of gravitational waves, are very dependent upon instrumental development. The specific instrument development we propose, Intensity Interferometry (II), aims toimprove the spatial resolution of optical telescopes by 100x to 50µas [1]. This is impractical to achieve by increasing the size of telescopes or by extending the capabilities of phase interferometry. II, if implemented on the Cherenkov Telescope Array (CTA) currently being installed in La Palma and Paranal, would record the light intensity – the photon train - from many different telescopes, up to 2 km apart, on a nanosecond timescale and compare them. The signal from the many pairs of telescopes would quantify the degree of correlation by extracting the second-order correlation function, and thus create an image. This is not a real space image. However we can invert the data by Fourier Transform and create a real image. The more telescopes, the better resolved and more physical is the image, enabling the study of sunspots on nearby stars; orbiting binary stars; or exoplanets traversing the disc of their own star. We understand the Sun well but we have little experimental knowledge of how representative it is of main sequence stars. To test the II method, at Lund Observatory we have set up a laboratory analogue comprising ten small telescopes observing an artificial star created by light from a laser. The method has been shown to work [2] and the telescope array has now been extended to two dimensions. We are in discussion with other groups to explore the possibility of implementing this method on real telescopes observing actual stars. We plan to do this with the prototype Small Size Telescopes being built by groups in Europe, and ultimately with the CTA itself. A Science Working Group for II has now been set up within the CTA Consortium, of which Lund University is an integral part. A Letter of Intent
Atom-surface potentials and atom interferometry
International Nuclear Information System (INIS)
Babb, J.F.
1998-01-01
Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)
Real time processor for array speckle interferometry
International Nuclear Information System (INIS)
Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.
1989-01-01
With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods
Unification of nonclassicality measures in interferometry
Yuan, Xiao; Zhou, Hongyi; Gu, Mile; Ma, Xiongfeng
2018-01-01
From an operational perspective, nonclassicality characterizes the exotic behavior in a physical process which cannot be explained with Newtonian physics. There are several widely used measures of nonclassicality, including coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists evidence of fundamental connections among the three measures. However, the sources of nonclassicality are still regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of defining a unified nonclassicality with an operational motivation founded on the capability of interferometry. Nonclassicality appears differently as coherence, discord, and entanglement in different scenarios with local measurement, weak basis-independent measurement, and strong basis-independent measurement, respectively. Our results elaborate how these three measures are related and how they can be transformed from each other. Experimental schemes are proposed to test the results.
Compressed-sensing wavenumber-scanning interferometry
Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli
2018-01-01
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.
Edge effects in composites by moire interferometry
Czarnek, R.; Post, D.; Herakovich, C.
1983-01-01
The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.
The digital holographic interferometry in resonant acoustic spectroscopy
International Nuclear Information System (INIS)
GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.
2014-01-01
The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)
Investigation of surface deformations by double exposure holographic interferometry
International Nuclear Information System (INIS)
Ecevit, F.N.; Guven, H.; Aydin, R.
1990-01-01
Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs
Two-dimensional χ2 analysis in kaon interferometry
International Nuclear Information System (INIS)
Roldao, C.G.; Padula, S.S.
1997-01-01
This work presents preliminary results obtained from the χ 2 analysis performed on the E 859 Joint Work data. The work objective is to quantify the resolution power of the kaon two-dimension interferometry
Observational Model for Precision Astrometry with the Space Interferometry Mission
National Research Council Canada - National Science Library
Turyshev, Slava G; Milman, Mark H
2000-01-01
The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...
Using Seismic Interferometry to Investigate Seismic Swarms
Matzel, E.; Morency, C.; Templeton, D. C.
2017-12-01
Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Principles and methods of neutron interferometry
International Nuclear Information System (INIS)
Bonse, U.
1978-01-01
The merits of Angstrom range interferometry with neutrons are briefly outlined. The energy (wavelength) range which is accessible with the triple Laue case (LLL) crystal interferometer is estimated, assuming a neutron source with flux characteristics similar to that of the HFR at Grenoble. It appears that a range in E from roughly 2.3 meV to 8.2eV (lambda approximatly equal to 6A to 0.1A) can be covered with LLL interferometers manufactured with presently available perfect crystals of silicon. Within this range there exists a number of scattering resonances that it seems worth while to investigate interferometrically. The attainable resolution ΔE/E is estimated to be at least 10 -3 for E -2 above. The essentials of zero absorption Bragg diffraction optics of the neutron LLL interferometer are described. Virtues and weaknesses of different LLL geometries are discussed. The influence of geometrical abberrations, strain and position instabilities are surveyed. Aspects of coherent scattering length measurements and of neutron phase topography are discussed
On marginally resolved objects in optical interferometry
Lachaume, R.
2003-03-01
With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.
High-Speed Interferometry Under Impacting Drops
Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T
2017-01-01
Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.
Time delay interferometry with moving spacecraft arrays
International Nuclear Information System (INIS)
Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.
2004-01-01
Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac
High-Speed Interferometry Under Impacting Drops
Langley, Kenneth R.
2017-08-31
Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.
Quasar Astrophysics with the Space Interferometry Mission
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING
Directory of Open Access Journals (Sweden)
R. Dwivedi
2016-06-01
Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.
Digital Double-Pulse Holographic Interferometry for Vibration Analysis
Directory of Open Access Journals (Sweden)
H.J. Tiziani
1996-01-01
Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
A publication database for optical long baseline interferometry
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
Pipeline monitoring with interferometry in non-arid regions
Energy Technology Data Exchange (ETDEWEB)
McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)
2005-07-01
Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)
Deghosting, Demultiple, and Deblurring in Controlled-Source Seismic Interferometry
Directory of Open Access Journals (Sweden)
Joost van der Neut
2011-01-01
Full Text Available With controlled-source seismic interferometry we aim to redatum sources to downhole receiver locations without requiring a velocity model. Interferometry is generally based on a source integral over cross-correlation (CC pairs of full, perturbed (time-gated, or decomposed wavefields. We provide an overview of ghosts, multiples, and spatial blurring effects that can occur for different types of interferometry. We show that replacing cross-correlation by multidimensional deconvolution (MDD can deghost, demultiple, and deblur retrieved data. We derive and analyze MDD for perturbed and decomposed wavefields. An interferometric point spread function (PSF is introduced that can be obtained directly from downhole data. Ghosts, multiples, and blurring effects that may populate the retrieved gathers can be locally diagnosed with the PSF. MDD of perturbed fields can remove ghosts and deblur retrieved data, but it leaves particular multiples in place. To remove all overburden-related effects, MDD of decomposed fields should be applied.
Atmospheric Phase Delay in Sentinel SAR Interferometry
Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.
2018-04-01
The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation
ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY
Directory of Open Access Journals (Sweden)
V. Krishnakumar
2018-04-01
Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate
Monitoring Unstable Glaciers with Seismic Noise Interferometry
Preiswerk, L. E.; Walter, F.
2016-12-01
Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.
Split-And-Delay Unit for FEL Interferometry in the XUV Spectral Range
Directory of Open Access Journals (Sweden)
Sergey Usenko
2017-05-01
Full Text Available In this work we present a reflective split-and-delay unit (SDU developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet XUV pump–XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a special design using two reflective lamellar gratings. The gratings produce a high-contrast interference signal controlled by the grating displacement in every diffraction order. The orders are separated in the focal plane of the focusing optics, which enables one to avoid phase averaging by spatially selective detection of a single interference state of the two light fields. Interferometry requires a precise relative phase control of the light fields, which presents a challenge at short wavelengths. In our setup the phase delay is determined by an in-vacuum white light interferometer (WLI that monitors the surface profile of the SDU in real time and thus measures the delay for each laser shot. The precision of the WLI is 1 nm as determined by optical laser interferometry. In the presented experimental geometry it corresponds to a time delay accuracy of 3 as, which enables phase-resolved XUV pump–XUV probe experiments at free-electron laser (FEL repetition rates up to 60 Hz.
Interferometry correlations in central p+Pb collisions
Bożek, Piotr; Bysiak, Sebastian
2018-01-01
We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.
Interferometry correlations in central p+Pb collisions
Energy Technology Data Exchange (ETDEWEB)
Bozek, Piotr; Bysiak, Sebastian [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)
2018-01-15
We present results on interferometry correlations for pions emitted in central p+Pb collisions at √(s{sub NN}) = 5.02 TeV in a 3 + 1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration. (orig.)
The compact and inexpensive arrowhead setup for holographic interferometry
Energy Technology Data Exchange (ETDEWEB)
Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)
2011-07-15
Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
Phase extracting algorithms analysis in the white-light spectral interferometry
Guo, Tong; Li, Bingtong; Li, Minghui; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2018-01-01
As an optical testing method, white-light spectral interferometry has the characteristics of non-contact, high precision. The phase information can be obtained by analyzing the spectral interference signal of the tested sample, and then the absolute distance is calculated. Fourier transform method, temporal phase-shifting method, spatial phase-shifting method and envelope method can be used to extract the phase information of the spectral interference signal. In this paper, the performance of four methods to extract phase information is simulated and analyzed by using the ideal spectral interference signal. It turns out that temporal phase-shifting method has the performance of high precision, the results of Fourier transform method and envelop method are distorted at the edge of the signal, and spatial phase-shifting method has the worst precision. Adding different levels of white noise to the ideal signal, temporal phase-shifting method is most accurate, while Fourier transform method and envelope method are relatively poor. Finally, the absolute distance measurement experiment is carried out on the constructed test system, and the results are consistent with the simulation ones.
Angle of arrival estimation using spectral interferometry
International Nuclear Information System (INIS)
Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.
2010-01-01
We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.
Angle of arrival estimation using spectral interferometry
Energy Technology Data Exchange (ETDEWEB)
Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)
2010-09-15
We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.
Laser interferometry of radiation driven gas jets
Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.
2017-06-01
In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)
Theoretical trends in interferometry of ultrarelativistic nuclear collisions
International Nuclear Information System (INIS)
Padula, S.S.
1990-01-01
A review is made of the main concepts of interferometry, since its discovery in the mid 50's as the HBT effect, until recently, where some new approaches to the field were suggested. A few modifications on the correlation function in the case of high energy collisions are discussed and illustrated. (author)
A new polarized neutron interferometry facility at the NCNR
Energy Technology Data Exchange (ETDEWEB)
Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)
2016-03-21
A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.
Matter wave interferometry in the light of Schroedinger's wave mechanics
International Nuclear Information System (INIS)
1987-01-01
This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)
Deformation measurement of a pressure vessel flange by holographic interferometry
International Nuclear Information System (INIS)
Goncalves Junior, Armando A.; Schneider, C.A.
1984-01-01
An automatic metodology used for the measurement of displacement through the holographic interferometry is presented. In order to shown its performance and potentiality, the displacement field from a pipe's and flange, when submited to an internal pressure, is experimentally found. Holography's results are compared with other technique's results. (Author) [pt
Time-lapse controlled-source electromagnetics using interferometry
Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.
In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.
Generation of Bell, NOON and W states via atom interferometry
Energy Technology Data Exchange (ETDEWEB)
Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2008-02-14
We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.
Radio astronomical interferometry and x-ray's computerized tomography
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, L F [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia
1982-01-01
Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science.
Michelson wide-field stellar interferometry : Principles and experimental verification
Montilla, I.; Pereira, S.F.; Braat, J.J.M.
2005-01-01
A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in
Back scattering interferometry revisited – A theoretical and experimental investigation
DEFF Research Database (Denmark)
Jørgensen, Thomas Martini; Jepsen, S. T.; Sørensen, Henrik Schiøtt
2015-01-01
A refractive index based detector based on so called back scattering interferometry (BSI) has been described in the literature as a unique optical method for measuring biomolecular binding interactions in solution. In this paper, we take a detailed look at the optical principle underlying this te...
Global-scale seismic interferometry : Theory and numerical examples
Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.
2008-01-01
Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been
Pion interferometry theory for the hydrodynamic stage of multiple processes
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1986-01-01
The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism
Tracking changes in volcanic systems with seismic Interferometry
Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,
2014-01-01
The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difﬁcult to measure, such changes carry important information about stresses and ﬂuids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse ﬁelds as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the ﬁrst to
Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles
2013-09-23
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
Super-virtual refraction interferometry: Field data example over a colluvial wedge
Hanafy, Sherif M.; Alhagan, Ola; Al-Tawash, Feras
2011-01-01
The theory of super-virtual refraction interferometry was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of SNR is proportional to N, and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the enhancement of SNR of the super-virtual refraction traces for seismic data collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival-traveltime picks are significantly increased. © 2011 Society of Exploration Geophysicists.
Energy Technology Data Exchange (ETDEWEB)
Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)
2016-12-15
In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.
Energy Technology Data Exchange (ETDEWEB)
Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)
2014-12-15
In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.
Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.
2018-05-01
Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.
Two-level image authentication by two-step phase-shifting interferometry and compressive sensing
Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-01-01
A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.
Initial wavefunction dependence on atom interferometry phases
Jansen, M.A.H.M.; Leeuwen, van K.A.H.
2008-01-01
In this paper we present a mathematical procedure to analytically calculate the output signal of a pulsed atom interferometer in an inertial field. Using the wellknown ABCD¿ method we take into account the full wave dynamics of the atoms with a first order treatment of the wavefront distortion by
Alshuhail, Abdulrahman Abdullatif Abdulrahman
2012-01-01
Complex near-surface anomalies are one of the main onshore challenges facing seismic data processors. Refraction tomography is becoming a common technology to estimate an accurate near-surface velocity model. This process involves picking the first arrivals of refracted waves. One of the main challenges with refraction tomography is the low signal-to-noise ratio characterizing the first-break waveform arrivals, especially for the far-offset receivers. This is especially evident in data recorded using reflection acquisition geometry. This low signal-to-noise ratio is caused by signal attenuation due to geometrical spreading of the seismic wavefield, near-surface-generated noise, and amplitude absorption. Super-virtual refraction interferometry improves the quality of the first-break picks by enhancing the amplitude of the refracted waves and attenuating the amplitude of the random noise.
Energy Technology Data Exchange (ETDEWEB)
Miffre, A
2005-06-15
Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)
Energy Technology Data Exchange (ETDEWEB)
Miffre, A
2005-06-15
Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)
Directory of Open Access Journals (Sweden)
Junhua Wu
2017-01-01
Full Text Available Carbon fibre composites have a promising application future of the vehicle, due to its excellent physical properties. Debonding is a major defect of the material. Analyses of wave packets are critical for identification of the defect on ultrasonic nondestructive evaluation and testing. In order to isolate different components of ultrasonic guided waves (GWs, a signal decomposition algorithm combining Smoothed Pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking is presented. In the algorithm, the time-frequency distribution of GW is first obtained by using Smoothed Pseudo Wigner-Ville distribution. The frequencies of different modes are computed based on summation of the time-frequency coefficients in the frequency direction. On the basis of these frequencies, isolation of different modes is done by Vold–Kalman filter order tracking. The results of the simulation signal and the experimental signal reveal that the presented algorithm succeeds in decomposing the multicomponent signal into monocomponents. Even though components overlap in corresponding Fourier spectrum, they can be isolated by using the presented algorithm. So the frequency resolution of the presented method is promising. Based on this, we can do research about defect identification, calculation of the defect size, and locating the position of the defect.
Low frequency phase signal measurement with high frequency squeezing
Zhai, Zehui; Gao, Jiangrui
2011-01-01
We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...
A novel plasmonic interferometry and the potential applications
Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.
2018-03-01
In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.
A recent history of science cases for optical interferometry
Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre
2018-04-01
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.
Phase and fringe order determination in wavelength scanning interferometry.
Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel
2016-04-18
A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.
X-ray Talbot interferometry with capillary plates
International Nuclear Information System (INIS)
Momose, Atsushi; Kawamoto, Shinya
2006-01-01
An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)
MAGIA - using atom interferometry to determine the Newtonian gravitational constant
International Nuclear Information System (INIS)
Stuhler, J; Fattori, M; Petelski, T; Tino, G M
2003-01-01
We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy
Polarimetric SAR interferometry applied to land ice: modeling
DEFF Research Database (Denmark)
Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning
2004-01-01
This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...
Demystifying back scatter interferometry: a sensitive refractive index detector
DEFF Research Database (Denmark)
Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif
2014-01-01
BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... acting like a common-path interferometer. METHODS: A HeNe laser is directed at a glass capillary with inner diameter of 1.4 mm and reflected light from air/glass and liquid/glass interfaces interfere to form an RI dependent intensity fringe pattern at a CCD detector. The fringe shift relative...... a common-path interferometer. The sensitivity of the BSI system is given by twice the inner diameter of the capillary times the wavenumber of the light source. Our results suggest that Back Scatter Interferometry does not provide a unique measurement principle for sensing biochemical bindings compared...
Neutron interferometry: The pioneering contributions of Samuel A. Werner
International Nuclear Information System (INIS)
Klein, A.G.
2006-01-01
In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975) 1472] on gravitationally induced quantum interference. Shortly thereafter he moved to University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. This work and its history are briefly reviewed in this paper
Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.
Abramson, Nils H
2014-04-10
In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.
Application of synchrotron radiation to X-ray interferometry
Energy Technology Data Exchange (ETDEWEB)
Hart, M [King' s Coll., London (UK). Wheatstone Physics Lab.
1980-05-01
X-ray interferometry has been attempted with synchrotron radiation at Hamburg and at Orsay. Experiments will start this year at the Storage Ring Source at Daresbury. This review covers work which has already been completed and outlines the likely trends in phase sensitive X-ray polarimetry, high resolution spectroscopy (including real and imaginary-part EXAFS) and novel experiments with many-beam-case interferometers.
Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements
Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang
2016-01-01
We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...
Using Atom Interferometry to Search for New Forces
International Nuclear Information System (INIS)
Wacker, Jay G.
2009-01-01
Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances will be able to rewrite the limits for forces with ranges from 100 (micro)m to 1km.
Pion interferometry of ultra-relativistic hadronic collisions
International Nuclear Information System (INIS)
Kolehmainen, K.
1986-05-01
Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs
Using atom interferometry to search for new forces
International Nuclear Information System (INIS)
Wacker, Jay G.
2010-01-01
Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances may be able to rewrite the limits for forces with ranges from 1 mm to 100 m.
Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses
Energy Technology Data Exchange (ETDEWEB)
Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-09-05
Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.
HBT interferometry and the parton-hadron phase transition
International Nuclear Information System (INIS)
Soff, S.
2002-01-01
We discuss predictions for the pion and kaon interferometry measurements in relativistic heavy ion collisions at SPS and RHIC energies. In particular, we confront relativistic transport model calculations that include explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas with recent data from the RHIC experiments. We critically examine the HBT puzzle both from the theoretical as well as from the experimental point of view. Alternative scenarios are briefly explained. (orig.)
Pion interferometry and resonances in pp and AA collisions
Energy Technology Data Exchange (ETDEWEB)
Padula, S.S. (UNESP, Inst. de Fisica Teorica, Sao Paulo (Brazil)); Gyulassy, M. (Lawrence Berkeley Lab., Nuclear Science Div., CA (United States))
1992-07-20
We study the sensitivity of pion interferometry in pp and anti pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 A GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/anti pp case. (orig.).
Pion interferometry and resonances in pp and AA collisions
International Nuclear Information System (INIS)
Padula, S.S.; Gyulassy, M.
1992-01-01
We study the sensitivity of pion interferometry in pp and anti pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 A GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/anti pp case. (orig.)
Pion interferometry and resonances in pp and AA collisions
International Nuclear Information System (INIS)
Padula, S.S.
1991-01-01
We study the sensitivity of pion interferometry in bar pp and bar pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/bar pp case
Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry
Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo
1988-01-01
The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.
Real-time laser holographic interferometry for aerodynamics
International Nuclear Information System (INIS)
Lee, G.
1987-01-01
Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references
Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef
2016-12-01
The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.
International Nuclear Information System (INIS)
Le Floch, Sebastien; Salvade, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick
2010-01-01
We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of ± 50 μm for a 1 ms acquisition time.
Use of the shearing interferometry for dense inhomogeneous plasma diagnostics
International Nuclear Information System (INIS)
Zakharenkov, Yu.A.; Sklizkov, G.V.; Shikanov, A.S.
1980-01-01
Investigated is a possibility of applying the shearing interferometry for diagnostics of a dense inhomogeneous laser plasma which makes it possible to measure the electron density without losses in accuracy near the critical surface. A shearing interferogram is formed upon interference of two identical images of the object under study shifted at some fixed distance. The value of the interference band deflection inside phase inhomogeneity depends on the gradient of the index of refraction in the direction of shift. It has been found that for studying the inner region of the laser plasma a small shift should be used, and for the external one - a large one. The version of a radial shift interferometry is shown to be optimum. For the inner region of the interferogram the error of the electron density restoration does not exceed 10%, and for the external one the error is comparable with that for the version of standard interferometry. A systematic analysis of the optimum type interferometers shows advantages of shearing interferometers. The maximum electron density recorded in experiments makes up approximately equal to 10 20 cm -3 , which is 3-5 times higher than the corresponding value obtained by a standard double-slit type interferometer at equal limiting parameters of the optical system applied
PNO-apparatus and its test use for neutron interferometry
International Nuclear Information System (INIS)
Tomimitsu, Hiroshi; Aizawa, Kazuya; Hasegawa, Yuji; Kikuta, Seishi.
1993-01-01
Special apparatus 'PNO' of multiutility in the so-called precise neutron optics, such as double or triple crystal diffractometry, interferometry, etc., including neutron diffraction topography, was settled at 3G beam hole in the JRR-3M. In the symposium, several applications of the PNO apparatus are presented as 1) very small angle neutron scattering tool with double crystal arrangement, 2) the characterization of the quality of artificial multilayer lattices made of Ti-Ni by a triple crystal arrangement, 3) the characterization of Ni-base superalloy single crystals by the diffraction topography, which are presented in individual sessions. Preliminary test of the neutron interferometry was also tried with the PNO apparatus. Usual monolithic Si LLL- type interferometer was used with an Al phase shifter in the neutron beam paths. The periodicity of the measured intensity curve was well corresponded to the expected one. The best contrast of the intensity curve was measured as high as 43%. The utility of the PNO-apparatus for neutron interferometry was, thus, approved. (author)
Neutron Interferometry at the National Institute of Standards and Technology
International Nuclear Information System (INIS)
Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.
2015-01-01
Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research
Characterization methods of integrated optics for mid-infrared interferometry
Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel
2004-10-01
his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.
Analysis of surface absorbed dose in X-ray grating interferometry
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)
2014-10-15
Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.
Analysis of surface absorbed dose in X-ray grating interferometry
International Nuclear Information System (INIS)
Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu
2014-01-01
Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications
The D18 diffractometer for neutron interferometry at the I.L.L
International Nuclear Information System (INIS)
Bauspiess, W.
1978-01-01
Three things are needed for neutron interferometry: an interferometer (a crystal in the case of Bragg diffraction interferometry), a neutron source, and a device to select and handle the neutrons that shall be used. It is this last technical aspect of neutron interferometry which is discussed in the paper, using as an example the new diffractometer for neutron interferometry that is being built at the I.L.L. Results of performance tests are not presently available but its characteristics are visible from the design. The experimental figures given in the paper refer to experiments performed with the prototype machine, or are extrapolated from said experiments
Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind
International Nuclear Information System (INIS)
Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.
2010-01-01
Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.
Nonadiabatic quantum wave packet dynamics of the H + H2 reaction ...
Indian Academy of Sciences (India)
Administrator
intersections of the two JT split component states. The energetically ... between the theory and experiment,. 1 there remains ..... overhead raises by a factor of two for each WP .... Herzberg G and Longuet-Higgins H C 1963 Disscuss. Faraday.
Finite-measuring approximation of operators of scattering theory in representation of wave packets
International Nuclear Information System (INIS)
Kukulin, V.I.; Rubtsova, O.A.
2004-01-01
Several types of the packet quantization of the continuos spectrum in the scattering theory quantum problems are considered. Such a quantization leads to the convenient finite-measuring (i.e. matrix) approximation of the integral operators in the scattering theory and it makes it possible to reduce the solution of the singular integral equations, complying with the scattering theory, to the convenient purely algebraic equations on the analytical basis, whereby all the singularities are separated in the obvious form. The main attention is paid to the problems of the method practical realization [ru
On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets
Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.
2018-05-01
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)
2015-07-15
Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.
Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment
International Nuclear Information System (INIS)
Toutounji, Mohamad
2015-01-01
This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron–phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron–phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron–phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies
Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)
1998-01-01
The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).
Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"
Miller, R. J. Dwayne
2003-03-01
Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.
On the fly quantum dynamics of electronic and nuclear wave packets
Komarova, Ksenia G.; Remacle, F.; Levine, R. D.
2018-05-01
Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.
Phase-space description of wave packet approach to electronic transport in nanoscale systems
International Nuclear Information System (INIS)
Szydłowski, D; Wołoszyn, M; Spisak, B J
2013-01-01
The dynamics of conduction electrons in resonant tunnelling nanosystems is studied within the phase-space approach based on the Wigner distribution function. The time evolution of the distribution function is calculated from the time-dependent quantum kinetic equation for which an effective numerical method is presented. Calculations of the transport properties of a double-barrier resonant tunnelling diode are performed to illustrate the proposed techniques. Additionally, analysis of the transient effects in the nanosystem is carried out and it is shown that for some range of the bias voltage the temporal variations of electronic current can take negative values. The explanation of this effect is based on the analysis of the time changes of the Wigner distribution function. The decay time of the temporal current oscillations in the nanosystem as a function of the bias voltage is determined. (paper)
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit
DEFF Research Database (Denmark)
N. Pfeiffer, Adrian; Cirelli, Claudio; S. Landsman, Alexandra
2012-01-01
We present an ellipticity resolved study of momentum distributions arising from strong-field ionization of Helium at constant intensity. The influence of the ion potential on the departing electron is considered within a semi-classical model consisting of an initial tunneling step and subsequent...
Peggs, G N; Yacoot, A
2002-05-15
This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.
Electromagnetic interferometry in wavenumber and space domains in a layered earth
Hunziker, J.W.; Slob, E.C.; Fan, Y.; Snieder, R.; Wapenaar, C.P.A.
2013-01-01
With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or,
International Nuclear Information System (INIS)
Necati Ecevit, F.; Aydin, R.
1994-01-01
The difference holographic interferometry provides the possibility of direct comparison of large displacements and deformations of two similar but different objects by application of a special kind of illumination. In this work, the principles of the difference holographic interferometry and the experimental results obtained by applying the single beam technique to large displacements is presented. (author). 10 refs, 4 figs
Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago
2016-01-01
Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406
Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates
Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim
2016-05-01
We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.
RADAR INTERFEROMETRY APPLICATION FOR DIGITAL ELEVATION MODEL IN MOUNT BROMO, INDONESIA
Directory of Open Access Journals (Sweden)
Noorlaila Hayati
2015-06-01
Full Text Available This paper reviewed the result and processing of digital elevation model (DEM using L-Band ALOS PALSAR data and two-pass radar interferometry method in Bromo Mountain region. Synthetic Aperture Radar is an advanced technology that has been used to monitor deformation, land cover change, image detection and especially topographic information such as DEM. We used two scenes of SAR imageries to generate DEM extraction which assumed there is no deformation effect between two acquisitions. We could derive topographic information using phase difference by combining two single looks complex (SLC images called focusing process. The next steps were doing interferogram generation, phase unwrapping and geocoding. DEM-InSAR was compared to SRTM 90m that there were significant elevation differences between two DEMs such as smoothing surface and detail topographic. Particularly for hilly areas, DEM-InSAR showed better quality than SRTM 90 m where the elevation could have 25.94 m maximum gap. Although the processing involved adaptive filter to amplify the phase signal, we concluded that InSAR DEM result still had error noise because of signal wavelength, incidence angle, SAR image relationship, and only using ascending orbit direction.
Reduction of chromatic aberration influences in vertical scanning white-light interferometry
International Nuclear Information System (INIS)
Lehmann, Peter; Kühnhold, Peter; Xie, Weichang
2014-01-01
Vertical scanning white-light interferometry (SWLI) is a well-established method that is widely used in high precision surface topography measurement. However, SWLI results show characteristic slope-dependent errors due to dispersion effects and lateral chromatic aberrations of the optical imaging system. In this paper, we present methods to characterize these systematic errors related to dispersion and lateral colour. Lateral colour leads to field-dependent systematic discrepancies of the topography data obtained from the envelope position of a low-coherence interference signal and the data resulting from its interference phase. Hence, an erroneous fringe order obtained from the envelope position leads to a 2π phase jump and thus to a so-called ghost step in the measured topography. Our first approach to solve this problem is based on the measurement of a surface standard of well-known geometry. By comparison of measurement results related to the envelope position and the phase of SWLI signals, the systematic error is estimated and a numerical error compensation method is proposed. Both experimental and simulation results confirm the validity of this numerical method. In addition, using an improved design of a white-light Michelson interferometer we demonstrate experimentally that lateral chromatic aberrations and dispersion influences can be reduced also in a physical way. In this context, a conventional long working distance microscope objective is used which was not originally designed for a Michelson interference microscope. (paper)
Directory of Open Access Journals (Sweden)
Julien Perchoux
2016-05-01
Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.
New developments in NDT through electronic speckle pattern interferometry
International Nuclear Information System (INIS)
Mohan, S.; Murugesan, P; Mas, R.H.
2007-01-01
Full text: Optical holography and speckle interferometry are the emerging optical techniques that can be used for the measurements of microscopic parameters such as displacement, strain, stress and slope. These techniques are applied in various fields such as surface studies, non destructive testing, speckle metrology and steller interferometry. Even though many new NDT methods are available, the suitability for a specific application is based on the material property, nature of defects and sensitivity of detection. Difficulty in radiographic technique is that it fails in detecting tight cracks, planar defects and debonds. Microwave techniques has limited sensitivity for the defect detection and it is not suitable for the objects with metallic cases since the metals are perfect reflectors for the microwaves. Low modulus material attenuates the acoustic energy completely, making ultrasonic testing techniques not feasible. The recently evolved optoelectronic technique namely Electronic Speckle Pattern interferometry (ESPI) is a fast developing optical technique widely used for measuring displacement components, their derivatives, surface roughness, surface contours, shape and others. Due to non contact nature and high sensitivity, this technique has been used as a powerful on line inspection tool for non destructive pattern of materials in industrial environment. The salient feature of ESPI is its capability to display the correlation fringes in a real time on a monitor without the need of photographic processing or optical filtering. ESPI is an alternate non destructive technique suitable for propellant grains and other low modulus materials used in space vehicle systems. The optoelectronic technique can be used to detect cracks, voids and residual stresses etc.., in the components in the industrial environment. In the present investigation, speckle non destructive testing has been carried out on some selected low modulus materials used in space vehicles. The
Quadrature interferometry for plasma density measurements
International Nuclear Information System (INIS)
Warthen, B.J.; Shlachter, J.S.
1995-01-01
A quadrature interferometer has been used routinely in several pulsed power experiments to measure the line-averaged electron density. The optical source is a 30 mW, continuous wave Nd-YAG laser operating at 1,300 nm. The light is coupled directly to an optical fiber and split into reference and scene beams with a fiber splitter. The scene beam is transported to and from the plasma using single mode optical fibers up to 100 m in length. To simplify alignment through the plasma, the authors have used GRIN lenses on both the launch and receive sides of the single pass transmission diagnostic where this is possible. The return beam passes through a half-wave plate which is used to compensate for polarization rotation associated with slow (hour) time scale drift in the single mode fibers. The reference beam is sent through a quarter-wave plate to produce circular polarization; mixing of the reference and scene beams is accomplished using a non-polarizing beam splitter, and the interference signals are focused into additional fibers which relay the light to fast photodiodes. The quadrature optics allow for an unambiguous determination of the slope of the density changes at inflection points. All of the beam processing optics are located on a stable optical table which is remote and protected from the experiment. Final setup of the interferometer is facilitated by looking at the Lissajous figure generated from the two quadrature components. The authors have used this interferometer to diagnose the background density in the Pegasus-II power flow channel, to study the plasma plume generated in foil implosion experiments, to measure the plasma blowoff during implosions, and to understand the plasma formation mechanism in a fusion target plasma system
Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K
2011-06-10
Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.
IMAP: Interferometry for Material Property Measurement in MEMS
Energy Technology Data Exchange (ETDEWEB)
Jensen, B.D.; Miller, S.L.; de Boer, M.P.
1999-03-10
An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.
Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements
Vukicevic, S.; Vinter, I.; Vukicevic, D.
1983-12-01
Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.
Precision Gravity Tests with Atom Interferometry in Space
Energy Technology Data Exchange (ETDEWEB)
Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others
2013-10-15
Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.
Weld evaluation on spherical pressure vessels using holographic interferometry
International Nuclear Information System (INIS)
Boyd, D.M.; Wilcox, W.W.
1980-01-01
Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections
Holographic interferometry using a digital photo-camera
International Nuclear Information System (INIS)
Sekanina, H.; Hledik, S.
2001-01-01
The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)
Mapping small elevation changes over large areas - Differential radar interferometry
Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.
1989-01-01
A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.
Modelling of a holographic interferometry based calorimeter for radiation dosimetry
Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.
2017-08-01
In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.
Model-based multi-fringe interferometry using Zernike polynomials
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.