WorldWideScience

Sample records for wave velocity structure

  1. Shear wave velocity structure of the Bushveld Complex, South Africa

    CSIR Research Space (South Africa)

    Kgaswane, EM

    2012-07-01

    Full Text Available across the Bushveld Complex. Group velocities for 2–15 s periods were obtained from surface wave tomography using local and regional events, while group velocities for 20–60 s periods were taken from a published model. 1-D shear wave velocity models...

  2. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  3. Study on S wave velocity structure beneath part stations in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    张学民; 束沛镒; 刁桂苓

    2003-01-01

    Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.

  4. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  5. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  6. S-wave velocity structures of the Taipei Basin, Taiwan, using microtremor array measurements

    Science.gov (United States)

    Huang, Huey-Chu; Wu, Cheng-Feng; Lee, Feng-Mei; Hwang, Ruey-Der

    2015-04-01

    The S-wave velocity structures of the Taipei Basin in Taiwan are investigated using the array records of microtremors at 15 sites. Dispersion curves at these sites are calculated using the frequency-wavenumber (F-K) spectrum method. The S-wave velocity structures in the Taipei Basin are then estimated by employing surface wave inversion technique. Harder strata sites have higher phase velocities than softer sites. If the S-wave velocity of the Tertiary Basement is assumed to be 1000 m/s, then the Quaternary alluvial thicknesses in the Taipei Basin are between about 100 m and 650 m. The thickness of the alluvium gradually increases from the southeast to the northwest. The inversion results are also in good agreement with well-logging data and seismic reflection studies of the Taipei Basin. The study concludes that microtremor array measurement is a useful tool for estimating S-wave velocity structure.

  7. The Body Wave Velocity Structure in the Upper Crust of Fujian Estimated by Noise Records

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Jin Xing; Bao Ting; Lin Shu; Wei Yongxiang; Zhang Hongcai

    2012-01-01

    In this paper, the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore, the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part, but in the deep part, inversion accuracy for the wave velocity structure is low, which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part, but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion, we finally present a new velocity model, and the theoretical travel time calculated with the new model matches the explosion travel time very well.

  8. Study on Shear Wave Velocity Structure and Velocity Ratio Beneath Ordos Block and Its Eastern and Southern Margins

    Institute of Scientific and Technical Information of China (English)

    Zhang Xuemin; Diao Guiling; Shu Peiyi

    2004-01-01

    Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity ( Vs = 3.90km/s) lower than that at the same depth in its eastern and southern areas (Vs ≥ 4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and Iow velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer ( Vs = 3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the Vi/Vs ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60)in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively,and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.

  9. S-Wave Velocity Structures of the Northern Taichung Area, Taiwan, Using Microtremor Array Data

    Science.gov (United States)

    Huang, H. C.; Shih, T. H.; Wu, C. F.

    2016-12-01

    S-wave velocities have widely been used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures at the northern Taichung area, Taiwan are investigated using the array records of microtremors at 24 sites. The dispersion curves at these sites are calculated using the F-K method (Capon, 1969); then, the S-wave velocity structures at the Taichung area are estimated by employing the surface wave inversion technique (Herrmann, 1991). At most sites, observed phase velocities are almost flat with the phase velocity of about 1000 m/sec in the frequency range from 0.5 to 2Hz. This suggests that a thickness layer with an S-wave velocity of about 1100 1400m/sec was deposited. If the S-wave velocity of the Tertiary bedrock is assumed to be 1500m/sec, the depth of the alluvium at the northern Taichung area is about 270 m 1400 m. The depth of the alluvium gradually increases from east to west. The S-wave velocity decreases from east to west while the depth is larger than 400 m at the area.

  10. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2014-08-01

    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  11. Middle and upper crust shear-wave velocity structure of the Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    FENG Mei; AN Mei-jian

    2007-01-01

    In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle- and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing'an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ~105°E longitude corresponds to the N-S strong seismic belt of central China.

  12. Upper mantle shear wave velocity structure of the east Anatolian-Caucasus region

    Science.gov (United States)

    Skobeltsyn, Gleb Anatolyevich

    The Eastern Anatolian-Caucasus region is a relatively young part of the Alpine- Himalayan orogenic belt and has been formed as the result of the ongoing continental collision of Arabia and Eurasia. In spite of a number of geological studies that have been conducted in this area, there is still no consensus within the geoscience community about the regional tectonic settings and a model for the late Cenozoic tectonic evolution of the Anatolian Plateau. Knowledge of the upper mantle velocity structure in this region can provide the geological community with important constraints that are crucial for developing an understanding of the regional geology and the processes associated with early stages of mountain building. In the present dissertation, I describe two studies of the regional upper mantle S wave velocity structure. In order to derive the absolute velocity structure of the upper mantle, I have applied surface wave tomography to model Rayleigh wave phase velocities as a function of period. Then I inverted the Rayleigh phase velocities to obtain S wave velocities as a function of depth. The resulted high-resolution 3-D S wave velocity model of the regional upper mantle is characterized by a better depth resolution than any preexisting tomographic models. I also conducted an S wave splitting analysis using traditional methods and developed a two-layer grid search algorithm in order to infer the upper mantle anisotropic structure. The results of the S wave splitting analysis for the stations located in Azerbaijan are the first in the region. (Abstract shortened by ProQuest.).

  13. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  14. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

    Institute of Scientific and Technical Information of China (English)

    Jianping Wu; Yuehong Ming; Lihua Fang; Weilai Wang

    2009-01-01

    The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic re-gion, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldem. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con-sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.

  15. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  16. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  17. ESTIMATION OF S-WAVE VELOCITY STRUCTURE OF FUKUI PLAIN BASED ON MICROTREMOR ARRAY OBSERVATION

    Science.gov (United States)

    Kojima, Keisuke; Moto, Koudai

    The precise evaluations of Quaternary structure of the region are indispensable in order to accurately predict the seismic damage. However, deep borehole, PS-logging and elastic wave exploration have been executed only on limited points around the Fukui Plain. The problem analyzed in this study is statistical estimation of the 3D S-wave velocity structure down to the Tertiary bedrock of the Fukui Plain based on the data from 75 microtremor array observation sites. The Rayleigh wave phase velocities at each array site were calculated by the spatial autocorrelation method. The phase velocities at each site were inverted to a 1D S-wave profile using a genetic inversion. The 3-components single-site microtremor observations were carried out to compensate the array observations. The 3D S-wave velocity structure around the Fukui plain have been interpolated by using Kriging and Co-Kriging techniques. In the Co-Kriging procedure, the correlations between the estimated depths of Quaternary and the observed predominant periods of the sites were taken into account. The validity of the estimated structure from the microtremor observation was confirmed by comparing with the density structure and with the existing PS-logging data.

  18. Estimation of Shallow S-Wave Velocity Structure of Two Practical Sites from Microtremors Array Observation in Tangshan Area

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microtremors array observation for estimating S-wave velocity structure from phase velocities of Rayleigh and Love wave on two practical sites in Tangshan area by a China-US joint group are researched. The phase velocities of Rayleigh wave are estimated from vertical component records and those of Love wave are estimated from three-component records of microtremors array using modified spatial auto-correlation method. Haskell matrix method is used in calculating Rayleigh and Love wave phase velocities, and the shallow S-wave velocity structure of two practical sites are estimated by means of a hybrid approach of Genetic Algorithm and Simplex. The results are compared with the PS logging data of the two sites, showing it is feasible to estimate the shallow S-wave velocity structure of practical site from the observation of microtremor array.

  19. S-wave velocity structure inferred from receiver function inversion in Tengchong volcanic area

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2004-01-01

    Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow position, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.

  20. Mapping crustal S-wave velocity structure with SV-component receiver function method

    Institute of Scientific and Technical Information of China (English)

    邹最红; 陈晓非

    2003-01-01

    In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA station by using the SV-component receiver function inversion method.

  1. Three-Dimensional P-Wave Velocity Structure of the Crust of North China

    Institute of Scientific and Technical Information of China (English)

    Wei Wenbo; Ye Gaofeng; Li Yanjun; Jin Sheng; Deng Ming; Jing Jian'en

    2007-01-01

    Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe eastern and western parts differ in structural trend of stratum above the crystalline basement. The Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern

  2. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    Science.gov (United States)

    Tang, Zheng; Julià, Jordi; Mai, P. Martin

    2016-04-01

    We are utilizing receiver function and surface wave dispersion data to investigate the lithospheric shear-wave velocity structure of Saudi Arabia. The Arabian plate consists of the western Arabian shield and the eastern Arabian platform. The Arabian shield is a complicated mélange of several Proterozoic terrains, separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (so-called harrats). The Arabian platform is covered by thick Paleozoic, Mesozoic and Cenozoic sedimentary rocks. To understand the geo-dynamics and present-day geology in western Saudi Arabia, the origin and activity of the harrats needs to be investigated: are they controlled primarily by a local mantle plume underneath western Saudi Arabia or by lateral mantle flow from the Afar and (perhaps) Jordan hotspots? In our study, we first estimate Vp/Vs ratios by applying the H-κ stacking technique and construct local shear-wave velocity-depth profiles by jointly inverting teleseismic P-receiver functions and Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). Our results reveal significant lateral variations in crustal thickness, S-velocity, and bulk Vp/Vs ratio. The Arabian shield has, on average a ~34 km thick crust with Vs ~3.72 km/s and Vp/Vs ~1.73. Thinner crust (~25 - 32 km thick) with strong lateral variations is present along the Red Sea coast. In contrast, the Arabian platform reveals a ~41 km thick crust with Vs ~3.52 km/s and Vp/Vs ~1.77. We find anomalously high Vp/Vs ratios at Harrat Lunayyir, interpreted as solidified magma intrusions. Slow shear-velocities in the upper-mantle lid throughout the southernmost and northernmost Arabian shield suggest lateral heating from hot mantle upwellings centered beneath Afar and (perhaps) Jordan. Our findings on crustal S-velocity structures, Vp/Vs ratios, and upper-mantle lid velocities support the hypothesis of lateral mantle flow from the Afar and (perhaps

  3. Three-dimensional shear wave velocity structure in the Atlantic upper mantle

    Science.gov (United States)

    James, Esther Kezia Candace

    Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for

  4. Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography

    Science.gov (United States)

    Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa

    2017-01-01

    The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.

  5. S-wave velocity and Poisson's ratio structure of crust in Yunnan and its implication

    Institute of Scientific and Technical Information of China (English)

    HU; Jiafu; SU; Youjin; ZHU; Xiongguan; CHEN; Yun

    2005-01-01

    Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion.The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave veIocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust.Generally, the Poisson's ratio is on the high side, however it has a better corresponding relation to the crustal velocity structure. An obvious block distribution feature is still shown on such a high background of Poisson's ratio. It is discovered by synthetically analyzing the velocity structure and Poisson's ratio distribution that there are high Poisson's ratio and complicated crust-mantle velocity structure feature in the Sichuan-Yunnan Diamond Block with Xiaojiang fault to be the east boundary and Yulong Snow Mountain fault to be the west boundary besides the frequent seismicity. This feature differs obviously from that of surrounding areas, which would provide geophysical evidence to deeply study the eastwardly flowage of lithospheric substances in the Qinghai-Tibet Plateau.

  6. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    Science.gov (United States)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  7. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    Science.gov (United States)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke

    2017-04-01

    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii

  8. Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations

    Science.gov (United States)

    Manea, Elena Florinela; Michel, Clotaire; Poggi, Valerio; Fäh, Donat; Radulian, Mircea; Balan, Florin Stefan

    2016-11-01

    Large earthquakes from the intermediate-depth Vrancea seismic zone are known to produce in Bucharest ground motion characterized by predominant long periods. This phenomenon has been interpreted as the combined effect of both seismic source properties and site response of the large sedimentary basin. The thickness of the unconsolidated Quaternary deposits beneath the city is more than 200 m, the total depth of sediments is more than 1000 m. Complex basin geometry and the low seismic wave velocities of the sediments are primarily responsible for the large amplification and long duration experienced during earthquakes. For a better understanding of the geological structure under Bucharest, a number of investigations using non-invasive methods have been carried out. With the goal to analyse and extract the polarization and dispersion characteristics of the surface waves, ambient vibrations and low-magnitude earthquakes have been investigated using single station and array techniques. Love and Rayleigh dispersion curves (including higher modes), Rayleigh waves ellipticity and SH-wave fundamental frequency of resonance (f0SH) have been inverted simultaneously to estimate the shear wave velocity structure under Bucharest down to a depth of about 8 km. Information from existing borehole logs was used as prior to reduce the non-uniqueness of the inversion and to constrain the shallow part of the velocity model (<300 m). In this study, we use data from a 35-km diameter array (the URS experiment) installed by the National Institute for Earth Physics and by the Karlsruhe Institute of Technology during 10 months in the period 2003-2004. The array consisted of 32 three-component seismological stations, deployed in the urban area of Bucharest and adjacent zones. The large size of the array and the broad-band nature of the available sensors gave us the possibility to characterize the surface wave dispersion at very low frequencies (0.05-1 Hz) using frequency-wavenumber techniques

  9. Shear-wave velocity structure of the south-eastern part of the Iberian Peninsula from Rayleigh wave analysis

    Science.gov (United States)

    Corchete, V.; Chourak, M.

    2011-10-01

    In this study, we present the lithospheric structure of the south-eastern part of the Iberian Peninsula by means of a set of 2D images of shear velocity, for depths ranging from 0 to 50 km. This goal will be attained by means of the inversion of the Rayleigh wave dispersion. For it, the traces of 25 earthquakes occurred on the neighbouring of the study area, from 2001 to 2003, will be considered. These earthquakes have been registered by 11 broadband stations located on Iberia. All seismic events have been grouped in source zones to get an average dispersion curve for each source-station path. The dispersion curves have been measured for periods between 2 and 45 s, by combination of two digital filtering techniques: Multiple Filter Technique and Time Variable Filtering. The resulting set of source-station averaged dispersion curves has been inverted according to the generalized inversion theory, to get S-wave velocity models for each source-station path. Later, these models have been interpolated using the method of kriging, to obtain a 2D mapping of the S-wave velocity structure for the south-eastern part of Iberia. The results presented in this paper show that the techniques used here are a powerful tool to investigate the crust and upper mantle structure, through the dispersion analysis and its inversion to obtain shear velocity distributions with depth. By means of this analysis, principal structural features of the south-eastern part of Iberia, such as the existence of lateral and vertical heterogeneity in the whole study area, or the location of the Moho discontinuity at 30 km of depth (with an average S-velocity of uppermost mantle of 4.7 km/s), have been revealed. Other important structural features revealed by this analysis have been that the uppermost of Iberian massif shows higher velocity values than the uppermost of the Alpine domain, indicating that the massif is old and tectonically stable. The average velocity of the crust in Betic cordillera is of

  10. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    KAUST Repository

    Tang, Zheng

    2016-05-11

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  11. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    Science.gov (United States)

    Tang, Zheng; Julià, Jordi; Zahran, Hani; Mai, P. Martin

    2016-06-01

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  12. Multi-scale compressional wave velocity structure of the San Gregorio Fault zone

    Science.gov (United States)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2004-03-01

    Understanding fault architecture at multiple scales is crucial to delineate in situ fault zone physical properties and rupture dynamics through modeling and geophysical imaging/monitoring. An exposure of the active large-offset, strike-slip San Gregorio Fault at Moss Beach, CA provides a unique field site to relate the well-mapped fault zone architecture with compressional wave velocity (Vp) structure measured at centimeter to meter scales. Laboratory ultrasonic velocities of fault zone samples, adjusted for fluid-related frequency and structural dispersion, indicate that (i) a seismic velocity reduction of ~30% characterizes the central smectite-rich clay gouge relative to the rocks 100 m away in the relatively undeformed host rocks, and (ii) the across-fault velocity profile trends for the seismic to ultrasonic bandwidth correlate almost exactly to the previously mapped macroscale fault zone structure. These results highlight the value of conducting multiscaled investigations when measuring fault zone properties defined by physical elements at multiple scale lengths.

  13. Shear-wave velocity structure of the crust and upper mantle beneath the Kola Peninsula

    Science.gov (United States)

    Dricker, I. G.; Roecker, S. W.; Kosarev, G. L.; Vinnik, L. P.

    We determined the shear-wave velocity structure of the crust and upper mantle beneath the central part of the Kola peninsula from the analysis of P-wave receiver functions and mantle P-SV converted phases recorded at stations Apatity (APA) and Lovozero (LVZ). The times of P-SV converted phases from the 410 and 660 km discontinuities are close to those predicted by the IASP91 model. Phase conversions at the crust-mantle boundary beneath the Baltic shield northeast of LVZ and southwest of APA are consistent with a sharp transition from crust to mantle at a depth of 40 km, while conversions from the intervening Khibina plutonic region are consistent with a gradual transition between depths of 20 and 40 km. We infer that short (∼50 km) wavelength lateral variations in the crust-mantle transition persist in this region, despite the inactivity of the Kola peninsula since Devonian times.

  14. Theory and experiment on electromagnetic-wave-propagation velocities in stacked superconducting tunnel structures

    DEFF Research Database (Denmark)

    Sakai, S.; Ustinov, A. V.; Kohlstedt, H.

    1994-01-01

    Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson transmission are theoretically discussed. An equation for solving n velocities of the waves in an n Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially...... focused on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by Nb-Al-AlOx-Nb systems are experimentally obtained by measuring the cavity resonance...

  15. Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 丁志峰; 叶太兰; 孙为国; 张乃铃

    2002-01-01

    Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18((54(N, 70(~140(E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30(N, 38(N, 90(E and 120(E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.

  16. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    Science.gov (United States)

    Moran, Seth C.; Lees, Jonathan M.; Malone, Stephen D.

    1999-05-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ˜10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics.

  17. Crust and upper mantle velocity structure of the northwestern Indian Peninsular Shield from inter-station phase velocities of Rayleigh and Love waves

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2015-06-01

    Full Text Available We measure the inter-station Rayleigh and Love wave phase velocities across the northwestern Indian Peninsular shield (NW-IP through cross-correlation and invert these velocities to evaluate the underneath crust and upper mantle velocity structure down to 400 km. We consider a cluster of three stations in the northern tip of the Peninsula and another cluster of eight stations in the south. We measure phase velocities along 28 paths for Rayleigh waves and 17 paths for Love waves joining two stations with one from each cluster and using broadband records of earthquakes which lie nearly on the great circle joining the pair of stations. The phase velocities are in the period range of 10 to 275 s for Rayleigh waves and of 10 to 120 s for Love waves. The isotropic model obtained through inversion of the phase velocities indicates 199.1 km thick lithosphere with 3-layered crust of thickness 36.3 km; the top two layers have nearly same velocities and both constitute the upper crust with thickness of 12.6 km. The upper crust is mafic, whereas the lower crust is felsic. In the mantle lid, velocities increase with depth. The velocities of mantle lid beneath NW-IP is lower than those beneath south Indian Peninsula showing the former is hotter than the later perhaps due to large Phanerozoic impact on NW-IP. The significant upper mantle low velocity zone beneath NW-IP indicates high temperature which could be attributed to the past existence of a broad plume head at the west-central part of the Peninsula.

  18. Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method

    Science.gov (United States)

    Su, L.; Xu, X.; Liao, H.; Geng, X.-Y.

    2015-09-01

    The depth and geometry of potential failure surface is the fundamental for evaluating the mechanisms of a landslide. Traditional techniques to acquire information on potential sliding surface are mainly drilling, pitting, and trenching, but these techniques are time consuming and expensive. In this study, microtremor signals and the dispersion curves of surface wave are extracted from the vertical component of microtremor records using the spatial autocorrelation (SPAC) method to estimate shear wave velocity structure. The results suggest that the buried depth of phyllite bedrock is approximately 47.4m, and the thickness of weathered bedrock layer is about 9.9m at about 57.3m deep, which could be interpreted as the potential sliding surface of this landslide, in accordance with borehole data. The microtremor survey method (MSM) is flexible, non-invasive, relatively quick and deployable on the landslide. It clearly demonstrat that it is an effective tool to improve the drilling success rate, and hence allow a large scale and high density investigation of structure characteristics of a deep seated landslide.

  19. Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of

  20. Deep S-wave velocity structure at Hawaii Islands obtained by microtremor array measurements

    Science.gov (United States)

    Hayashi, K.

    2015-12-01

    Microtremor array measurements and three-component microtremor measurements have been performed at the west coast of Hawaii Island (Figure.1). Two seismographs with three-component accelerometers were used for data acquisition. At each site, one seismograph was fixed in one place and data was acquired at that location for the entire survey. Data was acquired by a second seismograph at larger separations ranging from 5 to 3403m from the fixed seismograph. Data acquisition was repeated at each new separation. In each measurement, 10 to 60 minutes of ambient noise was recorded. As the separations of seismographs increased, the record length of ambient noise was increased. The sampling interval used was 10msec. An entire measurement took several hours. Data acquisition was performed in the day-time and the seismographs were placed in relatively quiet places such as in parks or residential areas. A spatial autocorrelation was used for calculating phase velocity and a clear dispersion curve (Figure 2a) was obtained in frequency range from 0.2 to 30 Hz. A joint inversion was applied to the observed dispersion curve, and H/V spectrum, and S-wave velocity model was analyzed for the site. In the inversion, phase velocities of the dispersion curve and the absolute value and peak frequencies of the H/V spectra were used as observation data. The unknown parameters were layer thickness and S-wave velocity. A Genetic Algorithm was used for optimization. Theoretical H/V spectra and phase velocities are generated by calculating the weighted average of the fundamental mode and higher modes (up to the 5th mode) based on medium response. Figure 2b shows an S-wave velocity model obtained by the inversion. We can see that a low velocity layer with S-wave velocity from 250 to 700 m/s exists to a depth of 90 m. A velocity layer with S-wave velocity from 900 to 1500 m/s exists at a depth range of 90 to 1300 m. Bedrock with S-wave velocity about 3000 m/s exists at a depth of 2200 m.

  1. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  2. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle

    Science.gov (United States)

    Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.

    2004-01-01

    Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that

  3. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    Science.gov (United States)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the

  4. S-Wave Velocity Structure of Taipei Basin by Using the Simulation of Microtremor H/V Ratios

    Science.gov (United States)

    Cheng-Yi, Lin; Kuo-Liang, Wen; Che-Min, Lin

    2014-05-01

    In this report here the investigation of the S-wave velocity structures of the Taipei basin which is located in the northern Taiwan. Previous study, the dense microtremor measurement analysis have been confirmed in Taipei Basin. However, within the basin around the layer effects on seismic site characterization and contribution have still needed to clarify more details, as the strata in Taipei basin with reference to estimate ground motion prediction. The detail site response all over the Taipei basin has been studied by using the H/V ratios of dense microtremor surveys. In this study, a method, GA-Haskell, combining Genetic Algorithm and Thomson-Haskell propagator matrix was used to simulate the microtremor H/V ratios according to the previous results of dense microtremor surveys. The near-surface S-wave velocity structures of over 400 sites in the Taipei basin were evaluated by the simulations of the H/V ratios. Through the numerous microtremor data are helpful to figure the S-wave velocity and thickness of the Sungshan Formation and the other deeper formations which control the seismic site-effect in the basin. While many strong motion stations have also been performed microtremor measurement and single station spectrum to understand the earthquake site characteristics analysis. Compared with other research results, confirmed the applicability of the method for estimating the velocity structure in Taipei Basin. Finally, accord with the actual site earthquake and microtremor response, established a complete and detailed S-wave velocity model of the Taipei basin. It will benefit the strong motion prediction and simulation in the future. Key Words: Taipei Basin, Microtremor, H/V Ratio, S-wave Velocity, Site Effect

  5. Inversion of single-station teleseismic P-wave polarization-data for the velocity structure of Beijing area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Broadband three-component seismic data recorded by Beijingstation (BJI) of CDSN were used to calculate P-wave polarization of teleseismic events. These polarization data were then used in the inversion for the underground structure around the Beijing station, especially for the details of velocity discontinuities. The result shows that a conspicuous low velocity zone exists in the crust on the west of the station, which is in good agreement with previous studies. It proves the theory that polarization data could be applied to inversion for velocity structures, especially for boundaries with large velocity gradient. It also demonstrates the feasibility of velocity structure inversion with polarization data from high-quality broadband data recorded by a single station. Therefore, travel-times and polarization data can be jointly used to study velocity structure. Polarization data are more suitable for delineating the boundary of velocity anomalies. Moreover, if the polarization method is combined with receiver function method to fully exploit their complementarity, it is possible to obtain the lateral velocity variation around the station as well as the detailed vertical variation below the station.

  6. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    OpenAIRE

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-01-01

    International audience; Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a superson...

  7. The nearby spiral density-wave structure of the Galaxy: line-of-sight and longitudinal velocities of 223 Cepheids

    Science.gov (United States)

    Griv, Evgeny; Hou, Li-Gang; Jiang, Ing-Guey; Ngeow, Chow-Choong

    2017-02-01

    The data of 223 stars within 4 kpc from the Sun and 400 pc from the plane are collected from Melnik et al., who listed photometric distances and velocities of 674 long-period Cepheids in the disc of our Galaxy. Both line-of-sight and transverse along the Galactic longitude velocities of the selected stars are analysed on the assumption that the system is the subject to Lin-Shu-type moderately unstable, low-amplitude, tightly wound and rigidly rotating density waves. Minimization of the least-squares estimator S of measured and modelled velocities of stars was performed in the geometrical parameters of waves. The wave structures defined from the two independent samples of velocities are nearly similar. Different radial scales (wavelengths) of velocity inhomogeneity of about 1, 2 and 4 kpc, which do not depend on the number of spiral arms m, were found. But for now it is unclear if one can identify these scales as fully independent global modes of collective oscillations or they are Fourier harmonics of a single wave, or they just reveal the segments of large-scale Orion, Sagittarius and Perseus arms. The dominant mode is the one-armed wave for the main minimum of all S considered. However, because the S values for fits with m = 1-4 are almost equal the latter conclusion must be regarded as tentative until more extensive data are available. High-precision Gaia observations could reveal in the near future whether the wave-like velocity fluctuations near the Sun reported here do indeed exist.

  8. Joint inversion of P-wave velocity and Vp-Vs ratio:imaging the deep structure in NE Japan

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi

    2014-01-01

    A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity (Vp) and P-S-wave velocity ratio (Vp/Vs) using P- and S-phase pairs, i.e., the same source-receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity (Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp-Vs ratio than the method of inverting S-P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern (NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source-receiver pairs. The inverted structures suggest that the subducting slab of the Pacifi c plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.

  9. Three dimensional P- and S-wave velocity structure along the central Alpine Fault, South Island, New Zealand

    Science.gov (United States)

    Guo, B.; Thurber, C. H.; Roecker, S. W.; Townend, J.; Rawles, C.; Chamberlain, C. J.; Boese, C. M.; Bannister, S.; Feenstra, J.; Eccles, J. D.

    2017-02-01

    The Deep Fault Drilling Project (DFDP) on the central Alpine Fault, South Island, New Zealand, has motivated a broad range of geophysical and geological studies intended to characterize the fault system in the locality of the drill site at various scales. In order to better understand the structural features of the central Alpine Fault, we have developed three-dimensional P- and S-wave velocity (VP and VS) models of the region by double-difference tomography using datasets from multiple seismic networks. In previous work, the quality of the S-wave model has been poor due to the small number of available S-wave picks. We have utilized a new high-accuracy automatic S-wave picker to increase the number of usable S-wave arrivals by more than a factor of two, thereby substantially improving the VS model. Compared to previous studies, our new higher-resolution VP model based on more observations shows a clear VP contrast (higher VP on the southeast hanging wall side) at depths of 5 - 10 km near the DFDP drill sites. With our better resolved VS model, in the same region, we detect a sharply defined high VS body (VS > 3.7 km/s) within the hanging wall. Our earthquake relocations reveal the presence of clusters within and around low-velocity zones in the hanging wall southeast of the Alpine Fault. Together with the improved earthquake locations, the P- and S-wave tomography results reveal the Alpine Fault to be marked by a velocity contrast throughout most of the study region. The fault dips southeastward at about 50^circ from 5 to 15 km depth, as inferred from the velocity structure, seismicity, and observations of fault zone guided waves.

  10. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  11. Inversion of single-station teleseismic P-wave polarization-data for the velocity structure of Beijing area

    Institute of Scientific and Technical Information of China (English)

    LIU; Futian; (

    2001-01-01

    [1]Pavlis, G. L., Booker, J. R., Progressive multiple event location (PMEL), Bull. Seismol. Soc. Am., 1983, 73: 1753.[2]Dziewonski, A. M., Anderson, D. L., Travel times and station corrections for P-waves at teleseismic distances, J. Geophys. Res., 1983, 88: 3295.[3]Hu Ge, Menke, W., Formal inversion of laterally heterogeneous velocity structure from P-wave polarization data, Geophys. J. Int., 1992. 110: 63.[4]Menke, W., Lerner-Lam, A., Transition from linear to complex polarization in short period compressional waves, Bull. Seismol. Soc. Am., 1991, 81: 611.[5]Hu Ge, Menke, W., Rognvaldsson, S., A demonstration of the joint use of p-wave polarization and travel-time data in tomographic inversion: crustal velocity structure near the south Iceland Lowland network, Geophys. Res. Letters, 1993, 20(13): 1407.[6]Teng, J., Yao, H., Chou, H., Crustal structure in the Beijing-Tianjin-Tangshan-Zhangjiakou region, Acta Geophysica Sinica(in Chinese), 1979, 22(3): 218.[7]Shao, X., Zhang, J., Chen, X. et al., The results of deep sounding by using converted waves of earthquakes in the Beijing-Tianjin-Tangshan region, Seismology and Geology(in Chinese), 1980: 2(2): 12.[8]Wei, M., Shi, Z., Yin, X. et al., The basic configuration of crustal structure in North China region and its relation to the earthquakes from gravimetric date, Seismology and Geology(in Chinese), 1980, 2(2): 55.[9]Jin Anshu, Liu Futian, Sun Yongzhi, Three-dimensional P velocity structure of the crust and upper Mantle under Beijing region, Acta Geophysica Sinica(in Chinese), 1980, 23(2): 172.[10]Vidale, J.E., Complex polarization analysis of particle motion, Bull. Seismol. Soc. Am., 1986, 76: 1393.[11]Jurkevics, A., Polarization analysis of three-component array data, Bull, Seismol. Soc. Am., 1988, 78: 1725.[12]Park, J., Vernon, F. L., Lindberg, C.R., Frequency dependent polarization analysis of high-frequency seismograms, J. Geophys. Res., 1987, 92: 12664.[13

  12. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    Energy Technology Data Exchange (ETDEWEB)

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  13. Shallow Shear Wave Velocity Structure of Adapazari (Turkey) Region by MASW And MAM Measurements and Some Implications

    Science.gov (United States)

    Ozcep, T.; Ozcep, F.; Ozel, O.

    2009-04-01

    Wave-propagation method to generate the near-surface Vs profile are called spectral analysis of surface waves that uses the spectral analysis of ground roll generated by an impulsive source and recorded by a pair of receivers. This method has been widely and effectively used in many shallow shear wave velocity structure. The 17 August 1999 Izmit earthquake (Mw=7.4) ruptured a 140 km segment of the North Anatolian Fault, extending from the Izmit bay in the west to Akyazi in the east, and caused about 20,000 loss of life and totally 20,000 collapsed buildings. In the study area, the shear wave velocities are obtained by multi channel analysis of surface wave for 100 points in study area. The phase velocity-dispersion curve for each point and shear wave velocity are obtained by inversion distance profile for first 50 meters of soil. The records that are depending on field conditions with different geophone intervals are taken. Passive source when it is compared by active source reaches deeper parts of soils, because the lower frequency of natural noises are recorded different noises that are given more information from the deeply distance. After the data are collected from the field, data-processing are carried out, the phase velocities for the different frequency are obtained by using a computer program and after the process dispersion curve is obtained. During the field studies, the seismic refraction data are also collected. The initial model that obtained from these data is used the initial model data. By using both forward and inverse solutions algorithm, S wave velocities are calculated and drown depending on distance. For 100 sites, soil classifications are mapped according to the Eurocode-8, UBC (NEHRP) and the Turkish Seismic Design Code. The site classification, based on Vs30 in seismic design codes, are compared with fundamental periods and amplification values that obtained by using real earthquake data obtained from region. This study was supported by

  14. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    Science.gov (United States)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  15. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    Science.gov (United States)

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-08-01

    Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases.

  16. 3D shear-wave velocity structure of the eastern Tennessee seismic zone from ambient noise correlation data

    Science.gov (United States)

    Arroucau, Pierre; Kuponiyi, Ayodeji; Vlahovic, Gordana; Powell, Chris

    2013-04-01

    The Eastern Tennessee Seismic Zone (ETSZ) is an intraplate seismic region characterized by frequent but low magnitude earthquakes and is the second most active seismic area in the United States east of the Rocky Mountains. One key question in the ETSZ is the actual relationship between earthquake distribution and geological structure at depth. Seismicity is mostly confined in the Precambrian basement, below the Paleozoic cover of the southern Appalachian foreland fold-and-thrust belt and shows little to no correlation with surface geological features. Since the middle of the seventies, the Center for Earthquake Research and Information (CERI) has installed and maintained several seismic networks in central and eastern United States. In this work, we use Rayleigh wave group and phase velocity dispersion information obtained from cross-correlation of seismic ambient noise at 24 short-period stations located in the vicinity of the ETSZ. The 3D velocity structure is estimated in four steps. First, dispersion curves are obtained for simultaneously recording station pairs for periods ranging from 2 to 20 s. Then, 2D group and phase velocity maps are determined for each period. Those maps are further used to reconstruct dispersion curves at fixed, regularly spaced locations. For each of these locations, a 1D shear-wave velocity profile is finally inverted for, that takes velocity information from previous studies into account. By providing new information about the upper crustal structure of this region, this work is a contribution to the understanding of the seismic activity of the ETSZ, and -to a broader extent- of the structure and evolution of the North American lithosphere.

  17. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    Science.gov (United States)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.

    2013-12-01

    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  18. S-Wave Velocity Structure beneath Southwest North America from Seismogram Comparisons of the Mexico Earthquake on 22 June 1997

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-09-01

    Full Text Available This research investigates earth structure beneath the Southwest North America landmass, especially between Mexico and California. Models based on S wave velocities for this area were obtained by carrying out seismogram fitting in time domain and three Cartesian components simultaneously. The data used is from an event, coded as C052297B that occurred in the state of Guerrero, Mexico and it was fitted to synthetic data computed with the GEMINI program at TS network stations. Earth model IASPEI91 and SPREM were used as input to create the synthetic data. Real and synthetic seismograms were subjected to a low-pass filter with a frequency corner of 20 mHz.Waveform analysis results show very unsystematic and strong deviations in the waveform, arrival times, amount of oscillation and the height of the wave amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where the stations epicentral distances are below 300. Deviation in analysis waveform because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D was a kind of average value an elastic property at one particular depth of global earth. With the method of waveform analysis we can see how sensitive waveform is to structures within the layers of the Earth.To explain the discrepancies, a correction to the earth structure is essential. The corrections account for the thickness of the crust, speed gradient of bh, the coefficient for the bh and bv in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above 771 km for S wave fitting, and a small variation at the base the mantle layers for ScS wave fitting. At some stations, a correction for S speed structure have yielded P wave fitting. Results of this research indicate that the 1-D earth model obtained through seismogram fitting at every hypocenter-observation station pair is unique. The S-wave velocity on the upper mantle has strong negative anomalies. This

  19. Upper mantle P-wave velocity structure beneath northern Lake Malawi and the Rungwe Volcanic Province, East Africa

    Science.gov (United States)

    Grijalva, A. N.; Kachingwe, M.; Nyblade, A.; Shillington, D. J.; Gaherty, J. B.; Ebinger, C. J.; Accardo, N. J.; O'Donnell, J. P.; Mbogoni, G. J.; Mulibo, G. D.; Ferdinand, R.; Chindandali, P. R. N.; Mphepo, F.

    2015-12-01

    A recent deployment of 55 broadband seismic stations around the northern Lake Malawi rift as part of the SEGMeNT project have provided a new dataset for imaging crustal and upper mantle structure beneath the Rungwe volcanic center and northern most segment of the Lake Malawi Rift. The goal of our study is to characterize the upper mantle velocity structure and determine to what extent the rifting has been influenced by magmatism. P relative arrival time residuals have been obtained for 115 teleseismic events with magnitudes > 5 in the 30 - 90 degree distance range. They are being tomographically inverted, together with travel time residuals from previous deployments for a 3-D velocity model of the upper mantle. Preliminary results indicate a low wave speed anomaly in the uppermost mantle beneath the Rungwe volcanics. Future results will determine if this anomaly exists under the northern Lake Malawi rift.

  20. S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan

    Science.gov (United States)

    Kuo, Chun-Hsiang; Chen, Chun-Te; Lin, Che-Min; Wen, Kuo-Liang; Huang, Jyun-Yan; Chang, Shun-Chiang

    2016-10-01

    In this study, microtremor array measurements were conducted at 45 sites in the Western Plain of Taiwan. The arrays were approximately 30 m or 60 m in radius, depending on the site. The maximum-likelihood frequency-wavenumber method was adopted to obtain the phase velocities of Rayleigh waves, and then a genetic algorithm technique based on an inversion scheme of the fundamental mode of the Rayleigh waves' dispersion curves was applied to calculate a preliminary S-wave velocity (Vs) profile at each site. Because a layer of thick sediment covers the bedrock in the Western Plain of Taiwan, microtremor arrays in this size range cannot estimate the structure of the entire sediment. Therefore, this study implemented further inversion of the horizontal-to-vertical spectral ratios of the microtremors to estimate the deeper structures up to the bedrock of Vs greater than 1000 m/s. Previously logged velocity profiles for different depths at or near our study sites were collected and compared with the Vs profiles derived from our microtremor array measurements; the results were found to be highly comparable. Therefore, we could delineate the depth distributions for the layer depths for Vs = 600 m/s and 1000 m/s in this region. The depth for Vs = 600 m/s is approximately 50 m in the piedmont area and approximately 300 m at the coastline; moreover, the depths for Vs = 1000 m/s increase from 200 m in the piedmont area to approximately 1000 m at the coastline. The depths for Vs = 1.0 km/s (Z1.0), which is an important parameter that accounts for the basin effect in recent ground motion prediction equations, are consequently available at the study sites. The distribution of Z1.0 as a function of Vs30 indicates higher similarity to that in Japan than in the San Francisco Bay area.

  1. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains

    Science.gov (United States)

    Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol

    2016-09-01

    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly

  2. Three-dimensional P-wave velocity structure in the greater Mount Rainier area from local earthquake tomography

    Science.gov (United States)

    Moran, Seth Charles

    1997-08-01

    One of the most striking features of seismicity in western Washington is the clustering of crustal earthquakes into one of several zones of concentrated seismicity. In this dissertation I explore the hypothesis that geologic structures, in conjunction with regional tectonic forces, are primarily responsible for controlling the location of seismicity in parts of western Washington. The primary tool for testing this hypothesis is a 3-dimensional image of the P-wave velocity structure of the greater Mount Rainier area that I derive using local earthquake tomography. I use P-wave arrival times from local earthquakes occurring between 1980 and 1996 recorded at short-period vertical component stations operated by the Pacific Northwest Seismograph Network (PNSN) and 18 temporary sites operated during a field experiment in 1995 and 1996. The tomographic methodology I use is similar to that described by Lees and Crosson (1989, 1990). In addition, I use the parameter separation method to decouple the hypocenter and velocity problems, don't use station corrections, and use ray-bending for 3-D raytracing, allowing for a full non-linear inversion. In the upper 4 km several low velocity features show good correlation with the Carbon River, Skate Creek, and Morton anticlines, as well as the Chehalis, Tacoma, and Seattle basins. There is also good correlation between high velocity features and surface exposures of several plutons. One seismic zone, the St. Helens Seismic Zone, correlates well with a planar low velocity feature. This correlation supports the idea that this seismic zone reflects a continuous structure roughly 50 km in length. A second zone, the Western Rainier Seismic Zone (WRSZ), does not correlate in any simple way with anomaly patterns, suggesting that the WRSZ does not represent a distinct fault. A 10 km-wide low velocity anomaly occurs 8 to 18 km beneath Mount Rainier, which I interpret to be due to a thermal aureole associated with the magmatic system beneath

  3. Shear wave velocity structure of the lower crust in southern Africa: evidence for compositional heterogeneity within Archaean and Proterozoic terrains

    CSIR Research Space (South Africa)

    Kgaswane, EM

    2009-12-01

    Full Text Available The nature of the lower crust across the southern African shield has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations located in Botswana, South Africa and Zimbabwe...

  4. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    Science.gov (United States)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen

    2016-08-01

    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  5. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    Science.gov (United States)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  6. P-wave velocity and density structure beneath Mt. Vesuvius: a magma body in the upper edifice?

    Directory of Open Access Journals (Sweden)

    Paolo Capuano

    2013-11-01

    Full Text Available A high-resolution image of the compressional wave velocity and density structure in the shallow edifice of Mount Vesuvius has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes and from gravity inversion. The robustness of the tomography solution has been improved by adding to the earthquake data a set of land based shots, used for constraining the travel time residuals. The results give a high resolution image of the P-wave velocity structure with details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km depth below the central crater, distributed into two clusters, and separated by an anomalously high Vp region positioned at around 1 km depth. A zone with high Vp/Vs ratio in the upper layers is interpreted as produced by the presence of intense fluid circulation alternatively to the interpretation in terms of a small magma chamber inferred by petrologic studies. In this shallower zone the seismicity has the minimum energy, whilst most of the high-energy quakes (up to Magnitude 3.6 occur in the cluster located at greater depth. The seismicity appears to be located along almost vertical cracks, delimited by a high velocity body located along past intrusive body, corresponding to remnants of Mt. Somma. In this framework a gravity data inversion has been performed to study the shallower part of the volcano. Gravity data have been inverted using a method suitable for the application to scattered data in presence of relevant topography based on a discretization of the investigated medium performed by establishing an approximation of the topography by a triangular mesh. The tomography results, the retrieved density distribution, and the pattern of relocated seismicity exclude the presence of significant shallow magma reservoirs close to the central conduit. These should be located at depth higher than that of the base of the hypocenter volume, as evidenced by

  7. S-wave velocity structure and tectonic implications of the northwestern sub-basin and Macclesfield of the South China Sea

    Science.gov (United States)

    Wei, Xiaodong; Ruan, Aiguo; Li, Jiabiao; Niu, Xiongwei; Wu, Zhenli; Ding, Weiwei

    2016-10-01

    Based on the optimum P-wave model, the S-wave velocity structure of a wide angle seismic profile (OBS2006-1), across the northwestern sub-basin (NWSB) and the Macclesfield, is simulated by a 2-D ray-tracing method. The results indicate the S-wave velocities in the upper and lower crust of the NWSB are 3.2-3.6 km/s and 3.6-4.0 km/s, with Vp/Vs ratios of 1.82-1.88 and 1.74-1.82, respectively, which reflect typical oceanic crust characteristics. The S-wave velocity in the upper crust of the NWSB is a little higher in the NNW segment than that in the SSE segment, while the lateral variation of Vp/Vs ratio is in the opposite. We suggest that the NWSB might have experienced asymmetrical magma flows during sea floor spreading, which may have blurred the magnetic anomaly lineation. The comparison of S-wave velocities along the northern margin of the SCS shows that the west section is different from the east section, and the northwestern margin has a non-volcanic crust structure. The S-wave structures and P-wave velocity models along the northern margin, Macclesfield and Reed Bank show that the Macclesfield might have a conjugate relationship with the Reed Bank.

  8. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  9. Constraints on structural evolution from correlations between hydraulic properties and P-wave velocities during brittle faulting of rocks

    Science.gov (United States)

    Ahrens, Benedikt; Duda, Mandy; Renner, Jörg

    2017-04-01

    One of the key challenges in geophysics concerns the derivation of structure and state of rocks and rock formations from constraints on the spatial distribution of their physical properties, as gained from laboratory experiments, borehole logging, and surveys at the surface covering scales from centimeters to kilometers. The use of information from the propagation of elastic waves constitutes the most common approach to derive the structure and state of rocks, if direct information on in-situ properties is limited (e.g., through boreholes) or inaccessible. Furthermore, the determination of hydraulic rock properties serves the dual purpose of constraining structure and providing the basis for predictions of the behavior of a system of interest during continued fluid injection or production, as associated with, e.g., exploitation of hydrocarbon reservoirs, operation of subsurface liquid-waste repositories, or geothermal energy provision. In-situ, wave observations potentially provide better coverage of rock volumes (in space and time) than hydraulic investigations and thus constraints on correlations between elastic and hydraulic properties bear the potential to improve subsurface characterization. In our laboratory study, we continuously monitored hydraulic properties and elastic wave velocities of porous Wilkeson sandstone samples during conventional triaxial deformation. Confining pressures applied in the tests cover the range from below to above the critical pressure for crack closure to control the state of pre-existing cracks. Hydraulic properties were determined using the oscillatory pore-pressure method owing to its benefits regarding continuous and highly resolved monitoring of permeability and specific storage capacity during deformation and even imminent localized failure. The magnitude of the deformation-associated variations in the monitored physical properties strongly depends on initial microstructure and degree of hydrostatically induced crack closure

  10. Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region, NW Turkey

    Science.gov (United States)

    Karagoz, Ozlem; Chimoto, Kosuke; Citak, Seckin; Ozel, Oguz; Yamanaka, Hiroaki; Hatayama, Ken

    2015-11-01

    In this study, we aimed to explore the S-wave velocity structure of shallow soils using microtremors in order to estimate site responses in Tekirdag and surrounding areas (NW Turkey). We collected microtremor array data at 44 sites in Tekirdag, Marmara Ereglisi, Corlu, and Muratlı. The phase velocities of Rayleigh waves were estimated from the microtremor data using a Spatial Autocorrelation method. Then, we applied a hybrid genetic simulated annealing algorithm to obtain a 1D S-wave velocity structure at each site. Comparison between the horizontal-to-vertical ratio of microtremors and computed ellipticities of the fundamental mode Rayleigh waves showed good agreement with validation models. The depth of the engineering bedrock changed from 20 to 50 m in the Tekirdag city center and along the coastline with a velocity range of 700-930 m/s, and it ranged between 10 and 65 m in Marmara Ereglisi. The average S-wave velocity of the engineering bedrock was 780 m/s in the region. We obtained average S-wave velocities in the upper 30 m to compare site amplifications. Empirical relationships between the AVs30, the site amplifications, and also average topographic slopes were established for use in future site effects microzonation studies in the region.

  11. Estimation of S-wave Velocity Structures by Using Microtremor Array Measurements for Subsurface Modeling in Jakarta

    Directory of Open Access Journals (Sweden)

    Mohamad Ridwan

    2014-12-01

    Full Text Available Jakarta is located on a thick sedimentary layer that potentially has a very high seismic wave amplification. However, the available information concerning the subsurface model and bedrock depth is insufficient for a seismic hazard analysis. In this study, a microtremor array method was applied to estimate the geometry and S-wave velocity of the sedimentary layer. The spatial autocorrelation (SPAC method was applied to estimate the dispersion curve, while the S-wave velocity was estimated using a genetic algorithm approach. The analysis of the 1D and 2D S-wave velocity profiles shows that along a north-south line, the sedimentary layer is thicker towards the north. It has a positive correlation with a geological cross section derived from a borehole down to a depth of about 300 m. The SPT data from the BMKG site were used to verify the 1D S-wave velocity profile. They show a good agreement. The microtremor analysis reached the engineering bedrock in a range from 359 to 608 m as depicted by a cross section in the north-south direction. The site class was also estimated at each site, based on the average S-wave velocity until 30 m depth. The sites UI to ISTN belong to class D (medium soil, while BMKG and ANCL belong to class E (soft soil.

  12. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth`s mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  13. Imaging earth's interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth's mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  14. Lithospheric structure of the westernmost Mediterranean inferred from finite frequency Rayleigh wave tomography S-velocity model.

    Science.gov (United States)

    Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun

    2016-04-01

    The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (Gibraltar arc to ~55 km depth. Low upper mantle velocities (<4.2 km/s) are observed beneath the Atlas, the northeastern end of the Betic Mountains and the Late Cenozoic volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths

  15. The upper and middle crustal velocity structure of the northern part of Hebei plain inferred from short period surface wave dispersion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on short period Rayleigh wave data recorded by Beijing Seismic Telemetered Network, the dispersion curves of Raleigh wave phase velocity, with period from 2 s to 18 s, are calculated by means of two-station method, for 5 paths across the earthquake zone located in the Beijing graben and the Hebei plain. According to the dispersion features, the upper and middle crustal S wave velocity structures are respectively obtained for the northern segment of Beijing graben and the northern part of Hebei plain. The results show that there is an obvious interface at the depth of 9 km in the Beijing graben, the velocity varies little with depth in the middle crust, and there is a low-velocity-zone, with a thickness of 5 km and a buried depth of 14.6 km, in the middle crust of the Hebei plain.

  16. Application of microtremor array measurements to delineate S-wave velocity structures in San Francisco Bay Area

    Science.gov (United States)

    Hayashi, K.; Underwood, D.

    2012-12-01

    Microtremor array measurements and three-component microtremor measurements have been performed at four sites in the South Bay of the San Francisco Bay Area (Figure 1). Two seismographs with three-component accelerometers were used for data acquisition. At each site, one seismograph was fixed in one place and data was acquired at that location for the entire survey. Data was acquired by a second seismograph at larger separations ranging from 5 to 4125m from the fixed seismograph. Data acquisition was repeated at each new separation. In each measurement, 10 to 60 minutes of ambient noise was recorded. As the separations of seismographs increased, the record length of ambient noise was increased. The sampling interval used was 10msec. Entire measurements at one site took several hours. Data acquisition was performed in the day-time and the seismographs were placed in relatively quiet places such as in parks or residential areas. A spatial autocorrelation was used for calculating phase velocity and clear dispersion curves were obtained in frequency range from 0.2 to 10 Hz. A joint inversion was applied to the observed dispersion curves, and H/V spectra, and S-wave velocity models were analyzed for four sites. In the inversion, phase velocities of the dispersion curves and the absolute value and peak frequencies of the H/V spectra were used as observation data. The unknown parameters were layer thickness and S-wave velocity. A Genetic Algorithm was used for optimization. Theoretical H/V spectra and phase velocities are generated by calculating the weighted average of the fundamental mode and higher modes (up to the 5th mode) based on medium response. Figure 2 shows comparison of S-wave velocity models obtained by the inversion. We can see that a low velocity layer with S-wave velocity lower than 400m/s exists between depths of 50 to 100m at all sites. Intermediate bedrock with S-wave velocity higher than 1000m/s exists between depths of 500 to 1000m. Deepest bedrock

  17. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H. [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H.; Brie, A.

    1996-10-01

    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  18. Three-dimensional P-wave velocity structure of the crust beneath Hainan Island and its adjacent regions, China

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-xiong; LEI Jian-she; ZHAO Da-peng; WU Batee; SHEN Fan-luan; QIU Xue-lin

    2008-01-01

    Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999-2005, a 3-D P-wave velocity model of the crest under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone, corresponding to the depressed areas in north Hainan Island, where many volcanoes are frequently active and geothermal values are relatively higher, and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan, possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults, i.e., the Puqian-Qinglan fault, may be shallower, while the E-W Wangwu-Wenjiao fault may be deeper, which perhaps extends down to Moho depth or deeper.

  19. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  20. P and S Wave Velocity Structure of the Crust and Upper Mantle Under China and Surrounding Areas From Body and Surface Wave Tomography

    Science.gov (United States)

    2008-03-31

    1.9 to 1.45 s, after the inversion. [14] High velocities dominate in western China. Beneath several large depressed basins, such as the Tarim...velocity image of Moho discontinuity beneath the Weihe fault depression and its adjacent areas obtained by inversion of travel-time data of Sn waves...the crust and upper mantle. Geo- phys. J. Int. 151, 1–18. Sol, S.J., Meltzer , A., Zurek, B., Zhang, X., Zhang, J., 2004. Insight into the

  1. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  2. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  3. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  4. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  5. Application of Microtremor Survey Methods to Determine the Shallow Crustal S-wave Velocity Structure beneath the Wudalianchi Weishan Volcano Area

    Science.gov (United States)

    Zhang, B.; LI, Z.; Chu, R.

    2015-12-01

    Ambient noise has been proven particularly effective in imaging Earth's crust and uppermost mantle on local, regional and global scales, as well as in monitoring temporal variations of the Earth interior and determining earthquake ground truth location. Previous studies also have shown that the Microtremor Survey Method is effective to map the shallow crustal structure. In order to obtain the shallow crustal velocity structure beneath the Wudalianchi Weishan volcano area, an array of 29 new no-cable digital geophones were deployed for three days at the test site (3km×3km) for recording continuously seismic noise. Weishan volcano is located in the far north of Wudalianchi Volcanoes, the volcanic cone is composed of basaltic lava and the volcano area covered by a quaternary sediments layer (gray and black loam, brown and yellow loam, sandy loam). Accurate shallow crustal structure, particularly sedimentary structure model can improve the accuracy of location of volcanic earthquakes and structural imaging. We use ESPAC method, which is one of Microtremor Survey Methods, to calculate surface wave phase velocity dispersion curves between station pairs. A generalized 2-D linear inversion code that is named Surface Wave Tomography (SWT) is adopted to invert phase velocity tomographic maps in 2-5 Hz periods band. On the basis of a series of numerical tests, the study region is parameterized with a grid spacing of 0.1km×0.1km, all damping parameters and regularization are set properly to ensure relatively smooth results and small data misfits as well. We constructed a 3D Shallow Crustal S-wave Velocity model in the area by inverting the phase velocity dispersion curves at each node adopting an iterative linearized least-square inversion scheme of surf96. The tomography model is useful in interpreting volcanic features.

  6. S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau——Deep environment of lower crustal flow

    Institute of Scientific and Technical Information of China (English)

    Paul; SILVER

    2008-01-01

    A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern

  7. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow

    Institute of Scientific and Technical Information of China (English)

    WANG ChunYong; Paul SILVER; L(U) Hai; LOU ZhiYong; WU JianPing; CHANG LiJun; DAI ShiGui; YOU HuiChuan; TANG FangTou; ZHU LuPei

    2008-01-01

    A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57-64 km in the Bayan Har block, and to 40-45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Mono and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30-60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ= 0.247) in the Lhasa block, 1.78 (σ= 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ= 0.294) in the Bayan Har blocks, and 1.77 (σ=0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio,indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau

  8. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  9. Seismogram Analysis of the Earthquakes in Sumatra on WRAB Observation Station: S Wave Velocity Structure on Subduction Zone of Sumatra-Java

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-03-01

    Full Text Available The S wave velocity structure at subduction zone under Sumatra-Java was investigated through seismogram analysis in time domain and three Cartesian’s components simultaneously. The main data set was the comparison between the measured seismogram and the synthetic one, not the travel time data. The synthetic seismogram was calculated with the GEMINI method. The seismogram comparison shows that the global earth mantle of PREMAN gives deviating synthetic seismogram and has later arrival times than the measured one. The gradient bh in the upper mantle is altered to positive from its negative slope as in the PREMAN model, and positive corrections are added to the zero order of polynomial’s coefficients in all earth mantle layers. The excellent fitting, as well as travel time or waveform, were obtained on the surface waves of Love and Rayleigh, the S and SS mantle and repetitive depth waves. The additional positive corrections were also confirmed by a well fitting on the repetitive depth waves. This result expresses that part of the earth mantle that due to tectonic processes has positive anomaly on S wave velocity and vertical anisotropy in all of the earth mantle layers.

  10. Three-dimensional crustal velocity structure of P-wave in East China from wide-angle reflection and refraction surveys

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZhiXin; XU JiRen

    2009-01-01

    The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35-48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic (HPM) and ultra-high-pressure metamorphic (UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high- and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.

  11. Application of microtremor array measurements to delineate S-wave velocity structures in Bangkok Basin, central Thailand

    Science.gov (United States)

    Hayashi, K.; Pananont, P.; Wongpanit, T.; Habangkham, S.

    2014-12-01

    The Bangkok Basin, located in the lower part of the Chao Phraya River Basin in central Thailand contains very thick sediment and are often affected by the large distant earthquakes due to local site amplification. Shear wave velocities (Vs) measurements have been performed at five sites in the Bangkok Basin (Figure 1) by a two-station spatial autocorrelation method (2ST-SPAC) using long-period accelerometers. Receiver separation varied from 5 to 2,100m and maximum separation (array size) varied from 1,800 to 2,100 m. In each separation, 10 to 90 minutes ambient noise was recorded with sampling interval of 10 ms. Due to the security concern, data acquisition was performed in the day-time and in relatively quiet places such as in parks or less densely residential areas. A spatial autocorrelation was used for calculating phase velocity and clear dispersion curves were obtained in frequency range from about 0.3 to 10 Hz. Minimum frequency and corresponding maximum wavelength ranged from 0.32 to 0.48 Hz and about 2,180 to 5,140 m, depending on the site. An inversion consisting of a least squares method and a Genetic Algorithm was used to estimate Vs profiles from the dispersion curves to a depth of about 1,000 to 2,500 m depending on the sites. Figure 2 shows comparison of Vs profiles obtained by the inversion. We can see that a low velocity layer with Vs lower than 400 m/s exists between depths of 0 to 200 m at all sites. Intermediate bedrock with Vs higher than 1,000 m/s exists between depths of 240 to 1,250 m. Deepest bedrock with Vs higher than 2,000 m/s seems to exist at a depth of at least 1,600 m.

  12. Depth-Dependent Low-Velocity Structure of the San Andreas Fault near the SAFOD Drilling Site at Parkfield from Fault-Zone Seismic Waves

    Science.gov (United States)

    Alvarez, M.; Li, Y.; Vidale, J.; Cochran, E.

    2004-12-01

    Coordinated by the SAFOD PIs, we used 96 PASSCAL short-period three-component seismometers in linear arrays deployed across and along the San Andreas fault (SAF) near the town of Parkfield and the SAFOD drilling site in 2002 and 2003, respectively. The data recorded for near-surface explosions detonated in the experiments (Li and Vidale), PASO project (Thurber and Roecker) and refraction profiling (Hole), and local earthquakes show fault-zone trapped waves clearly for the source and receivers located close to the fault. The time duration of the dominant trapped energy after S-arrivals increases with the event-to-array distance and focal depth progressively. Using a finite-difference code, we first synthesize fault-zone trapped waves generated by explosions to determine the shallowest 1 or 2 km fault zone structure with the velocity constraints from seismic profiling of the shallow SAF at Parkfield [Catchings et al., 2002]. We then strip shallow effects to resolve deeper structure of the fault zone, and synthesize trapped waves from earthquakes at depths between 2.5 and 11 km to complete a model of the SAF with depth-variable structure in 3-D. We also use the P-first arrivals and polarity as additional information in modeling of velocities and location of the material interface with the structural constraints from seismic tomography at Parkfield [Thurber et al., 2004] to the bed-rock velocities. In grid-search modeling, we tested various values for fault zone depth, width, velocity, Q, and source location. The best-fit model parameters from this study show evidence of a damaged core zone on the main SAF, which likely extends to seismogenic depths. The zone is marked by a low-velocity waveguide ~150 m wide, in which Q is 10-50 and shear velocities are reduced by 30-45% from wall-rock velocities. We also find some seismic energy trapped partitioned in the branching faults that connect to the San Andreas main fault at a shallow depth near Parkfield.

  13. Crustal and upper mantle 3D shear wave velocity structure of the High Lava Plains, Oregon, determined from ambient noise tomography

    Science.gov (United States)

    Hanson-Hedgecock, S.; Wagner, L.; Fouch, M. J.; James, D. E.

    2011-12-01

    We present the results of inversions for 3D shear velocity structure of the crust and uppermost mantle beneath the High Lava Plains, Oregon using data from ~300 broadband stations of the High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA). The High Lava Plains (HLP) is a WNW progressive silicic volcanism, initiated ~14.5 Ma near the Owyhee Plateau and is currently active at the Newberry caldera. The Yellowstone Snake River Plain (YSRP) volcanic track is temporally contemporaneous with the HLP, but trends to the northeast, parallel to North American plate motion. The cause of volcanism along the HLP is debated and has been variously attributed to Basin and Range extension, back-arc extension, rollback of the subducting Juan de Fuca plate, and an intra-continental hotspot/plume source. Additionally the relationship between the HLP, YSRP, and Columbia River Basalts (CRB), the three major post-17Ma intracontinental volcanic provinces of the Pacific Northwest, is not well understood. The 3D shear velocity structure of the crust and uppermost mantle to ~65km depth is determined from fundamental mode Rayleigh wave ambient noise phase velocity maps at periods up to 40s. The use of ambient noise tomography with the dense station spacing of the combined High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA) datasets allows the shallow structure of the High Lava Plains to be imaged in finer detail than previous ANT studies that focused on the entire western United States. In the crust, low velocities in central Oregon are observed in association with the Brothers Fault Zone, Jordan and Diamond Craters and Steens Mountain regions in addition to the strong low velocity zone associated with the Cascades to the west. To the east of the HLP, low velocities are observed to about 10km depth in the western SRP. In the eastern SRP we observe a shallow veneer of low velocities underlain by a ~10km thick high velocity

  14. Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry

    Science.gov (United States)

    Galetti, Erica; Curtis, Andrew; Baptie, Brian; Jenkins, David; Nicolson, Heather

    2017-01-01

    We present the first Love-wave group-velocity and shear-velocity maps of the British Isles obtained from ambient noise interferometry and fully nonlinear inversion. We computed interferometric inter-station Green's functions by cross-correlating the transverse component of ambient noise records retrieved by 61 seismic stations across the UK and Ireland. Group-velocity measurements along each possible inter-station path were obtained using frequency-time analysis and converted into a series of inter-station traveltime data sets between 4 and 15 s period. Traveltime uncertainties estimated from the standard deviation of dispersion curves constructed by stacking randomly selected subsets of daily cross-correlations were observed to be too low to allow reasonable data fits to be obtained during tomography. Data uncertainties were therefore estimated again during the inversion as distance-dependent functionals. We produced Love-wave group-velocity maps within eight different period bands using a fully nonlinear tomography method which combines the transdimensional reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm with an eikonal ray tracer. By modelling exact ray paths at each step of the Markov chain we ensured that the nonlinear character of the inverse problem was fully and correctly accounted for. Between 4 and 10 s period, the group-velocity maps show remarkable agreement with the known geology of the British Isles and correctly identify a number of low-velocity sedimentary basins and high-velocity features. Longer period maps, in which most sedimentary basins are not visible, are instead mainly representative of basement rocks. In a second stage of our study we used the results of tomography to produce a series of Love-wave group-velocity dispersion curves across a grid of geographical points focussed around the East Irish Sea sedimentary basin. We then independently inverted each curve using a similar rj-McMC algorithm to obtain a series of 1-D shear-velocity

  15. Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry

    Science.gov (United States)

    Galetti, Erica; Curtis, Andrew; Baptie, Brian; Jenkins, David; Nicolson, Heather

    2016-08-01

    We present the first Love-wave group velocity and shear velocity maps of the British Isles obtained from ambient noise interferometry and fully non-linear inversion. We computed interferometric inter-station Green's functions by cross-correlating the transverse component of ambient noise records retrieved by 61 seismic stations across the UK and Ireland. Group velocity measurements along each possible inter-station path were obtained using frequency-time analysis and converted into a series of inter-station traveltime datasets between 4 and 15 seconds period. Traveltime uncertainties estimated from the standard deviation of dispersion curves constructed by stacking randomly-selected subsets of daily cross-correlations, were observed to be too low to allow reasonable data fits to be obtained during tomography. Data uncertainties were therefore estimated again during the inversion as distance-dependent functionals. We produced Love-wave group velocity maps within 8 different period bands using a fully non-linear tomography method which combines the transdimensional reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm with an eikonal raytracer. By modelling exact raypaths at each step of the Markov chain we ensured that the non-linear character of the inverse problem was fully and correctly accounted for. Between 4 and 10 seconds period, the group velocity maps show remarkable agreement with the known geology of the British Isles and correctly identify a number of low-velocity sedimentary basins and high-velocity features. Longer period maps, in which most sedimentary basins are not visible, are instead mainly representative of basement rocks. In a second stage of our study we used the results of tomography to produce a series of Love-wave group velocity dispersion curves across a grid of geographical points focussed around the East Irish Sea sedimentary basin. We then independently inverted each curve using a similar rj-McMC algorithm to obtain a series of

  16. Group velocity of neutrino waves

    Science.gov (United States)

    Indumathi, D.; Kaul, Romesh K.; Murthy, M. V. N.; Rajasekaran, G.

    2012-03-01

    We follow up on the analysis of Mecozzi and Bellini (arxiv:arXiv:1110.1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.

  17. Group velocity of neutrino waves

    CERN Document Server

    Indumathi, D; Murthy, M V N; Rajasekaran, G

    2011-01-01

    We follow up on the analysis of Mecozzi and Bellini (arXiv:1110:1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. However, the explanation of the OPERA result is outside this possibility. This result, if confirmed by other experiments, can be explained through matter effects via a possible new interaction.

  18. Pulse Wave Velocity in the Carotid Artery

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jensen, Julie Brinck; Udesen, Jesper;

    2008-01-01

    The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from...... distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV...

  19. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.

    2016-03-21

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical simulations on noise-free and noisy cases are provided in order to show the effectiveness of the proposed method.

  20. Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity

    Science.gov (United States)

    Hirsch, A. C.; Dalton, C. A.

    2014-12-01

    In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and

  1. Velocity structure of the crust and upper mantle at the northern group of Kamchatka volcanoes (Based on the travel time of P-waves from volcanic earthquakes)

    Science.gov (United States)

    Slavina, L. B.; Pivovarova, N. B.; Senyukov, S. L.

    2012-12-01

    The results of a calculation of the P-wave ( V P ) velocity fields are presented on the basis of the method of the reversible wave and the TAU parameter characterizing the V P / V S ratio of seismic waves from the local volcanic earthquakes that occurred at the northern group of Kamchatka volcanoes in 2005-2007. The 3D velocity cross sections were constructed along the SW-NE-trending volcanic group from the Ploskii Tolbachik volcano in the southwest up to the Shiveluch volcano in the northeast. The change of velocity field in time and depth is found. The problems of relating these changes to volcanic activity is reviewed.

  2. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    Science.gov (United States)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  3. Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation

    Directory of Open Access Journals (Sweden)

    Parvizi Saeed

    2015-10-01

    Full Text Available Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.

  4. Title of abstract - Different approaches to the determining of 3-d P and S wave velocity structures of the crust beneath Northern Tien Shan

    Science.gov (United States)

    Kryukova, O.

    2003-04-01

    The seismic images of the crust beneath Northern Tien Shan (NTS) are obtained with using of different sets of data and several algorithms for solution of local earthquake tomography problem. The NTS is a very interesting region from geophysical point if view due to high seismic activity caused by interplate collision: Tien Shan and Kazakh. A rectangular region under investigation is constrained by lines 41.90o N - 43.40o N and 73.50o E- 76.50o E. 14661 P and 14436 S wave arrival times recorded 12 seismic stations of the Kyrgyzstan Broadband Network (KNET) from local earthquake in 1991-1999 years are used. In addition, data from 267 local earthquake recorded over a period of about 20 years by a regional arrays of 93 seismographs in NTS are involved in inversions. 1-d optimal velocity models and stations delays are estimated with help of program VELEST (E.Kissling, 1995). Block parameterization of model and ray tracing described by Thurber and Ellsworth (1980) are used for determination of 3-d velocity structure and relocation of events as one of the approaches (programs S.Roecker Sphypit90 and Sphrel3d). Other approach consists in application linear or cubic B spline interpolation of velocity function and ray tracing Um and Thurber (1987) for the solution of forward problem (program C.Thurber et al. Simulps and own program). The data resolution analysis and statistical analysis of models was carried out. Calculated P wave tomographic models were compared with tomographic models S.Roecker et al. (1993), S.Ghose et al. (1998) and T.Sabitova (1996). The main result is the confirmation of existence of different seismic velocity structure beneath Kyrgyz Range and Chu Basin. Using various sets of date and methods for reconstruction velocity model is effective in reveal of more reliable velocity heterogeneities in the domain of research. The author is grateful to dr. I. Kitov for help and to dr. I.Sanina for useful discussion.

  5. Surface wave group velocity tomography of East Asia, part 1

    Science.gov (United States)

    Wu, Francis T.

    1993-07-01

    Group velocities of both Rayleigh and Love waves are used in a tomographic inversion to obtain group velocity maps of East Asia (60 deg E-140 deg E and 20 deg N-50 deg N). The period range studied is 30-70 seconds. For periods longer than 40 seconds, a high group velocity gradient clearly exists along longitude 105 deg E; the velocities are noticeably higher east of this longitude than west of this longitude. The Tibetan Plateau appears as a prominent low velocity (about 15%) structure in this area; central Tibet appears as the area with the lowest velocity. The North China Plain is an area of high velocities, probably as a result of thin crust. The variability of deep crustal and upper mantle structures underneath the different tectonic provinces in the study can clearly be seen. In a separate study, using the dataset above and that from the former Soviet Union, we have derived the Rayleigh tomographic images of a larger area (40 deg E-160 deg E and 20 deg N-70 deg N). While the Tibetan plateau still remains to be the most prominent low velocity features, two other features are also clear, a very high velocity Siberian platform and a high velocity ridge extending from Lake Baikal to Central Mongolia. These studies are useful in delineating tectonics.

  6. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  7. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  8. Structure and Significance of S-wave Velocity and Poisson's Ratio in the Crust beneath the Eastern Side of the Qinghai-Tibet Plateau

    Science.gov (United States)

    Hu, Jiafu; Yang, Haiyan; Zhao, Hong

    2008-05-01

    The receiver functions of body waves of distant earthquakes obtained for the regions beneath 41 digital stations (Lhasa and GANZ in Tibet, Mandalay and Rangoon in Myanmar, SHIO in India, CHTO in Thailand, and station network in Sichuan and Yunnan) were used to invert for S-wave structure in the crust and upper mantle in Sichuan, Yunnan, and their surrounding areas. Meanwhile the distribution characteristics of the Poisson’s ration and the crustal thickness in Sichuan and Yunnan areas were also obtained. Results indicate that the depth of Moho beneath the eastern side of Qinghai-Tibetan plateau varies strikingly. It is obvious that the greatest changes in crustal thickness occur in a north-south direction. The crustal thickness decreases from north to south, being as thick as 70 km in eastern Tibet, the northern portion of our area of interest, and less than 30 km in Chaing Mai and Rangoon, the southern portion of our area. There are, however, exceptions regarding the trend. The thickness exhibits an east-west variation trend in the area from Ma’erkong-Kongding in Sichuan to Lijiang in Yunnan. In general the Jinpingshan-Longmenshan fault and Anninghe fault can be taken as the boundaries of this exception area. The thickness in Kongding in the west is 68 km, while it is only 39 km in Yongchuan in the east. Moreover the Poisson’s ratio values in the blocks of central Sichuan and Sichuan-Yunnan Diamond are high, and a low velocity layer in the crust of this area can be obviously detected. The distribution characteristics of the high Poisson’s ratio and the low velocity of the crust in this block correspond to the tectonic structure, being in contrast with the surrounding areas. Combining with the distribution features of the modern tectonic stress field, it is deduced that the Sichuan-Yunnan area is probably the channel through which the materials of the lithosphere flow eastward.

  9. Wave equation based microseismic source location and velocity inversion

    Science.gov (United States)

    Zheng, Yikang; Wang, Yibo; Chang, Xu

    2016-12-01

    The microseismic event locations and velocity information can be used to infer the stress field and guide hydraulic fracturing process, as well as to image the subsurface structures. How to get accurate microseismic event locations and velocity model is the principal problem in reservoir monitoring. For most location methods, the velocity model has significant relation with the accuracy of the location results. The velocity obtained from log data is usually too rough to be used for location directly. It is necessary to discuss how to combine the location and velocity inversion. Among the main techniques for locating microseismic events, time reversal imaging (TRI) based on wave equation avoids traveltime picking and offers high-resolution locations. Frequency dependent wave equation traveltime inversion (FWT) is an inversion method that can invert velocity model with source uncertainty at certain frequency band. Thus we combine TRI with FWT to produce improved event locations and velocity model. In the proposed approach, the location and model information are interactively used and updated. Through the proposed workflow, the inverted model is better resolved and the event locations are more accurate. We test this method on synthetic borehole data and filed data of a hydraulic fracturing experiment. The results verify the effectiveness of the method and prove it has potential for real-time microseismic monitoring.

  10. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  11. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    Science.gov (United States)

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-09-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  12. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-06-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of a pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g. horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  13. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Science.gov (United States)

    Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.

    2013-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  14. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-10-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  15. Electromagnetic Field Behavior in Dispersive Isotropic Negative Phase Velocity/Negative Refractive Index Guided Wave Structures Compatible with Millimeter-Wave Monolithic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Clifford M. Krowne

    2007-01-01

    Full Text Available A microstrip configuration has been loaded with a dispersive isotropic left-handed medium (LHM substrate and studied regarding its high frequency millimeter-wave behavior near 100 GHz. This has been accomplished using a full-wave integral-equation anisotropic Green's function code configured to run for isotropy. Never before seen electromagnetic field distributions are produced, unlike anything found in normal media devices, using this ab initio solver. These distributions are made in the cross-sectional dimension, with the field propagating in the perpendicular direction. It is discovered that the LHM distributions are so radically different from ordinary media used as a substrate that completely new electronic devices based upon the new physics become a real possibility. The distinctive dispersion diagram for the dispersive medium, consisting of unit cells with split ring resonator-rod combinations, is provided over the upper millimeter-wave frequency regime.

  16. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  17. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  18. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  19. Estimation of underground structure using phase velocities of Love-and Rayleigh-waves from three-component microtremor array observation at Morioka city; Moriokashi ni okeru sanseibun are bido kansoku ni yoru reiri-ha rabu-ha no ryoiso sokudo wo mochiita chika kozo suitei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hidekazu; Saito, Tokumi; Ohashi, Hiromasa [Iwate University, Iwate (Japan)

    1999-02-01

    In conventional microtremor prospecting methods, underground structure is estimated using the phase velocity of Rayleigh-wave only. However, it is considered that the underground structure can be estimated at a higher accuracy by using two phase velocities of Rayleigh-wave and Love-wave that directly reflects S-wave velocity structure. Therefore, three-component microtremor array observation of a circle (equilateral triangle) with the maximum radius of 40 to 250 m was carried out at the center of Morioka city. Analysis was carried out by means of extended space with autocorrelation to obtain phase velocities of Love- and Rayleigh-waves. The frequency zone of the obtained Rayleigh-wave phase velocity is 1.5 Hz to 8.6 Hz, and the phase velocity is 2670 m/s to 733 m/s. The frequency zone of the obtained Love-wave phase velocity is 3 Hz to 8.6 Hz, and the phase velocity is 2100 m/s to 412 m/s. The underground structure obtained by using two observed phase velocities is clarified under a depth of 116 m. A stratum deemed to be the basement exists from a depth of 21 m (Vs=1100 m). As a result, the underground structure can be estimated at a higher accuracy if two phase velocities of Love-and Rayleigh-waves are used. (translated by NEDO)

  20. Aortic pulse wave velocity improves cardiovascular event prediction

    DEFF Research Database (Denmark)

    Ben-Shlomo, Yoav; Spears, Melissa; Boustred, Chris;

    2014-01-01

    To determine whether aortic pulse wave velocity (aPWV) improves prediction of cardiovascular (CVD) events beyond conventional risk factors.......To determine whether aortic pulse wave velocity (aPWV) improves prediction of cardiovascular (CVD) events beyond conventional risk factors....

  1. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    M D Sharma; Neetu Garg

    2006-04-01

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase velocities.These derivatives are,further,used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium.Effect of initial stress on wave propagation is observed through the deviations in phase velocity,group velocity and ray direction for each of the quasi-waves.The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry.

  2. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    ) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  3. Estimation of shallow S-wave velocity structure using microtremor array exploration at temporary strong motion observation stations for aftershocks of the 2016 Kumamoto earthquake

    Science.gov (United States)

    Chimoto, Kosuke; Yamanaka, Hiroaki; Tsuno, Seiji; Miyake, Hiroe; Yamada, Nobuyuki

    2016-12-01

    Shallow S-wave velocity V S profiles were estimated for 26 temporary strong motion observation sites surrounding the epicenters of a sequence of the 2016 Kumamoto earthquake. The microtremor array method was used to gather the dispersion characteristics of Rayleigh waves. V S profiles were obtained by inverting the dispersion curves for each site and those of three permanent strong motion stations that recorded the sequence of seismic events. The shallow V S profiles near two of the permanent strong motion stations in the town of Mashiki were almost identical. However, the V S profiles at other stations varied. The V S profiles were found to have the common feature of the uppermost low-velocity layer being widely distributed from Mashiki to the village of Minami-Aso, and it was especially thick in the areas that suffered heavy damage. This low-velocity layer was a major contributor to the site amplification. The horizontal-to-vertical spectral ratios of the microtremors indicate that both the shallow soil and deep sedimentary layers may control the site response characteristics over a broad frequency range.[Figure not available: see fulltext.

  4. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan;

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...

  5. Three-dimensional P velocity structure in Beijing area

    Institute of Scientific and Technical Information of China (English)

    于湘伟; 陈运泰; 王培德

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  6. Strong lateral variations of S-wave velocity in the upper mantle across the western Alps

    Science.gov (United States)

    Lyu, Chao; Pedersen, Helle; Paul, Anne; Zhao, Liang

    2016-04-01

    Absolute S-wave velocity gives more insight into temperature and mineralogy than relative P-wave velocity variations (ΔV p/ V p) imaged by teleseismic traveltime tomography. Moreover, teleseismic P-wave tomography has poor vertical but good horizontal resolution. By contrast, the inversion of surface waves dispersion data gives absolute S-wave velocity with a good vertical but relatively poor horizontal resolution. However, the horizontal resolution of surface wave imaging can be improved by using closely spaced stations in mini-arrays. In this work, we use Rayleigh wave phase velocity dispersion data to measure absolute S-wave velocities beneath the CIFALPS profile across the French-Italian western Alps. We apply the array processing technique proposed by Pedersen et al. (2003) to derive Rayleigh wave phase dispersion curves between 20 s and 100 s period in 15 mini-arrays along the CIFALPS line. We estimate a 1-D S-wave velocity model at depth 50-150 km beneath each mini-array by inverting the dispersion curves jointly with receiver functions. The joint inversion helps separating the crustal and mantle contributions in the inversion of dispersion curves. Distinct lithospheric structures and marked lateral variations are revealed beneath the study region, correlating well with regional geological and tectonic features. The average S-wave velocity from 50 to 150 km depth beneath the CIFALPS area is ˜4.48km/s, almost the same as in model AK135, indicating a normal upper mantle structure in average. Lateral variations are dominated by relatively low velocities (˜4.4km/s) in the mantle of the European plate, very low velocities (4.0km/s, i.e. approximately 12% lower than AK135) beneath the Dora Maira internal crystalline massif and high velocities (˜ 5.0km/s, i.e. 12% higher than AK135) beneath the Po plain. The lateral variations of S-wave velocity perturbation show the same features as the P wave tomography (Zhao et al., submitted), but with different amplitudes

  7. Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor

    Science.gov (United States)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten; Lange, Dietrich

    2016-12-01

    Our knowledge of the absolute S-wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S-wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P-wave polarization (apparent P-wave incidence angle) of teleseismic events to investigate the S-wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P-wave incidence angle at the ocean bottom dependent on the half-space S-wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBSs) to derive apparent S-wave velocity profiles. These profiles are dependent on the S-wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P-wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S-wave-velocity-depth models by a three-step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S-wave velocities. The apparent S-wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 and 0.9 km with S-wave velocities between 0.7 and 1.4 km s-1. The estimated total crustal thickness varies between 4 and 10 km with S-wave velocities between 3.5 and 4.3 km s-1. We find a slight increase of the total crustal thickness from

  8. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  9. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    Science.gov (United States)

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  10. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  11. Convertion Shear Wave Velocity to Standard Penetration Resistance

    Science.gov (United States)

    Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.

    2016-07-01

    Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.

  12. Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim

  13. Cardiac Shear Wave Velocity Detection in the Porcine Heart.

    Science.gov (United States)

    Vos, Hendrik J; van Dalen, Bas M; Heinonen, Ilkka; Bosch, Johan G; Sorop, Oana; Duncker, Dirk J; van der Steen, Antonius F W; de Jong, Nico

    2017-04-01

    Cardiac muscle stiffness can potentially be estimated non-invasively with shear wave elastography. Shear waves are present on the septal wall after mitral and aortic valve closure, thus providing an opportunity to assess stiffness in early systole and early diastole. We report on the shear wave recordings of 22 minipigs with high-frame-rate echocardiography. The waves were captured with 4000 frames/s using a programmable commercial ultrasound machine. The wave pattern was extracted from the data through a local tissue velocity estimator based on one-lag autocorrelation. The wave propagation velocity was determined with a normalized Radon transform, resulting in median wave propagation velocities of 2.2 m/s after mitral valve closure and 4.2 m/s after aortic valve closure. Overall the velocities ranged between 0.8 and 6.3 m/s in a 95% confidence interval. By dispersion analysis we found that the propagation velocity only mildly increased with shear wave frequency.

  14. Estimating propagation velocity through a surface acoustic wave sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  15. AN ASYMPTOTIC SOLUTION OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    WU Yun-gang; TAO Ming-de

    2006-01-01

    The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.

  16. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  17. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.;

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  18. Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We assembled approximately 328 seismic records. The data set wasfrom 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2°′2°) discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with 2check-board2 resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.

  19. A STUDY OF VELOCITY FIELD IN SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Searching ships on the ocean with the technique of the oceanic remote sensing, one must be requensted to know not only the amplitude of ship waves, but also horizontal velocities. In this article Lighthill’s two-stage scheme was employed to change the integral expressions into algebraic expressions for the velocity components, so the obtained results are very succinct.

  20. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  1. Turbulent Velocity Structure in Molecular Clouds

    CERN Document Server

    Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac

    2002-01-01

    We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...

  2. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  3. A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 李东永

    2002-01-01

    This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.

  4. Study on estimate method of wave velocity and quality factor to fault seals

    Institute of Scientific and Technical Information of China (English)

    LI Zhensheng; LIU Deliang; LIU Bo; YANG Qiang; LI Jingming

    2005-01-01

    Based on ultrasonic test of fault rocks, the responses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and mechanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally offered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and compresso-shear fault rocks that are obviously anisotropic compared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave velocity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to foliation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock's lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the enhancement of three-dimensional seismic prospecting work.

  5. Lightning location with variable radio wave propagation velocity

    Science.gov (United States)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  6. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    Science.gov (United States)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  7. Do gravitational waves travel at light velocity?

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; De Lorenci, V.A. [Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro CEP 22290-180-RJ (Brazil); de Freitas, L.R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao-CT-Bloco A, Rio de Janeiro-RJ (Brazil)

    1997-02-01

    We extend the standard Feynman{endash}Deser approach of field theoretical derivation of Einstein{close_quote}s gravitational theory. We show that it is possible to obtain a theory that incorporates a great part of general relativity (GR) and can be interpreted in the standard geometrical way like GR, as far as the interaction of matter to gravity is concerned. The most important distinction of the new theory concerns the gravity-to-gravity interaction. This theory satisfies all standard tests of gravity and leads to new predictions about gravitational propagation. Since there is a strong expectation that the detection of gravitational waves will occur in the near future, the question of which theory describes nature better will probably be settled soon. {copyright} 1997 Academic Press, Inc.

  8. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  9. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    Science.gov (United States)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  10. VELOCITY FIELD IN SHIP WAVES ON THE VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    刘敏嘉; 陶明德

    2002-01-01

    From the Navier-Stokes equations, the integral expressions of the free-surface elevation and the velocity field in ship waves of a moving waterborne body are obtained.Next, Lighthill's two-stage scheme is employed to change the above-mentioned integral expressions to algebraic expressions.Compared with the results obtained when the seawater is idealized to an inviscid fluid, the singularities are dispelled or weakened, and the accuracy of the digit information of ship waves is improved.

  11. Simultaneous inversion of layered compressional velocity and shear velocity by using plane wave seismogram

    Institute of Scientific and Technical Information of China (English)

    宋海斌; 马在田; 张关泉

    1996-01-01

    A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.

  12. 利用噪声记录估计福建地区中上地壳体波速度结构%The wave velocity structure of upper shell in Fujian estimated by thenoise records

    Institute of Scientific and Technical Information of China (English)

    李军; 金星; 鲍挺; 林树; 韦永祥; 张红才

    2011-01-01

    本文利用福建地震台网25个宽频带台站的噪声记录提取瑞利波和勒夫波频散曲线反演地壳波速结构,并利用爆破观测结果对该速度模型进行检验.结果表明:利用该方法得到的地壳波速结构在浅部分辨率较好,深部波速结构的反演结果精度较低,这主要是由于本文所选台站间距较小,提取得到的面波频散曲线在短周期部分精度较高,而长周期部分面波频散曲线的偏差较大.综合噪声反演结果与传统反演结果,本文最终给出了一个新的速度模型,利用该模型计算得到的理论走时与爆破观测走时具有很好的一致性.%The dispersion curves of Rayleigh wave and Love wave were extracted from the seismic noise of 25 broad-band stations recorded by the Fujian Seismic Network, and inverted for the lithosphere wave structure. Furthermore, the velocity model was inspected by the blast observation outcome. The results indicate that the resolution of the lithosphere wave structure obtained by this method is good in the shallow part, but in the depth part the inverted result of the wave structure has low precision. It is mainly caused by the small inter-station distance chosen in the paper. So the wave dispersion curves have high precision in short-period part, but the warp of the wave dispersion curve in long-period part is big. Considering both the results of the noisy invert and the traditional invert, we finally present a new velocity model in which the theory calculated runtime can well match the blast observation runtime.

  13. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency

    Science.gov (United States)

    Li, Y.-G.; Vidale, J.E.

    1996-01-01

    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  14. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  15. STRENGTH AND WAVE VELOCITY TEST ON ARTIFICIALLY FROZEN SOILS

    Institute of Scientific and Technical Information of China (English)

    马芹永

    1998-01-01

    Theoretical analysis conducted of uniaxial compressive strength and tensile strength ofartificially frozen soil and P waves and S waves and of the relationship between the two. Experi-ments are made on frozen sand and frozen clay respectively at the temperature of - 7 ℃, - 12 ℃and - 17 ℃. Of the data obtained, regression analysis and gray-system correlation are conduct-ed. As indicated by the results, the frozen soil tensile strength is closely correlated with the Pwave velocity and the compressive with the S wave, hence the former is well described by thelatter.

  16. Normal Wave Propagation Velocity in a Static Web.

    Science.gov (United States)

    1986-12-01

    34 " " ’ . " . " . " " . " , " " . " -" " " " . " " . " " " " . " * . - " " " , 4 . " . " . " " " . " " "." "-" "." " . . . . . " " " " -w A- INah . . . . . . - - 1 NORMAL WAVE PROPAGATION VELOCITY IN A STATIC WEB By

  17. Particle Velocity Measurement for Spherical Wave in Solid

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xue-feng; WANG Zhan-jiang; LIN Jun-de; SHEN Jun-yi

    2006-01-01

    An experimental technique for research on spherical divergent wave propagation in a solid has been developed,in which the source of generating spherical wave is a center initiating explosive charge designed in a mini-spherical shape with yield equivalent to 0.125 g and 0. 486 g TNT and a set of circular electromagnetic particle velocity gages is used to record the particle velocity histories. By using the circular electromagnetic particle velocity gages, the signal outputs not only are unattenuated due to the geometrical divergence, but also represent the average of the measured dynamic states of the medium over a circle on the wavefront. The distinctive features of this technique are very useful for the study of spherical divergent wave propagation in a solid, especially in an inhomogeneous solid, and the corresponding material dynamics.Many experimental measurements were conducted in polymethylmethacrylate (PMMA) and granite by means of the technique, and the reproducibility of tests was shown to be good. The measurement technique of the circular electromagnetic particle velocity gages is also suitable to the case of cylindrical wave.

  18. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  19. Extremal inversion of lunar travel time data. [seismic velocity structure

    Science.gov (United States)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  20. Signal processing method for shear wave velocity measurement

    Institute of Scientific and Technical Information of China (English)

    Hou Xingmin; Qu Shuying; Shi Xiangdong

    2007-01-01

    Soil shear wave velocity (SWV) is an important parameter in geotechnical engineering. To measure the soil SWV, three methods are generally used in China, including the single-hole method, cross-hole method and the surface-wave technique. An optimized approach based on a correlation function for single-hole SWV measurement is presented in this paper. In this approach, inherent inconsistencies of the artificial methods such as negative velocities, and too-large and too-small velocities, are eliminated from the single-hole method, and the efficiency of data processing is improved. In addition, verification using the cross-hole method of upper measuring points shows that the proposed optimized approach yields high precision in signal processing.

  1. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  2. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  3. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Structure of the airflow above surface waves

    Science.gov (United States)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  5. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    Science.gov (United States)

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements.

  6. Hammering Yucca Flat, Part Two: Shear-Wave Velocity

    Science.gov (United States)

    Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II

    2015-12-01

    In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Shock Wave Structure in Particulate Composites

    Science.gov (United States)

    Rauls, Michael; Ravichandran, Guruswami

    2015-06-01

    Shock wave experiments are conducted on a particulate composite consisting of a polymethyl methacrylate (PMMA) matrix reinforced by glass beads. Such a composite with an impedance mismatch of 4.3 closely mimics heterogeneous solids of interest such as concrete and energetic materials. The composite samples are prepared using a compression molding process. The structure and particle velocity rise times of the shocks are examined using forward ballistic experiments. Reverse ballistic experiments are used to track how the interface density influences velocity overshoot above the steady state particle velocity. The effects of particle size (0.1 to 1 mm) and volume fraction of glass beads (30-40%) on the structure of the leading shock wave are investigated. It is observed that the rise time increases with increasing particle size and scales linearly for the range of particle sizes considered here. Results from numerical simulations using CTH are compared with experimental results to gain insights into wave propagation in heterogeneous particulate composites.

  8. Particle velocity non-uniformity and steady-wave propagation

    Science.gov (United States)

    Meshcheryakov, Yu. I.

    2017-03-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  9. Measurements of parallel electron velocity distributions using whistler wave absorption.

    Science.gov (United States)

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  10. Broad-band Rayleigh wave phase velocity maps (10-150 s) across the United States from ambient noise data

    Science.gov (United States)

    Zhao, Kaifeng; Luo, Yinhe; Xie, Jun

    2017-02-01

    In this study, we demonstrate the feasibility of imaging broad-band (10-150 s) Rayleigh wave phase velocity maps on a continental scale using ambient noise tomography (ANT). We obtain broad-band Rayleigh waves from cross-correlations of ambient noise data between all station pairs of USArray and measure the dispersion curves from these cross-correlations at a period band of 10-150 s. The large-scale dense USArray enables us to obtain over 500 000 surface wave paths which cover the contiguous United States densely. Using these paths, we generate Rayleigh wave phase velocity maps at 10-150 s periods. Our phase velocity maps are similar to other reported phase velocity maps based on ambient noise data at short periods (phase velocity maps from ANT can be used to construct 3-D lithospheric and asthenospheric velocity structures.

  11. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    Science.gov (United States)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  12. Stiffness matrix determination of composite materials using lamb wave group velocity measurements

    Science.gov (United States)

    Putkis, O.; Croxford, A. J.

    2013-04-01

    The use of Lamb waves in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) is gaining popularity due to their ability to travel long distances without significant attenuation, therefore offering large area inspections with a small number of sensors. The design of a Lamb-wave-based NDE/SHM system for composite materials is more complicated than for metallic materials due to the directional dependence of Lamb wave propagation characteristics such as dispersion and group velocity. Propagation parameters can be theoretically predicted from known material properties, specifically the stiffness matrix and density. However, in practice it is difficult to obtain the stiffness matrix of a particular material or structure with high accuracy, hence introducing errors in theoretical predictions and inaccuracies in the resulting propagation parameters. Measured Lamb wave phase velocities can be used to infer the stiffness matrix, but the measurements are limited to the principal directions due to the steering effect (different propagation directions of phase and corresponding group velocities). This paper proposes determination of the stiffness matrix from the measured group velocities, which can be unambiguously measured in any direction. A highly anisotropic carbon-fibre-reinforced polymer plate is chosen for the study. The influence of different stiffness matrix elements on the directional group velocity profile is investigated. Thermodynamic Simulated Annealing (TSA) is used as a tool for inverse, multi variable inference of the stiffness matrix. A good estimation is achieved for particular matrix elements.

  13. Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity

    Directory of Open Access Journals (Sweden)

    Mohammadreza Hemmati Nourani

    2017-04-01

    Full Text Available Engineering rock mass classification, based on empirical relations between rock mass parameters and engineering applications, is commonly used in rock engineering and forms the basis for designing rock structures. The basic data required may be obtained from visual observation and laboratory or field tests. However, owing to the discontinuous and variable nature of rock masses, it is difficult for rock engineers to directly obtain the specific design parameters needed. As an alternative, the use of geophysical methods in geomechanics such as seismography may largely address this problem. In this study, 25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks I, III and IV-2 of the Choghart iron mine. Moreover, rock joint measurements and sampling for laboratory tests were conducted. The results show that the rock mass rating (RMR and Q values have a close relation with P-wave velocity parameters, including P-wave velocity in field (VPF, P-wave velocity in the laboratory (VPL and the ratio of VPF to VPL (i.e. KP = VPF/VPL. However, Q value, totally, has greater correlation coefficient and less error than the RMR. In addition, rock mass parameters including rock quality designation (RQD, uniaxial compressive strength (UCS, joint roughness coefficient (JRC and Schmidt number (RN show close relationship with P-wave velocity. An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%. The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass.

  14. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  15. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  16. Condition Assessment of PC Tendon Duct Filling by Elastic Wave Velocity Mapping

    Directory of Open Access Journals (Sweden)

    Kit Fook Liu

    2014-01-01

    Full Text Available Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.

  17. Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity

    CERN Document Server

    Tlili, S; Li, B; Cardoso, O; Ladoux, B; Delanoë-Ayari, H; Graner, F

    2016-01-01

    Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. In the monolayer bulk, the cell velocity is a function of the cell density, namely it increases as a linear function of the cell radius. At least ten periods of propagating velocity waves are detected with a high signal-to-noise ratio, enabling for their quantitative spatio-temporal analysis. Cell density displays waves, in phase opposition with the velocity, as predicted by mass conservation; similarly, cell-substrate force appear to display small amplitude waves, in phase quadrature with respect to ve...

  18. ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    赵晓兵; 方秦

    2002-01-01

    The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared.

  19. Temporal change of phase velocity beneath Mt. Asama, Japan, inferred from coda wave interferometry

    Science.gov (United States)

    Nagaoka, Y.; Nishida, K.; Aoki, Y.; Takeo, M.

    2010-12-01

    Recent studies have revealed that cross-correlation of seismic random wavefield, such as ambient noise or coda waves is capable of delineating seismic structure of the subsurface. This idea is also suitable of detecting subtle temporal changes of local internal structure. Here we estimated the temporal changes of phase velocity of Rayleigh waves extracted from cross correlations of S-coda waves recorded at 12 stations around Mt. Asama, Japan, between October 2005 and February 2009, during which minor and small eruption occurred in August 2008 and February 2009, respectively. We first extracted a Rayleigh wave averaged over 315 regional earthquakes by taking cross-correlations of S-coda waves. The dispersion curve of the Rayleigh wave thus generated was measured and compared with the one extracted from 18 days of ambient seismic noise. We found that both dispersion curves are consistent with each other, demonstrating the dominance of the fundamental Rayleigh waves. We then divided the entire time period into sub-periods, each of which consists of 80 earthquakes, to measure the temporal changes at frequencies from 0.3 to 0.6 Hz. The result shows that the onset of the velocity reduction started in the middle of 2007, marking the minumum with 1.5 % reduction with repsect to the reference value in early 2008. The phase velocity then quickly recovered to approximately the reference value before the August 2008 eruption. Our result is not, in fact, consistent with geodetic observation which indicate the magma intrusion at about 1.5 km below sea level and the shallow (shallower than sea level) pressurization both commenced in the middle of 2008, about a month before the 2008 eruption. The velocity recovery well precedes the magma intrusion detected by geodetic observation. This inconsistency would indicate that the velocity changes are sensitive to something other than the mass transport detected by deformation measurements. This fact also implies that the velocity changes

  20. [Nerve conduction velocity of repeater F-waves is identical to that of M-waves].

    Science.gov (United States)

    Hasegawa, O; Matsumoto, S; Gondo, G; Arita, T; Iwasawa, H

    2001-12-01

    F-wave normally varies in latency and waveform from one response to the next. But the number of identical responses in a series of F-waves may be increased with neurogenic atrophy consistent with a decreased number of motoneurons capable of responding to antidromic stimulation. They are called "repeater F-waves". We herein demonstrate some repeater F-waves observed in three patients with moderate or slight diabetic polyneuropathy. In their motor nerve conduction studies on the peroneal nerve the maximum conduction velocity was 33 m/sec in patient 1, 36 m/sec in patient 2 and 48 m/sec in patient 3. A total of 6 delayed indirect potentials were repeatedly evoked after nerve trunk stimulation. They fulfilled the characteristics of F-wave. Their conduction velocities in the leg segment were 27, 26, 23 m/sec in patient 1, 34, 33 m/sec in patient 2 and 46 m/sec in patient 3. Repeater F-waves are occasionally observed in patients with amyotrophic lateral sclerosis, cervical spondylosis or entrapment neuropathies, in which the number of motoneuron is decreased. In diabetic polyneuropathy some repeater F-waves were also observed in patients not only with moderate to severe neuropathy but also with normal nerve conduction. F-waves are generated by an antidromic backfiring of motor neurons, and they occur preferentially in large motor neurons. Larger motor neurons inhibit smaller axons through the activation of Renshaw cells. In our 3 patients conduction velocities of the repeated F-waves were all identical to the main component of M-wave. These observations reconfirmed the hypothesis that relatively large motor neurons generating F-waves are preferentially activated also in repeater F-waves.

  1. Velocity structure and seismicity of southeastern Tennessee

    Science.gov (United States)

    Kaufmann, Ronald Douglas; Long, Leland Timothy

    1996-04-01

    The seismic zone in southeastern Tennessee is at the confluence of major crustal features, which have been interpreted largely from potential data, and their relation to seismicity could help us understand why major earthquakes sometimes occur in the eastern United States. In this paper we solve for the previously unknown velocity structure of the upper crust by an inversion of travel time residuals from relocated earthquakes. The gravity anomalies are included by using a linear relation between average anomalous density and average anomalous velocity. The velocity model demonstrates that the seismicity is concentrated in areas of average to below average velocity and does not appear to be associated with one of the previously identified major crustal features. The high-velocity zones mark areas that are generally lacking in seismicity. The association of earthquake hypocenters with regions of low-velocity crustal rocks is consistent with other intraplate seismic zones, and this association supports the conjecture that intraplate earthquakes occur in crust that may have been weakened. The velocity anomalies at midcrustal depths do not support the New York-Alabama (NY-AL) lineament as a linear feature extending through southeastern Tennessee and parallel to contours in gravity anomalies as originally proposed. A continuation of the (NY-AL) lineament to the southwest requires either a 15 degree southwestward change in direction or a displacement to be consistent with the velocity anomalies. The seismically active areas in southeastern Tennessee do not appear to be constrained by the major crustal features, but instead, the seismicity is characterized by the distribution of hypocenters and their association with low-velocity regions at midcrustal depths.

  2. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    Science.gov (United States)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  3. Shock wave structure in a lattice gas

    Science.gov (United States)

    Broadwell, James E.; Han, Donghee

    2007-05-01

    The motion and structure of shock and expansion waves in a simple particle system, a lattice gas and cellular automaton, are determined in an exact computation. Shock wave solutions, also exact, of a continuum description, a model Boltzmann equation, are compared with the lattice results. The comparison demonstrates that, as proved by Caprino et al. ["A derivation of the Broadwell equation," Commun. Math. Phys. 135, 443 (1991)] only when the lattice processes are stochastic is the model Boltzmann description accurate. In the strongest shock wave, the velocity distribution function is the bimodal function proposed by Mott-Smith.

  4. A global shear velocity model of the mantle from normal modes and surface waves

    Science.gov (United States)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  5. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  6. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  7. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva

    1997-06-01

    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  8. Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis

    Science.gov (United States)

    Pillet, R.; Rouland, D.; Roult, G.; Wiens, D. A.

    1999-02-01

    Direct earthquake-to-station Rayleigh and Love wave data observed on high gain broadband records are analyzed in order to improve the lateral resolution of the uppermost mantle in the southwest Pacific region. We used data of nine permanent Geoscope and Iris stations located in the southern hemisphere and nine other stations as part of two temporary networks, the first one installed in New Caledonia and Vanuatu (hereafter named Cavascope network) by ORSTOM and the EOST from Louis Pasteur University in Strasbourg (France) and the second one installed in the Fiji, Tonga and Niue islands (hereafter named Spase network) by Washington University in St. Louis (USA). In order to collect more significant details on the surficial structures, we included the analysis of short period waves down to 8 s. A multiple frequency filtering technique has been used to recover phase velocities of Rayleigh and Love waves for selected earthquakes with magnitude greater than 5.5 and with known centroid moment tensor (CMT). About 1100 well-distributed seismograms have been processed in the period range 8-100 s and corrections for topography and water depth have been applied to the observed phase velocities. The geographical distribution of phase velocity anomalies have then been computed using the tomographic method developed by Montagner [Montagner, J.P., 1986a. Regional three-dimensional structures using long-period surface waves. Ann. Geophys. 4 (B3), 283-294]. Due to a poor knowledge of dense, well-distributed, crustal thickness values and corresponding velocity models, we did not perform or speculate on the construction of an S-wave 3D velocity model; therefore, we limited this study to the interpretation of the phase velocity distribution. The location of phase velocity anomalies are well determined and the deviations are discussed within the framework of the geological context and compared with other tomographic models. At long periods, from 40 s to 100 s, our results agree well

  9. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    Science.gov (United States)

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  10. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    Science.gov (United States)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  11. Waves at Navigation Structures

    Science.gov (United States)

    2014-10-27

    ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 2 19a. NAME...upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock

  12. Shallow shear-wave velocity profiles and site response characteristics from microtremor array measurements in Metro Manila, the Philippines

    Science.gov (United States)

    Grutas, Rhommel; Yamanaka, Hiroaki

    2012-07-01

    This paper presents the outcome of reconnaissance surveys in metropolitan Manila (Metro Manilla), the Philippines, with the aim of mapping shallow shear-wave velocity structures. Metro Manila is a seismically active and densely populated region that is in need of detailed investigation of the subsurface structures, to assess local site effects in seismic hazard estimation. We conducted microtremor array observations and used the spatial autocorrelation method to estimate the shear-wave profiles at 32 sites in major geological settings in Metro Manila. We applied a hybrid genetic simulated annealing algorithm to invert phase velocity data from the spatial autocorrelation method to generate shear-wave velocity models near the global best-fit solution. The comparison between the inferred shear-wave velocity profiles and PS logging showed good agreement in terms of the fundamental mode of Rayleigh waves and site responses. Then, we utilised the inferred shear-wave velocity profiles to compute the site amplifications with reference to the motion in engineering bedrock. Subsequently, the site amplifications have been grouped, based on NEHRP site classes. The amplification factor has also been compared with the average shear-wave velocity of the upper 30m at each site, to produce a power-law regression equation that can be used as a starting basis for further site-effects evaluation in the metropolis.

  13. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  14. Fine velocity structures collisional dissipation in plasmas

    Science.gov (United States)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  15. Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto

    2015-04-01

    Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.

  16. Correlation of seismic wave velocities with fracture densities: Implications for the critical zone in mountain watersheds

    Science.gov (United States)

    Peters, M. P.; Holbrook, W. S.; Flinchum, B. A.; Pasquet, S.

    2016-12-01

    Despite increasing scientific interest in the critical zone, the accurate determination of fracture density in the subsurface remains difficult as access and costs can prohibit ground-truthing through drilling. A more precise characterization of the fracturing process provides critical insight in to subsurface structures. This is particularly important in determining the point at which protolithic rock becomes fractured bedrock and then degrades to soil through the process of weathering. We studied outcrops in the Laramie Range of southeastern Wyoming were studied and fracture densities were correlated with seismic pressure (P) wave velocities. We used the Differential Effective Medium (DEM) rock physics model to validate our findings and provide a more robust characterization of the role of P-wave velocities acquired on outcrops play in critical zone science. This approach marks a significant departure from previous research, which has not applied P-wave fracture relationships in outcrops onto the critical zone for subsurface characterization. We compared our results with borehole data to establish a relationship between surface outcrops and subsurface rock structures. We found a clear, inverse relationship between a decrease in P-wave velocity and an increase in fracture density consistent with borehole data in the studied area. Our findings suggest that outcrops can be used to determine fracture density in the critical zone. We show that the use of seismic refraction surveys on outcrops provides a non-invasive, highly transferrable method through which we can predict fracturing densities in the subsurface.

  17. Exact Solitary-wave Solutions and Periodic Wave Solutions for Generalized Modified Boussinesq Equation and the Effect of Wave Velocity on Wave Shape

    Institute of Scientific and Technical Information of China (English)

    Wei-guo Zhang; Shao-wei Li; Wei-zhong Tian; Lu Zhang

    2008-01-01

    By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Bonssinesq equation. We also discuss the boundedness of these solutions. More over,we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.

  18. Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation

    Directory of Open Access Journals (Sweden)

    Polkowski Marcin

    2015-06-01

    Full Text Available Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units - the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.

  19. Bipolar-rogue-wave structures

    Science.gov (United States)

    Ding, Yingchun; Zhang, Bin; Feng, Qi; Tang, Xin; Liu, Zhongxuan; Chen, Zhaoyang; Lin, Chengyou

    2017-01-01

    The formation of extreme localization structures in nonlinear dispersive media (water or optical fibres) can be explained and described by the focusing nonlinear Schrödinger equation (NLSE). The NLSE is especially important in understanding how solitons on a condensate background (SCB) appear from a small perturbation through modulation instability. We have studied theoretically SCB solutions solved with the dressing method. A class of bipolar-rogue-wave structures that are constructed by collisions between elementary SCB or bipolar solitonic solutions was found. Besides, we have also found a new class of regular bright solitonic rogue waves that are originated from the collision between two bipolar-rogue-wave structures. The bipolar-rogue-wave structures can be considered to provide a new prototype for rogue-waves dynamics modeling. Our results extend previous studies in the area of rogue waves and may be important in the study of oceanography and optics.

  20. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  1. Wave propagation in double-porosity dual-permeability materials: Velocity and attenuation

    Science.gov (United States)

    Sharma, M. D.

    2017-08-01

    This study considers the propagation of harmonic plane waves in a double-porosity solid saturated by a viscous fluid. Two different porosities are supported with different permeabilities to facilitate the wave-induced fluid-flow in this composite material. The variation of the fluid content in the pores due to the wave-induced flow is expressed in terms of the dilatation of constituent particles in the porous aggregate. This fluid-flow can be considered through the constitutive relations with modified anelastic coefficients. The modified coefficients, being frequency dependent and complex, illustrate the dispersive and anelastic behaviour of double-porosity dual-permeability materials. Relevant equations of motion are solved to explain the propagation of three longitudinal waves and one transverse wave in double-porosity dual-permeability medium. A numerical example is considered to illustrate dispersion in velocity and attenuation of the four waves. Effect of wave-induced fluid-flow is analysed with changes in wave-inhomogeneity, pore-fluid viscosity and double-porosity structure.

  2. Pulse Wave Velocity and Electroneurophysiological Evaluation in patients of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Geetanjali Sharma

    2011-07-01

    Full Text Available Rheumatoid arthritis is a chronic systemic inflammatory disease of undetermined etiology involving the synovial membranes and articular structures of multiple joints and is also associated with carditis, pleuritis, hepatitis, peripheral neuropathy and vasculitis. The present study was undertaken to investigate arterial stiffness using carotid-radial and femoral-dorsalis pedis pulse wave velocity measurements and electrophysiological tests for peripheral nervous system involvement. 25 patients (aged between 20-60 years with rheumatoid arthritis according to the criteria of the American College of Rheumatology and 25 control subjects of the same age and sex were recruited. In the motor conduction studies, out of 25 patients of Rheumatoid arthritis, 6 had clinical evidence of peripheral neuropathy. 11 patients showed pure sensory neuropathy (44%, 10 showed mixed sensory motor neuropathy (40% while 4 showed normal motor and sensory conduction velocity. Two patients (8% showed features of entrapment neuropathy of median nerve i.e. feature of Carpal tunnel syndrome. In the pulse wave velocity evaluation statistically significant increase in pulse wave velocity between femoral-dorsalis pedis and carotid-radial artery segments was observed in Rheumatoid arthritis patients as compared to the control group. Measurement of carotid-radial and femoral-dorsalis pedis PWV may provide a simple and non-invasive technique for identifying patients at increased risk of vascular disease in Rheumatoid arthritis.

  3. Shear-wave Velocity Model from Rayleigh Wave Group Velocities Centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon B.; Erdem, Jemile

    2017-06-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths, the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  4. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  5. Simultaneous Local and Teleseismic P-Wave Velocity Tomography in Western Mexico

    Science.gov (United States)

    Escudero, C. R.; Alarcon, E.; Ochoa, J.; Nuñez-Cornu, F. J.

    2015-12-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To improve the current tomographic images of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local and teleseismic earthquakes along with the Fast Marching Method tomography technique. Our traveltime datasets include 2100 local earthquakes P-wave arrival times and 5,062 P-wave relative arrival time residuals of teleseismic earthquakes. The local earthquake phase picking was manually corrected and the relative arrival time residuals were estimated using the Multi-Channel Cross-Correlation method. All earthquakes occurred between 2006 and 2007 and were recorded by seismic stations deployed during the Mapping the Rivera Subduction Zone (MARS) experiment. The temporal seismic network consisted of 50 stations equipped with Streckeisen STS-2 and Quanterra Q330. We use an iterative nonlinear tomographic procedure and the fast marching method to map the residual patterns as P wave velocity anomalies. We followed an inversion scheme consisting of: (1) selection of a local and teleseismic earthquake, (2) estimation of improved 1-D reference velocity model, and (3) checkerboard testing to determine the optimum configuration of the velocity nodes, and inversion parameters, finally (4) perform final tomography and results analysis.

  6. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    Science.gov (United States)

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  7. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  8. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    Science.gov (United States)

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  9. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    Science.gov (United States)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  10. 利用接收函数方法研究腾冲地区S波速度结构%S-wave Velocity Structure in Tengchong Area Inversed by Receiver Functions

    Institute of Scientific and Technical Information of China (English)

    冯静; 傅竹武; 高孟潭

    2012-01-01

    Institute of Geophysics ,China Earthquake Administration ,Beijing 100081, China Tengchong Area is located at the boundary of collision and subduction zone of Indian and Eurasian plates and is influenced by many tectonic movements. With very complex geological environment and tectonic background, it is one of the seismically and volcanically active areas. In this paper, the teleseismic records are selected using the method of Maximum Entropy Deconvolution from 5 broadband temporary digital seismic stations within 1.0°×0.8° in Tengchong Area. Five stacking receiver functions are then extracted and the S-wave velocity structures under the 5 stations ranging from 0 to 100 kilometers are inversed by these receiver functions. It turns out that: 1) the geological structures in Tengchong Area show obvious lateral heterogeneity; 2) the crustal thickness at the two sides of the Yingjiang Fault changes greatly; 3) the area between Tengchong County and Gaoligong Mountain is a high gradient zone of crustal thickness and S-wave velocity; 4) there is a low velocity zone located to the southeast of Yingjiang fault and to the west of the Newly-Generated Rupture Zone; 5) the Yingjiang Fault and the Newly-Generated Rupture Zone can prevent the melt in volcanic area.%腾冲地区邻近印度板块与欧亚板块碰撞、俯冲的边界,地质环境和构造背景十分复杂,是我国地震、火山活动比较活跃的地区之一.本文采用最大熵谱反褶积方法提取腾冲地区1.0°×0.8°范围内5个流动数字地震台站的宽频带远震接收函数,反演得到台站下方0~100 km深度范围的S波速度结构,分析讨论了该地区的深部构造特征.结果表明:1)腾冲地区地质结构存在明显的横向非均匀性;2)盈江断裂两侧莫霍面深度有较大差异;3)腾冲和高黎贡山之间是地壳厚度和S波速度变化的高梯度带;4)盈江断裂东南、新生破裂带以西附近地区存在明显的低速层;5)盈江断裂和新生破

  11. Towards a new tool to develop a 3-D shear-wave velocity model from converted waves

    Science.gov (United States)

    Colavitti, Leonardo; Hetényi, György

    2017-04-01

    The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter

  12. Video measurements of fluid velocities and water levels in breaking waves

    CSIR Research Space (South Africa)

    Govender, K

    2002-01-01

    Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...

  13. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    Science.gov (United States)

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  14. An Undersea Mining Microseism Source Location Algorithm Considering Wave Velocity Probability Distribution

    OpenAIRE

    2014-01-01

    The traditional mine microseism locating methods are mainly based on the assumption that the wave velocity is uniform through the space, which leads to some errors for the assumption goes against the laws of nature. In this paper, the wave velocity is regarded as a random variable, and the probability distribution information of the wave velocity is fused into the traditional locating method. This paper puts forwards the microseism source location method for the undersea mining on condition o...

  15. Exploration of underground basement structures in Kanto plain using the spatial autocorrelation method. 1. S-wave velocity structure along the line from Hatoyama, Saitama to Noda, Chiba; Kukan jiko sokanho ni yoru Kanto heiya no kiban kozo tansa. 1. Saitamaken Hatoyama machi - Chibaken Nodashi kan no S ha sokudo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T.; Umezawa, N.; Shiraishi, H. [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1997-05-27

    The Saitama prefectural government has been conducting basement structure exploration using the spatial autocorrelation method by dividing the entire plain area into meshes, for the purpose of improving the accuracy of estimating large-scale seismic damages. This paper reports the result of explorations on meshes in the east-west direction in the central part of Saitama Prefecture. The present exploration was intended on ten meshes in the east-west direction along the north latitude 36-degree line. The number of exploration points is 13 comprising three points on the hilly area bordering on the eastern edge of the Kanto mountainous area and ten points on the plain area. The arrangement constitutes a traverse line with a total distance of about 33 km from the west edge (Hatoyama-machi in Saitama Prefecture) to the east edge (Noda City in Chiba Prefecture). The phase velocities were estimated from the result of the array microtremor observations using the spatial autocorrelation method applied with the FET. The phase velocities were used to estimate underground structures by using an inverse analysis. As a result, detailed two-dimensional S-wave velocity structures were revealed on the traverse line. The velocity cross section expresses change in the basement structures with sufficient resolution, and at the same time the information is judged highly harmonious with existing deep boring data and the result of artificial earthquake exploration. 15 refs., 6 figs.

  16. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    Science.gov (United States)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  17. Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy

    Science.gov (United States)

    Chen, Haopeng; Zhu, Liangbao; Su, Youjin

    2016-08-01

    We used teleseismic data recorded by a permanent seismic network in Yunnan, SE Tibet, and measured the interstation Rayleigh wave phase velocity between 10 and 60 s. A two-step inversion scheme was used to invert for the 3D S-wave velocity and azimuthal anisotropy structure of 10-110 km. The results show that there are two low velocity channels between depths of 20-30 km in Yunnan and that the fast axes are sub-parallel to the strikes of the low velocity channels, which supports the crustal flow model. The azimuthal anisotropy pattern is quite complicated and reveals a complex crust-mantle coupling mechanism in Yunnan. The N-S trending Lüzhijiang Fault separates the Dianzhong Block into two parts. In the western Dianzhong Block, the fast axis of the S-wave changes with depth, which indicates that the crust and the lithospheric mantle are decoupled. In the eastern Dianzhong Block and the western Yangtze Craton, the crust and the lithospheric mantle may be decoupled because of crustal flow, despite a coherent S-wave fast axis at depths of 10-110 km. In addition, the difference between the S-wave fast axis in the lithosphere and the SKS splitting measurement suggests that the lithosphere and the upper mantle are decoupled there. In the Baoshan Block, the stratified anisotropic pattern suggests that the crust and the upper mantle are decoupled.

  18. Ship waves on uniform shear current at finite depth: wave resistance and critical velocity

    CERN Document Server

    Li, Yan

    2016-01-01

    We present a comprehensive theory for linear gravity-driven ship waves in the presence of a shear current with uniform vorticity, including the effects of finite water depth. The wave resistance in the presence of shear current is calculated for the first time, containing in general a non-zero lateral component. While formally apparently a straightforward extension of existing deep water theory, the introduction of finite water depth is physically non-trivial, since the surface waves are now affected by a subtle interplay of the effects of the current and the sea bed. This becomes particularly pronounced when considering the phenomenon of critical velocity, the velocity at which transversely propagating waves become unable to keep up with the moving source. The phenomenon is well known for shallow water, and was recently shown to exist also in deep water in the presence of a shear current [Ellingsen, J.~Fluid Mech.\\ {\\bf 742} R2 (2014)]. We derive the exact criterion for criticality as a function of an intrin...

  19. Preliminary Study of Shear Wave Velocity Structure of Hebei and Surrounding Areas from Ambient Seismic Noise%基于背景噪声初步研究河北及邻区的剪切波速度结构

    Institute of Scientific and Technical Information of China (English)

    刘丽; 宫猛; 胡斌; 曾祥方; 罗艳

    2012-01-01

    We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 83 stations from digital seismic networks of the Hebei and surrounding areas. Firstly we used the multiple-filter analysis method to extract surface wave group velocity dispersion curves from inter-station paths at periods from 5 to 50 s. Then using linear inversion method to obtain shear wave velocity distribution. The results of group and shear wave velocity distribution maps generally demonstrate good correlations with surface geological and tectonic features. The results of the group velocity tomography show that at short periods (8 — 20 s) , basin areas are clearly resolved with low group velocity due to its thick sedimentary layer, and the uplift areas show relative higher group velocity distribution. With the increase of period O20 s) the group velocity distribution changed, and velocity gap between the basin and uplift areas had reduced after the 30 s period, due to the thickness of the Earth's crust, and beneath the middle-lower the shear wave velocity increase with depth. Our results alsoshow that in this study the dominated noise sources come from the north-west.%本文根据2010年1~12月河北及邻区的83个宽频地震仪12个月连续噪声记录,分析了河北及邻区瑞利面波的群速度频散曲线并反演了主要分区内的典型路径剪切波速度结构.首先采用多重滤波方法提取了台站对5~50 s的面波群速度频散曲线,然后用Herrmann线性反演方法反演了剪切波速度结构.结果表明,群速度频散曲线及剪切波速度分布特征与地表地质和构造特征表现出较好的相关性,清晰地揭示了地壳内部的横向速度变化.在短周期(8~20s),拥有较厚的沉积层的平原地区表现为明显的低速特征,而隆起地区则表现为较高的群速度分布特征:随着周期的增加(>20 s)速度的特征有所改变,30 s之后由于受地壳

  20. Wave Overtopping at Coastal Structures

    DEFF Research Database (Denmark)

    Geeraearts, Jimmy; De Rouck, Julien; Troch, Peter;

    2006-01-01

    The European research project CLASH (EVK3-CT-2001-00058) investigated wave overtopping at coastal structures. More specific it was to develop a generic prediction method for wave overtopping and to solve the problem of suspected scale effects. The paper summarizes the main results concerning...

  1. Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure

    Institute of Scientific and Technical Information of China (English)

    XIE; Hongsen(谢鸿森); ZHOU; Wenge; 周文戈); LIU; Yonggang; (刘永刚); GUO; Jie; (郭捷); HOU; Wei; (侯渭); ZHAO; Zhidan(赵志丹)

    2002-01-01

    To measure elastic wave velocities in rocks at high temperature and high pressure is an important way to acquire the mechanics and thermodynamics data of rocks in the earth's interior and also a substantial approach to studying the structure and composition of materials there. In recent years, a rapid progress has been made in methodology pertaining to the measurements of elastic wave velocities in rocks at high temperature and high pressure with solids as the pressure-transfer media. However, no strict comparisons have been made of the elastic wave velocity data of rocks measured at high temperature and high pressure by various laboratories. In order to compare the experimental results from various laboratories, we have conducted a comparative experimental study on three measuring methods and made a strict comparison with the results obtained by using the transmission method with fluid as the pressure-transfer medium. Our experimental results have shown that the measurements obtained by the three methods are comparable in the pressure ranges of their application. The cubic sample pulse transmission method used by Kern is applicable to measuring elastic wave velocities in crustal rocks at lower temperature and lower pressure. The prism sample pulse reflection-transmission method has some advantages in pressure range, heating temperature and measuring precision. Although the measurements obtained under relatively low pressure conditions by the prism sample pulse transmission method are relatively low in precision, the samples are large in length and their assemblage is simple. So this method is suitable to the experiments that require large quantities of samples and higher pressures. Therefore, in practical application the latter two methods are usually recommended because their measurements can be mutually corrected and supplemented.

  2. Velocity variations and uncertainty from transdimensional P-wave tomography of North America

    Science.gov (United States)

    Burdick, Scott; Lekić, Vedran

    2017-05-01

    High-resolution models of seismic velocity variations constructed using body-wave tomography inform the study of the origin, fate and thermochemical state of mantle domains. In order to reliably relate these variations to material properties including temperature, composition and volatile content, we must accurately retrieve both the patterns and amplitudes of variations and quantify the uncertainty associated with the estimates of each. For these reasons, we image the mantle beneath North America with P-wave traveltimes from USArray using a novel method for 3-D probabilistic body-wave tomography. The method uses a Transdimensional Hierarchical Bayesian framework with a reversible-jump Markov Chain Monte Carlo algorithm in order to generate an ensemble of possible velocity models. We analyse this ensemble solution to obtain the posterior probability distribution of velocities, thereby yielding error bars and enabling rigorous hypothesis testing. Overall, we determine that the average uncertainty (1σ) of compressional wave velocity estimates beneath North America is ˜0.25 per cent dVP/VP, increasing with proximity to complex structure and decreasing with depth. The addition of USArray data reduces the uncertainty beneath the Eastern US by over 50 per cent in the upper mantle and 25-40 per cent below the transition zone and ˜30 per cent throughout the mantle beneath the Western US. In the absence of damping and smoothing, we recover amplitudes of variations 10-80 per cent higher than a standard inversion approach. Accounting for differences in data coverage, we infer that the length scale of heterogeneity is ˜50 per cent longer at shallow depths beneath the continental platform than beneath tectonically active regions. We illustrate the model trade-off analysis for the Cascadia slab and the New Madrid Seismic Zone, where we find that smearing due to the limitations of the illumination is relatively minor.

  3. Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-06-01

    Full Text Available As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges.

  4. Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Transient S-wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S-wave velocity βand P-wave velocity α. Its existing in the rupture of in-plane (i.e. strike-slip) fault has been proved, but in 2-dimensional classical model, there are two difficulties in transient S-wave velocity rupture, i.e., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v↑vR (Rayleigh wave velocity), the dynamic stress strength factor K2(t)→+0, and changes from positive into negative in the interval (vR,β). How v transit the forbidden of (vR,β)? The divergence difficulty means K2(t)→+ when v↓. Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub-critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro-crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above-mentioned concept to the calculation of K2 (t), the difficulty of

  5. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  6. Seismic velocity structure of the Guerrero gap, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Jaime [Colegio de Ciencias y Humanidades, Plantel Sur, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Suarez, Gerardo [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Comte, Diana [Departamento de Geofisica, Universidad de Chile, Santiago (Chile); Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2006-04-15

    A two-dimensional velocity structure of the Guerrero gap was obtained by applying a damped least square method to hypocenters of local seismicity recorded by a telemetric network situated on the Guerrero coast, above Cocos plate subduction zone. The region was parameterized by a mesh of 64 cubes in six layers, a total of 384 blocks. The results of 3-D inversion showed that differences of P-wave velocity values among blocks along the strike of the subduction zone were {approx}0.25 km/s, effectively showing a two-dimensional symmetry. A 2-D inversion taking into account velocity similarities among the 2-D bands generated megablocks. A final inversion procedure yields P-wave velocity values ranging from 5.4 to 8.2 km/s, and S-wave values from 3.2 and 4.7 km/s, suggesting a continental crust with a thickness of {approx}32 km composed of four flat megablocks with a P-wave velocity interval of 5.4 to 7.1 km/s. The Moho interface lies at {approx}32 km depth and above a mantle wedge between continental and oceanic crust. The downgoing oceanic crust has three layers (7.2-7.7 km/s), dipping at an angle of {approx}26 degrees. A sharp velocity change at a depth of {approx}30 km suggests a phase change from basalt to eclogite (7.2 to 7.6 km/s). The mantle has an average velocity of 8.2 km/s. The new velocity model reduced the error in locations and fits better the characteristics of the Guerrero gap. [Spanish] Se obtiene la estructura bidimensional de velocidades sismicas de la brecha de Guerrero aplicando el metodo de minimos cuadrados amortiguados a los datos de la sismicidad local registrada por una red telemetrica situada en la costa, ubicada en la zona de subduccion de la placa de Cocos. La region se parametrizo con una malla de 64 cubos en seis capas, un total de 384 bloques. Los resultados de esta inversion tridimensional (3-D) mostraron una diferencia de velocidad de onda P, entre bloques adyacentes y paralelos a la costa, no mayor de 0.25 km/s, mostrando una simetria

  7. Exitation of Whistler Waves by a Helical Wave Structure

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Lynov, Jens-Peter; Michelsen, Poul

    1981-01-01

    The excitation of whistler waves in a radial inhomogeneous plasma is investigated experimentally, using a slow-wave structure consisting of a helix of variable length surrounding the plasma column. The excited waves were observed to have a wave-vector parallel to the external magnetic field....... The possibility of exciting the waves in different radial regions is demonstrated....

  8. Wave Overtopping of Marine Structures

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    defense structures. Optimization of structures utilizing wave overtopping for the production of electrical power has been ongoing throughout the last decade. It has been established that the information available in the existing literature is insufficient to describe overtopping of such structures......During the past 50 years tools for predicting wave overtopping of sea defense structures have continuously been refined. However, developers of wave energy converters have raised questions about how to predict the overtopping of structures with layouts significantly different from those of sea....... The present thesis describes investigations conducted against this background. The development of guidelines for calculating overtopping discharges for a wide variety of slope layouts is presented. Both structures with single and multi level reservoirs are examined. All geometries have been subjected...

  9. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection

    Science.gov (United States)

    Guanghui Li; Xiping Wang; Hailin Feng; Jan Wiedenbeck; Robert J. Ross

    2014-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  10. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    Science.gov (United States)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  11. Shear wave velocity versus quality factor: results from seismic noise recordings

    Science.gov (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano

    2017-08-01

    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  12. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  13. Experimental research on acoustic wave velocity of frozen soils during the uniaxial loading process

    Institute of Scientific and Technical Information of China (English)

    DongQing Li; Xing Huang; Feng Ming; Yu Zhang; Hui Bing

    2015-01-01

    Ultrasonic P-wave tests of frozen silt and frozen sand were conducted during uniaxial loading by using an RSM®-SY5(T) nonmetal ultrasonic test meter to study the velocity characteristics of P-waves. The experimental results indicate that the P-wave velocity is affected by soil materials, temperature, and external loads, so the P-wave velocity is different in frozen silt and frozen sand, but all decrease with an increase of temperature and increase at first and then decrease with strain during the loading process. There is an exponential relationship between uniaxial compressive strength and P-wave ve-locity, and the correlation between them is very good. The characteristic parameters of acoustic waves can, to some extent, reflect the development of internal cracks in frozen soils during loading.

  14. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    Science.gov (United States)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  15. Imaging Rayleigh Wave Attenuation and Phase Velocity beneath North America with USArray

    Science.gov (United States)

    Bao, X.; Dalton, C. A.; Jin, G.; Gaherty, J. B.

    2014-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle of United States at a novel scale. The majority of mantle models derived from USArray data contain spatial variations in velocity; however, little is known about the attenuation structure of the North American upper mantle. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity, and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. In this study, Rayleigh wave travel time and amplitude are measured using an interstation cross-correlation version of the Generalized Seismological Data Functional algorithm, which takes advantage of waveform similarity at nearby stations. Our data are from 670 large teleseismic earthquakes that occurred from 2006 to 2014 and were recorded by 1,764 Transportable Array stations. More than 4.8 million measurements at periods between 20 and 100 s are collected into our database. Isolating the signal of attenuation in the amplitude observations is challenging because amplitudes are sensitive to a number of factors in addition to attenuation, such as focusing/defocusing and local site amplification. We generate several Rayleigh wave attenuation maps at each period, using several different approaches to account for source and receiver effects on amplitude. This suite of attenuation maps allows us to distinguish between the robust features in the maps and the features that are sensitive to the treatment of source and receiver effects. We apply Helmholtz surface-wave tomography (Lin et al., 2012) to determine velocity and attenuation maps. A significant contrast in velocity and attenuation is observed in the transition between the western and central United States along the Rocky Mountain front. We find low Q values in the western US, along the eastern coast, and the Gulf plain. These areas are also

  16. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew

    2017-01-11

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the.

  17. Wave Equations about Displacement, Velocity, Stress and Strain in FGM with Constituents Varied Continuously and Smoothly

    Institute of Scientific and Technical Information of China (English)

    ZUO Hongxin; ZHANG Qingjie

    2008-01-01

    The wave equations about displacement, velocity, stress and strain in functionally gradient material (FGM) with constituents varied continuously and smoothly were established. Four kinds of waves are of linear second-order partial differential equation of hyperbolic type and have the same characteristic curve at the plane of X,t. In general, the varying mode of stress is different from that of displacement and velocity at the front of wave. But in a special case that the product of density p and elastic modulus E of the material remains unchanged, the three wave equations have a similar expression and they have a similar varying mode in the front of wave.

  18. Velocity Structure Diagnostics of Simulated Galaxy Clusters

    CERN Document Server

    Biffi, Veronica; Boehringer, Hans

    2010-01-01

    Gas motions in the hot intracluster medium of galaxy clusters have an important effect on the mass determination of the clusters through X-ray observations. The corresponding dynamical pressure has to be accounted for in addition to the hydrostatic pressure support to achieve a precise mass measurement. An analysis of the velocity structure of the ICM for simulated cluster-size haloes, especially focusing on rotational patterns, has been performed, demonstrating them to be an intermittent phenomenon, strongly related to the internal dynamics of substructures. We find that the expected build-up of rotation due to mass assembly gets easily destroyed by passages of gas-rich substructures close to the central region. Though, if a typical rotation pattern is established, the corresponding mass contribution is estimated to be up to ~17% of the total mass in the innermost region, and one has to account for it. Extending the analysis to a larger sample of simulated haloes we statistically observe that (i) the distrib...

  19. Wave scour around structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Fredsøe, Jørgen

    1999-01-01

    This review (of scour around marine structures) is organized in seven main sections: Basic concepts; Tunnel erosion; Two- and three-dimensional scour around pipelines; Scour around piles (slender bodies), including pile groups; Scour around complex structures; Scour around large, vertical cylinde......; and Scour around breakwaters (vertical-wall breakwaters and rubble-mound breakwaters)....

  20. Wave scour around structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Fredsøe, Jørgen

    1999-01-01

    This review (of scour around marine structures) is organized in seven main sections: Basic concepts; Tunnel erosion; Two- and three-dimensional scour around pipelines; Scour around piles (slender bodies), including pile groups; Scour around complex structures; Scour around large, vertical cylinders......; and Scour around breakwaters (vertical-wall breakwaters and rubble-mound breakwaters)....

  1. The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spence, W.L.

    1985-04-01

    A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)

  2. Double Structure Broadband Leaky Wave Antenna

    NARCIS (Netherlands)

    Neto, A.; Dijk, R. van; Filippo, M.

    2011-01-01

    A leaky wave antenna contains a first and a second leaky wave antenna structure back to back against each other. Each antenna structure comprises a dielectric body and an elongated wave carrying structure, such as a slot in a conductive ground plane. In each leaky wave antenna structure the body and

  3. Double Structure Broadband Leaky Wave Antenna

    NARCIS (Netherlands)

    Neto, A.; Dijk, R. van; Filippo, M.

    2011-01-01

    A leaky wave antenna contains a first and a second leaky wave antenna structure back to back against each other. Each antenna structure comprises a dielectric body and an elongated wave carrying structure, such as a slot in a conductive ground plane. In each leaky wave antenna structure the body and

  4. Partial Melting and Its Implications for Understanding the Seismic Velocity Structure within the Southern Tibetan Crust

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to constrain the crustal wave velocity structure in the southern Tibetan crust and provide insight into the contribution of crustal composition, geothermal gradient and partial melting to the velocity structure, which is characterized by low average crustal velocities and widespread presence of low-velocity zone(s), the authors model the crustal velocity and density as functions of depth corresponding to various heat flow values in light of velocity measurements at high temperature and high pressure. The modeled velocity and density are regarded as comparison standards. The comparison of the standards with seismic observations in southern Tibet implies that the predominantly felsic composition at high heat flow cannot explain the observed velocity structure there. Hence, the authors are in favor of attributing low average crustal velocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modeling based on the experimental results suggests that a melting percentage of 7-12 could account for the low-velocity zone(s).

  5. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  6. Determination of wave intensity in flexible tubes using measured diameter and velocity.

    Science.gov (United States)

    Feng, J; Khir, A W

    2007-01-01

    Wave intensity (WI) is a hemodynamics index, which is the product of changes in pressure and velocity across the wave-front. Wave Intensity Analysis, which is a time domain technique allows for the separation of running waves into their forward and backward directions and traditionally uses the measured pressure and velocity waveforms. However, due to the possible difficulty in obtaining reliable pressure waveforms non-invasively, investigating the use of wall displacement instead of pressure signals in calculating WI may have clinical merits. In this paper, we developed an algorithm in which we use the measured diameter of flexible tube's wall and flow velocity to separate the velocity waveform into its forward and backward directions. The new algorithm is also used to separate wave intensity into its forward and backward directions. In vitro experiments were carried out in two sized flexible tubes, 12mm and 16mm in diameters, each is of 2 m in length. Pressure, velocity and diameter were taken at three measuring sites. A semi-sinusoidal wave was generated using a piston pump, which ejected 40cc water into each tube. The results show that separated wave intensity into the forward and backward directions of the new algorithm using the measured diameter and velocity are almost identical in shape to those traditionally using the measured pressure and velocity. We conclude that the new algorithm presented in this work, could have clinical advantages since the required information can be obtained non-invasively.

  7. 转换波AVO反演速度比各横波反射系数%Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient

    Institute of Scientific and Technical Information of China (English)

    魏修成; 陈天胜; 季玉新

    2008-01-01

    Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. 'The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.

  8. Aortic pulse wave velocity measurement in systemic sclerosis patients

    Directory of Open Access Journals (Sweden)

    M. Sebastiani

    2012-12-01

    Full Text Available Background. Systemic sclerosis (SSc is characterized by endothelial dysfunction and widespread microangiopathy. However, a macrovascular damage could be also associated. Aortic pulse wave velocity (aPWV is known to be a reliable indicator of arterial stiffness and a useful prognostic predictor of cardiovascular events. Moreover, aPWV may be easily measured by non-invasive, user-friendly tool. Aim of our study was to evaluate aPWV alterations in a series of SSc patients. Methods. The aPWV was evaluated in 35 consecutive female SSc patients and 26 sex- and age-matched healthy controls. aPWV alterations were correlated with cardiopulmonary involvement. Results. A significant increase of aPWV was observed in SSc patients compared to controls (9.4±3.2 m/s vs 7.3±1 m/s; P=0.002. In particular, 14/35 (40% SSc patients and only 1/26 (4% controls (P=0.0009 showed increased aPWV (>9 m/s cut-off value. Moreover, echocardiography evaluation showed an increased prevalence of right atrial and ventricular dilatation (atrial volume: 23.6±6.2 mL vs 20.3±4.3 mL, P=0.026; ventricular diameter 19.5±4.9 mm vs 15.9±1.6 mm; P=0.001 associated to higher values of pulmonary arterial systolic pressure (PAPs in SSc patients (31.5±10.4 mmHg vs 21.6±2.9 mmHg; P50 years old. Furthermore, altered aPWV was more frequently associated with limited cutaneous pattern, longer disease duration (≥5 years, and/or presence of anticentromere antibody (ACA. Conclusions. A significantly higher prevalence of abnormally increased aPWV was evidenced in SSc patients compared to healthy controls. The possibility of more pronounced and diffuse vascular damage in a particular SSc subset (ACA-positive subjects with limited cutaneous scleroderma and longer disease duration might be raised.

  9. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    Science.gov (United States)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  10. Estimation of the p-wave velocity profile of elastic real data based on surface wave inversion

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2013-01-01

    Recently, we proposed an analytical approach to invert for a smoothly varying near-surface P-wave velocity profile that has a squared slowness linearly decreasing with depth. The exact solution for such a velocity profile in the acoustic approximation can be expressed in terms of Airy functions and

  11. Velocity selective trapping of atoms in a frequency-modulated standing laser wave

    CERN Document Server

    Argonov, V Yu

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We propose that in a real experiment with cold atomic gas this effect may decrease the velocity distribution of atoms (the field traps the atoms with such specific velocities while all other atoms leave the field)

  12. Velocity-vorticity correlation structures in compressible turbulent boundary layer

    Science.gov (United States)

    Chen, Jun; Li, Shi-Yao; She, Zhen-Su

    2016-11-01

    A velocity-vorticity correlation structure (VVCS) analysis is applied to analyze data of 3-dimensional (3-D) direct numerical simulations (DNS), to investigate the quantitative properties of the most correlated vortex structures in compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2 . 25 and 6 . 0 . It is found that the geometry variation of the VVCS closely reflects the streamwise development of CTBL. In laminar region, the VVCS captures the instability wave number of the boundary layer. The transition region displays a distinct scaling change of the dimensions of VVCS. The developed turbulence region is characterized by a constant spatial extension of the VVCS. For various Mach numbers, the maximum correlation coefficient of the VVCS presents a clear multi-layer structure with the same scaling laws as a recent symmetry analysis proposed to quantifying the sublayer, the log-layer, and the wake flow. A surprising discovery is that the wall friction coefficient, Cf, holds a "-1"-power law of the wall normal distance of the VVCS, ys. This validates the speculation that the wall friction is determined by the near-wall coherent structure, which clarifies the correlation between statistical structures and the near-wall dynamics. Project 11452002 and 11172006 supported by National Natural Science Foundation of China.

  13. Lamb Wave Propagation in Laminated Composite Structures

    OpenAIRE

    Gopalakrishnan, S.

    2013-01-01

    Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.

  14. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions.

  15. The group velocity variation of Lamb wave in fiber reinforced composite plate.

    Science.gov (United States)

    Rhee, Sang-Ho; Lee, Jeong-Ki; Lee, Jung-Ju

    2007-12-01

    Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not the same as the theoretical group velocities which is calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude correction in addition to direction correction. In this study, S0 mode phase velocity dispersion curves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity could be calculated from the slowness surface. The recalculated group velocities with consideration of the magnitude and direction from the slowness surface are compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

  16. The wave phase velocity in superconducting transmission lines near T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhakhmetov, A.R.; Lobov, G.D.; Shtykov, V.V.; Zhgoon, S.A. [Moscow Power Engineering Inst. (Russian Federation). Radio Engineering Dept.

    1998-06-01

    A peculiarity in behavior of electromagnetic waves phase velocity ({nu}{sub ph}), propagating in superconducting planar transmission lines, in the vicinity of the transition temperature (T{sub c}) was observed in experiment and deduced theoretically. (orig.) 5 refs.

  17. Detailed 3-D S-wave velocity beneath the High Lava Plains, Oregon, from 2-plane-wave Rayleigh wave inversions

    Science.gov (United States)

    Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.

    2009-12-01

    The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.

  18. Tomographic Rayleigh-wave group velocities in the Central Valley, California centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-01-01

    of the low velocity zone and gravity anomaly are better aligned at longer periods (around 10.5s) suggesting that the eastern edge of the gravity low is associated with deeper structure. There is a strong correspondence between a low in gravity near the Kirby Hills fault and low velocities from the ambient noise tomography. At longer periods, higher velocities creep in from the east and narrow the overall dimension defined by the lower velocities. Overall, there is a strong correspondence between the shape and location of low velocities in the Rayleigh wave velocity images, and geological and geophysical features.

  19. The sound velocity structure of the shelf waters off Visakhapatnam

    Directory of Open Access Journals (Sweden)

    J. Sivarama Sastry

    1957-04-01

    Full Text Available The vertical structure of sound velocity has been presented. The depth-sound velocity curves are drawn. The sound velocity is found to vary considerably in the surface waters during the period from November 1995 to April 1956. The variations in sound velocity have been discussed in relation to (1sinking, (2upwelling (3advection and (4diurnal and seasonal variation in temperature and salinity. The sound velocity in surface waters shows a general increase with the advance of upwelling season. The sound velocity decreases with depth in the surface layers in the upwelling seasons. In contrast; the sound velocity increases with depth in the surface layers during sinking season. At greater depths the sound velocity is found not to vary much during the entire period (November to April.

  20. The influence of wafer dimensions on the contact wave velocity in silicon wafer bonding

    DEFF Research Database (Denmark)

    Bengtsson, S.; Ljungberg, Karin; Vedde, Jan

    1996-01-01

    The contact wave velocity in silicon wafer bonding is experimentally found to decrease with wafer thickness and to be only weakly dependent on wafer diameter. Wafers of different thicknesses ranging from 270 to 5000 mu m, were dipped in HF:H2O before bonding to give the surfaces hydrophobic...... stored in the material is increased, and the contact wave velocity is decreased. (C) 1996 American Institute of Physics....

  1. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-08-25

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.

  2. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    Science.gov (United States)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  3. The Simulation and Characteristic Study of Wind Velocity for Long-Span Structures

    Institute of Scientific and Technical Information of China (English)

    周岱; 马骏; 吴筑海; 陈思

    2004-01-01

    The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind's power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.

  4. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  5. 3-D seismic velocity and attenuation structures in the geothermal field

    Science.gov (United States)

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan, Sule, Rachmat

    2013-09-01

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  6. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  7. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    Science.gov (United States)

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  8. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    Science.gov (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  9. On the time varying horizontal water velocity of single, multiple, and random gravity wave trains

    NARCIS (Netherlands)

    Wells, D.R.

    1964-01-01

    In this dissertation some characteristics of the horizontal water velocity for single, multiple, and random gravity wave trains are studied. This work consists of two parts, an analogue study and hydraulic measurements. An important aspect in this work is to suggest the horizontal water velocity asy

  10. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

  11. Optimal control of oscillation wave energy system using velocity premonition

    Institute of Scientific and Technical Information of China (English)

    CUI; Xiao

    2015-01-01

    Recently ocean wave energy draw much more attention for its widespread,abundant and highly energy flux density properties.Extracting energy from incident wave however,is limited for the random and unstable power input.Motion control for WEC is a promising method to improve the energy absorption and some practical applications are also verified such as latching control.In this paper,an active control strategy is proposed to achieve maximum energy capture.The mathematical description shows that the active control has the characteristic of anti-causal and the wave premonition is necessary for controller design.But the fact of premonition time horizon is still unclear.In this paper,the premonition nature is described mathematically based on hydrodynamic theory.Furthermore,a simulation is also performed to study the impacting of premonition time horizon on WEC’s properties and give a more insightful understanding of WEC active control.

  12. Seismic wave attenuation and velocity dispersion in UAE carbonates

    Science.gov (United States)

    Ogunsami, Abdulwaheed Remi

    Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact

  13. Negative group velocity and three-wave mixing in dielectric crystals

    CERN Document Server

    Slabko, Vitaly V; Shalaev, Mikhail I; Popov, Alexander K

    2011-01-01

    Extraordinary features of optical parametric amplification of Stokes electromagnetic waves are investigated, which originate from three-wave mixing of two ordinary electromagnetic and one backward phonon wave with negative group velocity. A similarity with the counterpart in the negative-index plasmonic metamaterials and differences with those utilizing contra-propagating ordinary electromagnetic waves as well as electromagnetic and acoustic phonon waves are shown. They stem from backwardness of optical phonons with negative dispersion. Nonlinear-optical photonic devices with the properties similar to those predicted for the negative-index metamaterials are proposed.

  14. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  15. Love wave propagation in piezoelectric layered structure with dissipation.

    Science.gov (United States)

    Du, Jianke; Xian, Kai; Wang, Ji; Yong, Yook-Kong

    2009-02-01

    We investigate analytically the effect of the viscous dissipation of piezoelectric material on the dispersive and attenuated characteristics of Love wave propagation in a layered structure, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of the viscous coefficient on the phase velocity of Love waves and attenuation are presented and discussed in detail. The analytical method and the results can be useful for the design of the resonators and sensors.

  16. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity

    Science.gov (United States)

    Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.

    2006-01-01

    A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.

  17. CHANGES OF MEAN VELOCITY PROFILES IN THE WAVE-CURRENT COMBINED FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a mathematical model is developed to simulate thechange in mean velocity for the coexistent case of waves and current. The experimental results of mean velocity profile in a wave-current flume have shown following features: Eulerian mean current profile for following current is more uniformly distributed than the corresponding pure current case, whereas, the case of an opposing current leads to the more straight profile. This model is based on Eulerian mean framework, and motions of wave and current are solved simultaneously. The comparisons of numerical results and experimental data show that the mathematical model presented in this paper is reasonable and feasible.

  18. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  19. Simulations of Kinetic Electrostatic Electron Nonlinear (KEEN) Waves with Variable Velocity Resolution Grids and High-Order Time-Splitting

    CERN Document Server

    Afeyan, Bedros; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric

    2014-01-01

    KEEN waves are nonlinear, non-stationary, self-organized asymptotic states in Vlasov plasmas outside the scope or purview of linear theory constructs such as electron plasma waves or ion acoustic waves. Nonlinear stationary mode theories such as those leading to BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force used to drive them. Smaller amplitude drives create highly localized structures attempting to coalesce into KEEN waves. These cases have much more chaotic and intricate time histories than strongly driven ones. The narrow range in which one must maintain adequate velocity resolution in the weakly driven cases challenges xed grid numerical schemes. What is missing there is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform c...

  20. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  1. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  2. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  3. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  4. Interaction of Streamwise and Wall-Normal Velocities in Combined Wave-Current Motion

    Institute of Scientific and Technical Information of China (English)

    Shu-Qing YANG; In-Soo KIM; Daniel S. KOH; Young-Chae SONG

    2005-01-01

    The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been comprehensively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. -ρ(uv)only, this study demonstrates that the momentum flux caused by mean velocities, i.e.,(u)and(v) , is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.

  5. Anisotropy of Electrical Resistivity and P-wave Velocity in Discrete Samples From Nantroseize Expeditions 315 and 316

    Science.gov (United States)

    Louis, L.; Henry, P.; Humbert, F.; Knuth, M.; Likos, W.; Scientists, I.

    2008-12-01

    We present results of electrical conductivity and P-wave velocity measurements in discrete samples processed onboard Chikyu during Nantroseize expeditions 315 and 316 in the Mega Splay fault and Frontal Thrust of the Nankai accretionary prism. Quasi cubes of 20 mm thickness nominally saturated with seawater were measured across the three parallel sets of faces, first for electrical conductivity, then for P-wave velocity. Average properties and their anisotropies appeared to show some sensitivity to both lithological and fault related features. Overall, strong transverse anisotropy due to sedimentary compaction was observed for both properties with minimum electrical conductivity and P-wave velocity along the vertical core axis direction. Within the horizontal plane perpendicular to the core axis, slight anisotropies were also measured, which are likely related to tectonically driven horizontal shortening, affecting noticeably the original compaction fabric. In order to get some structural insight, samples were reoriented in our laboratories using alternative field demagnetization technique and the in-plane (i.e. perpendicular to the core axis) data rotated accordingly. For the P-wave anisotropy, initial cubes were shaped into polyhedrons in order to get even more accurate estimates. These additional measurements allowed for retrieving for each sample the 3 principal values and vectors of the best fitting ellipsoidal function. Resulting stereoplots were then compared with electrical resistivity, magnetic susceptibility (AMS) and structural data.

  6. Seismic structure beneath the Gulf of California: a contribution from group velocity measurements

    Science.gov (United States)

    Di Luccio, F.; Persaud, P.; Clayton, R. W.

    2014-12-01

    Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broad-band stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ˜28ºN which extends east-south-eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California. We also observe a high-velocity anomaly at 50-km depth extending down to ˜130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.

  7. Irregular Wave-Induced Velocities in Shallow Water

    Science.gov (United States)

    1992-09-01

    and Acceleration of the Surface of Wind Waves," Rep. Res. Inst. Appl . Mech. (Kyushu Univ.), 24, No. 76, 31-48. 19, Hughes, S.A. (1991) "Estimating...8217 siilk 2 i- (D½ 0 0 411 0 Ursoll No. 0.1 10 100 1000 10000 Ursell No. W (.), z-mid-depth W (#), z-bottom W (-), z-mid-depth W (-), z-bottom (b) Figure 72

  8. Precise Measurement of Subsurface Seismic Velocity Variation by Coda Wave Interferometry

    Institute of Scientific and Technical Information of China (English)

    Xia Yu; Wang Baoshan; Ge Hongkui; Chen Yong

    2008-01-01

    A filed experiment was conducted continuously for three days,and the velocity variation was measured using coda wave interferometry.The measurement error is estimated to be around 10-4,which coincides well with the theoretical error.The velocity variation during this period is up to 10-3.The relationship between velocity variation and changes in air temperature,barometric pressure and solid earth tide was analyzed with linear least square fitting.The velocity has no dependence on air temperature,but displayed change of the order of 10-6~10-7 when the barometer or earth tide changed one Pa.

  9. Offshore Southern California lithospheric velocity structure from noise cross-correlation functions

    Science.gov (United States)

    Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.

    2016-05-01

    A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.

  10. High resolution applications of seismic tomography: low velocity anomalies and static corrections using wave-equation datuming

    Science.gov (United States)

    Flecha, I.; Marti, D.; Escuder, J.; Perez-Estaun, A.; Carbonell, R.

    2003-04-01

    A detailed characterization of the internal structure and physical properties of shallow surface can be obtained using high-resolution seismic tomography. Two applications of high resolution seismic tomography are presented in this study. Several synthetics simulations have been carried out to asses the resolving power of this methodology in different cases. The first studied case is the detection of low velocity anomalies in the shallow subsoil. Underground cavities (mines), water flows (formation wich loose sand), etc., are geological features present in the shallow subsurface characterized by low seismic velocities, and are targets of considerable social interest. We have considered a 400m×50m two dimensional velocity model consisting of a background velocity gradient in depth from 3 to 4 Km/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The inversions schemes provided estimates of the velocity, however the tomograms and the ray tracing diagrams indicated a low resolution for the anomaly. In the second case we have applied wave-equation datuming to pre-stack layer replacement. The standard seismic data processing applies a vertical time shift to the data traces. However, it is not a good option when we are dealing with rugged topography or bathymetry, and when the media presents a high heterogeneity. Wave-equation datuming extrapolates seismic time data to some level datum keeping consistency between raypaths and wavefield propagation. It improves considerably seismic reflectors imaging. In order to implement this technique a velocity model is required, and usually a constant velocity is used to propagate the wavefield; instead of it we have used seismic tomography to provide an accurate velocity model.

  11. The influence of physical properties on propagation velocity of seismic waves of the rocks

    Directory of Open Access Journals (Sweden)

    Radoslav Schügerl

    2010-01-01

    Full Text Available Dynamic load are very important for determination physical properties of the rocks. Dynamic load propagates in the rocks by seismic waves (subsurface waves – longitudinal and transverse, and surface – Rayleigh´s waves. Laboratory (ultrasound machine and hydraulic jack and field methods (cross – hole, down – hole and up – hole on the determination to propagation velocity of seismic waves of the rocks can be used. This article presents selected problems of the research of the influence of physical properties (bulk density, porosity, change of temperature, stage of saturation on propagation velocity of seismic waves of the rocks and compares the values of dynamic modulus of elasticity Edyn obtain by means of ultrasound machine and by hydraulic jack. These parameters were obtained by laboratory testing of sandstone samples from locality of Jánovce – Jablonov (Šibenik tunnel.

  12. The energy of waves in the photosphere and lower chromosphere: 1. Velocity statistics

    CERN Document Server

    Beck, C; Rezaei, R; Collados, M

    2009-01-01

    Acoustic waves are one of the primary suspects besides magnetic fields for the chromospheric heating process to temperatures above radiative equilibrium (RE). We derived the mechanical wave energy as seen in line-core velocities to obtain a measure of mechanical energy flux with height for a comparison with the energy requirements in a semi-empirical atmosphere model. We analyzed a 1-hour time series and a large-area map of Ca II H spectra on the traces of propagating waves. We analyzed the velocity statistics of several spectral lines in the wing of Ca II H, and the line-core velocity of Ca II H. We converted the velocity amplitudes into volume and mass energy densities. For comparison, we used the increase of internal energy necessary to lift a RE atmosphere to the HSRA temperature stratification. We find that the velocity amplitude grows in agreement with linear wave theory and thus slower with height than predicted from energy conservation. The mechanical energy of the waves above around z~500 km is insuf...

  13. A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.

    Science.gov (United States)

    Choi, Sun-Ho; Kim, Yong-Jung

    2017-02-01

    We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.

  14. Characteristics of group velocities of backward waves in a hollow cylinder.

    Science.gov (United States)

    Cui, Hanyin; Lin, Weijun; Zhang, Hailan; Wang, Xiuming; Trevelyan, Jon

    2014-06-01

    It is known that modes in axially uniform waveguides exhibit backward-propagation characteristics for which group and phase velocities have opposite signs. For elastic plates, group velocities of backward Lamb waves depend only on Poisson's ratio. This paper explores ways to achieve a large group velocity of a backward mode in hollow cylinders by changing the outer to inner radius ratio, in order that such a mode with strong backward-propagation characteristics may be used in acoustic logging tools. Dispersion spectra of guided waves in hollow cylinders of varying radii are numerically simulated to explore the existence of backward modes and to choose the clearly visible backward modes with high group velocities. Analyses of group velocity characteristics show that only a small number of low order backward modes are suitable for practical use, and the radius ratio to reach the highest group velocity corresponds to the accidental degeneracy of neighboring pure transverse and compressional modes at the wavenumber k = 0. It is also shown that large group velocities of backward waves are achievable in hollow cylinders made of commonly encountered materials, which may bring cost benefits when using acoustic devices which take advantage of backward-propagation effects.

  15. Shear-wave velocity of surficial geologic sediments in Northern California: Statistical distributions and depth dependence

    Science.gov (United States)

    Holzer, T.L.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.

    2005-01-01

    Shear-wave velocities of shallow surficial geologic units were measured at 210 sites in a 140-km2 area in the greater Oakland, California, area near the margin of San Francisco Bay. Differences between average values of shear-wave velocity for each geologic unit computed by alternative approaches were in general smaller than the observed variability. Averages estimated by arithmetic mean, geometric mean, and slowness differed by 1 to 8%, while coefficients of variation ranged from 14 to 25%. With the exception of the younger Bay mud that underlies San Francisco Bay, velocities of the geologic units are approximately constant with depth. This suggests that shear-wave velocities measured at different depths in these surficial geologic units do not need to be normalized to account for overburden stress in order to compute average values. The depth dependence of the velocity of the younger Bay mud most likely is caused by consolidation. Velocities of each geologic unit are consistent with a normal statistical distribution. Average values increase with geologic age, as has been previously reported. Velocities below the water table are about 7% less than those above it. ?? 2005, Earthquake Engineering Research Institute.

  16. Three Kinds of Velocity Structure Function in Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; JIANG Nan

    2004-01-01

    Based on the local multi-scale eddy structures in turbulent flows, we elucidate the essential difference between the real turbulent field with a finite Reynolds number and the Kolmogorov fully developed random field. The motion of fluid particles in the real turbulent field is not fully random. There exist multi-scale structures due to the effect of viscosity. Actually the movements of fluid particles in the turbulent field are restricted by such eddy structures. Furthermore, concept of the locally averaged velocity structure function is put forward to describe the relative strain distortion of two adjacent turbulent eddy structures at a certain scale. The time sequence of the longitudinal velocity component at different vertical locations in turbulent boundary layer has been elaborately measured by the constant temperature anemometry of model IFA-300 in a wind tunnel. The experiment proves that the locally averaged velocity structure function is in agreement with the wavelet-coefficient structure function.

  17. Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves

    Science.gov (United States)

    Agbasi, Chijioke Raphael

    The non-linear elastodynamics of a flat plate subjected to low velocity foreign body impacts is studied, resembling the space debris impacts on the space structure. The work is based on a central hypothesis that in addition to identifying the impact locations, the material properties of the foreign objects can also be classified using acousto-ultrasonic signals (AUS). Simultaneous localization of impact point and classification of impact object is quite challenging using existing state-of-the-art structural health monitoring (SHM) approaches. Available techniques seek to report the exact location of impact on the structure, however, the reported information is likely to have errors from nonlinearity and variability in the AUS signals due to materials, geometry, boundary conditions, wave dispersion, environmental conditions, sensor and hardware calibration etc. It is found that the frequency and speed of the guided wave generated in the plate can be quantized based on the impactor's relationship with the plate (i.e. the wave speed and the impactor's mechanical properties are coupled). In this work, in order to characterize the impact location and mechanical properties of imapctors, nonlinear transient phenomenon is empirically studied to decouple the understanding using the dominant frequency band (DFB) and Lag Index (LI) of the acousto-ultrasonic signals. Next the understanding was correlated with the elastic modulus of the impactor to predict transmitted force histories. The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over

  18. Sample Disturbance in Resonant Column Test Measurement of Small-Strain Shear-Wave Velocity

    Science.gov (United States)

    Chiara, Nicola; Stokoe, K. H.

    The accurate assessment of dynamic soil properties is a crucial step in the solution process of geotechnical earthquake engineering problems. The resonant column test is one of the ordinary procedures for dynamic characterization of soil. In this paper, the impact of sample disturbance on the resonant column test measurement of small-strain S-wave velocity is examined. Sample disturbance is shown to be a function of the ratio of the laboratory to field S-wave velocities: Vs, lab/Vs,field. The influence of four parameters - soil stiffness, soil plasticity index, in-situ sample depth and in-situ effective mean confining pressure - on sample disturbance is investigated both qualitatively and quantitatively. The relative importance of each parameter in predicting the small-strain field S-wave velocity from the resonant column test values is illustrated and predictive equations are presented.

  19. Seismic tomography of Yunnan region using short-period surface wave phase velocity

    Institute of Scientific and Technical Information of China (English)

    何正勤; 苏伟; 叶太兰

    2004-01-01

    The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method.Adopting tomography method, the distribution maps of phase velocities at various periods in Yunnan region are inverted. The maps of phase velocities on profiles along 24°N, 25°N, 26°N, 27°N and 100.5°E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities.

  20. Application of negative velocity dispersion curves to the distinction between layer and substrate Rayleigh waves

    Science.gov (United States)

    Hadjoub, Zahia; Touati, Ibtissem; Doghmane, Malika; Doghmane, Abdellaziz

    2008-10-01

    This work concerns the investigation of loading layers/substrate structures in order to determine the critical thickness at which Rayleigh wave characteristics of layers can be completely distinguished from those of the substrates. To do so, we first calculate Rayleigh velocity dispersion curves of several thin film materials (about thirty) deposited on different slow and fast substrates (Be, Al 2O 3, AlN, Si, SiO 2, Mg, SiC, TiN, WC and Pyrex). Then, from the beginning of curve saturation (corresponding to the onset of intrinsic layer characteristics) we deduced normalized thickness transition for all layers/substrates combinations. Thus, we were able to deduce an analytical linear expression relating the critical thickness to combined effects of densities and velocities of both layers and substrates. Such a simple relation can be used, as an alternative method, to predict the transition critical thickness for any layer/substrate combination without the usual lengthy calculation of dispersion curves. To cite this article: Z. Hadjoub et al., C. R. Physique 9 (2008).

  1. Internal wave pressure, velocity, and energy flux from density perturbations

    CERN Document Server

    Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L

    2016-01-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...

  2. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  3. Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    Akihiko; Osaki; Tomoyuki; Kubota; Takeshi; Suda; Masato; Igarashi; Keisuke; Nagasaki; Atsunori; Tsuchiya; Masahiko; Yano; Yasushi; Tamura; Masaaki; Takamura; Hirokazu; Kawai; Satoshi; Yamagiwa; Toru; Kikuchi; Minoru; Nomoto; Yutaka; Aoyagi

    2010-01-01

    AIM:To investigate whether a noninvasive measurement of tissue strain has a potential usefulness for management of nonalcoholic steatohepatitis(NASH).METHODS:In total 26 patients,23 NASHs and 3 normal controls were enrolled in this study.NASH was staged based on Brunt criterion.At a region of interest(ROI),a shear wave was evoked by implementing an acoustic radiation force impulse(ARFI),and the propagation velocity was quantif ied.RESULTS:Shear wave velocity(SWV) could be reproducibly quantified at all ROIs...

  4. Non-Gaussian properties of second-order wave orbital velocity

    CERN Document Server

    Alberello, Alberto; Gramstad, Odin; Babanin, Alexander V; Toffoli, Alessandro

    2015-01-01

    A stochastic second-order wave model is applied to assess the statistical properties of wave orbital velocity in random sea states below the water surface. Directional spreading effects as well as the dependency of the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-harmonics dominate the second-order contribution to orbital velocity. We show that a notable set-down occurs for the most energetic and steepest groups. This engenders a negative skewness in the temporal evolution of the orbital velocity. A substantial deviation of the upper and lower tails of the probability density function from the Gaussian distribution is noticed, velocities are faster below the wave trough and slower below the wave crest when compared with linear theory predictions. Second-order nonlinearity effects strengthen with reducing the water depth, while weaken with the broadening of the wave spectrum. The results are confirmed by laboratory data. Corresponding experiments have b...

  5. One-Dimensional Velocity Structure of the Crust in Fujian, Southeast China

    Directory of Open Access Journals (Sweden)

    Hui-Teng Cai

    2015-01-01

    Full Text Available 12095 P-wave phase data were selected in this study from four NW-oriented and four NE-oriented explosion sounding survey lines conducted along the coast and midland of Southeast China during the years 2010 and 2012. The 1-D crust P-wave velocity model was obtained in the continental margin of Southeast China (Fujian Province using the travel time residual as the threshold and performing linear iterative inversion. This crust model includes 5 layers with the velocities being 5.04, 5.44, 6.06, 6.16, 6.39 km s-1, respectively, with the bottom depths being 0.23, 2.82, 6.44, 18.81, 30.42 km, respectively, and the uppermost mantle velocity being 8.08 km s-1. Compared with previous work the four P-wave phase data could effectively reflect the shallow and deep crust characteristics. The joint inversion method involves both the velocity and depth. The results in this paper could therefore be more reasonable and applicable than previous findings, with fairly good control in both the shallow and deep crusts. These findings have practical significance for compiling the earthquake travel time table and precisely locating earthquakes in this area. This work also provides an accurate preliminary model for subsequent 2-D and 3-D velocity structure inversions in the Southeast China (Fujian Province continental margin.

  6. Rayleigh wave dispersion measurements reveal low-velocity zones beneath the new crust in the Gulf of California

    Science.gov (United States)

    Persaud, Patricia; Di Luccio, Francesca; Clayton, Robert W.

    2015-03-01

    Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50 km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift.

  7. Group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the eastern Indian craton

    Science.gov (United States)

    Mandal, Prantik

    2017-02-01

    In the past three years, a semi-permanent network of fifteen 3-component broadband seismographs has become operational in the eastern Indian shield region occupying the Archean (∼2.5-3.6 Ga) Singhbhum-Odisha craton (SOC) and the Proterozoic (∼1.0-2.5 Ga) Chotanagpur Granitic Gneissic terrane (CGGT). The reliable and accurate broadband data for the recent 2015 Nepal earthquake sequence from 10 broadband stations of this network enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the region. First, we measure fundamental mode Rayleigh- and Love-wave group velocity dispersion curves in the period range of 7-70 s and then invert these curves to estimate the crustal and upper mantle structure below the eastern Indian craton (EIC). We observe that group velocities of Rayleigh and Love waves in SOC are relatively high in comparison to those of CGGT. This could be attributed to a relatively mafic-rich crust-mantle structure in SOC resulting from two episodes of magmatism associated with the 1.6 Ga Dalma and ∼117 Ma Rajmahal volcanisms. The best model for the EIC from the present study is found to be a two-layered crust, with a 14-km thick upper-crust (UC) of average shear velocity (Vs) of 3.0 km/s and a 26-km thick lower-crust (LC) of average Vs of 3.6 km/s. The present study detects a sharp drop in Vs (∼-2 to 3%) at 120-260 km depths, underlying the EIC, representing the probable seismic lithosphere-asthenosphere boundary (LAB) at 120 km depth. Such sharp fall in Vs below the LAB indicates a partially molten layer. Further, a geothermal gradient extrapolated from the surface heat flow shows that such a gradient would intercept the wet basalt solidus at 88-103 km depths, suggesting a 88-103 km thick thermal lithosphere below the EIC. This could also signal the presence of small amounts of partial melts. Thus, this 2-3% drop in Vs could be attributed to the presence of partial melts in the

  8. Deep ReMi Imaging - Mapping Shear-Wave Velocities to 1 km Depth and Greater Using Refraction Microtremor

    Science.gov (United States)

    Louie, J. N.; Pancha, A.; Munger, D.; Law, C.; Adams, D.; Mick, T. M.; Pullammanappallil, S. K.

    2016-12-01

    The Refraction Microtremor (ReMi) surface-wave technique, in use since 2002, has become a standard tool for assessing urban shear-wave velocities for engineering applications. ReMi is effective for site-class studies as well as assessing ground conditions, including 1D and 2D velocity-depth profiling to shallow depths of approximately 100 m. Over the last few years, we have successfully extended the application of the method to depths greater than 1 km. The use of deep ReMi, which relies primarily on ambient noise, for estimation of shear-wave velocities to kilometer depths, allows for mapping the thickness and velocity of deep urban basins. Accurate 3D modeling and calibration of recorded earthquake ground motions in urban areas is one use of deep ReMi results. Such models have the potential to be an essential part of seismic hazard evaluation. We present results from several deep ReMi studies conducted in the Reno-area and Tahoe basins of Nevada and California. Wireless instruments coupled with low-frequency geophones deployed in 3-km-long arrays across the densely populated urban environment acquired data in 2012, 2014, and 2015. In addition to mapping basement as deep as 900 m, the lateral velocity variations reveal deep-seated fault structure in the initial studies. A study of the Reno-area basin in 2016 employed arrays of 90 IRIS-PASSCAL Texans, 15 and 22 km long. This data set appears to constrain a sub-basin interface between Tertiary volcanics and Mesozoic basement at 1-2 km depth. Characterization of shear velocity at greater than 100 m depth, to basement, along with previously unknown faults, is vital towards quantifying earthquake ground motion and seismic hazard potential in geologically complex urban basins. Our measurements will allow Nevada communities to become more resilient against natural hazards.

  9. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  10. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  11. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection.

    Science.gov (United States)

    Nagy, Peter B; Simonetti, Francesco; Instanes, Geir

    2014-09-01

    Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes.

  12. Measuring and Modeling of P- and S-Wave Velocities on Crustal Rocks: A Key for the Interpretation of Seismic Reflection and Refraction Data

    Directory of Open Access Journals (Sweden)

    Hartmut Kern

    2011-01-01

    Full Text Available Lithologic interpretations of the earth crust from seismic wave velocities are non-unique so that inferences about composition can not be drawn. In order to evaluate how elastic properties of rock materials are controlled by lithology at in situ pressures and temperatures, compressional (Vp, shear wave velocities (Vs and velocity anisotropy of crustal rocks were measured at conditions of greater depth. The first part deals with the interdependence of elastic wave propagation and the physical and lithological parameters. In the second part data from laboratory seismic measurements and theoretical calculations are used to interpret (1 a shallow seismic reflection line (SE Finland and (2 a refraction profile of a deep crust (Central China. The comparison of the calculated velocities with the experimentally-derived in situ velocities of the Finnish crustal rocks give hints that microcracks have an important bearing on the in situ seismic velocities, velocity anisotropy and the reflectivity observed at relative shallow depth. The coupling of the experimentally-derived in situ velocities of P- and S-wave and corresponding Poisson's ratios of relevant exhumed high-grade metamorphic crustal rocks from Central China with respective data from seismic refraction profiling provided a key for the lithologic interpretation of a deep seismic crustal structure.

  13. A P-wave velocity model of the upper crust of the Sannio region (Southern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1998-06-01

    Full Text Available This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia

  14. Study of crustal structure with S-wave data from Maqen-Jingbian profile

    Institute of Scientific and Technical Information of China (English)

    刘宝峰; 李松林; 张先康; 张成科; 任青芳; 海燕

    2003-01-01

    2-D crustal velocity structure and vP/vS are obtained by processing and interpretation of S-wave data from Maqen-Jingbian deep seismic sounding (DSS) profile. The result shows that there exist obvious differences in 2-D S-wave velocity structure and vP/vS ratio structure along the profile. The S-wave velocities are low and vP/vS ratio is high for the western section of the profile and Haiyuan region, while they are normal for the middle and eastern sections. The changes in lithologic characters of two major anomalous zones are discussed according to lateral variation of S-wave velocity structure and vP/vS ratio structure. It is concluded that the development and occurrence of the Haiyuan strong earthquake is not only related to tectonic activities, but also to lithologic characters of the region.

  15. Multipoint Vernier VISAR Interferometer System for Measuring Mass Velocity in Shock Wave Experiments

    Science.gov (United States)

    Gubskii, K. L.; Koshkin, D. S.; Mikhaylyuk, A. V.; Korolev, A. M.; Pirog, V. A.; Kuznetsov, A. P.

    The results of development of a laser interferometer designed to measure the mass velocity of condensed substances in shock wave experiments in the field of high energy density physics are presented. The developed laser system allows measurements of the velocity of free surfaces of samples in shockwave experiments with accuracy no worse than 10 m/s for the entire range of velocities attained experimentally. The time resolution of measurements is limited by the response speed of the used PMTs and amounts to 2.5 ns.

  16. S-waves velocity model for the SW-Iberia derived from the IBERSEIS wide-angle seismic reflection transects

    Science.gov (United States)

    Palomeras, I.; Marti, D.; Carbonell, R.; Ayarza, P.; Simancas, F.; Martinez-Poyatos, D.; Azor, A.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.

    2009-04-01

    The IBERSEIS wide-angle seismic reflection transects acquired in 2003 in SW-Iberia Peninsula provided constraints on the P-wave seismic velocity structure across the three tectonic provinces in the area: the South Portuguesse Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberia Zone (CIZ). These data were acquired by 650 vertical component seismographs (TEXAN seismic recorders) from the IRIS-PASSCAL Instrument center, using explosive sources with charge sizes ranging from 500 to 1000 kg. Both transects A and B are, approximately, 300 km long with a station spacing of 400 m and of 150 m respectively. The relatively small station spacing favored the lateral correlation of the seismic events and provided enough resolution for the identification of shear-wave arrivals. The most prominent S-wave phase recorded by the vertical component sensors corresponds to the SmS which is nearly horizontal for a velocity reduction of 4600 m/s. This phase can even be followed up to near vertical incidence at 18 s(twtt). A few S-wave crustal arrivals can be also identified, although at small offsets they interfere with the previous P-wave arrivals. The Sn phase can be observed at very far offsets providing additional constraints on the nature of the shallow subcrustal mantle. Furthermore, slant stacks of the shot gathers (tau-p sections) reveal the existing of PS energy. PS phases are more difficult to identify in the shot gathers. Finally, a preliminary S-wave velocity model has been derived by iterative forward modeling to provide additional constraints on the nature of the deep crust and upper mantle beneath the Variscan of SW-Iberia.

  17. Elastic wave velocities and Poisson`s ratio in reservoir rocks; Choryugan no danseiha sokudo to Poisson hi

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Y. [Japan National Oil Corp., Tokyo (Japan)

    1998-04-01

    This paper discusses the relationship between elastic wave velocities and physical properties of reservoir rocks. For sandstones, the elastic wave velocity decreases with increasing the porosity and the content of clay minerals. For rocks containing heavy oil, the P-wave velocity decreases with increasing the temperature. The P-wave velocity under dry condition is much more lower than that under water saturated condition. When there are a few percent of gas in pores against the water saturated condition, the P-wave velocity decreases rapidly. It is almost constant under the lower water saturation factor. The S-wave velocity is almost constant independent of the water saturation factor. Accordingly, the water saturation factor can not be estimated from the elastic wave velocity at the water saturation factor between 0% and 96%. The Poisson`s ratio also greatly decreases at the water saturation factor between 96% and 100%, but it is almost constant under the lower water saturation factor. The elastic wave velocity increases with increasing the pressure or increasing the depth. Since closure of cracks by pressure is inhibited due to high pore pressure, degree of increase in the elastic wave velocity is reduced. 14 refs., 6 figs.

  18. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    Science.gov (United States)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  19. Solitary wave propagation through two-dimensional treelike structures.

    Science.gov (United States)

    Falls, William J; Sen, Surajit

    2014-02-01

    It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the system has a 2D "Y"-shaped structure. Here each of the three pieces that make up the "Y" are made of a small mass spring chain. In addition, we consider a case where multiple "Y"-shaped structures are used to generate a "tree." We explore the early time dynamical behavior associated with the propagation of a velocity perturbation initiated at the trunk and at the extremities for both cases. We are looking for the energy transmission properties from one branch to another of these "Y"-shaped structures. Our dynamical simulations suggest the following broad observations: (i) for strongly nonlinear interactions, mechanical energy propagation resembles pulse propagation with the energy propagation being dispersive in the linear case; (ii) for strong nonlinear interactions, the tree-like structure acts as an energy gate showing preference for large perturbations in the system while the behavior of the linear case shows no such preference, thereby suggesting that such structures can possibly act as switches that activate at sufficiently high energies. The study aspires to develop insights into the nature of nonlinear wave propagation through a network of linear chains.

  20. A Peculiar Velocity Pattern in and near the Leading Sunspot of NOAA 10781: Wave Refraction by Large-Scale Magnetic Fields?

    CERN Document Server

    Beck, C

    2010-01-01

    I report observations of unusually strong photospheric and chromospheric velocity oscillations in and near the leading sunspot of NOAA 10781 on 03 July 2005. I investigate an impinging wave as a possible origin of the velocity pattern, and the changes of the wave after the passage through the magnetic fields of the sunspot. The wave pattern found consists of a wave with about 3 Mm apparent wavelength that propagates towards the sunspot. This wave seems to trigger oscillations inside the sunspot's umbra, which originate from a location inside the penumbra on the side of the impinging wave. The wavelength decreases and the velocity amplitude increases by an order of magnitude in the chromospheric layers inside the sunspot. On the side of the sunspot opposite to the impinging plane wave, circular wave fronts centered on the umbra are seen propagating away from the sunspot outside its outer white-light boundary. They lead to a peculiar ring structure around the sunspot, which is visible in both velocity and inten...

  1. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    Science.gov (United States)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  2. A DAMAGE ACCUMULATING MODELING OF FAILURE WAVES IN GLASS UNDER HIGH VELOCITY IMPACT

    Institute of Scientific and Technical Information of China (English)

    刘占芳; 姚国文; 詹先义

    2001-01-01

    The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damageaccumulating model to describe the failure delay in the interior of materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.

  3. Pulse wave velocity in patients with severe head injury a pilot study.

    Science.gov (United States)

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  4. The velocity structure of crust and upper mantle in the Wudalianchi volcano area inferred from the receiver function

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2003-01-01

    The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area. The results show that the low velocity structure of S wave is widely distributed underneath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area. The low velocity structure is related to the seismicity. The Moho interface is not clear underneath the volcano area, which may be regard to be an necessary condition for the lava upwelling. Therefore, we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.

  5. Three Dimensional P Wave Velocity Model for the Crust Containing Aftershocks of the Bhuj, India Earthquake

    Science.gov (United States)

    Powell, C. A.; Vlahovic, G.; Bodin, P.; Horton, S.

    2001-12-01

    A three-dimensional P wave velocity model has been constructed for the crust in the vicinity of the Mw=7.7 January 26th Bhuj, India earthquake using aftershock data obtained by CERI away teams. Aftershocks were recorded by 8 portable, digital K2 seismographs (the MAEC/ISTAR network) and by a continuously recording Guralp CMG40TD broad-band seismometer. Station spacing is roughly 30 km. The network was in place for 18 days and recorded ground motions from about 2000 aftershocks located within about 100 km of all stations. The 3-D velocity model is based upon an initial subset of 461 earthquakes with 2848 P wave arrivals. The initial 1-D velocity model was determined using VELEST and the 3-D model was determined using the nonlinear travel time tomography method of Benz et al. [1996]. Block size was set at 2 by 2 by 2 km. A 45% reduction in RMS travel time residuals was obtained after 10 iterations holding hypocenters fixed. We imaged velocity anomalies in the range -2 to 4%. Low velocities were found in the upper 6 km and the anomalies follow surface features such as the Rann of Kutch. High velocity features were imaged at depth and are associated with the aftershock hypocenters. High crustal velocities are present at depths exceeding 20 km with the exception of the crust below the Rann of Kutch. The imaged velocity anomaly pattern does not change when different starting models are used and when hypocenters are relocated using P wave arrivals only. The analysis will be extended to an expanded data set of 941 aftershocks.

  6. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  7. Associations between plasma fibulin-1, pulse wave velocity and diabetes in patients with coronary heart disease

    DEFF Research Database (Denmark)

    Hansen, Maria Lyck; Rasmussen, Lars Melholt

    2015-01-01

    BACKGROUND: Diabetes is related to increased risk of cardiovascular disease, and arterial stiffness and its consequences may be the factor connecting the two. Arterial stiffness is often measured by carotid-femoral pulse wave velocity (cf-PWV), but no plasma biomarker reflecting arterial stiffnes...

  8. Technique of calculating and studying stability of three dimensional velocity fields of longitudinal waves

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarova, N.B.; Slavina, L.B.

    1981-01-01

    The features of a technique for determining the velocity of spread of longitudinal waves in the epicenter zone are briefly formulated. Results are presented from studying the technique in the example of model and experimental data in the focal zone of Kamchatka.

  9. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  10. Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in Soils

    Science.gov (United States)

    1987-09-01

    in Terms of Characteristic Indices of Soil," Butsuri- Tanko (Geophysical Exploration) (in Japanese), Vol 29, No. 4, pp 34-41. . 1978a. "Empirical Shear...34Physical Background of the Statistically Obtained S-Wave Velocity Equation in Terms of Soil Indexes," Butsuri- Tanko (Geophysical Explo- ration) (in Japanese

  11. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    Science.gov (United States)

    Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583

  12. Clinical characteristic of pulse wave velocity and arterial compliance in elderly patients with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    张红

    2013-01-01

    Objective To explore the clinical characteristics of pulse wave velocity,arterial compliance and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus.Methods A total of 363 patients were selected and divided into 4 groups:diabetic group,diabetic

  13. An Analysis of Pulsed Wave Ultrasound Systems for Blood Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, J. A.

    1995-01-01

    Pulsed wave ultrasound systems can be used for determining blood's velocity non-invasively in the body. A region of interest is selected, and the received signal is range gated to measure data from the region. One complex sample value is acquired for each pulse emission after complex demodulation...

  14. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  15. The influence of the initial velocity on the anomalous wave dynamics in expanding fireball

    Science.gov (United States)

    Konyukhov, A. V.; Likhachev, A. P.

    2016-11-01

    The quark-gluon plasma fireball expansion, appearing in the collision of relativistic heavy ions, can be accompanied by the wave anomalies associated with the quark-hadron phase transition. Namely, the composite rarefaction wave, which includes the rarefaction shock, can arise instead of a simple rarefaction wave. The emphasis of the given work is focused on the special features of these wave processes induced by nonzero quark-gluon plasma velocity at the beginning of the hydrodynamic stage of the fireball expansion. The simulation has been conducted in the framework of relativistic hydrodynamics. The equation of state used is based on the variant of the MIT-bag model. The initial conditions are formulated under the assumption that the distributions of the energy density and the baryon number density are uniform, while the radial velocity changes linearly from zero at the center to the assigned value at the fireball border. The results of the calculations have shown the strong dependence of the wave phenomena observed on the initial velocity distribution.

  16. Velocities and Displacements of Shrapnel and a Shock Wave during Blast

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-hui; TIAN Da-zhan; XU Jin-yu; ZHANG Hai-rong

    2007-01-01

    It is important to minimize the destruction of defense works when blasted. In our opinion,information in the available literature is very deficient. We now present our research results on better and simpler formulas for calculating the velocities and displacements of shrapnel and a shock wave;these formulas are indispensable for understanding the destruction of blast. Formulas now available in China are too complicated. In this paper, we derive Equation (13) as the formula for calculating the velocity of shrapnel and Equation (18) as that for calculating the velocity of a shock wave. We used the test data of Denver Research Institute, as reported in Reference 4, as numerical example and found that our Equations (13) and (18) give calculated results that agree well with their test data in two respects: (1) both test data and our calculations show that at first a shock wave is ahead of shrapnel,then their displacements are equal, and finally shrapnel is ahead of the shock wave; (2) when the displacements of shrapnel and shock wave are equal, the time is 0.34 s according to test data and 0.31 s according to our calculations.

  17. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    Science.gov (United States)

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  18. Internal energy relaxation in shock wave structure

    Science.gov (United States)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, "Solution of the Boltzmann kinetic equation for high-speed flows," Comput. Math. Math. Phys. 46, 315-329 (2006); F. Cheremisin, "Solution of the Wang Chang-Uhlenbeck equation," Dokl. Phys. 47, 487-490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  19. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils

    Institute of Scientific and Technical Information of China (English)

    Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE

    2008-01-01

    The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.

  20. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    Science.gov (United States)

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  1. 3D crustal velocity structure beneath the broadband seismic array in the Gyeongju area of Korea by receiver function analyses

    Science.gov (United States)

    Lee, Dong Hun; Lee, Jung Mo; Cho, Hyun-Moo; Kang, Tae-Seob

    2016-10-01

    A temporary seismic array was in operation between October 2010 and March 2013 in the Gyeongju area of Korea. Teleseismic records of the seismic array appropriate for receiver function analysis were collected, and selected seismograms were split into five groups based on epicenters-the Banda-Molucca, Sumatra, Iran, Aleutian, and Vanuatu groups. 1D velocity structures beneath each seismic station were estimated by inverting the stacked receiver functions for possible groups. The inversion was done by applying a genetic algorithm, whereas surface wave dispersion data were used as constraints to avoid non-uniqueness in the inversion. The composite velocity structure was constructed by averaging the velocity structures weighted by the number of receiver functions used in stacking. The uncertainty analysis for the velocity structures showed that the average of 95% confidence intervals was ± 0.1 km/s. The 3D velocity structure was modeled through interpolation of 1D composite velocity structures. Moho depths were determined in each composite velocity structure based on the AK135-F S-wave velocity model, and the depths were similar to the H-κ analysis results. The deepest Moho depth in the study area was found to be 31.9 km, and the shallowest, was 25.9 km. The Moho discontinuity dips in a southwestward direction beneath the area. A low velocity layer was also detected between 4 and 14 km depth. Adakitic intrusions and/or a high geothermal gradient appear to be the causes of this low velocity layer. The 3D velocity structure can be used to reliably assess seismic hazards in this area.

  2. Three-Dimensional Velocity Structure of The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Yoo, S.

    2012-12-01

    The aim of our project is to understand the relationship between geothermal operations and medium size earthquakes (M>3) at The Geysers Geothermal Reservoir, CA, USA. To reach that goal we have devised an approach combining 4-D seismic characterization of the reservoir structure, full moment tensor analysis of the source rupture processes, geomechanical modeling of the reservoir stresses and temperatures and seismic hazard analyses. In our presentation, we will present results based on seismic data collected by the Lawrence Berkeley National Laboratory with a 34-station seismic network from 2003 through present. Specifically, we will present 3-D P- and S-wave velocity structure of the reservoir for each year of data availability and investigate temporal changes between different epochs. The spatial pattern of temporal velocity changes is subsequently correlated to the available injection and production data to investigate the cause for the observed velocity changes.

  3. Upper mantle SH velocity structure beneath Qiangtang Terrane by modeling triplicated phases

    Institute of Scientific and Technical Information of China (English)

    ZHANG RuiQing; WU QingJu; LI YongHua; ZENG RongSheng

    2008-01-01

    We constrain SH wave velocity structure for the upper mantle beneath western Qiangtang Terrane by comparing regional distance seismic triplicated waveforms with synthetic seismograms, based on an intermediate event (~220 km) recorded by the INDEPTH-Ⅲ seismic array. The ATIP model reveals a low-velocity anomaly with up to -4% variation at the depth of 190--270 km and a relatively small ve-locity gradient above the depth of 410 km in the upper mantle, which is in agreement with previous results. In combination with other geological studies, we suggest that the depth of top asthenosphere is 190 km and no large-scale lithosphere thinning occurs in western Qiangtang Terrane, besides, Qiangtang Terrane has the same kind of upper mantle structure as the stable Eurasia.

  4. Rayleigh wave group velocity tomography of Gujarat region, Western India and its implications to mantle dynamics

    Science.gov (United States)

    de Lorenzo, Salvatore; Michele, Maddalena; Emolo, Antonio; Tallarico, Andrea

    2017-02-01

    In the present study, fundamental Rayleigh waves with varying period from 10 to 80 s are used to obtain group velocity maps in the northwest Deccan Volcanic Province of India. About 350 paths are obtained using 53 earthquakes (4.8 ≤ M ≥ 7.9) recorded by the SeisNetG (Seismic Network of Gujarat). Individual dispersion curves of group velocity of Rayleigh wave for each source-station path are estimated using multiple filter technique. These curves are used to determine lateral distribution of Rayleigh wave group velocity by tomographic inversion method. Our estimated Rayleigh group velocity at varying depths showed conspicuous corroboration with three tectonic blocks [Kachchh Rift Basin (KRB), Saurashtra Horst (SH), and Mainland Gujarat (MG)] in the region. The seismically active KRB with a thicker crust is characterized as a low velocity zone at a period varying from 10 to 30 s as indicative of mantle downwarping or sagging of the mantle beneath the KRB, while the SH and MG are found to be associated with higher group velocities, indicating the existence of the reduced crustal thickness. The trend of higher group velocity was found prevailed adjacent to the Narmada and Cambay rift basins that also correspond to the reduced crust, suggesting the processes of mantle upwarping or uplifting due to mantle upwelling. The low velocities at periods longer than 40 s beneath the KRB indicate thicker lithosphere. The known Moho depth correlates well with the observed velocities at a period of about 30 s in the Gujarat region. Our estimates of relatively lower group velocities at periods varying from 70 to 80 s may correspond to the asthenospheric flow beneath the region. It is interesting to image higher group velocity for the thinner crust beneath the Arabian Sea adjacent to the west coast of Gujarat at the period of 40 s that may correspond to the upwarped or upwelled mantle beneath the Arabian Sea. Our results have better resolution estimated by a radius of equivalent

  5. Stochastic model for joint wave and wind loads on offshore structures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2002-01-01

    The stochastic wave load environment of offshore structures is of such a complicated nature that any engineering analysis requires extensive simplifications. This concerns both the transformation of the wave field velocities and accelerations to forces on the structure and the probabilistic...... and by integration over all sea states given $Q>q_0$, the distribution is obtained that is relevant for the free space design. However, for the forces on the members of the structure also the wave period is essential. Within the linear wave theory (Airy waves) the drag term in the Morison force formula increases...... and is therefore very difficult if not impossible to obtain by analytical mathematical reasoning. Keywords: Extreme wind driven sea waves, Local maxima and period properties of Gaussian process, Nataf model for wave and wind data, Offshore structure loads, Sea wave stochastics during wind storm, Wave and wind...

  6. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  7. Lamb waves dispersion curves for diamond based piezoelectric layered structure

    Science.gov (United States)

    Sorokin, B. P.; Kvashnin, G. M.; Telichko, A. V.; Novoselov, A. S.; Burkov, S. I.

    2016-03-01

    The presence of spurious peaks in the amplitude-frequency response of diamond based piezoelectric layered structure was shown. Excitation of such peaks results in deterioration of an useful acoustical signal. It was shown that such spurious peaks should be associated with Lamb waves in a layered structure. By means of FEM analysis, the propagation of acoustic waves of different types in the piezoelectric layered structure "Al/AlN/Mo/(100) diamond" has been investigated in detail. By analyzing the elastic displacement patterns at frequencies from 0 up to 250 MHz, a set of all the possible acoustic waves, especially Lamb modes, have been studied, and dispersive curves of phase velocity have been plotted. A revised classification of Lamb modes has been introduced.

  8. Love wave propagation in layered magneto- electro-elastic structures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An analytical approach was taken to investigate Love wave propagation in a layered magneto-electro-elastic structure, where a piezomagnetic (or piezoelectric) mate-rial thin layer was bonded to a semi-infinite piezoelectric (or piezomagnetic) sub-strate. Both piezoelectric and piezomagnetic ceramics were polarized in the anti-plane (z-axis) direction. The analytical solution of dispersion relations was obtained for magneto-electrically open and short boundary conditions. The phase velocity, group velocity, magneto-electromechanical coupling factor, electric po-tential, and magnetic potential were calculated and discussed in detail. The nu-merical results show that the piezomagnetic effects have remarkable effect on the propagation of Love waves in the layered piezomagnetic/piezoelectric structures.

  9. Love wave propagation in layered magneto-electro-elastic structures

    Institute of Scientific and Technical Information of China (English)

    DU JianKe; JIN XiaoYing; WANG Ji

    2008-01-01

    An analytical approach was taken to investigate Love wave propagation in a layered magneto-electro-elastic structure,where a piezomagnetic (or piezoelectric) mate-rial thin layer was bonded to a semi-infinite piezoelectric (or piezomagnetic) sub-strate.Both piezoelectric and piezomagnetic ceramics were polarized in the anti-plane (z-axis) direction.The analytical solution of dispersion relations was obtained for magneto-electrically open and short boundary conditions.The phase velocity,group velocity,magneto-electromechanical coupling factor,electric po-tential,and magnetic potential were calculated and discussed in detail.The nu-merical results show that the piezomagnetic effects have remarkable effect on the propagation of Love waves in the layered piezomagnetic/piezoelectric structures.

  10. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  11. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  12. Non-triggered quantification of central and peripheral pulse-wave velocity

    Directory of Open Access Journals (Sweden)

    Langham Michael C

    2011-12-01

    Full Text Available Abstract Purpose Stiffening of the arteries results in increased pulse-wave velocity (PWV, the propagation velocity of the blood. Elevated aortic PWV has been shown to correlate with aging and atherosclerotic alterations. We extended a previous non-triggered projection-based cardiovascular MR method and demonstrate its feasibility by mapping the PWV of the aortic arch, thoraco-abdominal aorta and iliofemoral arteries in a cohort of healthy adults. Materials and Methods The proposed method "simultaneously" excites and collects a series of velocity-encoded projections at two arterial segments to estimate the wave-front velocity, which inherently probes the high-frequency component of the dynamic vessel wall modulus in response to oscillatory pressure waves. The regional PWVs were quantified in a small pilot study in healthy subjects (N = 10, age range 23 to 68 yrs at 3T. Results The projection-based method successfully time-resolved regional PWVs for 8-10 cardiac cycles without gating and demonstrated the feasibility of monitoring beat-to-beat changes in PWV resulting from heart rate irregularities. For dul-slice excitation the aliasing was negligible and did not interfere with PWV quantification. The aortic arch and thoracoabdominal aorta PWV were positively correlated with age (p Conclusion The PWV map of the arterial tree from ascending aorta to femoral arteries may provide additional insight into pathophysiology of vascular aging and atherosclerosis.

  13. Crust and Upper Mantle Velocity Structure of the New Madrid Seismic Zone

    Science.gov (United States)

    Nyamwandha, C. A.; Powell, C. A.; Langston, C. A.

    2014-12-01

    Detailed P wave velocity (Vp) and S wave velocity models (Vs) and Vp/Vs ratios for the crust and upper mantle associated with the New Madrid Seismic Zone (NMSZ) are presented. The specific study region spans latitude 34 to 39.5 degrees north and longitude 87 to 93 degrees west and extends to a depth of at least 500 km. The density of data from three networks - The Cooperative New Madrid Seismic Network (CNMSN) operated by CERI, the Earthscope transportable array (TA), and the FlexArray (FA) Northern Embayment Lithospheric Embayment (NELE) project stations - provides us with the opportunity to derive detailed velocity models for this region. We use arrival times from local and regional earthquakes and travel time residuals from teleseismic earthquakes recorded by the three networks from September 2011 to date. The teleseismic body wave arrival times are measured using an Automated and Interactive Measurement of Body Wave Arrival Times (AIMBAT) package (Lou et al., 2012). We perform a joint local and teleseismic inversion (Zhao et al.,1994) to determine the velocity structure. For the local events, the hypocenters are relocated iteratively in the inversion process using an efficient 3-D ray tracing technique. We image a significant low velocity anomaly in the upper mantle with a concentration at about 200 - 300 km depth and it is a consistent feature in both the Vp and Vs tomography results. Checkerboard tests show that the spatial resolution is high in the upper mantle especially for the Vp model. The spatial resolution in the crust is fairly high for most of the study area except at the edges and the southeastern part, which can be attributed to diminished local earthquake activity. We perform synthetic tests to isolate smearing effects and further confirm the features in the tomographic images. Vp/Vs ratios are determined for the portions of the model with highest resolution. Preliminary results indicate that significant Vp/Vs ratio variations are present only at

  14. In vivo noninvasive method for measuring local wave velocity in femoral arteries of pig

    Science.gov (United States)

    Zhang, Xiaoming; Kinnick, Randall; Pislaru, Cristina; Fatemi, Mostafa; Greenleaf, James

    2005-09-01

    We have proposed generating a bending wave in the arterial wall using ultrasound radiation force and measuring the wave velocity along the arterial wall [Zhang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 642-652 (2005)]. Here, we report the results of in vivo studies on pigs. The pig was anesthetized, and a micromanometer tip catheter was inserted into the femoral artery to measure luminal pressure. A water bath was created on the animal's groin to allow unimpeded access of the ultrasound beams to the femoral artery. The femoral artery was first located using a 13-MHz linear-array transducer. Then, a vibro-acoustography image was obtained to ensure precise positioning of the excitation force relative to the artery. The artery was excited by the force transducer and the resulting vibration of the arterial wall was measured by a sensing Doppler transceiver. Measured wave velocity was 3.1 m/s at 300 Hz. With this new method wave velocity over a distance of 5 mm, and therefore stiffness of arteries, can be measured locally and non-invasively. Measurement time is short in a few tens of milliseconds, which allows pressure dependence and pharmacological effect on the wall properties to be measured at different cardiac times.

  15. Combined Resistivity and Shear Wave Velocity Soil-type Estimation Beneath a Coastal Protection Levee.

    Science.gov (United States)

    Lorenzo, J. M.; Goff, D.; Hayashi, K.

    2015-12-01

    Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.

  16. Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean

    Science.gov (United States)

    Godfrey, K. E.; Dalton, C. A.; Ritsema, J.

    2016-12-01

    Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.

  17. Shallow Velocity and Q Structure of Tianjin Basin from P, PP, PPP and Psed

    Science.gov (United States)

    Tian, X.; Ni, S.; Zhang, X.; Wang, F.

    2009-12-01

    Earthquake engineer consider that shallow structure is a major issue on earthquake ground motions. Conventionally, the S velocity of 30 meters is consulted to determine the ground standard. On the other hand, there are suggestions from some researchers that the whole unconsolidated sediments should be considered because large intrinsic attenuation may be a natural consequence of nonlinear, strain-dependent degradation of the shear modulus. (Vucetic, 1994 ). At the same time, almost all the unconsolidated sediments are the nature of basin morphology. The research about shallow detailed velocity and Q structure from 30 m to 400 m is not sufficient. Recently, Langston provided some results that Qp is remarked large that do not like conventional seismological opinions, in the Mississippi Embayment (Langston, 2005). Qp could be effectively determined by Psed which is the robust phase in seisgrams. Psed wave is the trapped wave in unconsolidated sediments. It can be considered the “Whispering Gallery” phase that propagates just below the surface (Walter Mooney, 1980). In the other way, Qp can be estimated by transformed waves and Qs can be evaluated by transformed waves and Rayleigh waves. There are abundance of refraction/reflection experiments in Bohai basin where is more over 30 million peoples settled down. The active fault experiment of China Earthquake Administration in Tianjin is with dense shot points and receiver spaces recorded plenty of refraction seisgrams, from Dec. 2005 to Jan. 2006. We analyzed the P, PP, PPP and Psed phases in the refraction seisgrams and provided the shallow velocity and Q structure in Tianjin basin. We prefer to use the reflectivity method, calculation synthetic seismogram (Wang R, 2007), to model those seismic refraction data. We presented one dimensional detailed velocity model that contain 3 distinct high velocity gradients ranged 20km and analyzed P and the secondary phases to estimate the Q structure of the sedimentary section

  18. Evaluation of multilayered pavement structures from measurements of surface waves

    Science.gov (United States)

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  19. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    Science.gov (United States)

    Zha, Yang; Webb, Spahr C.

    2016-05-01

    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  20. Fine structure of Pn velocity beneath Sichuan-Yunnan region

    Institute of Scientific and Technical Information of China (English)

    黄金莉; 宋晓东; 汪素云

    2003-01-01

    We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.

  1. On the Origin of High Shear Wave Velocities in the Deep Roots of Cratons

    Science.gov (United States)

    Zeng, L.; Duncan, M. S.; Garber, J. M.; Hernandez, J. A.; Maurya, S.; Zhang, H.; Faul, U.; McCammon, C. A.; Montagner, J. P.; Moresi, L. N.; Romanowicz, B. A.; Rudnick, R. L.; Stixrude, L. P.

    2016-12-01

    Some seismic models derived from tomographic studies indicate very high shear wave velocities around 150 km depth, which cannot be explained by standard cratonic peridotite compositions derived from kimberlites, even under the assumption of very cold geotherms (i.e. 28mW/m3 surface heat flux). We present the results of a multi-disciplinary study conducted at the CIDER Summer 2016 program in Santa Barbara (CA), in which we have reviewed various geophysical and petrological constraints on the nature of cratonic roots (seismic velocities, electrical conductivity, gravity, lithologies) and explored a range of possible solutions. We find that matching the high shear wave velocities requires a large proportion of eclogite that is not matched by observed eclogite proportions in kimberlite samples. The high shear velocity of diamond makes it a viable candidate to account for such high velocities, in a proportion that is compatible with the global carbon budget. Our most recent results will be presented as well as suggestions for possible mechanisms for diamond formation and emplacement.

  2. Measurements of electrical impedance and elastic wave velocity of reservoir rock under fluid-flow test

    Science.gov (United States)

    Sawayama, Kazuki; Kitamura, Keigo; Fujimitsu, Yasuhiro

    2017-04-01

    The estimation of water saturation under the ground is essential in geothermal fields, particularly for EGS (enhanced geothermal system). To estimate water saturation, recently, electromagnetic exploration using Magnetotelluric (MT) method has been applied in the geothermal fields. However, the relationship between electrical impedance obtained from this method and water saturation in the reservoir rock has not been well known. Our goal is to elucidate this basic relationship by fluid-flow experiments. As our first step to this goal, we developed the technique to measure and analyze the electrical impedance of the cracked rock in the geothermal reservoir. The fluid-flow test has been conducted as following procedures. At first, reservoir rock sample (pyroxene andesite, Makizono lava formation, Japan) was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure. This nitrogen gas imitates the overheated steam in the geothermal fields. Then, brine (1wt.%-KCl, 1.75 S/m) which imitates the artificial recharge to the reservoir was injected to the samples. After flow rate of drainage fluid becomes stable, injection pressure was increased (11, 12, 14, 16, 18 MPa) and decreased (18, 16, 14, 12, 11 MPa) to vary the water saturation in the samples. During the test, water saturation, permeability, electrical impedance (10-2-105 Hz of frequency) and elastic wave velocity were measured. As a result of andesite, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine. After the brine injection, electrical impedance decreased with injection pressure (small change of water saturation) by up to 40% while P-wave velocity was almost constant (less than 1%). This decrease of electrical impedance with injection pressure could be related to the flow to the narrow path (microcrack

  3. A Method for Determination of in Run-Up Front Velocities on Dikes in Oblique and Short-Crested Waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Nørgaard, Jørgen Harck; Burcharth, Hans F.

    2011-01-01

    This paper presents a physical model test study to improve description of run-up events on dikes in oblique long and short-crested waves in terms of flow depth, flow velocities and overtopping. The paper focus on the flow velocities and a new method is proposed for determining flow velocities...

  4. Group Velocity Reduction of Light Pulses in Photorefractive Two-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    张国权; 董嵘; 许京军

    2003-01-01

    We show theoretically that the group velocity of light pulses can be reduced significantly by use of the steep dispersion properties of the phase coupling effect in the photorefractive two-wave mixing process. The group velocity of light pulses of the order of 0.1 m/s can be achieved in typical photorefractive BSOcrystals with an appropriate externally applied electric field and moving gratings of appropriate speeds. It is also shown that the slowly propagating light pulses can be set to be amplified after passing through the photorefractive material.

  5. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  6. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  7. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    CERN Document Server

    Zhidkov, A; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  8. Characteristics of Light Reflected from a Dense Ionization Wave with a Tunable Velocity

    Science.gov (United States)

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J.; Bulanov, S. V.

    2009-11-01

    An optically dense ionization wave (IW) produced by two femtosecond (˜10/30fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  9. Shear-wave velocity profiling according to three alternative approaches: A comparative case study

    Science.gov (United States)

    Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.

    2016-11-01

    The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.

  10. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2008-07-01

    Full Text Available Abstract Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV. The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for

  11. Research on relationships between Lamb wave velocity and static stress in metal plate

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Yinguan

    2006-01-01

    On the fact that an isotropic metal solid produces anisotropic property in the state of static stress, based on the theory of the nonlinear acoustoelasticity, the equivalent secondorder elastic constants are calculated for metal plate with static stress. For the case of thin metal plate with stress, the two kinds of dispersion equation for Lamb waves propagating parallel and vertical to the direction of static stress are derived. Using the equations, the relationships between Lamb wave velocity and static stress in a metal plate are discussed.

  12. Characterization of the Shock Wave Structure in Water

    Science.gov (United States)

    Teitz, Emilie Maria

    The scientific community is interested in furthering the understanding of shock wave structures in water, given its implications in a wide range of applications; from researching how shock waves penetrate unwanted body tissues to studying how humans respond to blast waves. Shock wave research on water has existed for over five decades. Previous studies have investigated the shock response of water at pressures ranging from 1 to 70 GPa using flyer plate experiments. This report differs from previously published experiments in that the water was loaded to shock pressures ranging from 0.36 to 0.70 GPa. The experiment also utilized tap water rather than distilled water as the test sample. Flyer plate experiments were conducted in the Shock Physics Laboratory at Marquette University to determine the structure of shock waves within water. A 12.7 mm bore gas gun fired a projectile made of copper, PMMA, or aluminum at a stationary target filled with tap water. Graphite break pins in a circuit determined the initial projectile velocity prior to coming into contact with the target. A Piezoelectric timing pin (PZT pin) at the front surface of the water sample determined the arrival of the leading wave and a Photon Doppler Velocimeter (PDV) measured particle velocity from the rear surface of the water sample. The experimental results were compared to simulated data from a Eulerian Hydrocode called CTH [1]. The experimental results differed from the simulated results with deviations believed to be from experimental equipment malfunctions. The main hypothesis being that the PZT pin false triggered, resulting in measured lower than expected shock velocities. The simulated results were compared to published data from various authors and was within range.

  13. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  14. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    Science.gov (United States)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  15. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    Science.gov (United States)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2016-10-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  16. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    Science.gov (United States)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2015-11-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  17. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    Science.gov (United States)

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  18. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    Science.gov (United States)

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p testing.

  19. Angular dependence of the ultrasonic SH wave velocity in rolled metal sheets

    Science.gov (United States)

    Sayers, C. M.; Proudfoot, G. G.

    THE ULTRASONIC SH wave technique is a promising method for separating out the effects of texture and stress on the ultrasonic velocity, and allows the texture and stress to be determined separately. ALEN and LANGMAN (1985) have reported measurements of the angular dependence of the SH wave velocity in several unstressed rolled metal sheets of aluminium, stainless steel, copper and brass. In this paper neutron diffraction measurements of the texture of several of these sheets are presented, and parameters entering into an expansion of the crystallite orientation distribution function are determined. These are in good agreement with the values obtained by fitting the ultrasonic results to theory. The validity of the first order expression for the effect of texture is assessed, and the contribution due to beam skewing is calculated.

  20. An improved method of evaluating liquefaction potential with the velocity of shear-waves

    Institute of Scientific and Technical Information of China (English)

    KE Han; CHEN Yun-min

    2000-01-01

    According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (s d/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (emin). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests,.

  1. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  2. Toward Explaining Scale-dependent Velocity Structure Across an Exposed Brittle Fault Zone

    Science.gov (United States)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.

    2001-12-01

    The lack of preserved surface exposures of faults generally necessitates the use of remote-sensed data to infer lithostructural architecture of the subsurface of any particular fault, particularly seismic experiments which detail physical properties linked to wave propagation phenomena. The exposure of the San Gregorio Fault at Moss Beach (25 km southwest of San Francisco, CA), however, provides a unique opportunity to examine a preserved active fault zone. We combine two scales of geophysical investigation--high-resolution field velocity tomography, and an extensive laboratory ultrasonic velocity measurement program--to produce a 1D across-fault velocity structure that correlates well with the previously mapped structural domains. The absolute velocities within a given domain are strongly scale dependent, with the laboratory velocities 20-50% greater than the field-scale tomography results. This disparity can potentially be attributed to sampling bias (i.e., the inability to sample and ultrasonically test macroscopically fractured rock near \\textit{in situ} conditions), saturation effects, and frequency dispersion. We investigate the importance of the mesoscopic fracture distribution and depositional heterogeneity on the velocity discrepancies through monte carlo analysis by applying an effective medium theory of multi-scaled fractured rock combined with a propagator matrix algorithm. We parameterize the model by generating a 1D model of the fault zone, incorporating dispersion-adjusted saturated rock velocities and mesoscopic fracture distributions consistent with ultrasonic measurements and field-scale geologic mapping. The results clearly demonstrate that differing elastomechanical parameters must be invoked to explain the velocity discrepancy within the hanging wall (massive mudstone) and foot wall (sandstone with interbedded pebble conglomerate). These results highlight the value of conducting multi-scaled investigations when studying complex fault zone

  3. Short-period surface-wave phase velocities across the conterminous United States

    Science.gov (United States)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  4. Structure of the velocity gradient tensor in turbulent shear flows

    Science.gov (United States)

    Pumir, Alain

    2017-07-01

    The expected universality of small-scale properties of turbulent flows implies isotropic properties of the velocity gradient tensor in the very large Reynolds number limit. Using direct numerical simulations, we determine the tensors formed by n =2 and 3 velocity gradients at a single point in turbulent homogeneous shear flows and in the log-layer of a turbulent channel flow, and we characterize the departure of these tensors from the corresponding isotropic prediction. Specifically, we separate the even components of the tensors, invariant under reflexion with respect to all axes, from the odd ones, which identically vanish in the absence of shear. Our results indicate that the largest deviation from isotropy comes from the odd component of the third velocity gradient correlation function, especially from the third moment of the derivative along the normal direction of the streamwise velocity component. At the Reynolds numbers considered (Reλ≈140 ), we observe that these second- and third-order correlation functions are significantly larger in turbulent channel flows than in homogeneous shear flow. Overall, our work demonstrates that a mean shear leads to relatively simple structure of the velocity gradient tensor. How isotropy is restored in the very large Reynolds limit remains to be understood.

  5. Relationship between vascular endothelial function and pulse wave velocity in prehypertension

    Institute of Scientific and Technical Information of China (English)

    杨娉婷

    2014-01-01

    Objective To investigate the association between vascular endothelial function and arteriosclerosis in prehypertensive,hypertensive and healthy subjects.Methods 810 consecutive subjects were divided into three groups:hypertension group,prehypertension group and control group.Brachial-ankle pulse wave velocity(ba PWV)and flow-mediated brachial artery dilation(FMD)were used to evaluate the artery vascular stiffness and endothelial function respectively.Results Prehypertension

  6. The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens

    Science.gov (United States)

    Park, Suhyun; Yoon, Heechul; Larin, Kirill V.; Emelianov, Stanislav Y.; Aglyamov, Salavat R.

    2017-02-01

    Intraocular pressure (IOP) is believed to influence the mechanical properties of ocular tissues including cornea and sclera. The elastic properties of the crystalline lens have been mainly investigated with regard to presbyopia, the age-related loss of accommodation power of the eye. However, the relationship between the elastic properties of the lens and IOP remains to be established. The objective of this study is to measure the elastic wave velocity, which represents the mechanical properties of tissue, in the crystalline lens ex vivo in response to changes in IOP. The elastic wave velocities in the cornea and lens from seven enucleated bovine globe samples were estimated using ultrasound shear wave elasticity imaging. To generate and then image the elastic wave propagation, an ultrasound imaging system was used to transmit a 600 µs pushing pulse at 4.5 MHz center frequency and to acquire ultrasound tracking frames at 6 kHz frame rate. The pushing beams were separately applied to the cornea and lens. IOP in the eyeballs was varied from 5 to 50 mmHg. The results indicate that while the elastic wave velocity in the cornea increased from 0.96  ±  0.30 m s-1 to 6.27  ±  0.75 m s-1 as IOP was elevated from 5 to 50 mmHg, there were insignificant changes in the elastic wave velocity in the crystalline lens with the minimum and the maximum speeds of 1.44  ±  0.27 m s-1 and 2.03  ±  0.46 m s-1, respectively. This study shows that ultrasound shear wave elasticity imaging can be used to assess the biomechanical properties of the crystalline lens noninvasively. Also, it was observed that the dependency of the crystalline lens stiffness on the IOP was significantly lower in comparison with that of cornea.

  7. Correlation of liquefaction resistance with shear wave velocity based on laboratory study using bender element

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-guo; CHEN Yun-min; KE Han

    2005-01-01

    Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, incorporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measurements. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.

  8. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    Science.gov (United States)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  9. Estimation of local pulse wave velocity using arterial diameter waveforms: Experimental validation in sheep

    Science.gov (United States)

    Graf, S.; Craiem, D.; Barra, J. G.; Armentano, R. L.

    2011-12-01

    Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the "true" local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only -4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.

  10. Influences of interfacial damage on the effective wave velocity in composites with reinforced particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The scattering of elastic waves by a spherical particle with imperfect interface and the multiple scattering by many spherical particles with imperfect interface are studied in this paper. First,the scattering of elastic waves by a spherical particle with imperfect interface,i.e. spring interface model,is studied. Then,the multiple scattering by random distributed particles with interfacial damage in a composite material is investigated. The equations to evaluate velocity and attenuation of effective waves defined by statistic averaging are given. Furthermore,based on the established relation between the effective velocity and interfacial constants,a method to evaluate the interfacial damage nondestructively from the ultrasonic measure data is proposed. The numerical simulation is performed for the Sic-Al composites. The effective velocity is computed to show the influences of interface damage. By using the genetic algorithm,the interfacial damage is evaluated from the synthetic experimental data with various levels of error. The numerical results show the feasibility of the method proposed to approximately evaluate the interfacial damage in a composite material with reinforced particles based on ultrasonic data.

  11. Correlates of Osteoprotegerin and Association with Aortic Pulse Wave Velocity in Patients with Chronic Kidney Disease

    Science.gov (United States)

    Leonard, Mary B.; Townsend, Raymond R.; Appel, Lawrence; Wolf, Myles; Budoff, Matt J.; Chen, Jing; Lustigova, Eva; Gadegbeku, Crystal A.; Glenn, Melanie; Hanish, Asaf; Raj, Dominic; Rosas, Sylvia E.; Seliger, Stephen L.; Weir, Matthew R.; Parekh, Rulan S.

    2011-01-01

    Summary Background and objectives Osteoprotegerin (OPG), a cytokine that regulates bone resorption, has been implicated in the process of vascular calcification and stiffness. Design, setting, participants, & measurements Serum OPG was measured in 351 participants with chronic kidney disease (CKD) from one site of the Chronic Renal Insufficiency Cohort Study. Cortical bone mineral content (BMC) was measured by quantitative computed tomography in the tibia. Multivariable linear regression was used to test the association between serum OPG and traditional cardiovascular risk factors, measures of abnormal bone and mineral metabolism, and pulse wave velocity. Results Higher serum OPG levels were associated with older age, female gender, greater systolic BP, lower estimated GFR, and lower serum albumin. OPG was not associated with measures of abnormal bone or mineral metabolism including serum phosphorus, albumin-corrected serum calcium, intact parathyroid hormone, bone-specific alkaline phosphatase, or cortical BMC. Among 226 participants with concurrent aortic pulse wave velocity measurements, increasing tertiles of serum OPG were associated with higher aortic pulse wave velocity after adjustment for demographics, traditional vascular risk factors, and nontraditional risk factors such as estimated GFR, albuminuria, serum phosphate, corrected serum calcium, presence of secondary hyperparathyroidism, serum albumin, and C-reactive protein or after additional adjustment for cortical BMC in a subset (n = 161). Conclusions These data support a strong relationship between serum OPG and arterial stiffness independent of many potential confounders including traditional cardiovascular risk factors, abnormal bone and mineral metabolism, and inflammation. PMID:21940840

  12. Correlation of densities with shear wave velocities and SPT N values

    Science.gov (United States)

    Anbazhagan, P.; Uday, Anjali; Moustafa, Sayed S. R.; Al-Arifi, Nassir S. N.

    2016-06-01

    Site effects primarily depend on the shear modulus of subsurface layers, and this is generally estimated from the measured shear wave velocity (V s) and assumed density. Very rarely, densities are measured for amplification estimation because drilling and sampling processes are time consuming and expensive. In this study, an attempt has been made to derive the correlation between the density (dry and wet density) and V s/SPT (standard penetration test) N values using measured data. A total of 354 measured V s and density data sets and 364 SPT N value and density data sets from 23 boreholes have been used in the study. Separate relations have been developed for all soil types as well as fine-grained and coarse-grained soil types. The correlations developed for bulk density were compared with the available data and it was found that the proposed relation matched well with the existing data. A graphical comparison and validation based on the consistency ratio and cumulative frequency curves was performed and the newly developed relations were found to demonstrate good prediction performance. An attempt has also been made to propose a relation between the bulk density and shear wave velocity applicable for a wide range of soil and rock by considering data from this study as well as that of previous studies. These correlations will be useful for predicting the density (bulk and dry) of sites having measured the shear wave velocity and SPT N values.

  13. Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure

    Science.gov (United States)

    Pimienta, Lucas; Sarout, Joel; Esteban, Lionel; Piane, Claudio Delle

    2014-05-01

    While knowledge on Thermal Conductivity (TC) of rocks is of interest in many fields, determining this property remains challenging. In this paper, a modelling approach for TC prediction from Elastic Wave Velocity (EWV) measurements is reported. To this end, a new effective TC model for a typical sedimentary rock is introduced that explicitly accounts for the presence of pores, pressure-sensitive microcracks (or grain contacts) and formation fluids. A model of effective elasticity is also devised for this same rock that links its microstructural characteristics to the velocity of elastic waves. The two models are based on the same effective medium approach and involve the same microstructural parameters. A workflow based on this explicit modelling approach is devised that allows for the prediction of the TC of a reservoir rock using (i) the elastic waves velocities, (ii) the dominant mineral content and (iii) the bulk porosity. This workflow is validated using experimental data reported in the literature for dry and water-saturated Fontainebleau and Berea sandstones. The datasets include measurements of TC and EWV as a function of effective pressure. In addition, it is shown that the dependence of TC on the rock microstructure is formally and practically similar to that of EWV. It is also demonstrated that the accuracy of TC predictions from EWV increases with effective pressure (burial depth). The underlying assumptions and limitations of the present approach together with the effect of burial are discussed.

  14. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2016-11-01

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.

  15. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  16. Comparison of pulsed wave and color Doppler myocardial velocity imaging in healthy dogs.

    Science.gov (United States)

    Wess, G; Killich, M; Hartmann, K

    2010-01-01

    Tissue velocity imaging (TVI) is increasingly used in small animal cardiology. Tissue velocity of the myocardial wall can be measured by pulsed wave (PW) or color Doppler (CD) imaging methods. Currently, the same reference ranges are used for PW TVI and CD TVI methods. However, if and how both methods correlate, and whether they can be used interchangeably, have not been assessed in small animals. To compare the results of PW TVI and CD TVI measurements. Seventy-one healthy dogs. Longitudinal myocardial velocity profiles were recorded from the 4-chamber left apical view. Peak maximal systolic (S), early (E), and late diastolic (A) velocities were measured off-line in a blinded fashion in the septal and lateral left ventricular wall by PW TVI and CD TVI. Differences between peak PW TVI and CD TVI waves were analyzed by a paired t-test. Regression analysis and Bland-Altman difference plots also were used to assess agreement between methods. There was a significant correlation between PW TVI and CD TVI (P Theses differences are clinically relevant. These methods should not be used interchangeably, and different reference ranges for PW TVI and CD TVI should be used.

  17. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: A pilot study

    Directory of Open Access Journals (Sweden)

    Patnaik Amar

    2005-08-01

    Full Text Available Abstract Background Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. Methods In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Results and Discussion Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88–0.90 with (p Conclusion The new device "PeriScope" based on oscillometric technique has been found to be a simple, non-invasive and reproducible device for the assessment of pulse wave velocity and can be used to determine arterial stiffness in large population based studies.

  18. Performance testing of lead free primers: blast waves, velocity variations, and environmental testing

    CERN Document Server

    Courtney, Elya; Summer, Peter David; Courtney, Michael

    2014-01-01

    Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

  19. Shock wave velocity measurement in the Al2O3 under ultrahigh pressure

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Li Yong-Sheng; Jiang Xiao-Hua; Ding Yong-Kun

    2011-01-01

    In indirect-drive experiment, the blank effect caused by X-rays from Hohlraum will show the dark area in time scale of optical streak camera (OSC). This blank effect, which was a serious problem in indirect-drive shock wave experiments,has been explained by the semiconductor model. The X-rays cause the band to band transition and the probe laser is absorbed by the intraband transition, which leads to a dark region in time scale of the OSC image. In the experiment,the refiectivity of shock wave front was measured to be about 50% at shock wave velocity 32 km/s and was compared to the theoretical calculations with the Drude free electron model. From the experimental data, it is found that the blank effect can be avoided at radiation temperature of 170 eV if the Al layer is thicker than 60 μm.

  20. Shear Wave Velocity Profiles Determined from Surface Wave Measurements at Sites Affected by the August 15th, 2007 Earthquake in Peru

    Science.gov (United States)

    Rosenblad, B. L.; Bay, J. A.

    2008-05-01

    The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed

  1. Causal structures of pp-waves

    CERN Document Server

    Hubeny, V E; Hubeny, Veronika E.; Rangamani, Mukund

    2002-01-01

    We discuss the causal structure of pp-wave spacetimes using the ideal point construction outlined by Geroch, Kronheimer, and Penrose. This generalizes the recent work of Marolf and Ross, who considered similar issues for plane wave spacetimes. We address the question regarding the dimension of the causal boundary for certain specific pp-wave backgrounds. In particular, we demonstrate that the pp-wave spacetime which gives rise to the N = 2 sine-Gordon string world-sheet theory is geodesically complete and has a one-dimensional causal boundary.

  2. S-wave velocities down to 1 km below the Peteroa volcano, Argentina, obtained from surface waves retrieved by means of ambient-noise seismic interferometry

    Science.gov (United States)

    Lepore, Simone; Gomez, Martin; Draganov, Deyan

    2015-04-01

    The main force driving the tectonics in South America is the subduction of the Nazca Plate below the South American plate. The subduction process generated numerous volcanoes in both Chile and Argentina, of which the majority is concentrated along the Chilean Argentine border. The recent explosive eruptions of some volcanoescaused concern of the population in both countries. At the beginning of 2012, a large temporary array was installed in the Malargüe region, Mendoza, Argentina, with the purpose of imaging the subsurface and monitoring the tectonic activity. The array was deployed until the end of 2012 to record continuously ambient noise and the local, regional, and global seismicity. It consisted of 38 seismic stations divided in two sub arrays, namely the PV array of six stations located on the east flank of the Peteroa volcano, and the T array of thirty two stations spread out on a plateau just north east of the town of Malargüe. Here,the focus will be on the PV array, which has a patch-like shape. Due to the intra-station distances, we chose to use for surface-wave retrieval the bands 0.8 Hz ÷ 4.0 Hz, 10 Hz ÷ 25 Hz. At the investigated area, most of the year there is little anthropogenic noise, which normally dominates frequencies above 1 Hz, meaning that the selected frequency bands can be used for surface-wave retrieval from noise. Using beamforming, we showed that for these bands, the noise is illuminating the stations from the west. This means that a correct surface-wave arrivals can be retrieved for station pairs oriented in that direction. Because of this, we used for retrieval only such station pairs. We cross-correlated the recordings on the vertical components and retrieved Rayleigh waves. By manual picking, we estimated for both bands velocity dispersion curves from the retrieved surface-wave arrivals. The curves were then inverted to obtain the velocity structure under the stations. The obtained S wave velocity depth profiles for the 10 Hz

  3. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study.

    Science.gov (United States)

    Naidu, Madireddy Umamaheshwar Rao; Reddy, Budda Muralidhar; Yashmaina, Sridhar; Patnaik, Amar Narayana; Rani, Pingali Usha

    2005-08-23

    Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88-0.90) with (p wave velocity were also significantly correlated (r = 0.71-0.98) (P wave velocity was found to correlate significantly with heart brachial, heart ankle, brachial ankle pulse wave velocity and arterial stiffness index values. Reproducibility of our method was good with very low variability in both interobserver and interperiod analysis. The new device "Peri

  4. Joint analysis of shear wave velocity from SH-wave refraction and MASW techniques for SPT-N estimation

    Directory of Open Access Journals (Sweden)

    Sawasdee Yordkayhun

    2014-06-01

    Full Text Available Horizontally polarized shear wave (SH refraction and multichannel analysis of surface wave (MASW methods have been carried out in Hatyai City, southern Thailand, a pilot study for site classification, part of the National Earthquake Hazards Reduction Program (NEHRP. The objectives of this study are the comparison of the efficiencies of different shear wave velocity (Vs determination techniques and the use of Vs measurements of the prediction of standard penetration resistance (SPT-N. Good correlation between all Vs profiles and SPT-N values and local lithology are observed. However, there are systematic differences between SH-refraction based-Vs and MASW based-Vs, which might be explained by possible converted waves, limitations of the assumptions used, poor quality of the acquired data, and limitations of the inversion procedures of the methods applied. From the integrated use of Vs from both methods an empirical formula to describe the correlation between Vs and SPT-N values has been proposed and can be used to estimate geotechnical parameters in areas where no borehole or geophysical investigation exist.

  5. RESPONSE OF STRUCTURES TO HIGH VELOCITY IMPACTS: A GENERALIZED ALGORITHM

    Directory of Open Access Journals (Sweden)

    Aversh'ev Anatoliy Sergeevich

    2012-10-01

    Full Text Available In this paper, a high velocity impact produced by a spherical striker and a target are considered; different stages of loading and unloading, target deformations and propagation of non-stationary wave surfaces within the target are analyzed. The problem of the strike modeling and subsequent deformations is solved by using not only the equations of mechanics of deformable rigid bodies, but also fluid mechanics equations. The target material is simulated by means of an ideal "plastic gas". Modeling results and theoretical calculations are compared to the experimental results. The crater depth, its correlation with the striker diameter, values of the pressure and deformations of the target underneath the contact area are determined as the main characteristics of dynamic interaction.

  6. Study and review on crust-mantle velocity structure in Bohai Bay and its vicinity

    Institute of Scientific and Technical Information of China (English)

    张成科; 张先康; 赵金仁; 任青芳; 张建狮; 海燕

    2002-01-01

    Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones.

  7. Estimation of surface-wave phase velocity from microtremor observation using an array with a reference station

    Science.gov (United States)

    Yamanaka, Hiroaki; Kato, Kei; Chimoto, Kosuke; Tsuno, Seiji

    2015-09-01

    A procedure for estimation of Rayleigh wave phase velocities from microtremor observations, using an array with a reference station, is investigated in this study. Simultaneous observation of microtremors at a reference station and at a strong motion observation array in the Kanto Basin, Japan, was carried out. We first calculated cross correlations between records at the reference station and those at stations in the array using a seismic interferometric processing method on a 4300-h data series. After identifying dispersive Rayleigh waves from results of multiple filtering analysis of the cross correlations, semblance analysis of the cross correlations for different segments was carried out to estimate phase velocities for fundamental and higher-mode Rayleigh waves. The phase velocities from the proposed method are more appropriate than those from conventional methods at long periods as they avoid contamination by higher mode Rayleigh waves. The fundamental Rayleigh wave phase velocities were inverted to an S-wave velocity profile for deep sedimentary layers. We also examined the variations in the phase velocity with decreasing data duration. The phase velocities at periods less than 3 s from 6-h records are similar to those from 4300-h records, suggesting that our method is possibly applicable in microtremor exploration.

  8. P-wave velocities of main upper mantle minerals at high temperature and high pressure and its geological implication

    Institute of Scientific and Technical Information of China (English)

    宋茂双; 谢鸿森; 郑海飞; 徐有生; 郭捷; 许祖鸣

    1996-01-01

    At 0 - 5.0GPa and room temperature to 1400℃, the P-wave velocities of olivine, clinopyroxene and orthopyroxene, which are three common minerals from upper mantle, are measured under both simulated oceanic and continental geothermal gradients. The experimental results indicate that the P-wave velocities of these minerals increase with depth under both geothermal gradients. This implicates that pressure is more important than temperature in deep earth in controlling the P-wave velocities of mantle minerals, but the increase of temperature has greater effect on P-wave velocities of main mantle minerals at greater depth than at smaller depth. At low pressure, the measured P-wave velocities of mantle minerals are smaller than their true values due to fracturing, compaction process and recrystallization of mineral powder. The true P-wave velocities of mantle minerals can be obtained at lower pressure by the extrapolation of measured velocities at a high pressure. At higher depth, all these three minerals sho

  9. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements

    Science.gov (United States)

    Ho, Tak; Priestley, Keith; Debayle, Eric

    2016-10-01

    Surface wave studies in the 1960s provided the first indication that the upper mantle was radially anisotropic. Resolving the anisotropic structure is important because it may yield information on deformation and flow patterns in the upper mantle. The existing radially anisotropic models are in poor agreement. Rayleigh waves have been studied extensively and recent models show general agreement. Less work has focused on Love waves and the models that do exist are less well-constrained than are Rayleigh wave models, suggesting it is the Love wave models that are responsible for the poor agreement in the radially anisotropic structure of the upper mantle. We have adapted the waveform inversion procedure of Debayle & Ricard to extract propagation information for the fundamental mode and up to the fifth overtone from Love waveforms in the 50-250 s period range. We have tomographically inverted these results for a mantle horizontal shear wave-speed model (βh(z)) to transition zone depths. We include azimuthal anisotropy (2θ and 4θ terms) in the tomography, but in this paper we discuss only the isotropic βh(z) structure. The data set is significantly larger, almost 500 000 Love waveforms, than previously published Love wave data sets and provides ˜17 000 000 constraints on the upper-mantle βh(z) structure. Sensitivity and resolution tests show that the horizontal resolution of the model is on the order of 800-1000 km to transition zone depths. The high wave-speed roots beneath the oldest parts of the continents appear to extend deeper for βh(z) than for βv(z) as in previous βh(z) models, but the resolution tests indicate that at least parts of these features could be artefacts. The low wave speeds beneath the mid-ocean ridges fade by ˜150 km depth except for the upper mantle beneath the East Pacific Rise which remains slow to ˜250 km depth. The resolution tests suggest that the low wave speeds at deeper depths beneath the East Pacific Rise are not solely due

  10. Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model

    Science.gov (United States)

    Nakahara, Hisashi; Emoto, Kentaro

    2017-01-01

    Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.

  11. Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model

    Science.gov (United States)

    Nakahara, Hisashi; Emoto, Kentaro

    2016-08-01

    Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.

  12. The Hatteras Front: August 2004 velocity and density structure

    Science.gov (United States)

    Savidge, Dana K.; Austin, Jay A.

    2007-07-01

    The Hatteras Front is a persistent mesoscale cross-shelf oriented front off Cape Hatteras, North Carolina. It is the boundary between relatively cool, fresh Mid-Atlantic Bight shelf waters and warmer, saltier shelf waters of the South Atlantic Bight, which both converge along-shelf upon Cape Hatteras year round. The Frontal Interaction Near Cape Hatteras (FINCH) project was conducted in 2004-2005 to intensively sample the Hatteras Front with shipboard ADCP and undulating towed CTD. This paper documents velocity and density structures associated with the cross-shelf oriented zone of Hatteras Front during the August 2004 field season. Property gradients across the Hatteras Front are large, with temperature (T) and salinity (S) differences of ˜4-6°C, 2-5 psu, respectively over distances of 1-2 km. The T and S are not completely compensating, and a strong density (ρ) gradient also exists, with Δρ of ˜2 kg/m3 across a gentler 10 km wide front. The density gradient results in a steric sea-level height gradient of ˜1-2 cm across the Front, which is in approximate geostrophic balance with a surface intensified jet, directed shoreward along the cross-shelf oriented Front. The velocity is sheared with depth at 3.0 × 10-2 to 5.0 × 10-2 s-1 in the upper 5 m of the jet; a rate consistent with the density gradient according to the thermal wind relationship. Shoreward transport of ˜4.8 × 104 m3/s results from the surface intensified jet. The structure of the velocity field associated with the Hatteras Front resembles that of a slope-controlled buoyant plume, as described by Lentz and Helfrich (2002). Velocity and density structures are similar during both advancing (southwestward) and retreating (northeastward) motion of the Front.

  13. S-wave velocity self-adaptive prediction based on a variable dry rock frame equivalent model

    Science.gov (United States)

    Feng-Ying, Yang; Xing-Yao, Yin; Bo, Liu

    2014-08-01

    Seismic velocities are important reservoir parameters in seismic exploration. The Gassmann theory has been widely used to predict velocities of fluid-saturated isotropic reservoirs at low frequency. According to Gassmann theory, dry rock frame moduli are essential input parameters for estimating reservoir velocities. A variable dry rock frame equivalent model called VDEM based on the differential effective medium (DEM) theory is constructed in this paper to obtain the dry rock frame moduli. We decouple the DEM equations by introducing variable parameters, then simplify these decoupled equations to get the equivalent dry rock fame model. The predicted dry rock frame moduli by the VDEM are in good agreement with the laboratory data. The VDEM is also utilized to predict S-wave velocity combined with Gassmann theory. A self-adaptive inversion method is applied to fit the variable parameters with the constraint of P-wave velocity from well logging data. The S-wave velocity is estimated from these inversed parameters. A comparison between the self-adaptive method and the Xu-White model on S-wave velocity estimation is made. The results corroborate that the self-adaptive method is flexible and effective for S-wave velocity prediction.

  14. Finite-frequency sensitivity kernels of seismic waves to fault zone structures

    Science.gov (United States)

    Allam, A. A.; Tape, C.; Ben-Zion, Y.

    2015-12-01

    We analyse the volumetric sensitivity of fault zone seismic head and trapped waves by constructing finite-frequency sensitivity (Fréchet) kernels for these phases using a suite of idealized and tomographically derived velocity models of fault zones. We first validate numerical calculations by waveform comparisons with analytical results for two simple fault zone models: a vertical bimaterial interface separating two solids of differing elastic properties, and a `vertical sandwich' with a vertical low velocity zone surrounded on both sides by higher velocity media. Establishing numerical accuracy up to 12 Hz, we compute sensitivity kernels for various phases that arise in these and more realistic models. In contrast to direct P body waves, which have little or no sensitivity to the internal fault zone structure, the sensitivity kernels for head waves have sharp peaks with high values near the fault in the faster medium. Surface wave kernels show the broadest spatial distribution of sensitivity, while trapped wave kernels are extremely narrow with sensitivity focused entirely inside the low-velocity fault zone layer. Trapped waves are shown to exhibit sensitivity patterns similar to Love waves, with decreasing width as a function of frequency and multiple Fresnel zones of alternating polarity. In models that include smoothing of the boundaries of the low velocity zone, there is little effect on the trapped wave kernels, which are focused in the central core of the low velocity zone. When the source is located outside a shallow fault zone layer, trapped waves propagate through the surrounding medium with body wave sensitivity before becoming confined. The results provide building blocks for full waveform tomography of fault zone regions combining high-frequency head, trapped, body, and surface waves. Such an imaging approach can constrain fault zone structure across a larger range of scales than has previously been possible.

  15. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    Science.gov (United States)

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in cph do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in cph cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), Rtot, Ctot, and cph to mimic the reported changes in these parameters from age 30 to 70. Then, cph was theoretically maintained constant, while Ctot, Rtot, and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, Ctot, Rtot, and CO were theoretically maintained constant, and cph was increased. The predicted increase in PP was negligible. We found that increases in cph have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in Ctot. PMID:22561301

  16. Velocity Measurement of Induced Flow by a Laser Focusing Shock Wave

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki HIRAHARA; Masaru FUJINAMI; Masaaki KAWAHASHI

    2006-01-01

    The objective of this study is to apply the shock wave for control in a micro channel. The shock wave was generated by a laser focusing of pulsed laser beam in the channel. Using a pulse laser to generate a shock wave,a non-stationary flow was induced in the small space between the parallel plates. The spherical and cylindrical shock propagations were observed with schlieren method. The shock Mach number decreases with time and approaches to unity. As reported in the previous investigations, the shock speed was attenuated in a short distance and time. In the present experiment, It was not found a remarkable difference in the shock speed between the spherical and cylindrical shock experiments. Subsequently, the flow induced by the cylindrical shock wave was studied using PIV technique. A smoke tracer was used in the experiment and its velocity was measured within 100 μs. A numerical simulation was carried out to investigate the momentum relaxation between the gas and smoke particle. A suitable shock initiation model was introduced in the simulation. The experimental results show that a wide acceleration and deceleration zone exist behind the shock wave. Also,the relaxation distance in the experimental data is much longer than that in numerical simulation.

  17. Love Waves in Layered Graded Composite Structures with Imperfectly Bonded Interface

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.

  18. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-02-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, that constitute alpine rock walls, has been denied in prior studies. These explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimeter-large low-porosity (<6 % metamorphic, magmatic and sedimentary permafrost rock samples with a natural texture (>100 micro-fissures from 25 °C to –15 °C in 0.3 °C increments close to the freezing point. P-wave velocity increases by 7–78 % when freezing parallel to cleavage/bedding and matrix velocity increases from 5–59 % coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's 2-phase equation implementing changes in matrix velocity dependent on lithology and demonstrate the physical basis for refraction seismics in low-porosity bedrock.

  19. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    Energy Technology Data Exchange (ETDEWEB)

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  20. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    Energy Technology Data Exchange (ETDEWEB)

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  1. Wave kinematics and response of slender offshore structures. Vol 5: Wave forces and responses

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.M.; Riber, H.J.

    1999-08-01

    A load measuring system (LMS) and a wave measuring system (WMS) has been used on the North Sea platform Tyra. The LMS consists of an instrumented pipe placed vertically in the crest zone of high and steep waves. The WMS consists of an unique sonar system placed on the sea floor. Simultaneous measurements are carried out of the kinematics of waves and currents and the response of the instrumented pipe during a period of five month in the winter 1994/95. Numerical calculations with LIC22 are carried out of the response of the LMS applying the measured wave and current kinematics. The responses are compared to the measured responses of the LMS. The comparison is based on the statistical main properties of the calculated and measured response as the kinematic field is measured 150 metres away from the instrumented pipe. From the analyses the main parameters (reduced velocity V{sub R} and correlation length l{sub c}) for vortex induced vibrations (VIV) are calibrated and the main environmental conditions for VIV are determined. The hydrodynamic coefficients determining the wave and current forces on slender structures are studied (drag coefficient C{sub D} and added mass coefficient C{sub M}). Further, the effect on the drag coefficient due to air blending in the upper part of the wave is determined. (au)

  2. Guided wave propagation in multilayered piezoelectric structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A general formulation of the method of the reverberation-ray matrix (MRRM) based on the state space formalism and plane wave expansion technique is presented for the analysis of guided waves in multilayered piezoelectric structures. Each layer of the structure is made of an arbitrarily anisotropic piezoelectric material. Since the state equation of each layer is derived from the three-dimensional theory of linear piezoelectricity, all wave modes are included in the formulation. Within the framework of the MRRM, the phase relation is properly established by excluding exponentially growing functions, while the scattering relation is also appropriately set up by avoiding matrix inversion operation. Consequently, the present MRRM is unconditionally numerically stable and free from computational limitations to the total number of layers, the thickness of individual layers, and the frequency range. Numerical examples are given to illustrate the good performance of the proposed formulation for the analysis of the dispersion characteristic of waves in layered piezoelectric structures.

  3. Shear wave velocity of the healthy thyroid gland in children with acoustic radiation force impulse elastography.

    Science.gov (United States)

    Ceyhan Bilgici, Meltem; Sağlam, Dilek; Delibalta, Semra; Yücel, Serap; Tomak, Leman; Elmalı, Muzaffer

    2017-04-19

    Acoustic radiation force impulse imaging is a kind of shear wave elastography that can be used in children for differentiating thyroid pathologies. Possible changes in the healthy thyroid gland in children may create difficulties in the use of shear wave velocities (SWV) in thyroid pathologies. The aim of this study was to define the normal values of SWV for the healthy thyroid gland in children, elucidate the correlation of the SWV values with potential influencing factors, and evaluate intra-operator reproducibility of the SWV. Between January 2015 and December 2015, a total of 145 healthy children (81 girls, 64 boys; mean age, 10.5 ± 3.14 years; range 6-17 years) were enrolled in the study. The SWV and volume of the thyroid gland were determined. The mean shear wave velocity of the thyroid gland was 1.22 ± 0.20 m/s. There was no correlation between age and the mean SWV of the thyroid gland (Spearman Rho = 0.049, p = 0.556). There was also no correlation between the thyroid gland volume or BSA and the mean SWV. The only correlation detected was between BSA and total thyroid gland volume (p thyroid gland in children was determined. There was no correlation between the SWV of the thyroid gland and age, BSA, or thyroid gland volume.

  4. Apparent Attenuation and Dispersion Arising in Seismic Body-Wave Velocity Retrieval

    Science.gov (United States)

    Wirgin, Armand

    2016-07-01

    The fact that seismologists often make measurements, using natural seismic solicitations, of properties of the Earth on rather large scales (laterally and in terms of depth) has led to interrogations as to whether attenuation of body waves is dispersive and even significant. The present study, whose aim is to clarify these complicated issues, via a controlled thought measurement, concerns the retrieval of a single, real body wave velocity of a simple geophysical configuration (involving two homogeneous, isotropic, non-dissipative media, one occupying the layer, the other the substratum), from its simulated response to pulsed plane wave probe radiation. This inverse problem is solved, at all frequencies within the bandwidth of the pulse. Due to discordance between the models associated with the assumed and trial responses, the imaginary part of the retrieved velocity turns out to be non-nil even when both the layer and substratum are non-lossy, and, in fact, to be all the greater, the larger is the discordance. The reason for this cannot be due to intrinsic attenuation, scattering, or geometrical spreading since these phenomena are absent in the chosen thought experiment, but rather to uncertainty in the measurement model.

  5. Wave heave spectra from radar Doppler velocities at extreme low grazing angles

    Science.gov (United States)

    Flampouris, Stylianos; Seemann, Joerg; Ziemer, Friedwart

    2013-04-01

    The ground based microwaves radar systems are used for the measurement of the sea surface phenomena for more than three decades. By calibrating the radar cross section, the extraction of the wave spectral characteristics is a well established empirical methodology (Ziemer et al. 1993) with theoretical background (Alpers et al. 1978) and commercial applications (Nieto et al. 2004), which provides comparable measurements with wave buoys. The transfer function is necessary mainly due to the imaging mechanisms, like shadowing and or tilt modulation (Seemann 1997). To avoid the obligatory use of a transfer function, instead of the radar cross section, the Doppler velocity, which is a direct measurement of the sea surface, could be used. In this poster, a methodology for the determination of heave spectra based on time series of Doppler velocity acquired under extreme low grazing angle conditions, is presented. We prove that for the determination of the peak frequency the analysis of the binary shadow mask is sufficient, but for the calculation of the spectral density, a transfer function is necessary because of the gaps of the time series due to the shadowing. The physical and technical limitations are discussed and the algorithm is tested with in situ measurements from the coastal area of German Bight. Both properties, peak frequency and significant wave height from radar, have significant correlation with buoy measurements.

  6. Macroparticle Movement Velocity in Dusty Structures of Various Compositions

    CERN Document Server

    Khakhaev, A D; Podryadchikov, S F

    2012-01-01

    The results of experimental investigations of the movement velocity of a macroparticle in the dusty structures of various physicalchemical compositions formed in a stratified column of a dc glow discharge, are presented. The macroparticle substances are alumina (r = 10 - 35 microns), polydisperse Zn (r = 1 - 20 microns) and Zn0 (r = 20 - 35 microns). Plasma-forming gases are inert gases (Ne, Ar). The inverse relation between the velocity and the gas pressure (in the range 40-400 Pa) is found and, for the same material of macroparticles in different gas plasmas, is confirmed by theory and does not contradict observations. But, to explain a difference of quantitative data for macroparticles made from different materials in Ar plasma, the additional research is required.

  7. Seismic velocity structure in the source region of the 2016 Kumamoto earthquake sequence, Japan

    Science.gov (United States)

    Shito, Azusa; Matsumoto, Satoshi; Shimizu, Hiroshi; Ohkura, Takahiro; Takahashi, Hiroaki; Sakai, Shinichi; Okada, Tomomi; Miyamachi, Hiroki; Kosuga, Masahiro; Maeda, Yuta; Yoshimi, Masayuki; Asano, Youichi; Okubo, Makoto

    2017-08-01

    We investigate seismic wave velocity structure and spatial distribution of the seismicity in the source region of the 2016 Kumamoto earthquake sequence. A one-dimensional mean velocity shows that the seismogenic zone has a high-velocity and low-Vp/Vs ratio relative to the average velocity structure of Kyushu Island. This indicates that the crust is relatively strong, capable of sustaining sufficiently high strain energy to facilitate two large (Mj > 6.5) earthquakes in close proximity to one another in rapid succession. Three-dimensional tomography of the seismogenic zone around the source of the 2016 Kumamoto earthquake sequence yields Vp = 6 km/s and Vs = 3.5 km/s. Most large-displacement areas (asperities) of the Mj 7.3 event overlap with the seismogenic zone and the overlying surface layer. Aftershock seismicity is distributed deeper than the conventional seismogenic zone, which suggests decreased strength due to fluids or increased stress, both caused by coseismic slip.

  8. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  9. Shear-wave velocity anomalies in Southern Andes within latitudes 35°S and 37°S: model and interpretations from seismic ambient noise

    Science.gov (United States)

    González Vidal, Diego M.; Obermann, Anne; Bataille, Klaus; Miller, Stephen A.; Lupi, Matteo

    2017-04-01

    The volcanic arc of the Southern Andes is linked to the oblique convergence of Nazca plate beneath the South American plate (subduction velocity of ˜ 66 mm/yr). The volcanic arc accounts for about sixty active volcanoes of Pleistocene-to-Holocene ages. Here we present a regional-scale (i.e. 35°S and 37.5°S) Rayleigh surface-wave tomography from seismic ambient noise that highligths the three-dimensional shear-wave velocity structure at crustal depths. This study is, to the best of our knowledge, the first attempt of a regional-scale Ambient Noise Tomography of a volcanic arc. We find that velocity anomalies are in agreement with the geological setting and the spatial distribution of the present-day volcanoes. The crystalline Cenozoic basement, represented by the outcrop of Mio-Pliocene plutons shows high-velocity anomalies greater than 3%. On the other hand, Descabezado Grande, Puelche and Laguna del Maule volcanic fields show low-velocity anomalies ranging within 3 - 6% located at 5 - 10 km depth. Nevados de Longaví, Chillán and Antuco volcanoes also show strong low-velocity anomalies. We interpret that mid-crustal low-velocity anomalies are associated with a mechanically weakeaned regions, due to a high porous crust or, the presence of fluids and thermal anomalies.

  10. Finite element analysis of solitary wave propagation by acoustic velocity method

    Science.gov (United States)

    Maruoka, Akira; Uchiyama, Ichiro; Kawahara, Mutsuto

    2017-01-01

    There is discontinuity between compressible and incompressible states in fluid flows. If we subtract the thermal effect from compressible fluid flows, we obtain adiabatic fluid flows, from which incompressible fluid flows are obtained if we let the acoustic velocity tend to infinity. Thus, we employ the idea of adiabatic fluid flows to solve incompressible flows. In the computation, the physical value of the acoustic velocity is employed. This idea corresponds to an extension of artificial compressibility under physical considerations. We present the new SUPG formulation of adiabatic fluid flows, by which not only the effect of SUPG but also those of PSPG and LSIC of incompressible fluid flows are derived. After the numerical verifications, three-dimensional solitary wave propagations are computed. Close agreement between computed and experimental values is obtained.

  11. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    Science.gov (United States)

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  12. Light scattering by a dense ionization plasma wave with a tunable velocity

    Science.gov (United States)

    Zhidkov, Alexei; Fujii, Takashi; Esirkepov, Timur; Koga, James; Nemoto, Koshichi; Bulanov, Sergei

    2009-11-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. We study the conversion of a coherent light to x-rays by means of particle-in-cell simulation and by solution of continuous equation with the correct current. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  13. Crust and upper mantle shear wave structure of Northeast Algeria from Rayleigh wave dispersion analysis

    Science.gov (United States)

    Radi, Zohir; Yelles-Chaouche, Abdelkrim; Corchete, Victor; Guettouche, Salim

    2017-09-01

    We resolve the crust and upper mantle structure beneath Northeast Algeria at depths of 0-400 km, using inversion of fundamental mode Rayleigh wave. Our data set consists of 490 earthquakes recorded between 2007 and 2014 by five permanent broadband seismic stations in the study area. Applying a combination of different filtering technics and inversion method shear wave velocities structure were determined as functions of depth. The resolved changes in Vs at 50 km depth are in perfect agreement with crustal thickness estimates, which reflect the study area's orogenic setting, partly overlying the collision zone between the African and Eurasian plates. The inferred Moho discontinuity depths are close to those estimated for other convergent areas. In addition, there is good agreement between our results and variations in orientations of regional seismic anisotropy. At depths of 80-180 km, negative Vs anomalies at station CBBR suggest the existence of a failed subduction slab.

  14. The age‐dependent association between aortic pulse wave velocity and telomere length

    Science.gov (United States)

    Yasmin; Butcher, Lee; Cockcroft, John R.; Wilkinson, Ian B.; Erusalimsky, Jorge D.; McEniery, Carmel M.

    2017-01-01

    Key points Age significantly modifies the relationship between aortic pulse wave velocity and telomere length.The differential relationships observed between aortic pulse wave velocity and telomere length in younger and older individuals suggest that the links between cellular and vascular ageing reflect a complex interaction between genetic and environmental factors acting over the life‐course. Abstract Ageing is associated with marked large artery stiffening. Telomere shortening, a marker of cellular ageing, is linked with arterial stiffening. However, the results of existing studies are inconsistent, possibly because of the confounding influence of variable exposure to cardiovascular risk factors. Therefore, we investigated the relationship between telomere length (TL) and aortic stiffness in well‐characterized, younger and older healthy adults, who were pre‐selected on the basis of having either low or high aortic pulse wave velocity (aPWV), a robust measure of aortic stiffness. Demographic, haemodynamic and biochemical data were drawn from participants in the Anglo‐Cardiff Collaborative Trial. Two age groups with an equal sex ratio were examined: those aged 50 years (older). Separately for each age group and sex, DNA samples representing the highest (n = 125) and lowest (n = 125) extremes of aPWV (adjusted for blood pressure) were selected for analysis of leukocyte TL. Ultimately, this yielded complete phenotypic data on 904 individuals. In younger subjects, TL was significantly shorter in those with high aPWV vs. those with low aPWV (P = 0.017). By contrast, in older subjects, TL was significantly longer in those with high aPWV (P = 0.001). Age significantly modified the relationship between aPWV and TL (P ageing reflect a complex interaction between genetic and environmental factors acting over the life‐course. PMID:28247509

  15. A Novel Dynamic Model for Predicting Pressure Wave Velocity in Four-Phase Fluid Flowing along the Drilling Annulus

    Directory of Open Access Journals (Sweden)

    Xiangwei Kong

    2015-01-01

    Full Text Available A dynamic pressure wave velocity model is presented based on momentum equation, mass-balance equation, equation of state, and small perturbation theory. Simultaneously, the drift model was used to analyze the flow characteristics of oil, gas, water, and drilling fluid multiphase flow. In addition, the dynamic model considers the gas dissolution, virtual mass force, drag force, and relative motion of the interphase as well. Finite difference and Newton-Raphson iterative are introduced to the numerical simulation of the dynamic model. The calculation results indicate that the wave velocity is more sensitive to the increase of gas influx rate than the increase of oil/water influx rate. Wave velocity decreases significantly with the increase of gas influx. Influenced by the pressure drop of four-phase fluid flowing along the annulus, wave velocity tends to increase with respect to well depth, contrary to the gradual reduction of gas void fraction at different depths with the increase of backpressure (BP. Analysis also found that the growth of angular frequency will lead to an increase of wave velocity at low range. Comparison with the calculation results without considering virtual mass force demonstrates that the calculated wave velocity is relatively bigger by using the presented model.

  16. Quasi-3D Waveform Inversion for Velocity Structures and Source Process Analyses Using its Results

    Science.gov (United States)

    Hikima, K.; Koketsu, K.

    2007-12-01

    compare them with the models determined using the 1-D structures (Hikima and Koketsu, 2004). The synthesized waveforms in the 3-D structure better explain the observed waveforms than those in the 1-D structures. While the large slip area (asperity) of the mainshock is recovered at the shallow southern part of the northern subplane in the 1-D inversion result, the asperity of the 3-D inversion result is located on the deep central part of the northern subplane. Most of the aftershocks occurred around the asperity of the 3-D result. The asperity of the 3-D result is consistent with that of a previous study from geodetic data. In addition, the 3-D inversion result is in good agreement with the distribution of estimated strong motions in the source area. To examine the reason why the different slip distributions were recovered using the 1-D and 3-D structures, we performed synthetic comparisons. The variations of the Green's functions due to changes in the subfault depths were different between the 1-D and 3-D models, and this difference results in the difference of the two inversion results. Because the waveform difference is larger mostly in a later part, an inversion of body wave parts alone did not produce such difference, which we confirmed by a synthetic calculation. However, in some situation, we cannot extract clear body waves not contaminated by later phases. Therefore, a source process inversion should be performed using accurate Green's functions which include later phases based on well-calibrated 3-D velocity models.

  17. Upper-mantle P- and S- wave velocities across the Northern Tornquist Zone from traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study presents P- and S-wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old...... in basin areas to the southwest and in most of southern Norway. Differences in the VP/VS ratio are believed to be a rather robust indicator of upper-mantle compositional differences. For the depth interval of about 100–300 km, thick, depleted, relatively cold shield lithosphere is indicated in southern...

  18. Upper-mantle P- and S- wave velocities across the Northern Tornquist Zone from traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study presents P- and S-wave velocity variations for the upper mantle in southern Scandinavia and northern Germany based on teleseismic traveltime tomography. Tectonically, this region includes the entire northern part of the prominent Tornquist Zone which follows along the transition from old...... Sweden, contrasting with more fertile, warm mantle asthenosphere beneath most of the basins in Denmark and northern Germany. Both compositional and temperature differences seem to play a significant role in explaining the UMVB between southern Norway and southern Sweden. In addition to the main regional...

  19. Nuclear Magnetic Resonance and Elastic Wave Velocity of Chalk Saturated with Brines Containing Divalent Ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    Nuclear magnetic resonance (NMR) has proven a good technique for measuring pore size distribution in reservoir rocks. The use of low field NMR together with sonic and electrical resistivity measurements, can contribute to illustrate the effect of adsorbing ions on chalk elasticity. NMR is useful...... of the relaxation time. Core samples saturated with calcium chloride solution relaxed slower and those saturated with magnesium chloride solution relaxed faster than the rest of the samples. Along with the changes in relaxation the samples experienced smaller velocities of elastic waves when saturated with MgCl2...

  20. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  1. Solar Wind Driving of Magnetospheric ULF Waves: Pulsations Driven by Velocity Shear at the Magnetopause

    CERN Document Server

    Claudepierre, S G; Wiltberger, M; 10.1029/2007JA012890

    2010-01-01

    We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailwa...

  2. The influence of velocity-changing collisions on resonant degenerate four-wave mixing

    Science.gov (United States)

    Richardson, W. H.; Maleki, L.; Garmire, Elsa

    1989-01-01

    The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.

  3. Non-contact measurement of pulse wave velocity using RGB cameras

    Science.gov (United States)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  4. Estimating a continuous p-wave velocity profile with constant squared-slowness gradient models from seismic field data

    NARCIS (Netherlands)

    Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.

    2015-01-01

    We inverted seismic field data for a continuous, laterally invariant P-wave velocity profile. Instead of the usual approach that involves horizontal layers with piecewise constant densities and velocities, we consider models of one or two layers with a constant gradient of the squared slowness above

  5. Short-term effects of a standardized glucose load on region-specific aortic pulse wave velocity assessed by MRI

    NARCIS (Netherlands)

    Jonker, J.T.; Tjeerdema, N.; Hensen, L.C.; Lamb, H.J.; Romijn, J.A.; Smit, J.W.; Westenberg, J.J.; Roos, A. de

    2014-01-01

    PURPOSE: To assess the short-term effects of a standardized oral glucose load on regional aortic pulse wave velocity (PWV) using two-directional in-plane velocity encoded MRI. MATERIALS AND METHODS: A randomized, controlled intervention was performed in 16 male subjects (mean +/- standard deviation:

  6. Physical modelling of the effect of fractures on compressional and shear wave velocities

    Science.gov (United States)

    Gurevich, Boris; Lebedev, Maxim; Glubokovskikh, Stanislav; Dyskin, Arcady; Pasternak, Elena; Vialle, Stephanie

    2016-04-01

    Ultrasonic measurements were performed on a sample of polyester resin permeated by multiple fractures. The samples were prepared by mixing high doses of catalyst, about 7-10 % with the liquid resin base. The mix was then heated in an oven at 60° C for a period of 1 hour. This operation produced many shrinkage cracks varying in size from 8 mm to 20 mm (Sahouryeh et al., 2002). The produced samples were parallelepiped 50 mm x 50 mm in cross-section with height of 100 mm. Micro-CT scanning of the sample reveals many open fractures with apertures 0.2 - 0.4 mm. Elastic properties of the fractured samples were derived from ultrasonic measurements using piezo-electric transducers. These measurements give compressional (Vp) and shear (Vs) wave velocities of 2450 and 1190 m/s, respectively, giving Vp/Vs = 2.04. At the same time the velocities in the intact resin are Vp=2460 and Vs=1504 m/s, respectively, with Vp/Vs = 1.63. Thus we see that the fractures have a negligible effect on the Vp (within the measurement error) but a dramatic effect on Vs (about 20%). This contradicts the common understanding that the effects of dry fractures on Vp and Vs are similar in magnitude. Indeed, assuming very roughly that the distribution of fractures is isotropic, we can estimate the cumulative normal fracture compliance from the difference between shear moduli of the intact and fractured resin to be 0.30 GPa-1 and fracture density of 0.41. This value can be used to estimate the effective bulk modulus of the fractured material. The corresponding p-wave velocity, Vp = 1860 m/s, is significantly lower that the observed value. The results suggest that an equivalent medium approximation is not applicable in this case, probably due to the fact that the long-wave approximation is inadequate. Indeed the fractures are larger than the wavelength that corresponds to the peak frequencies of the power spectrum of the signal. This suggests a strong influence of diffraction. Furthermore, the

  7. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  8. Study of Detonation Wave Structure in Solid and Liquid Tetranitromethane (TNM)

    Science.gov (United States)

    Fedorov, A. V.; Mikhailov, A. L.; Nazarov, D. V.; Finyushin, S. A.; Men'shikh, A. V.; Davydov, V. A.; Govorunova, T. A.

    2006-07-01

    Investigations of detonation front structure and parameters in solid and liquid tetranitromethane were done using Doppler Fabry-Perot velocimeter. We recorded the particle velocity of explosion products, braking on the HE/window interface. Smooth front of the detonation wave and concave negative-going particle velocity profile were recorded for liquid TNM. The experimental records indicate that because of solid TNM heterogeneity flow, turbulization occurs behind detonation wave front what appears in the form of velocity fluctuations on the U(t) profile.

  9. The uppermost mantle seismic velocity and viscosity structure of central West Antarctica

    Science.gov (United States)

    O'Donnell, J. P.; Selway, K.; Nyblade, A. A.; Brazier, R. A.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Wilson, T.; Winberry, J. P.

    2017-08-01

    Accurately monitoring and predicting the evolution of the West Antarctic Ice Sheet via secular changes in the Earth's gravity field requires knowledge of the underlying upper mantle viscosity structure. Published seismic models show the West Antarctic lithosphere to be ∼70-100 km thick and underlain by a low velocity zone extending to at least ∼200 km. Mantle viscosity is dependent on factors including temperature, grain size, the hydrogen content of olivine, the presence of partial melt and applied stress. As seismic wave propagation is particularly sensitive to thermal variations, seismic velocity provides a means of gauging mantle temperature. In 2012, a magnitude 5.6 intraplate earthquake in Marie Byrd Land was recorded on an array of POLENET-ANET seismometers deployed across West Antarctica. We modelled the waveforms recorded by six of the seismic stations in order to determine realistic estimates of temperature and lithology for the lithospheric mantle beneath Marie Byrd Land and the central West Antarctic Rift System. Published mantle xenolith and magnetotelluric data provided constraints on grain size and hydrogen content, respectively, for viscosity modelling. Considering tectonically-plausible stresses, we estimate that the viscosity of the lithospheric mantle beneath Marie Byrd Land and the central West Antarctic Rift System ranges from ∼1020-1022 Pa s. To extend our analysis to the sublithospheric seismic low velocity zone, we used a published shear wave model. We calculated that the velocity reduction observed between the base of the lithosphere (∼4.4-4.7 km/s) and the centre of the low velocity zone (∼4.2-4.3 km/s) beneath West Antarctica could be caused by a 0.1-0.3% melt fraction or a one order of magnitude reduction in grain size. However, the grain size reduction is inconsistent with our viscosity modelling constraints, suggesting that partial melt more feasibly explains the origin of the low velocity zone. Considering plausible

  10. 3D Body Wave Velocity Tomography in Southern Peru: Seismotectonic Implications

    Science.gov (United States)

    Gallego, A.; Perez, J.; David, C.; Comte, D.; Charrier, R.; Dorbath, L.

    2004-12-01

    The studied region corresponds to the southern segment of the 1868 rupture area, that did not break with the last Mw=8.4 Arequipa earthquake in southern Peru. A temporary network of 19 short period, continuous recording seismic stations was deployed (16.5° -18.5° S; 69.5° -72° W) between December 2002-March 2003 in this region. The 1093 select events were used for a joint hypocentral and velocity structure inversion. The first obtained 1D velocity model was used as the initial model for the 3D inversion, consisting in 231 blocks distributed along layers separated by 10 km for depths lower than 80 km, and by 20 km for depths between 80 and 160 km. North of the Arica Bend, between the Coast and Andean Range the high Vp velocity and Vp/Vs ratio observed at depths lower than 10 km could represent the Precambrian basement uplifted by the Incapuquio sinistral fault system, which develops a positive flower structure typical for transpressional zones, that raised the basement. This behavior is in good agreement with the uplift of the Cambrian metamorphic complex, in the Precordillera south of the Arica Bend (northern Chile), by the west-vergent thrust system. Beneath the anomalous high velocities (between 20 and 30 km depth), a low velocity zone (Vpearthquake post-seismic period.

  11. Dual-beam measurements of gravity waves over Arecibo: Reevaluation of wave structure, dynamics, and momentum fluxes

    Science.gov (United States)

    Fritts, David C.; Janches, Diego

    2008-03-01

    A previous study by Zhou and Morton (2006) employed dual-beam incoherent scatter radar measurements of radial velocities at the Arecibo Observatory to study the structure, dynamics, and momentum fluxes of gravity waves in the mesosphere and lower thermosphere for ˜8 h on 28 July 2001. Because of erroneous assumptions about wave character and inferences of the relationship between radial velocities, however, the advertised results of this previous study are largely in error. The purposes of the present study are both to point out these errors to help avoid such pitfalls in the future and to provide a new interpretation of these data, which represent a very interesting case study of gravity wave dynamics at these altitudes. Specific findings of the present study (largely in contradiction to the previous analysis) include (1) the ˜15-min oscillation was apparently a large-amplitude Doppler-ducted gravity wave structure propagating at one or two maxima of the westward large-scale wind present during the event; (2) the gravity wave exhibited a deep and coherent vertical phase structure, except between the two westward wind maxima at later times, entirely inconsistent with proximity to a critical level; (3) the dominant motions within the gravity wavefield were vertical velocities up to ˜10 m s-1, except for inferred horizontal motions where the vertical motions changed phase and above and below the vertical velocity maxima, as dictated by the continuity equation; (4) there were likely no regions of dynamical instability accompanying these ducted wave motions; and (5) momentum fluxes due to this wave motion were small, despite its very large amplitude.

  12. DETERMINATION OF TRANSVERSE DENSITY STRUCTURING FROM PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Arregui, I.; Asensio Ramos, A. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Pascoe, D. J., E-mail: iarregui@iac.es [School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom)

    2013-06-01

    We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided that the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.

  13. Determination of Transverse Density Structuring from Propagating MHD Waves in the Solar Atmosphere

    CERN Document Server

    Arregui, I; Pascoe, D J

    2013-01-01

    We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.

  14. Shear velocity structure of the Tyrrhenian region in relation to volcanism and tectonics

    Science.gov (United States)

    Paulssen, H.; Greve, S.

    2012-12-01

    We present a detailed 3D shear velocity model of the Tyrrhenian Sea and surrounding onshore areas down to about 160 km depth. The high resolution of the model is achieved through the measurement of interstation Rayleigh wave dispersion curves in a small regional setting with dense station coverage. The most noticeable structure is a pronounced, nearly ringshaped low velocity region at about 80 km depth surrounding the Tyrrhenian Sea: from Corsica to the western part of the Italian mainland, continuing to the western part of Sicily and Sardinia. The thickness of this low velocity region is constrained to a maximum of 40 km, and it is independent of the chosen inversion parameters or the background model. The low values of the shear velocity suggest the presence of fluids or melt. The lateral extent of the low velocity region beneath the Italian mainland is well correlated with the locations of subduction-related volcanism, but there is also a striking continuation of the anomalous low-velocity region along the Northern Tyrrhenian Sea towards (and beneath) the island of Corsica. The recent (volcanism along the Northern Tyrrhenian Sea. Our seismic results now suggest that the anomalous mantle is still present beneath Corsica and the Northern Tyrrhenian Sea, although it does not produce any active volcanism anymore. The picture for the Southern Tyrrhenian Sea is different. Intriguingly, the sublithospheric low velocity anomaly does not continue to southeasternmost part of the Tyrrhenian Sea where the volcanism of the Aeolian arc is related to subduction of the steep, active Ionian slab. Instead, the seismic anomaly crosses the Tyrrhenian Sea from Vesuvius on the Italian mainland to the western part of Sicily, continuing to the southeast of Sardinia: a pattern which correlates with the locations of past subduction-related volcanism. It is striking that the Vavilov Basin in the central Tyrrhenian Sea, characterized by MORB-type volcanism, is a region of relatively normal

  15. Lithospheric structure of the Sea of Japan from surface wave tomography

    Science.gov (United States)

    Fry, B.; Sato, H.; Takeda, T.; Chen, Q. F.; Okaya, D. A.; Wang, K.

    2015-12-01

    We investigate the surface wave and shear wave velocity structure of the Sea of Japan based on group and phase velocity measurements made on broad-band, cross-correlated ambient noise. Continuous data from terrestrial broadband stations surrounding the sea are filtered, cross correlated on a day-by-day basis, and then stacked. The correlation functions are processed with multiple filters and group velocities are manually selected from 7s to 50s. Subsequent to multiple filtering, we apply phase-matched filtering and unwrap the phase of the resulting signal. This phase is then used to determine phase velocities by selecting an appropriate number of wave-cycles appropriate for the average velocity structure. The interstation dispersion curves are then inverted for 2D isotropic and anisotropic surface wave maps at discrete periods. In a second stage of inversion, the 2D isotropic inversion results are combined at each spatial node to create a "1D" dispersion curve. We use a linearized, iterative process to model the 1D dispersion at each node for depth-dependent shear-wave velocities. The 1D models are then combined to form at 3D model of shear wave velocity. We image slow shear-wave anomalies under the central basin and relatively fast velocities under the Yamamoto and Japan Basins and offshore of the western Japan shelf. Current estimates of azimuthal anistoropy from our inversions are poorly constrained due to sparse data distribution. Ongoing efforts are aimed at refining anisotropy estimates by increasing data density from noise correlations by increasing the spatial coverage of our database. Our isotropic and anisotropic models will be presented, as will a first attempt at defining lithospheric thickness based on radial anisotropy determined from our inversions.

  16. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods

    Science.gov (United States)

    Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad

    2014-06-01

    Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial inte