WorldWideScience

Sample records for wave superconducting state

  1. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  2. Evidence for unconventional d-wave superconducting state in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra, Hugo A.; Geibel, Christoph; Steglich, Frank; Oeschler, Niels [Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Parker, David [US Naval Research Laboratory, Washington, DC 20375 (United States); Jeevan, Hirale S. [I. Physik. Institut, Georg-August-Universitaet Goettingen, Goettingen 37077 (Germany)

    2010-07-01

    The heavy-fermion CeCu{sub 2}Si{sub 2} represents a prime system to study unconventional superconductivity in the vicinity of a magnetic instability. Within the homogeneity range of pure CeCu{sub 2}Si{sub 2} different ground states can be obtained. S-type crystals exhibit a superconducting transition at T{sub c}=0.6 K, whereas A/S-type show in addition antiferromagnetic order at T{sub N}=0.8 K. In recent years, the synthesis techniques have been optimized in order to obtain large high-quality single crystals with well defined ground state properties. This allows the systematic study of the superconducting order parameter and its variation at the border with magnetic order. In this work, we present angular dependent resistivity measurements on high-quality S- and A/S-type single-crystalline CeCu{sub 2}Si{sub 2} samples. The experimental results for the angular dependence of the upper critical field B{sub c2} as well as theoretical calculations taking into account effects like the strong Pauli paramagnetism, hint towards an unconventional d-wave symmetry of the order parameter in CeCu{sub 2}Si{sub 2}.

  3. Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach

    OpenAIRE

    Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.

    2003-01-01

    We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...

  4. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  5. Interplay of antiferromagnetism and superconductivity in cuprates with impurity effect and d-wave pairing

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Rasmita, E-mail: rmrmmohapatra@gmail.com [P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore, Odisha 756019 (India); Rout, G.C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot no-664/4825, Lane-4A, Shree Vihar, Patia, Bhubaneswar, Odisha 751024 (India)

    2015-05-15

    Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures.

  6. Interplay of antiferromagnetism and superconductivity in cuprates with impurity effect and d-wave pairing

    International Nuclear Information System (INIS)

    Mohapatra, Rasmita; Rout, G.C.

    2015-01-01

    Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures

  7. Competing States in the t-J Model: Uniform d-Wave State versus Stripe State versus Stripe State

    NARCIS (Netherlands)

    Corboz, P.R.; Rice, T.M.; Troyer, M.

    2014-01-01

    Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only

  8. Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals

    OpenAIRE

    Iwanaga, Masanobu

    2005-01-01

    Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...

  9. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  10. Asymmetric d-wave superconducting topological insulator in proximity with a magnetic order

    Science.gov (United States)

    Khezerlou, M.; Goudarzi, H.; Asgarifar, S.

    2018-02-01

    In the framework of the Dirac-Bogoliubov-de Gennes formalism, we investigate the transport properties in the surface of a 3-dimensional topological insulator-based hybrid structure, where the ferromagnetic and superconducting orders are simultaneously induced to the surface states via the proximity effect. The superconductor gap is taken to be spin-singlet d-wave symmetry. The asymmetric role of this gap respect to the electron-hole exchange, in one hand, affects the topological insulator superconducting binding excitations and, on the other hand, gives rise to forming distinct Majorana bound states at the ferromagnet/superconductor interface. We propose a topological insulator N/F/FS junction and proceed to clarify the role of d-wave asymmetry pairing in the resulting subgap and overgap tunneling conductance. The perpendicular component of magnetizations in F and FS regions can be at the parallel and antiparallel configurations leading to capture the experimentally important magnetoresistance (MR) of junction. It is found that the zero-bias conductance is strongly sensitive to the magnitude of magnetization in FS region mzfs and orbital rotated angle α of superconductor gap. The negative MR only occurs in zero orbital rotated angle. This result can pave the way to distinguish the unconventional superconducting state in the relating topological insulator hybrid structures.

  11. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  12. Traveling wave tube oscillator/amplifier with superconducting rf circuit

    International Nuclear Information System (INIS)

    Jasper, L.J. Jr.

    1989-01-01

    This patent describes a device comprising: an electron gun for producing an electron beam; a collector for collecting the electron beam; a vacuum housing surrounding the electron beam and having an integral slow wave circuit, the circuit being made from superconducting ceramic material; means for maintaining the temperature of the superconducting ceramic below its critical temperature; means for extracting an output signal from the slow wave circuit; means for creating a magnetic field within the vacuum housing so that interaction between the electron beam and the slow wave circuit produces the output signal

  13. Exotic superconducting states in the extended attractive Hubbard model.

    Science.gov (United States)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  14. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  15. Absence of coherent peaks in a Z2 fractionalized BCS superconducting state

    Science.gov (United States)

    Zhong, Yin; Lu, Han-Tao; Luo, Hong-Gang

    2015-01-01

    We explore a Z2 fractionalized Bardeen-Cooper-Schrieffer (BCS) superconducting state, which is a minimal extension of usual BCS framework. It is found that this state has similar thermal and transport properties, but its single-particle feature strongly deviates from the coherent quasiparticle behavior of the classic/conventional BCS superconducting state. The fingerprint of such Z2 BCS state is the absence of the BCS coherent peaks and instead a kink in the local density of state occurs, which in principle could be probed by scanning tunneling microscopy or point-contact spectroscopy experiments. The corresponding exactly soluble models that realize the desirable Z2 fractionalized BCS state are presented. In addition, we also study the extended t-U-J model by using Z2 slave-spin representation and find that the Z2 BCS state may exist when the paring structure is fully gapped or has nodes. The prototypical wave-function of such a Z2 BCS state is also proposed, which could be taken as trial wave-function in current numerical techniques. Furthermore, the pairing mechanism of Z2 BCS state is argued from both weak and strong coupling perspective. The present work may be helpful to further study the unconventional superconductivity and its relation to non-Fermi liquids.

  16. Unconventional transport characteristics of p-wave superconducting junctions in Sr2RuO4-Ru eutectic system

    International Nuclear Information System (INIS)

    Kambara, H.; Kashiwaya, S.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y.

    2010-01-01

    We report on novel local transport characteristics of naturally formed p-wave superconducting junctions of Sr 2 RuO 4 -Ru eutectic system by using microfabrication technique. We observed quite anomalous voltage-current (differential resistance-current) characteristics for both I//ab and I//c directions, which are not seen in conventional Josephson junctions. The anomalous features suggest the internal degrees of freedom of the superconducting state, possibly due to chiral p-wave domain. The dc current acts as a driving force to move chiral p-wave domain walls and form larger critical current path to cause the anomalous hysteresis.

  17. Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Becerra, V., E-mail: VictorLeonardo.FernandezBecerra@uantwerpen.be; Milošević, M.V., E-mail: milorad.milosevic@uantwerpen.be

    2017-02-15

    Highlights: • Voltage–current characterization of a mesoscopic p-wave superconducting sample. • Skyrmions and edge states are stabilized with an out-of-plane applied magnetic field. • In the resistive regime, moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortices. - Abstract: In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg–Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity.

  18. Coexistence of superconductivity and density waves in quasi-two-dimensional metals

    Energy Technology Data Exchange (ETDEWEB)

    Ismer, Jan-Peter

    2011-06-03

    This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.

  19. The quarter wave resonator as a superconducting linac element

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brennan, J.M.

    1983-01-01

    The electrical and mechanical properties of quarter wave resonators are derived. A procedure for optimal design of a quarter wave resonator for use in a superconducting heavy ion linac is given. It is concluded that a quarter wave resonator has significant advantages for this application. (orig.)

  20. Traveling Wave Accelerating Structure for a Superconducting Accelerator

    CERN Document Server

    Kanareykin, Alex; Solyak, Nikolay

    2005-01-01

    We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.

  1. Probing the unconventional superconducting state of LiFeAs by quasiparticle interference.

    Science.gov (United States)

    Hänke, Torben; Sykora, Steffen; Schlegel, Ronny; Baumann, Danny; Harnagea, Luminita; Wurmehl, Sabine; Daghofer, Maria; Büchner, Bernd; van den Brink, Jeroen; Hess, Christian

    2012-03-23

    A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)∼18  K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).

  2. Ultrasonic attenuation in the superconducting and intermediate states of pure and doped type I superconductors

    International Nuclear Information System (INIS)

    Chaudhuri, K.D.; Singh, R.

    1982-01-01

    The attenuation of longitudinal ultrasonic waves has been measured in single crystals of indium (99.999%), indium doped with 0.003 at % of tin, and indium doped with 0.002 at % of bismuth in the intermediate and superconducting states over the frequency range 10--30 MHz. For the bismuth-doped indium specimen, measurements were taken for three different physical states, i.e., for three different dislocation densities, and for the indium and the tin-doped indium specimens, measurements were for one-physical state. For a particular measurement, the same physical state was maintained both in the intermediate and superconducting states. A temperature-dependent oscillatory behavior of the ultrasonic attenuation was observed in the intermediate state in all the three specimens, but in the superconducting state the oscillatory behavior was observed only in the bismuth-doped specimen. Two phases have been identified in the superconducting layers of the intermediate state and there is only one phase in the superconducting state of the bismuth-doped sample. The origin of the two phases in the intermediate state and that of the single phase in the superconducting state of the bismuth-doped sample are discussed. A qualitative explanation is presented for the occurrence of oscillatory attenuation in the intermediate state irrespective of the nature of the dopant and the selective occurrence of oscillatory attenuation in the superconducting state due to the nature of the dopant

  3. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  4. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    Science.gov (United States)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  5. Role of electronic nematicity in the interplay between s- and d-wave broken-symmetry states

    International Nuclear Information System (INIS)

    Kee, Hae-Young

    2010-01-01

    To understand the role of electronic nematic order in the interplay between s- and d-wave particle-particle or particle-hole condensate states, relations between various s- and d-wave order parameters are studied. We find that the nematic operator transforms two independent six-dimensional vectors. The d-wave superconducting, d-density wave, and antiferromagnetic orders are organized into one vector, and the s-wave superconducting, charge density wave, and spin-triplet d-density wave orders into the other vector. Each vector acts as a superspin and transforms under the action of SO(6) where charge, spin, η- and π-pairing, spin-triplet nematic operators satisfy the SO(6) Lie algebra. Electronic nematic order is not a part of the SO(6) group. It commutes with all 15 generators. Our findings imply that nematic order does not affect the competition among the order parameters within the same superspin, while it strongly interferes the interplay between two order parameters that belong to different superspins. For example, nematicity allows a linear coupling between d- and s-wave superconducting order parameters which modifies the superconducting transition temperature. A generalized Ginzburg-Landau theory and further physical implications are discussed.

  6. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.

    Science.gov (United States)

    Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro

    2015-04-10

    Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

  7. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  8. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  9. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array

  10. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  11. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  12. Superconducting Analogue of the Parafermion Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Abolhassan Vaezi

    2014-07-01

    Full Text Available Read-Rezayi Z_{k} parafermion wave functions describe ν=2+(k/kM+2 fractional quantum Hall (FQH states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this paper, we study the ν=2/k FQH-superconductor heterostructure and find the superconducting analogue of the Z_{k} parafermion FQH state. Our main tool is the mapping of the FQH into coupled one-dimensional chains, each with a pair of counterpropagating modes. We show that by inducing intrachain pairing and charge preserving backscattering with identical couplings, the one-dimensional chains flow into gapless Z_{k} parafermions when k<4. By studying the effect of interchain coupling, we show that every parafermion mode becomes massive except for the two outermost ones. Thus, we achieve a fractional topological superconductor whose chiral edge state is described by a Z_{k} parafermion conformal field theory. For instance, we find that a ν=2/3 FQH in proximity to a superconductor produces a Z_{3} parafermion superconducting state. This state is topologically indistinguishable from the non-Abelian part of the ν=12/5 Read-Rezayi state. Both of these systems can host Fibonacci anyons capable of performing universal quantum computation through braiding operations.

  13. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  14. Superconducting and Normal State Properties of OsB2*

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.

    2007-03-01

    OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.

  15. Electron-tunneling observation of localized excited states in superconducting manganese-doped lead

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have made electron-tunneling measurements on a dilute, superconducting lead-manganese alloy. A well-defined structure was observed in the ac-conductance--voltage curves, indicating excited states within the BCS energy gap. These states were partially accounted for by Shiba theory when spin-dependent s-, p-, and d-wave scattering were included. The phase shifts used in doing that were the results of band calculations. The experimental data also show the existence of a broad background density of states in the energy gap, which cannot be accounted for by the theory

  16. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  17. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  18. Tetracritical point and current circulations in superconducting state

    International Nuclear Information System (INIS)

    Belyavskij, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2005-01-01

    Phase diagram reflecting the key peculiar features of the standard diagram of the cuprate superconductors was studied in terms of the Ginzburg-Landau phenomenology near the tetracritical point resulting from the competition of superconducting and dielectric channels of pairing. Two-component parameter of order the relative phase of which is associated with antiferromagnetic dielectric ordering corresponds to the superconducting pairing at repulsion. In case of slight doping the dielectric order coexists with superconductivity below the temperature of superconducting phase transition and manifests itself as a slight pseudoslit above the mentioned temperature. A segment of pseudoslit region adjacent to the superconducting state corresponds to the matured fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and may be interpreted as a region of a strong pseudoslit. At increase of doping one observes a phase transition from the coexistence region and the orbital antiferromagnetism to the conventional superconducting state covering the region of matured fluctuations of the order parameter in the form of quasi-stationary states of the noncorrelated orbital circulation currents adjacent to the line of phase transition [ru

  19. Potential damage to dc superconducting magnets due to high frequency electromagnetic waves

    Science.gov (United States)

    Gabriel, G. J.; Burkhart, J. A.

    1977-01-01

    Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.

  20. Intrinsic Paramagnetic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity

    Directory of Open Access Journals (Sweden)

    A. Di Bernardo

    2015-11-01

    Full Text Available In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux—the diamagnetic Meissner effect—from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic or attract (paramagnetic external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.

  1. Theory of itinarant ferromagnetism in superconducting semimetals. Theorie du ferromagnetisme itinerant dans des semimetaux supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)

    1991-11-01

    A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).

  2. Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction

    Science.gov (United States)

    Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling

    2017-09-01

    In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.

  3. Coupled s-wave and d-wave states in the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/

    International Nuclear Information System (INIS)

    Langner, A.; Sahu, D.; George, T.F.

    1988-01-01

    In the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/, superconducting states coexist for thorium concentrations 0 ≤ x ≤ 0.06. Assuming s-wave and d-wave symmetries for these states, we derive a Ginzburg-Landau free-energy expression which couples s- and d-wave states and is rotationally invariant, in contrast to the free-energy expression proposed by P. Kumar and P. Woelfle [Phys. Rev. Lett. 59, 1954 (1987)]. We discuss in detail the consequences that follow from our free-energy relation. In particular, we predict that in the above system there are two eigenfrequencies associated with the dynamics of phase oscillations (internal Josephson effect) which are characteristic of the s-wave and d-wave states

  4. Theoretical studies of superconductivity in doped BaCoSO

    Science.gov (United States)

    Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping

    2018-06-01

    We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

  5. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    Science.gov (United States)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM

  6. Quasiparticles in the superconducting state of high-Tc metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  7. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  8. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    Science.gov (United States)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  9. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    Science.gov (United States)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  10. Gossamer superconductivity, new paradigm?

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)

    2006-01-01

    We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  12. Superconducting and normal-state properties of the layered boride OsB2

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.

    2007-12-01

    OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.

  13. Quantum corral effects on competing orders and electronic states in chiral d + id or f-wave superconductors.

    Science.gov (United States)

    Zuo, Xian-Jun

    2018-03-07

    Self-consistent calculations are performed to characterize the quantum corral effects on the electronic states of chiral d + id or f-wave superconductors in this paper. A variety of spatial structures of competing orders are revealed in the presence of ferromagnetic nano-corrals, and superconducting islands are found to be absent in the case of small corrals while being seen for large corrals. Compared with the local suppression of superconductivity by a magnetic impurity inside the corral, surprisingly, an additional remarkable feature, i.e., obvious oscillations or enhancement of superconductivity around a non-magnetic impurity, is observed inside the magnetic corral. This is important in view of applications, especially in view of the demand for devices to locally produce strong superconductivity. Meanwhile, the charge density displays obvious modulations due to quantum confinement but in contrast, the spin density pattern exhibits its robustness against the corral effect. Furthermore, we explore the local density of states so as to be directly checked by experiments. We demonstrate that a magnetic corral can suppress the formation of quasi-particle bound states induced by an impurity inside the corral in the chiral d + id state while the f-wave case shows different behaviors. These results also propose a new route to make a distinction between the two competing pairing states in triangular-lattice superconductors.

  14. Recent advances in the 5f-relevant electronic states and unconventional superconductivity of actinide compounds

    International Nuclear Information System (INIS)

    Haga, Yoshinori; Sakai, Hironori; Kambe, Shinsaku

    2007-01-01

    Recent advances in the understanding of the 5f-relevant electronic states and unconventional superconducting properties are reviewed in actinide compounds of UPd 2 Al 3 . UPt 3 , URu 2 Si 2 , UGe 2 , and PuRhGa 5 . These are based on the experimental results carried out on high-quality single crystal samples, including transuranium compounds, which were grown by using combined techniques. The paring state and the gap structure of these superconductors are discussed, especially for the corresponding Fermi surfaces which were clarified by the de Haas-van Alphen experiment and the energy band calculations. A detailed systematic study using the NQR/NMR spectroscopy reveals the d-wave superconductivity in PuRhGa 5 and the difference of magnetic excitations due to the difference of ground states in U-, Np-, and Pu-based AnTGa 5 (T: transition metal) compounds. (author)

  15. Quantum theory of the electron behaviour in solid states and its application to the theory of superconductivity

    International Nuclear Information System (INIS)

    Rangelov, J.

    1993-01-01

    A physical model of an electron describing the classical Lorentz's electron (LE), nonrelativistic quantum Schroedinger's electron (SE) and relativistic quantum Dirac's electron (DE) has been discovered in order to describe the processes in metals, alloys and chemical compounds. As a result of the new point of view proposed the physical meaning of the basic electron parameters as the classical radius of LE, its self energy and rest mass, proper mechanical moment (MCHM) and frequency of de Broglie's pilot wave and causes for stability of Schroedinger's package of waves and SE's extraordinary behaviour has been discovered. A new physical interpretation of collectivized valence electrons behaviour in solid state has been established. On this basis the real processes ensuring energetically the superconductivity state has been described. All auxiliary processes increasing all superconductivity parameters have been calculated. It is pointed out that the basic parameters of electron-phonon system, electron-phonon interaction and the polarization ability of the crystal lattice structure have to be calculated also. (orig.)

  16. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

    Science.gov (United States)

    Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

    2011-09-01

    Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

  17. Superconducting 7 T Wave Length Shifter for BESSY-II

    CERN Document Server

    Borovikov, V M; Fedurin, M G; Repkov, V V; Karpov, G V; Kulipanov, G N; Kuzin, M V; Mezentsev, N A; Shkaruba, V A; Krämer, Dietrich; Richter, D

    2001-01-01

    A superconducting 3-pole Wave Length Shifter (WLS) with a maximum field of 7 T was fabricated and tested by BINP in collaboration with BESSY-II. The radiation point is fixed in the center of WLS at any field level by using two correctors. The magnetic field is stabilized with an accuracy of 10 sup - sup 4 at 7 T by a feedback system based on NMR probes and magnetic flux pumps. Persistent current operation mode is enabled by using superconducting persistent keys. The magnetic field homogeneity of 10 sup - sup 4 at 7 T is obtained as a result of shimming in the aperture of the magnet. A protection system based on cold diodes and dump resistors prevents the destruction of superconducting coils during the quench. Two screens with temperatures of 20 and 60 K cooled by cooling machine, two recondensers, HTSC current leads and cevlar suspensions of helium volume are used to decrease liquid helium consumption. The main features and operating mode of the WLS are described.

  18. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  19. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  20. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    Science.gov (United States)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  1. Effect of external magnetic field on superconducting and spin density wave gaps of high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2009-01-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  2. Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2

    Directory of Open Access Journals (Sweden)

    T. Gegechkori

    2018-02-01

    Full Text Available The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2–Cu superconducting tube is demonstrated and conclusions are discussed.

  3. Local Density of States in a d-wave Superconductor with Stripe-Like Modulations and a Strong Impurity

    OpenAIRE

    Chen, Hong-Yi; Ting, C. S.

    2003-01-01

    Using an effective Hamiltonian with d-wave superconductivity (dSC) and competing antiferromagnetic (AF) interactions, we show that weak and one-dimensionally modulated dSC, spin density wave (SDW) and charge density wave (CDW) could coexist in the ground state configuration. With proper parameters, the SDW order exhibits a period of 8a, while for dSC and CDW orders the period is 4a. The local density of states (LDOS), which probing the behavior of quasiparticle excitations, is found to have t...

  4. Nonlinearity in superconductivity and Josephson junctions

    International Nuclear Information System (INIS)

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  5. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  6. Nature of inhomogeneous states in superconducting junctions

    International Nuclear Information System (INIS)

    Ivlev, B.I.; Kopnin, N.B.

    1982-01-01

    A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally

  7. Effect of superconducting correlation on the localization of quasiparticles in low dimensions

    International Nuclear Information System (INIS)

    Xiang, T.

    1995-01-01

    Localization lengths of superconducting quasiparticles λ s are evaluated and compared with the corresponding normal-state values λ n in one-dimensional (1D) and two-dimensional lattices. The effect of superconducting correlation on the localization of quasiparticles is generally stronger in an off-site pairing state than in an on-site pairing state. The modification of superconducting correlation to λ is strongly correlated with the density of states (DOS) of superconducting quasiparticles. λ s drops within the energy gap but is largely enhanced around energies where DOS peaks appear. For a gapless pairing state in 1D or a d-wave pairing state in 2D, λ s /λ n at the Fermi energy E F is of order 1 and determined purely by the value of gap parameter not by the random potential. For the d-wave pairing state, the localization effect is largely weakened compared with the corresponding normal state and quasiparticles with energies close to E F are more strongly localized than other low-energy quasiparticles

  8. Role of disorder in the multi-critical region of d-wave superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Yanase, Youichi; Ogata, Masao

    2007-01-01

    We investigate the disorder-induced microscopic inhomogeneity in the multi-critical region of d-wave superconductivity and antiferromagnetism on the basis of the microscopic t-t ' -U-V model. We find that a small amount of point disorder induces the nano-scale inhomogeneity of spin and superconducting fluctuations when the coherence length of superconductivity is remarkably short as in the under-doped cuprates. Then, the two fluctuations spatially segregate to avoid their competition. We show the remarkable electron-hole asymmetry in high-T c cuprates where the quite different spatial structure is expected in the electron-doped materials

  9. Interplay of CDW, SDW and superconductivity in high-Tc cuprates

    International Nuclear Information System (INIS)

    Panda, S.K.; Rout, G.C.

    2009-01-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T c systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  10. Time evolution of a new superconducting state in long ferromagnetic superconductors

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1980-01-01

    We examine the unique features associated with the onset of a time dependent superconducting state in long reentrant ferromagnetic superconductors due to the self-heating induced breakdown of the ferromagnetic normal state. After solving the relevant one-dimensional heat flow equations in an analytic approximation we estimate the duration of the resulting metastable superconducting state and discuss the qualitative aspects of the temporal behaviour of this new superconducting state. (orig.)

  11. Beam steering in superconducting quarter-wave resonators: An analytical approach

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2011-07-01

    Full Text Available Beam steering in superconducting quarter-wave resonators (QWRs, which is mainly caused by magnetic fields, has been pointed out in 2001 in an early work [A. Facco and V. Zviagintsev, in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, p. 1095], where an analytical formula describing it was proposed and the influence of cavity geometry was discussed. Since then, the importance of this effect was recognized and effective correction techniques have been found [P. N. Ostroumov and K. W. Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.110101]. This phenomenon was further studied in the following years, mainly with numerical methods. In this paper we intend to go back to the original approach and, using well established approximations, derive a simple analytical expression for QWR steering which includes correction methods and reproduces the data starting from a few calculable geometrical constants which characterize every cavity. This expression, of the type of the Panofski equation, can be a useful tool in the design of superconducting quarter-wave resonators and in the definition of their limits of application with different beams.

  12. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  13. High-Tc cuprate superconductivity in a nutshell

    International Nuclear Information System (INIS)

    Won, Hyekyung; Haas, Stephan; Parker, David; Maki, Kazumi

    2005-01-01

    Since the discovery of high-T c cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T c superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Quantum and wave dynamical chaos in superconducting microwave billiards.

    Science.gov (United States)

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  15. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  16. Superconducting states and depinning transitions of Josephson ladders

    International Nuclear Information System (INIS)

    Barahona, M.; Strogatz, S.H.; Orlando, T.P.

    1998-01-01

    We present analytical and numerical studies of pinned superconducting states of open-ended Josephson ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturbatively, we find analytical approximations for three of these superconducting states emdash the no-vortex, fully frustrated, and single-vortex states emdash as functions of the dc bias current I and the frustration f. Bifurcation theory is used to derive formulas for the depinning currents and critical frustrations at which the superconducting states disappear or lose dynamical stability as I and f are varied. These results are combined to yield a zero-temperature stability diagram of the system with respect to I and f. To highlight the effects of the edges, we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances. copyright 1998 The American Physical Society

  17. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  18. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  19. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    Science.gov (United States)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  20. The effect of pressure on the charge-density wave and superconductivity in ZrTe sub 3

    CERN Document Server

    Yamaya, K; Yasuzuka, S; Okajima, Y; Tanda, S

    2002-01-01

    The charge-density-wave (CDW) transition temperature, T sub C sub D sub W , of ZrTe sub 3 is found to increase for pressures up to 0.6 GPa, while the superconducting transition temperature, T sub c , decreases with increasing pressure. According to a band calculation, it is found that the pressure-induced enhancement of the CDW and suppression of the superconductivity are not simply explained by the effect of nesting of the Fermi surface, suggesting the possibility of a new relation for the competition between the CDW and superconductivity.

  1. Phase separation of superconducting phases in the Penson–Kolb–Hubbard model

    International Nuclear Information System (INIS)

    Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej

    2016-01-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)

  2. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  3. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  4. Conduction spectroscopy of a proximity induced superconducting topological insulator

    Science.gov (United States)

    Stehno, M. P.; Hendrickx, N. W.; Snelder, M.; Scholten, T.; Huang, Y. K.; Golden, M. S.; Brinkman, A.

    2017-09-01

    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5Sb0.5Te1.7Se1.3 and the stoichiometric BiSbTeSe2 have been used as three-dimensional TI. In the case of Bi1.5Sb0.5Te1.7Se1.3, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.

  5. Correlated Dirac particles and superconductivity on the honeycomb lattice

    Science.gov (United States)

    Wu, Wei; Scherer, Michael M.; Honerkamp, Carsten; Le Hur, Karyn

    2013-03-01

    We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t-J1-J2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott-insulating state, we confirm the emergence of d-wave superconductivity, in agreement with earlier works. We show that a small but finite J2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extendeds-wave scenario. At small hole doping, to minimize the energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+id singlet pairing assigned to one valley and a d-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+id symmetry and breaking time-reversal symmetry. Then, we apply the functional renormalization group and study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half filling. We discuss possible applications to strongly correlated compounds with copper hexagonal planes such as In3Cu2VO9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.

  6. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  7. Interplay of CDW, SDW and superconductivity in high-T{sub c} cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S K [K.D. Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019, Orissa (India)

    2009-07-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T{sub c} systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  8. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  9. 4. MESOSCOPIC SUPERCONDUCTIVITY: Some signatures of quantum chaos on dirty superconductors

    Science.gov (United States)

    Zhou, F.

    2001-10-01

    The Anderson theory of dirty superconductivity was established a few years after the discovery of the BCS wave function. Disregarding the rich properties in the one-particle energy spectrum in dirty limit, the theory claimed that the ground state condensate is translationally invariant and free from Toulouse type of frustrations. This theory also set down the foundation of dirty superconductivity in the presence of external fields. In this talk, I demonstrate the failure of the Anderson theory in amorphous superconducting films in general and its connection with Wigner-Dyson surmise. I will discuss the Chandrasekar-Glogston limit in which the nodes in one-particle wave functions are shown to result in a novel superconducting glass phase. I will also discuss why nature has tolerated the failure.

  10. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Ming [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)], E-mail: cheng896@hotmail.com; Su Wupei [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)

    2008-12-15

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling.

  11. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    International Nuclear Information System (INIS)

    Cheng Ming; Su Wupei

    2008-01-01

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling

  12. Electromagnetic wave attenuation in the superconducting waveguides at frequencies above the critical value

    International Nuclear Information System (INIS)

    Gashimov, A.M.; Gumbatov, S.G.

    2004-01-01

    The behavior of attenuation factor α(ν) in a wide relative frequency rAe 1 c ) at microwave energy transmission by the round superconducting waveguides is investigated. It is revealed that, despite of increasing of surface resistance with increasing ν, α(ν) sharply decreases in the rAe 1 min at ν→∞. Such behavior α(ν) is due to joint appearance of opposite influences of wave frequency and surface resistance of the superconducting material. The waveguide with radius r=1 m, made of high-temperature superconductor, has the highest value of efficiency (98% at ν=4)

  13. Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  14. Novel superconducting state in ferromagnetic superconductor UCoGe. Microscopic coexistence of ferromagnetism and superconductivity probed by 59Co-NQR measurements

    International Nuclear Information System (INIS)

    Ishida, Kenji; Hattori, Taisuke; Ihara, Yoshihiko; Nakai, Yusuke; Sato, Noriaki K.; Deguchi, Kazuhiko; Tamura, Nobuyuki; Satoh, Isamu

    2010-01-01

    We have investigated the relationship between ferromagnetism and superconductivity in ferromagnetic superconductor UCoGe from 59 Co nuclear quadrupole resonance (NQR) measurements. Our experimental results indicate the microscopic coexistence of ferromagnetism and superconductivity in UCoGe, and suggest a 'self-induced vortex state' in its superconducting state. We also review NQR experiments, which play an important role in this study. (author)

  15. A common thread in unconventional superconductivity. The functional renormalization group in multi-band systems

    International Nuclear Information System (INIS)

    Platt, Christian

    2012-01-01

    The superconducting properties of complex materials like the recently discovered iron-pnictides or strontium-ruthenate are often governed by multi-orbital effects. In order to unravel the superconductivity of those materials, we develop a multi-orbital implementation of the functional renormalization group and study the pairing states of several characteristic material systems. Starting with the iron-pnictides, we find competing spin-fluctuation channels that become attractive if the superconducting gap changes sign between the nested portions of the Fermi surface. Depending on material details like doping or pnictogen height, these spin fluctuations then give rise to s ± -wave pairing with or without gap nodes and, in some cases, also change the symmetry to d-wave. Near the transition from nodal s ± -wave to d-wave pairing, we predict the occurrence of a time-reversal symmetry-broken (s+id)-pairing state which avoids gap nodes and is therefore energetically favored. We further study the electronic instabilities of doped graphene, another fascinating material which has recently become accessible and which can effectively be regarded as multi-orbital system. Here, the hexagonal lattice structure assures the degeneracy of two d-wave pairing channels, and the system then realizes a chiral (d+id)-pairing state in a wide doping range around van-Hove filling. In addition, we also find spin-triplet pairing as well as an exotic spin-density wave phase which both become leading if the long-ranged hopping or interaction parameters are slightly modified, for example, by choosing different substrate materials. Finally, we consider the superconducting state of strontium-ruthenate, a possible candidate for chiral spin-triplet pairing with fascinating properties like the existence of half-quantum vortices obeying non-Abelian statistics. Using a microscopic three orbital description including spin-orbit coupling, we demonstrate that ferromagnetic fluctuations are still

  16. Interplay of multiple charge-density-waves and superconductivity in DyTe{sub 3} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zocco, Diego A. [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Department of Physics, University of California, San Diego, CA 92093 (United States); Kapuvari, Andreas; Sauer, Aaron; Weber, Frank [Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Paraskevas, Parisiadis; Garbarino, Gaston [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex (France); Fisher, Ian [Department of Applied Physics, Stanford University, CA 94305 (United States); Hamlin, James; Maple, Brian [Department of Physics, University of California, San Diego, CA 92093 (United States)

    2015-07-01

    DyTe{sub 3} is a quasi-two-dimensional system in which two successive incommensurate charge-density-wave (CDW) states appear upon cooling at ambient pressure (T{sub CDW,1} = 306 K, T{sub CDW,2} = 49 K). The suppression with pressure of the CDW order is followed by the emergence of superconductivity above 1 GPa and below 1.5 K, as shown by our measurements of electrical resistivity and ac-susceptibility. X-ray diffraction (XRD) experiments under pressure indicate that the lower CDW state merges with the upper one at an intermediate pressure, suggesting that the double-CDW state could be accessed directly below a single T{sub CDW}(P) line. The phase diagram obtained from XRD is compared with the results of our recent electrical resistivity experiments.

  17. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  18. Effect of external magnetic field on superconducting and spin density wave gaps of high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)

    2009-07-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  19. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  20. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  1. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  2. Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction

    Science.gov (United States)

    Cao, Xiaodong; Ayral, Thomas; Zhong, Zhicheng; Parcollet, Olivier; Manske, Dirk; Hansmann, Philipp

    2018-04-01

    Adatom systems on the Si(111) surface have recently attracted an increasing attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice, including 1 /r long-range interaction. Employing the recently proposed TRILEX method, we find an unconventional superconducting phase of chiral d -wave symmetry in hole-doped systems. Contrary to usual scenarios where charge and spin fluctuations are seen to compete, here the superconductivity is driven simultaneously by both charge and spin fluctuations and crucially relies on the presence of the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and predict how a cumulative charge and spin paring mechanism leads to superconductivity in doped silicon adatom materials.

  3. High-T{sub c} cuprate superconductivity in a nutshell

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David; Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States)

    2005-02-01

    Since the discovery of high-T{sub c} cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T{sub c} superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    Science.gov (United States)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  5. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  6. Charge density waves as the origin of dip-hump structures in the differential tunneling conductance of cuprates: The case of d-wave superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, Alexander M., E-mail: gabovich@iop.kiev.ua; Voitenko, Alexander I., E-mail: voitenko@iop.kiev.ua

    2014-08-15

    Highlights: • d-Wave superconductivity and charge-density waves compete for the Fermi surface. • Charge-density waves induce pseudogaps and peak-dip-hump structures in cuprates. • Tunnel spectra are non-symmetric due to the dielectric order-parameter phase fixation. • Scatter of the dielectric order parameter smears the tunnel spectra peculiarities. - Abstract: Quasiparticle differential current–voltage characteristics (CVCs) G(V) of non-symmetric tunnel junctions between d-wave superconductors with charge-density waves (CDWs) and normal metals were calculated. The dependences G(V) were shown to have a V-like form at small voltages V and low temperatures, and to be asymmetric at larger V owing to the presence of CDW peak in either of the V-branches. The spatial scatter of the dielectric (CDW) order parameter smears the CDW peak into a hump and induces a peak-dip-hump structure (PDHS) typical of CVCs observed for such junctions. At temperatures larger than the superconducting critical one, the PDHS evolves into a pseudogap depression. The results agree well with the scanning tunneling microscopy data for Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} and YBa{sub 2}Cu{sub 3}O{sub 7−δ}. The results differ substantially from those obtained earlier for CDW s-wave superconductors.

  7. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  8. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  9. Superconducting properties of the η-pairing state in the Penson-Kolb-Hubbard model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2004-01-01

    The Penson-Kolb-Hubbard model, i.e. the Hubbard model with the pair-hopping interaction J is studied. We focus on the properties of the superconducting state with the Cooper-pair center-of mass momentum q Q(η-phase). The transition into the η-phase, which is favorized by the repulsive J (J c |, dependent on band filling, on-site interaction U and band structure, and the system never exhibits standard BCS-like features. This is in obvious contrast with the properties of the isotropic s-wave state, stabilized by the attractive J and attractive U, which exhibit at T = 0 a smooth crossover from the BCS-like limit to that of tightly bound pairs with increasing pairing strength. (author)

  10. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)

  11. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  12. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  13. Superconducting spiral phase in the two-dimensional t-J model

    International Nuclear Information System (INIS)

    Sushkov, Oleg P.; Kotov, Valeri N.

    2004-01-01

    We analyze the t-t ' -t '' -J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping δ1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t ' =t '' =0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t ' and t '' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations ('order from disorder' effect). We show that at δ≅0.119 the spiral is commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d, ellipsis (horizontal)) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,±1) directions

  14. New world of Gossamer superconductivity

    International Nuclear Information System (INIS)

    Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila

    2006-01-01

    Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    Science.gov (United States)

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  16. Anisotropic superconducting state parameters of Tl-2212 superconductors

    International Nuclear Information System (INIS)

    Khaskalam, Amit K.; Singh, R.K.; Varshney, Dinesh

    2001-01-01

    We have estimated the superconducting state parameters and their anisotropy in thallium based superconductors (Tl-2212), in the frame work of Fermi liquid approach. Determination of the effective mass of the charge carriers from the Fermi velocity and estimated anisotropic superconducting state parameters, particularly, the magnetic penetration depth along and perpendicular to the conducting plane. The coherence length along and perpendicular to the ab plane is evaluated and appears to be higher. The temperature dependence of penetration depth, their anisotropy and Ginsburg Landau parameter for optimised doped Tl based cuprates shows the power law. The technique permits a consistency with the reported data. (author)

  17. Microtraps for neutral atoms using superconducting structures in the critical state

    International Nuclear Information System (INIS)

    Emmert, A.; Brune, M.; Raimond, J.-M.; Nogues, G.; Lupascu, A.; Haroche, S.

    2009-01-01

    Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanent currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.

  18. New world of Gossamer superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)

    2006-09-15

    Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    Science.gov (United States)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  20. Eliashberg Inversion of superconducting state thermodynamics

    International Nuclear Information System (INIS)

    Junod, A.

    1985-01-01

    It is shown that the inversion of the Eliashberg equations currently used in tunneling spectroscopy may be applied to calorimetric data in the superconducting state. This method yields integrals of the spectral function of the electron-phonon interaction α 2 F(ω). Experimental results in pure Nb are presented

  1. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  2. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    International Nuclear Information System (INIS)

    Cabovich, Alexander M.; Voitenko, Alexander I.

    2016-01-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous super-conducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa_2Cu_3O_7_-_d_e_l_t_a and Bi_2Sr_2CaCu_2O_8_+_d_e_l_t_a. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  3. Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect

    Science.gov (United States)

    Mika, Marek; Wójcik, Paweł

    2017-11-01

    The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.

  4. Three-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-11-01

    Full Text Available This paper describes a concept for superconducting resonators for the acceleration of ions in the velocity range β=v/c=0.015–0.04. Such a resonator operates in λ/4 mode with three loading elements and so can be thought of as a triple quarter wave resonator (3-QWR providing 4 accelerating gaps. The use of a column to support the three stubs provides a benefit beyond those of the two-stub design (2-QWR. In the 3-QWR, the rf mirror currents in the walls surrounding the stubs need only travel through 45° instead of the 90° in the 2-QWR thus further reducing the current in the demountable joints. As in the 2-QWR, the shape of the column allows control of the frequency splitting between the accelerating and other modes. The copper structure is designed to be coated by a thin superconducting film of niobium or lead for operation at 4.3 K. The particular device reported here operates at 150 MHz with an optimum β of 0.04. Its outer cylinder is the same size and shape as for the 2-QWR structure reported previously, in order to minimize construction and cryostat costs. A simple transmission line model is presented and the results of microwave studio and other numerical analyses are discussed. The 3-QWR resonators are appropriate for the upgrade of the low-velocity sections of the ANU Heavy Ion Accelerator Facility and other heavy ion accelerator boosters.

  5. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  6. History of the theory of superconductivity

    International Nuclear Information System (INIS)

    Frohlich, H.

    1983-01-01

    This chapter points out that in the years from Onnes' discovery that the electric resistivity of mercury completely disappeared at about 4K in 1911 up to 1950, many attempts to develop a theory of superconductivity failed, and the subject became an outstanding problem in physics. Discusses the introduction of field theory into solid state physics, which proved to be the decisive step toward a theory. Describes how Schrieffer's suggestion of a wave function for the multielectron problem in terms of electron pairs led to the theory of superconductivity, or the so called B.C.S. theory

  7. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  8. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    Science.gov (United States)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  9. Heavy fermions and superconductivity in doped cuprates

    International Nuclear Information System (INIS)

    Tornow, S.; Zevin, V.; Zwicknagl, G.

    1996-01-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd 2-x Ce x CuO 4 . The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T c which may help to assess the validity of the underlying assumptions. (orig.)

  10. Superconducting and other phases in organic high polymers of polyacenic carbon skeletons. I. The method of sum of divergent perturbation series

    International Nuclear Information System (INIS)

    Kimura, M.; Kawabe, H.; Nishikawa, K.; Aono, S.

    1986-01-01

    The instabilities of a normal molecular orbital state of polyacenic materials are studied within RPA with a g model for an electronic interaction. The condensed states predicted are singlet superconducting (SSC), charge density wave (CDW), and spin density wave (SDW) ones, and their phase diagram is shown. In contrast to usual one-dimensional (1D) conductors, there reveals a wide range of superconducting state, which is not overcome by CDW transition. Weakness of Peierls distortion of the present model is also contrasted with the case of polyacetylene

  11. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  12. Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state

    International Nuclear Information System (INIS)

    Fujimoto, Yukinobu; Miyake, Kazumasa

    2012-01-01

    It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.

  13. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  14. Bell-state generation on remote superconducting qubits with dark photons

    Science.gov (United States)

    Hua, Ming; Tao, Ming-Jie; Alsaedi, Ahmed; Hayat, Tasawar; Wei, Hai-Rui; Deng, Fu-Guo

    2018-06-01

    We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.

  15. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  16. Two-gap superconductivity in Mo8Ga41 and its evolution upon vanadium substitution

    Science.gov (United States)

    Verchenko, V. Yu.; Khasanov, R.; Guguchia, Z.; Tsirlin, A. A.; Shevelkov, A. V.

    2017-10-01

    Zero-field and transverse-field muon spin rotation/relaxation (μ SR ) experiments were undertaken in order to elucidate the microscopic properties of a strongly coupled superconductor Mo8Ga41 with Tc=9.8 K. The upper critical field extracted from the transverse-field μ SR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8Ga41 is described using a model in which two s wave superconducting gaps are assumed. A V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7VGa41 is well described within the single s wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon V substitution indicate the emergence of a competing state in Mo7VGa41 that may be responsible for the closure of one of the superconducting gaps.

  17. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  18. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  19. Heavy fermions and superconductivity in doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, S. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart; Zevin, V. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Zwicknagl, G. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart

    1996-10-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd{sub 2-x}Ce{sub x}CuO{sub 4}. The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T{sub c} which may help to assess the validity of the underlying assumptions. (orig.)

  20. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  1. Impurity-induced states in superconducting heterostructures

    Science.gov (United States)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  2. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  3. Competition between disorder and exchange splitting in superconducting ZrZn2

    International Nuclear Information System (INIS)

    Powell, B J; Annett, James F; Gyoerffy, B L

    2003-01-01

    We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T SC , in ZrZn 2 . According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E xc , leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D σ (ε F ). Assuming p-wave pairing T SC is dependent on D σ (ε F ) which ensures that, in the absence of non-magnetic impurities, T SC decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does. (letter to the editor)

  4. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  5. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  6. Transport and pairing properties of helical edges with proximity induced superconductivity and ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, Felix; Burset, Pablo; Trauzettel, Bjoern [Institute of Theoretical Physics and Astrophysics, University of Wuerzburg, 97074 Wuerzburg (Germany); Crepin, Francois [Laboratoire de Physique Theorique de la Matiere Condensee, UPMC, Sorbonne Universites, 75252 Paris (France)

    2016-07-01

    The scientific interest in Quantum Spin Hall systems is far from declining. While these certainly are fascinating by themselves, there is plenty of new and exciting physics to arise when superconductivity and ferromagnetism are brought into the game. The strong constraint of helicity in the edge states of a two-dimensional topological insulator is responsible for an intimate relation between the allowed scattering processes in a hybrid junction and the parameters of the system, namely the superconducting order parameter and the magnetic field. In our work, we study a helical liquid in proximity to a conventional s-wave superconductor and ferromagnetic insulators by means of a Green's function analysis. The ferromagnet gives rise to sub-gap Andreev/Majorana bound states and non-local crossed Andreev reflection (CAR), both of which decisively affect the pairing and transport properties of the junction. As a result, the simple s-wave symmetry of the superconductor is enriched and unconventional odd-frequency triplet superconductivity emerges. Strikingly, we have identified a setup that favors CAR over electron co-tunneling and may allow for the indirect measurement of the symmetries of the superconducting order parameter.

  7. Unusually large magnetic moments in the normal state and superconducting state of Sn nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chi-Hang; Lee, Chi-Hung; Hsu, Chien-Kang; Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Wu, Chun-Ming; Li, Wen-Hsien, E-mail: whli@phy.ncu.edu.tw [National Central University, Department of Physics and Center for Neutron Beam Applications (China)

    2013-09-15

    We report on the observations of spontaneous magnetic moments in the normal as well as in the superconducting states of a 9 nm Sn nanoparticle assembly, through X-ray diffraction, magnetization, ac magnetic susceptibility, and neutron diffraction measurements. The saturation magnetization reaches an unexpectedly large value of 1.04 emu/g at 5 K, with a temperature profile that can be described by Bloch's law with an exponent of b = 1.8. A magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.38 {mu}{sub B} develops after cooling from 260 to 4 K. Superconductivity develops below T{sub C} = 3.98 K, which is 7 % higher than the T{sub C} = 3.72 K of bulk Sn. Surprisingly, an addition magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.05 {mu}{sub B} develops upon entering the superconducting state.

  8. High-Q superconducting niobium cavities for gravitational wave detectors

    International Nuclear Information System (INIS)

    De Paula, L A N; Furtado, S R; Aguiar, O D; N F Oliveira Jr, N F Oliveira Jr; Castro, P J; Barroso, J J

    2014-01-01

    The main purpose of this work is to optimize the electric Q-factor of superconducting niobium klystron cavities to be used in parametric transducers of the Mario Schenberg gravitational wave detector. Many cavities were manufactured from niobium with relatively high tantalum impurities (1420 ppm) and they were cryogenically tested to determine their resonance frequencies, unloaded electrical quality factors (Q 0 ) and electromagnetic couplings. These cavities were closed with a flat niobium plate with tantalum impurities below 1000 ppm and an unloaded electrical quality factors of the order of 10 5 have been obtained. AC conductivity of the order of 10 12 S/m has been found for niobium cavities when matching experimental results with computational simulations. These values for the Q-factor would allow the detector to reach the quantum limit of sensitivity of ∼ 10 −22 Hz −1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz. The experimental tests were performed at the laboratories of the National Institute for Space Research (INPE) and at the Institute for Advanced Studies (IEAv - CTA)

  9. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  10. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  11. Ion Bernstein wave heating experiments in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2005-01-01

    Ion Bernstein Wave (IBW) experiments have been carried out in recent years in the HT-7 superconducting Tokamak. The electron heating experiment has been concentrated on deuterium plasma with an injecting RF power up to 350 kw. The globe heating and localized heating can be seen clearly by controlling the ICRF resonance layer's position. On-axis and off-axis electron heating have been realized by properly setting the target plasma parameters. Experimental results show that the maximum increment in electron temperature has been more than 1 keV, the electron temperature profile has been modified by IBW under different plasma conditions, and both energy and particle confinement improvements have been obtained. (author)

  12. Lighting up superconducting stripes

    Science.gov (United States)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  13. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  14. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    International Nuclear Information System (INIS)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  15. Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping

    Science.gov (United States)

    Chen, K.; Strigari, F.; Sundermann, M.; Hu, Z.; Fisk, Z.; Bauer, E. D.; Rosa, P. F. S.; Sarrao, J. L.; Thompson, J. D.; Herrero-Martin, J.; Pellegrin, E.; Betto, D.; Kummer, K.; Tanaka, A.; Wirth, S.; Severing, A.

    2018-01-01

    We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M4 ,5 edges of Cd- and Sn-doped CeCoIn5. The 4 f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In1-xCdx) 5 suggests that the 4 f -conduction-electron (c f ) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In1-ySny) 5 compresses the 4 f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4 f and conduction electrons, even conveying information about direction dependencies.

  16. Probing the superconducting state of CeCoIn{sub 5} by quantum interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Foyevtsov, Oleksandr; Porrati, Fabrizio; Huth, Michael [Johann Wolfgang Goethe University, Frankfurt am Main (Germany)

    2011-07-01

    Josephson junction based structures provide a pathway to investigation of the superconducting state of unconventional superconductors. A superconducting quantum interference device (SQUID) structure was fabricated on micro-crystals of the heavy-fermion superconductor CeCoIn{sub 5}. Photo-lithography and ion beam milling/induced deposition were used to prepare the structure on a thin film of CeCoIn{sub 5} grown via molecular beam epitaxy. The interferometer was characterized with regard to the SQUID properties. The unconventional nature of superconducting state in CeCoIn{sub 5}, the implications of the normal-state electronic properties, as well as the weak-link characteristics of the SQUID structure itself lead to a wealth of different features in the I(V) and dI/dV(V) characteristics.

  17. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  18. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  19. Effect of localized electron states on superconductivity of ultrathin beryllium films

    International Nuclear Information System (INIS)

    Tutov, V.I.; Semenenko, E.E.

    1988-01-01

    A wide spectrum of distortions is induced in ultrathin beryllium films of thickness less than 10 A, which are responsible for the system transition from the strong localization state completely suppressing superconductivity (in this case R □ of the layer reaches 97600 Ohm) to the weak localization stae coexisting with superconductivity at comparatively high T c (5 K). The resistance per square R □ of the films decreases more than by an order of magnitude. The superconductivity with T c =1.7 K occurs at rather strong localization, when R □ of the layer is 34000 Ohm

  20. Superconducting Hot-Electron Submillimeter-Wave Detector

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  1. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    Energy Technology Data Exchange (ETDEWEB)

    Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  2. Ultrahigh pressure superconductivity in molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Zhenhua [Chinese Academy of Sciences (CAS), Hefei (China); Yen, Feihsiang [Chinese Academy of Sciences (CAS), Hefei (China); Peng, Feng [Luoyang Normal Univ., Luoyang (China); Zhu, Jinlong [Univ. of Nevada, Las Vegas, NV (United States); Zhang, Yijin [Univ. of Tokyo, Tokyo (Japan); Chen, Xuliang [Chinese Academy of Sciences (CAS), Hefei (China); Yang, Zhaorong [Chinese Academy of Sciences (CAS), Hefei (China); Nanjing Univ., Nanjing (China); Liu, Xiaodi [Chinese Academy of Sciences (CAS), Hefei (China); Ma, Yaming [Jilin Univ., Changchun (China); Zhao, Yusheng [Univ. of Nevada, Las Vegas, NV (United States); Kagayama, Tomoko [Osaka Univ., Osaka (Japan); Iwasa, Yoshihiro [Univ. of Tokyo, Tokyo (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako (Japan)

    2015-03-18

    Superconductivity commonly appears under pressure in charge densit wave (CDW)-bearing transition metal dichalcogenides (TMDs)1,2, but ha emerged so far only via either intercalation with electron donors3 or electrostati doping4 in CDW-free TMDs. Theoretical calculations have predicted that th latter should be metallized through bandgap closure under pressure5,6, bu superconductivity remained elusive in pristine 2H-MoS2 upon substantia compression, where a pressure of up to 60 GPa only evidenced the metalli state7,8. Here we report the emergence of superconductivity in pristine 2H-MoS at 90 GPa. The maximum onset transition temperature Tc(onset) of 11.5 K, th highest value among TMDs and nearly constant from 120 up to 200 GPa, is wel above that obtained by chemical doping3 but comparable to that obtained b electrostatic doping4. Tc(onset) is more than an order of magnitude larger tha present theoretical expectations, raising questions on either the curren calculation methodologies or the mechanism of the pressure-induced pairin state. Lastly, our findings strongly suggest further experimental and theoretical effort directed toward the study of the pressure-induced superconductivity in all CDWfre TMDs.

  3. Measurement and Quantum State Transfer in Superconducting Qubits

    Science.gov (United States)

    Mlinar, Eric

    The potential of superconducting qubits as the medium for a scalable quantum computer has motivated the pursuit of improved interactions within this system. Two challenges for the field of superconducting qubits are measurement fidelity, to accurately determine the state of the qubit, and the efficient transfer of quantum states. In measurement, the current state-of-the-art method employs dispersive readout, by coupling the qubit to a cavity and reading the resulting shift in cavity frequency to infer the qubit's state; however, this is vulnerable to Purcell relaxation, as well as being modeled off a simplified two-level abstraction of the qubit. In state transfer, the existing proposal for moving quantum states is mostly untested against non-idealities that will likely be present in an experiment. In this dissertation, we examine three problems within these two areas. We first describe a new scheme for fast and high-fidelity dispersive measurement specifically designed to circumvent the Purcell Effect. To do this, the qubit-resonator interaction is turned on only when the resonator is decoupled from the environment; then, after the resonator state has shifted enough to infer the qubit state, the qubit-resonator interaction is turned off before the resonator and environment are recoupled. We also show that the effectiveness of this "Catch-Disperse-Release'' procedure partly originates from quadrature squeezing of the resonator state induced by the Jaynes-Cummings nonlinearity. The Catch-Disperse-Release measurement scheme treats the qubit as a two-level system, which is a common simplification used in theoretical works. However, the most promising physical candidate for a superconducting qubit, the transmon, is a multi-level system. In the second work, we examine the effects of including the higher energy levels of the transmon. Specifically, we expand the eigenstate picture developed in the first work to encompass multiple qubit levels, and examine the resulting

  4. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  5. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  6. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  7. Status of work on superconducting quarter wave resonators at JAERI

    International Nuclear Information System (INIS)

    Takeuchi, S.

    1988-01-01

    A superconducting heavy ion linac is being proposed for the JAERI-tandem booster. For the accelerating structure of the tandem booster which ought to accelerate heavy ions of wide range of mass numbers, quarter wave resonator (QWR)s are suitable because of their wide ion-velocity acceptance. Ions of hydrogen to bismuth from the JAERI tandem can be accelerated by β = 0.1 QWRs. The excellent result of a niobium QWR at Argonne National Laboratory was a motive for the development of niobium QWRs. Further considerations on the design were required, because the Argonne's QWR did not have beam ports nor frequency tuners. As a result of considerations on these points, it has been decided to have an oval cylinder for the outer conductor. The prototype resonator has been built and tested. The fabrication techniques of explosive bonding, electron beam welding and heat treatment were found to be available in domestic companies in 1984. After obtaining niobium and niobium-clad-copper materials in 1985, the prototype resonator was built in 1985-86. Electro-polishing was done in their laboratory. Tests at 4.2 K have been repeated several times in combination of treatments of the niobium surface. The work is proceeding to the construction of a buncher and a prototype linac unit which are composed of superconducting QWRs. 4 references, 4 figures, 2 tables

  8. Superconductivity at high pressure in NbSe3

    International Nuclear Information System (INIS)

    Nunez Regueiro, M.; Castello, D.; Mignot, J.M.

    1992-01-01

    We have measured the electrical resistivity of NbSe 3 between 2 K and room temperature up to a pressure of 7.2 GPa. At P 1 = 3.5 GPa we observe the extinction of the high-temperature charge density wave (T 1 -CDW) and the enhancement of the superconducting critical temperature T c to ≅ 5 K. The logarithmic pressure slopes of T 1 (P 1 ) and T c (P > P 1 ) are found to be practically equal. A similar behaviour had been reported previously at lower pressures for T 2 (P 2 ) and T c (P 2 1 ) in the distorted state. We discuss these results in terms of an anisotropic superconducting state in NbSe 3 , with different gaps associated with different types of chains. 10 refs., 2 figs

  9. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  10. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  11. Simulation of Heating with the Waves of Ion Cyclotron Range of Frequencies in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Yang Cheng; Zhu Sizheng; Zhang Xinjun

    2010-01-01

    Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high-field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3 He in D( 3 He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.

  12. Pairing fluctuation effects on the single-particle spectra for the superconducting state

    International Nuclear Information System (INIS)

    Pieri, P.; Pisani, L.; Strinati, G.C.

    2004-01-01

    Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors

  13. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  14. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  15. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  16. Competition between disorder and exchange splitting in superconducting ZrZn sub 2

    CERN Document Server

    Powell, B J; Györffy, B L

    2003-01-01

    We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T sub S sub C , in ZrZn sub 2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E sub x sub c , leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D subsigma (epsilon sub F). Assuming p-wave pairing T sub S sub C is dependent on D subsigma (epsilon sub F) which ensures that, in the absence of non-magnetic impurities, T sub S sub C decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does. (letter to the editor)

  17. Itinerant-electron antiferromagnetism precursor to superconductivity in an organic conductor

    International Nuclear Information System (INIS)

    Walsh, W.M. Jr.; Wudl, F.; Aharon-Shalom, E.; Rupp, L.W. Jr.; Vandenberg, J.M.; Andres, K.; Torrance, J.B.

    1982-01-01

    Below 5.5 K minimally strained crystals of (TMTSF) 2 ClO 4 (TMTSF: tetramethyltetraselenafulvalene) exhibit vanishing spin-resonance intensity and reduced conductivity at low microwave power. More intense microwave electric fields along the needle axis nonlinearly restore both the resonance signal and the conductivity, indicating the presence of charged spin-density waves. Very anisotropic antiferromagnetic resonances are observed at 1.6 K, confirming that an intinerant spin-density-wave state precedes the onset of superconductivity at 1.3 K

  18. Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors.

    Science.gov (United States)

    Yoshida, Tomohiro; Sigrist, Manfred; Yanase, Youichi

    2015-07-10

    Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors (SCs) is proposed. We study the odd-parity pair-density wave (PDW) state induced by the spin-singlet pairing interaction through the spin-orbit coupling. It is shown that the PDW state is a topological crystalline SC protected by a mirror symmetry, although it is topologically trivial according to the classification based on the standard topological periodic table. The topological property of the mirror subsectors is intuitively explained by adiabatically changing the Bogoliubov-de Gennes Hamiltonian. A subsector of the bilayer PDW state reduces to the two-dimensional noncentrosymmetric SC, while a subsector of the trilayer PDW state is topologically equivalent to the spinless p-wave SC. Chiral Majorana edge modes in trilayers can be realized without Cooper pairs in the spin-triplet channel and chemical potential tuning.

  19. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  20. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  1. Characterization of the superconducting state in hafnium hydride under high pressure

    Science.gov (United States)

    Duda, A. M.; Szewczyk, K. A.; Jarosik, M. W.; Szcześniak, K. M.; Sowińska, M. A.; Szcześniak, D.

    2018-05-01

    The hydrogen-rich compounds at high pressure may exhibit notably high superconducting transition temperatures. In the paper, we have calculated the basic thermodynamic parameters of the superconducting state in two selected phases of HfH2 hydride under high-pressure respectively at 180 GPa for Cmma and 260 GPa for P21 / m . Calculations has been conducted in the framework of the Eliashberg formalism. In particular, we have determined the values of the critical temperature (TC) to be equal to 8 K and 13 K for the Cmma and P21 / m phases, respectively. Moreover, we have estimated other thermodynamic properties such as the order parameter (Δ (T)) , the thermodynamic critical field (HC (T)) , and the specific heat for the normal (CN) and superconducting (CS) state. Finally, we have shown that the characteristic ratios: RΔ = 2 Δ (0) /kBTC and RC = ΔC (TC) /CN (TC) , which are related to the above thermodynamic functions, slightly differ from the predictions of the Bardeen-Cooper-Schrieffer theory due to the strong-coupling and retardation effects.

  2. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    Science.gov (United States)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  3. Moessbauer and muon spin relaxation investigation of magnetic and superconducting properties of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp; Bubel, Sirko; Maeter, Hemke; Sarkar, Rajib; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Harnagea, Luminita; Wurmehl, Sabine; Buechner, Bernd [IFW Dresden, Postfach 270016, 01171 Dresden (Germany); Luetkens, Hubertus [Paul-Scherrer-Institut, 5232 Villigen (Switzerland)

    2013-07-01

    The antiferromagnetic parent compound, CaFe{sub 2}As{sub 2}, shows a supression of the spin density wave and a subsequent superconducting state upon partial substitution of Ca by Na. Along the substitution series, superconducting transition temperatures up to ∼35 K were found. We studied the electronic phase diagram of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} using Moessbauer spectroscopy and muon spin relaxation experiments. We have analyzed the data in terms of magnetic and superconducting properties and possible coexistence of superconductivity and spin density wave order. We compared our results with recently published data of Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}.

  4. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  6. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  7. Transmission line properties of long strings of superconducting magnets

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1980-09-01

    The purpose of this paper is to discuss the electrical characteristics of a long string of superconducting magnets, such as in a superconducting storage ring or accelerator. As the magnets have a shunt capacitance to ground as well as a series inductance, travelling waves can propagate along the string, as in a transmission line. As the string is of finite length, standing waves can also exist. In accelerator quality superconducting magnets, considerable effort has been devoted to minimizing ac losses, the net result being that the magnet string has a high Q precisely at the frequencies which are important for the standing and travelling waves. The magnitude of these effects are estimated, and the solution to be used at Fermilab will be discussed

  8. Superconducting and normal state properties of carbon doped and neutron irradiated MgB2

    International Nuclear Information System (INIS)

    Wilke, R.H.T.; Samuely, P.; Szabo, P.; Holanova, Z.; Bud'ko, S.L.; Canfield, P.C.; Finnemore, D.K.

    2007-01-01

    Current research in MgB 2 focuses on the effects various types of perturbations have on the superconducting properties of this novel two-gap superconductor. In this article we summarize the effects of carbon doping and neutron irradiation in bulk MgB 2 . Low levels of carbon doping and light neutron irradiation result in significant enhancements in H c2 . At high fluences, where superconductivity is nearly fully suppressed, superconductivity can be restored through post exposure annealing. However, this results in a change in the interdependencies of the normal state and superconducting properties (ρ 0 , T c , H c2 ), with little or no enhancement in H c2

  9. Fermiology and Superconductivity of Topological Surface States in PdTe2

    Science.gov (United States)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  10. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction

    Science.gov (United States)

    Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.

    2018-06-01

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  11. Unstability of the Fulde-Ferrell state in d-wave superconductors by calculating the magnetic penetration depth

    International Nuclear Information System (INIS)

    Rabani, H.; Shahzamanian, M.A.; Yavary, H.

    2007-01-01

    Full text: Fulde, Ferrell, Larkin and Ovchnnikov (FFLO), first proposed the possibility that a superconducting state with a periodic spatial variation of the gap parameter would become stable when a large Zeeman splinting is present [1,2]. The order parameter varies periodically in space when the Pauli paramagnetism or the Zeeman term dominates the orbital effect. The Zeeman splitting could be due to either a strong magnetic field or an internal exchange field. Under these fields there is a splitting of the Fermi surfaces of spin up and spin down electrons, and the condensed pair has a non-zero total momentum, 2q, which causes the phase of the superconducting order parameter to vary. This state is known as the FF state. We determine the penetration depth of the Fulde-Ferrell State (FF) for quasi-two dimensional (2D) d-wave superconductor by calculating the electromagnetic nonlocal kernel response function. The behavior of the penetration depth at low temperatures is an important probe to determine the stability of the FF state. We start from a mean field Hamiltonian for the FF state and we calculate the electromagnetic nonlocal response tensor relating the current density to an applied vector potential to determine the magnetic penetration depth. We show that a linear T dependence of the magnetic penetration depth in the FF state superconductor violates indeed the third law of thermodynamics and the FF state is unstable due to Nernst theorem. (authors)

  12. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    Science.gov (United States)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  13. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  14. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  15. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    Science.gov (United States)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-06-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  16. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  17. Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2013-08-01

    Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.

  18. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  19. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    Science.gov (United States)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  20. Enhancement of superconducting state in the system 2H-NbSe2 - hydrogen

    International Nuclear Information System (INIS)

    Obolenskij, M.A.; Beletskij, V.I.; Chashka, Kh.B.; Basteev, A.V.

    1984-01-01

    The enhancement of the upper critical field and superconducting temperature of Hsub(x)NbSesub(2) system (x<=0.01) was experimentally observed. This phenomenon is observed after cycling influence by the external magnetic field at temperatures lower than the critical temperature of superconducting transition Tsub(c). The authors think that this effect is connected with hydrogen ordering in the field of moving vortex lattice in dynamically mixed state

  1. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  2. Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.

    Science.gov (United States)

    Paglione, Johnpierre; Tanatar, M A; Reid, J-Ph; Shakeripour, H; Petrovic, C; Taillefer, Louis

    2016-07-01

    The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.

  3. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  4. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  5. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  6. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  7. Quench detection of superconducting magnets using ultrasonic wave

    International Nuclear Information System (INIS)

    Ninomiya, A.; Sakaniwa, K.; Kado, H.; Ishigohka, T.; Higo, Y.

    1989-01-01

    A method to detect a quench of a superconducting magnet using ultrasonic technique is presented. This method is a kind of non-destructive one which monitors a change of acoustic transfer function of a superconducting magnet induced by a local temperature rise or an epoxy crack etc.. Some experiments are carried out on a small epoxy impregnated magnet. The experimental results show that a local temperature rise of about 2-3K can be detected by this method. And, some leading symptoms before quench were detected

  8. Superconductivity in engineered two-dimensional electron gases

    Science.gov (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.

    2017-11-01

    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  9. Superconductor to spin-density-wave transition in quasi-one-dimensional metals with repulsive anisotropic interaction

    International Nuclear Information System (INIS)

    Rozhkov, A.V.

    2007-01-01

    A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap

  10. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  11. 101Ru NQR study in superconducting CeRu2

    International Nuclear Information System (INIS)

    Matsuda, Kazuyuki; Kohori, Yoh; Kohara, Takao

    1995-01-01

    We present measurements of the NQR spectrum and the nuclear spin lattice relaxation rate, 1/T 1 , of 101 Ru in superconducting CeRu 2 from 1.9 K to 10 K. From the NQR spectrum, the electric quadrupole interaction parameters were determined to be ν Q =13.2 MHz and η=0.1/T 1 varies in proportion to temperature in the normal state, and has the Hebel-Slichter coherence peak just below the superconducting transition temperature, T C , of 6.2 K, and decreases exponentially at low temperatures with the energy gap of 2Δ=4.0k B T C . 101 Ru NQR study indicates that CeRu 2 is an s-wave and strong-coupling superconductor. (author)

  12. Magnetic fluctuations and the superconducting transition in the heavy-fermion material UPd2Al3

    DEFF Research Database (Denmark)

    Petersen, T.; Mason, T.E.; Aeppli, G.

    1994-01-01

    Inelastic neutron scattering has been performed on single crystals of the heavy-fermion superconductor UPd2Al3. The antiferromagnetically ordered state is characterized by an acoustic spin wave mode with no gap. The low-frequency magnitude excitations are unaffected by the transition to a superco...... to a superconducting state despite coupling to the conduction electrons as evidenced by the significant damping....

  13. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Science.gov (United States)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  14. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    Directory of Open Access Journals (Sweden)

    Binping Xiao

    2015-04-01

    Full Text Available We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  15. Unsynchronized resonance of covalent bonds in the superconducting state

    International Nuclear Information System (INIS)

    Costa, Marconi B.S.; Bastos, Cristiano C.; Pavao, Antonio C.

    2012-01-01

    Daft calculations performed on different cluster models of cuprates (LaBa 2 Cu 3 O 6.7 , La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7 , TlBa 2 Ca 2 Cu 3 O 8.78 , HgBa 2 Ca 2 Cu 3 O 8.27 ), metallic systems (Nb 3 Ge, MgB 2 ) and the pnictide LaO 0.92 F 0.08 FeAs made evident the occurrence of un synchronized resonance of covalent bonds in the superconducting state, as predicted by Paling's resonating valence bond Rb) theory. For cuprates, the un synchronized resonance involves electron transfer between Cu atoms accompanied by a decrease in the charge of the La, Sr, Y and Ca atoms. For MgB 2 , electron transfer occurs in the Mg layer, while the B layer behaves as charge reservoir. For Nb 3 Ge, unsynchronized resonance occurs among the Ge atoms, which should be responsible for charge transfer. For LaO 0.92 F 0.08 FeAs, the results suggest that both La-O and Fe-As layers are involved in the mechanism of superconductivity. The identification of unsynchronized resonances in these systems provides evidence which supports RVB as a suitable theory for high-temperature superconductivity (high-TC). (author)

  16. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  17. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  18. Preliminary study on the possible use of superconducting half-wave resonators in the IFMIF Linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Uriot, D.

    2007-01-01

    The driver of the International Fusion Materials Irradiation Facility (IFMIF) consists of two 125 mA, 40 MeV cw deuteron linacs, providing a total of 10 MW beam power to the liquid lithium target. A superconducting (SC) solution for the 5 to 40 MeV accelerator portion could offer some advantages compared with the copper Alvarez-type Drift Tube Linac reference design: linac length reduction and significant plug power saving. A SC scheme, based on multi-gap CH-structures has been proposed by IAP in Frankfurt. Another SC scheme, using half-wave resonators (HWR), which are in an advanced stage of development at different places, would allow a shorter focusing lattice, resulting in a safe beam transportation with minimal beam loss. In order to investigate the feasibility of the superconducting HWR option, faced with the very high space charge regime of the IFMIF linac, beam dynamics calculations have been performed. This paper presents an optimized linac layout, together with extensive multi-particle simulations including various field and alignment errors. (authors)

  19. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  20. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  1. μSR and NMR study of the superconducting Heusler compound YPd2Sn

    Science.gov (United States)

    Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.

    2013-09-01

    We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.

  2. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  3. The role of local tunneling states in superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Nguyen, B.D.; Simanek, E.

    1982-01-01

    The origin of the enhancement of the superconducting transition temperature caused by the presence of disordered interfaces is studied. An enhancement mechanism involving the tunneling of the conduction electrons from metal into the local state coupled to the ''two-level state systems'' in the interfaces region, is considered. In this model, the reduction of the tunneling matrix elements by orthogonality blocking can be avoided. (author)

  4. Superconductivity and spin excitations in orbitally ordered FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian M. [Niels Bohr Institute, University of Copenhagen (Denmark); Mukherjee, Shantanu [Niels Bohr Institute, University of Copenhagen (Denmark); Dept. of Physics, State University of New York at Binghamton, Binghamton, NY (United States); Hirschfeld, Peter J. [University of Florida, Gainesville, FL (United States)

    2016-07-01

    We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the d{sub xz}/d{sub yz} channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π,0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π,0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies.

  5. Pressure effect on the superconducting and the normal state of β -B i2Pd

    Science.gov (United States)

    Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.

    2018-04-01

    The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .

  6. Volcanic materials superconductivity in desert areas of the states of Sonora and Baja California

    International Nuclear Information System (INIS)

    Holguín, Aldo

    2017-01-01

    Research was conducted to find materials in their natural state at room temperature and exhibit the effects of superconductivity in the volcanic region of deserts Altar in Sonora and Baja California Norte. 100 were collected at random samples of materials from different parts of the region and underwent tests to determine their electromagnetic parameters of electrical resistance, magnetism, temperature and conductivity. Only it has been found that the effects of superconductivity in them is only present at very low temperatures corroborating what has been done in other investigations, however no indication that there is a material or combination of materials that can produce the effects of superconductivity other temperatures so it is suggested to continue the search for such materials and / or develop a technique at room temperature to allow mimic the behavior of atoms when superconductivity occurs at. (paper)

  7. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  8. The interplay of superconducting quantum circuits and propagating microwave states

    International Nuclear Information System (INIS)

    Goetz, Jan

    2017-01-01

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n 2 + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  9. The interplay of superconducting quantum circuits and propagating microwave states

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan

    2017-06-26

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n{sup 2} + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  10. Electronic structure and superconductivity of europium

    International Nuclear Information System (INIS)

    Nixon, Lane W.; Papaconstantopoulos, D.A.

    2010-01-01

    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.

  11. Quantized levitation states of superconducting multiple-ring systems

    International Nuclear Information System (INIS)

    Haley, S.B.; Fink, H.J.

    1996-01-01

    The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length ξ(T), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. copyright 1996 The American Physical Society

  12. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  13. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  14. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  15. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  16. Evidence of a Normal-State Pseudogap in Bulk Superconducting Tunneling Junctions of YBa2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Guerra

    1999-12-01

    Full Text Available Planar contact tunneling experiments have been performed on bulk superconducting tunneling junctions of YBa2Cu3O7-δ in the temperature range 77 -295K. A clear depression in the conductance curves measured, attributed to the pseudogap, has been observed in temperatures above Tc (approx. 90K determined from dc resistivity measurements before disappearing at T*=275K. The width of the pseudogap has been quantitatively measured as Dps, ave = 25.6meV from the differential conductance plots. These results agree with the current understanding of the phenomenology and nature of this pseudogap, namely: (I the pseudogap value is relatively temperature-independent; (2 the superconducting gap and the pseudogap have the same d-wave nature; and (3 the superconducting gap evolves from the pseudogap.

  17. Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators

    Science.gov (United States)

    Kelly, Michael

    2012-01-01

    High-power proton and ion linac projects based on superconducting accelerating cavities are driving a worldwide effort to develop and build superconducting cavities for beta < 1. Laboratories and institutions building quarter-wave, halfwave and single- or multi-spoke cavities continue to advance the state of the art for this class of cavities, and the common notion that low-beta SRF cavities fill a need in niche applications and have low performance is clearly no longer valid. This article reviews recent developments and results for SC cavity performance for cavities with beta up to approximately 0.5. The considerable ongoing effort on reduced beta elliptical cell cavities is not discussed. An overview of associated subsystems required to operate low-beta cavities, including rf power couplers and fast and slow tuners, is presented.

  18. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  19. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  20. Fundamental Power Couplers for Superconducting Cavities

    International Nuclear Information System (INIS)

    Isidoro E. Campisi

    2001-01-01

    Fundamental power couplers (FPC's) for superconducting cavities must meet very strict requirements to perform at high power levels (hundreds of kilowatts) and in a variety of conditions (CS, pulsed, travelling wave, standing wave) without adversely affecting the performance of the cavities they are powering. Producing good coupler designs and achieving operational performances in accelerator environments are challenging tasks that have traditionally involved large resources from many laboratories. The designs involve state-of-the-art activities in RF, cryogenic and mechanical engineering, materials science, vacuum technology, and electromagnetic field modeling. Handling, assembly and conditioning procedures have been developed to achieve ever-increasing power levels and more reliable operation. In this paper, the technical issues associated with the design, construction, assembly, processing, and operation of FPC's will be reviewed, together with the progress in FPC activities in several laboratories during the past few years

  1. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.

    Science.gov (United States)

    Hirsch, J E

    2013-10-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    International Nuclear Information System (INIS)

    Edegger, B.

    2007-01-01

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  3. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Edegger, B.

    2007-08-10

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  4. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  5. Superconducting state in (W, Ta)5SiB2

    Science.gov (United States)

    Fukuma, M.; Kawashima, K.; Akimitsu, J.

    We characterize the superconducting state in a boro-silicide (W, Ta)5SiB2, with Tc of 6.5 K by means of magnetization, electrical resistivity, and specific heat measurements. As x increased, the transition temperature Tc abruptly enhances from 5.8 to 6.5 K. The magnetization versus magnetic field (M-H) curve indicated that (W, Ta)5SiB2 was a conventional type-II superconductor. The estimated lower critical field Hc1(0) and upper critical field Hc2(T) are about 121 Oe and 14.7 kOe, respectively. The penetration depth λ(0) and coherence length ξ(0) are calculated to be approximately 369 and 14.9 nm, respectively, using Ginzburg-Landau (GL) equations. Specific heat data shows the superconductivity in W4.5Ta0.5SiB2 belongs to a week-coupling BCS superconductor. Finally, we discuss the increasing of Tc in of (W, Ta)5SiB2 system.

  6. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  7. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  8. Effect of parallel transport currents on the d-wave Josephson junction

    International Nuclear Information System (INIS)

    Rashedi, Gholamreza

    2009-01-01

    In this paper, the non-local mixing of coherent current states in d-wave superconducting banks is investigated. The superconducting banks are connected via a ballistic point contact. The banks have mis-orientation and phase difference. Furthermore, they are subjected to a tangential transport current along the ab plane of d-wave crystals and parallel to the interface between the superconductors. The effects of mis-orientation and external transport current on the current-phase relations and current distributions are the subjects of this paper. It is observed that, at values of phase difference close to 0, π and 2π, the current distribution may have a vortex-like form in the vicinity of the point contact. The current distribution of the above-mentioned junction between d-wave superconductors is totally different from the junction between s-wave superconductors. The interesting result which this study shows is that spontaneous and Josephson currents are observed for the case of φ = 0.

  9. RIA Superconducting Drift Tube Linac R and D

    International Nuclear Information System (INIS)

    Popielarski, J.; Bierwagen, J.; Bricker, S.; Compton, C.; DeLauter, J.; Glennon, P.; Grimm, T.; Hartung, W.; Harvell, D.; Hodek, M.; Johnson, M.; Marti, F.; Miller, P.; Moblo, A.; Norton, D.; Popielarski, L.; Wlodarczak, J.; York, R.C.; Zeller, A.

    2009-01-01

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to (ge) 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focusing. Active and passive shielding is required to ensure that the solenoids field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  10. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  11. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  12. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  13. Superconductivity and fast proton transport in nanoconfined water

    Science.gov (United States)

    Johnson, K. H.

    2018-04-01

    A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).

  14. Many-polaron theory for superconductivity and charge-density waves in a strongly coupled electron-phonon system with quasi-two-dimensionality: An interpolation between the adiabatic limit and the inverse-adiabatic limit

    International Nuclear Information System (INIS)

    Nasu, K.

    1987-01-01

    The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent

  15. Design considerations for a superconducting linac as an option for the ESS

    CERN Document Server

    Bräutigam, W F; Schug, G; Zaplatin, E N; Meads, P F; Senichev, Yu V

    1999-01-01

    An approach for a superconducting high-current proton linac for the ESS has been discussed as an option in the "Proposal for a Next Generation Neutron Source for Europe-the European Spallation Source (ESS)". The following work studies the technical and economic conditions for a superconducting linac at the high-energy end of the proposed accelerator system. The use of superconducting elliptical cavities for the acceleration of high-energetic particles beta =v/c-1 is certainly state of the art. This is documented by many activities (TJNAF, TESLA, LEP, LHC, and KEK). A design study for the cavities is described in another paper on this conference. For low energy particles ( beta <<1) quarter wave type cavities and spoke-type cavities have been discussed. The main motivation for this study is the expectation of significant cost reduction in terms of operational and possibly investment cost. (5 refs).

  16. Superconducting quasiparticle lifetimes due to spin-fluctuation scattering

    International Nuclear Information System (INIS)

    Quinlan, S.M.; Scalapino, D.J.; Bulut, N.

    1994-01-01

    Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor

  17. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  18. Effects of disorder on coexistence and competition between superconducting and insulating states

    NARCIS (Netherlands)

    Mostovoy, MV; Marchetti, FM; Simons, BD; Littlewood, PB

    We study effects of nonmagnetic impurities on the competition between the superconducting and electron-hole pairing. We show that disorder can result in coexistence of these two types of ordering in a uniform state, even when in clean materials they are mutually exclusive.

  19. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  20. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  1. About stability of levitating states of superconducting myxini of plasma traps-galateas

    International Nuclear Information System (INIS)

    Bishaev, A.M.; Bush, A.A.; Denis'uk, A.I.; D'yakonitsa, O.Y.; Kamentsev, K.Y.; Kozintseva, M.V.; Kolesnikova, T.G.; Shapovalov, M.M.; Voronchenko, S.A.; Gavrikov, M.B.; Savelyev, V.V.; Smirnov, P.G.

    2015-01-01

    To develop a plasma trap with levitating superconducting magnetic coils it is necessary to carry out the search of their stable levitating states. With this purpose, based upon the superconductor property to conserve the trapped magnetic flux, in the uniform gravitational field the analytical dependence of the potential energy of one or two superconducting rings, having trapped the given magnetic fluxes, in the field of the fixed ring with the constant current from the coordinates of the free rings and the deflection angle of their axes from the common axis of the magnetic system has been obtained in the thin ring approximation. Under magnetic fluxes of the same polarity in coils the existence of the found from the calculations equilibrium levitating states for the manufactured HTSC rings stable relative to the vertical shifts of levitating rings and to the deflection angle of their axes from the vertical has been confirmed experimentally

  2. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates

    Science.gov (United States)

    Cilento, Federico; Manzoni, Giulia; Sterzi, Andrea; Peli, Simone; Ronchi, Andrea; Crepaldi, Alberto; Boschini, Fabio; Cacho, Cephise; Chapman, Richard; Springate, Emma; Eisaki, Hiroshi; Greven, Martin; Berciu, Mona; Kemper, Alexander F.; Damascelli, Andrea; Capone, Massimo; Giannetti, Claudio; Parmigiani, Fulvio

    2018-01-01

    Many puzzling properties of high–critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu–O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu–O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates. PMID:29507885

  3. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  4. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  5. The quest for high-gradient superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  6. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  7. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  8. Aharanov--Bohm currents in thin superconducting cylinders

    International Nuclear Information System (INIS)

    Kunstatter, G.; Revzen, M.; Trainor, L.E.H.

    1983-01-01

    The Aharanov--Bohm effect is the influence of classically inaccessible electromagnetic fields on quantum wave functions. In this paper we consider the Ginsburg--Landau (GL) equations for the stationary states of a thin, superconducting cylinder in the presence of a curl-free, static electromagnetic potential corresponding to zero fields. We solve the GL equations explicitly to obtain self-consistent solutions for the current density, the induced field and the free energy in a well-defined and accessible approximation. The analysis makes quantitative predictions which can, in principle, be experimentally tested to provide a clear and convincing demonstration of the Aharanov--Bohm effect

  9. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  10. State-of-the-art superconducting accelerator magnets

    CERN Document Server

    Rossi, L

    2002-01-01

    With the LHC the technology of NbTi-based accelerator magnets has been pushed to the limit. By operating in superfluid helium, magnetic fields in excess of 10 T have been reached in various one meter-long model magnets while full scale magnets, 15 meter-long dipoles, have demonstrated possibility of safe operation in the 8.3-9 tesla range, with the necessary, very tight, field accuracy. The paper reviews the key points of the technology that has permitted the construction of the largest existing superconducting installations (Fermilab, Desy and Brookhaven), highlighting the novelties of the design of the LHC dipoles, quadrupoles and other superconducting magnets. All together the LHC project will need more than 5000 km of fine filament superconducting cables capable of 14 kA @ 10 T, 1.9 K. (13 refs).

  11. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  12. Theory of exotic superconductivity and normal states of heavy electron and high temperature superconductivity materials. Progress report, February 15, 1994--February 14, 1995

    International Nuclear Information System (INIS)

    Cox, D.L.

    1995-01-01

    This is a progress report for the DOE project covering the period 2/15/94 to 2/14/95. The PI had a fruitful sabbatical during this period, and had some important new results, particularly in the area of new phenomenology for heavy fermion superconductivity. Significant new research accomplishments are in the area of odd-in-time-reversal pairing states/staggered superconductivity, the two-channel Kondo lattice, and a general model for Ce impurities which admits one-, two-, and three-channel Kondo effects. Papers submitted touch on these areas: staggered superconductivity - a new phenomenology for UPt 3 ; theory of the two-channel Kondo lattice in infinite dimensions; general model of a Ce 3+ impurity. Other work was done in the areas: Knight shift in heavy fermion alloys and compounds; symmetry analysis of singular pairing correlations for the two-channel Kondo impurity model

  13. Gap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS

    Science.gov (United States)

    Ekino, T.; Sugimoto, A.; Gabovich, A. M.

    2018-05-01

    We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.

  14. Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s±) or orbital (s++) fluctuation

    Science.gov (United States)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.

    2016-01-01

    In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.

  15. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  16. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  17. Superconductivity induced by doping Rh in CaFe2-xRhxAs2

    International Nuclear Information System (INIS)

    Qi Yanpeng; Wang Lei; Gao Zhaoshun; Wang Dongliang; Zhang Xianping; Wang Chunlei; Yao Chao; Ma Yanwei

    2011-01-01

    In this paper, we report the synthesis of iron-based superconductors CaFe 2-x Rh x As 2 using a one-step solid state reaction method that crystallizes in the ThCr 2 Si 2 -type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Rh. By increasing the doping content of Rh, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 18.5 K with a doping level of x=0.15. The temperature dependence of dc magnetization confirms superconducting transitions at around 15 K. The general phase diagram was obtained and found to be similar to the case of the Rh-doping Sr122 system. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds by higher d-orbital electron doping; however, different Rh-doping effects between FeAs122 compounds and FeAs1111 systems still remains an open question.

  18. Impacts of Co-doping on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystal studied by the electrical transport.

    Science.gov (United States)

    Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi

    2015-03-01

    In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.

  19. Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center

    International Nuclear Information System (INIS)

    Kadin, A.M.; Smith, L.N.; Skocpol, W.J.

    1980-01-01

    Using a generalized two-fluid picture to describe a quasi-one-dimensional superconductor near T/sub c/, we provide a heuristic derivation for a set of equations governing the temporal and spatial evolution of the charge imbalance (or branch imbalance) in the quasiparticles. We show that these equations are isomorphic to those that describe a simple electrical transmission line, so that charge imbalance waves may propagate in the superconductor in analogy with electrical signals that propagate down the transmission line. We propose as a model for a phase-slip center in a superconducting filament a localized Josephson oscillator coupled to the transmission line. Applying standard transmission-line theory to solve the problem, we show that the Josephson oscillations in the center generate charge imbalance waves that the propagate out to a frequency-dependent distance of the order of the quasiparticle diffusion length GAMMA/sub Q/*= (Dtau/sub Q/*)/sup 1/2/ before they damp out. The time-averaged behavior of the model reduces to the earlier model of Skocpol, Beasley, and Tinkham. A novel consequence of the model is a prediction of intrinsic hysteresis in the dc current--voltage relation. The model also provides a convenient framework for dealing with ac effects in phase-slip centers, including resonance and synchronization in systems of closely spaced phase-slip centers and microbridges

  20. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    Science.gov (United States)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  1. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  2. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  3. Superconducting state parameters of monovalent and polyvalent amorphous

    Energy Technology Data Exchange (ETDEWEB)

    Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India)

    2015-08-28

    In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N{sub 0}V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.

  4. Vertical Line Nodes in the Superconducting Gap Structure of Sr_{2}RuO_{4}

    Directory of Open Access Journals (Sweden)

    E. Hassinger

    2017-03-01

    Full Text Available There is strong experimental evidence that the superconductor Sr_{2}RuO_{4} has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr_{2}RuO_{4}. Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters within a p-wave state. Other scenarios propose chiral d-wave and f-wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima are vertical (parallel to the tetragonal c axis or horizontal (perpendicular to the c axis. Here, we report thermal conductivity measurements on single crystals of Sr_{2}RuO_{4} down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T=0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to T_{c}/30 and down to H_{c2}/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H=0 to H=H_{c2}. These findings show that the gap structure of Sr_{2}RuO_{4} consists of vertical line nodes. This rules out a chiral d-wave state. Given that the c-axis dispersion (warping of the Fermi surface in Sr_{2}RuO_{4} varies strongly from sheet to sheet, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr_{2}RuO_{4}. To reconcile the gap structure

  5. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  6. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  7. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kline, Jeffrey S; Pappas, David P, E-mail: carlosch@physics.rutgers.ed, E-mail: ohsean@physics.rutgers.ed [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-04-15

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  8. Suppression of Gain Ripples in Superconducting Traveling-Wave Kinetic Inductance Amplifiers

    Science.gov (United States)

    Bal, Mustafa; Erickson, Robert P.; Ku, Hsiang Sheng; Wu, Xian; Pappas, David P.

    Superconducting traveling-wave kinetic inductance (KIT) amplifiers demonstrated gain over a wide bandwidth with high dynamic range and low noise. However, the gain curve exhibits ripples. Impedance mismatch at the input and output ports of the KIT amplifier as wells as split ground planes of the coplanar waveguide (CPW) geometry are potential contributors to the ripple in the gain curve. Here we study the origin of these ripples in KIT amplifiers configured in CPW geometry using approximately 20 nm thick NbTiN films grown by reactive co-sputtering of NbN and TiN. Our NbTiN films have non-linear kinetic inductance as a function of current, described by L =L0 (1 +(I /I*) 2) , where I* = 15 . 96 +/- 0 . 11 mA measured by time domain reflectometry. We report the results of implementing an impedance taper that takes into account a significantly reduced phase velocity as it narrows, adding Au onto the CPW split grounds, as well as employing different designs of dispersion engineering. Qubit Measurements using KIT amplifiers will also be reported.

  9. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    CERN Document Server

    Stegmaier, Tobias; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with fast time response. In the present work, their capability as a thermal quench mapping device for superconducting radio frequency cavities is proven experimentally by detecting second sound waves emitted by SMD heaters in a He-II bath at saturated vapour pressure. A characterisation of the sensors at steady bath temperatures was conducted to calculate the thermal sensitivity. An intense metallurgical study of gold-tin TES with different compositions revealed important relations between the superconducting behaviour and the ...

  10. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  11. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  12. Unidirectional spin density wave state in metallic (Sr1-xLax)2IrO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul; Porter, Zach; Zoghlin, Eli; Finkelstein, Kenneth; Ruff, Jacob P. C.; Wilson, Stephen D.

    2018-01-09

    Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.

  13. Possible universal cause of high-Tc superconductivity in different metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2002-01-01

    Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru

  14. Coulomb Final State Interactions for Gaussian Wave Packets

    CERN Document Server

    Wiedemann, Urs Achim; Heinz, Ulrich W

    1999-01-01

    Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.

  15. Optical Tamm states in one-dimensional superconducting photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    El Abouti, O. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); El Boudouti, E. H. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France); El Hassouani, Y. [ESIM, Département de Physique, Faculté des Sciences et Techniques, Université Moulay Ismail, Boutalamine BP 509, 52000 Errachidia (Morocco); Noual, A. [LPMR, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda (Morocco); Ecole Normale Supérieur de Tétouan, Université Abdelmalek Essaadi, Tétouan (Morocco); Djafari-Rouhani, B. [IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Different kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.

  16. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  17. Pb induces superconductivity in Bi2Se3 analyzed by point contact spectroscopy

    OpenAIRE

    Arevalo-López, P.; López-Romero, R. E.; Escudero, R.

    2015-01-01

    Some topological insulators become superconducting when doped with Cu and Pd. Superconductivity in a non-superconductor may be induced by proximity effect: i.e. Contacting a non-superconductor with a superconductor. The superconducting macroscopic wave function will induce electronic pairing into the normal compound. In the simplest topological insulator, Bi$_2$Se$_3$, superconductivity may be induced with Pb. We studied with point contact junctions formed by contacting Bi$_2$Se$_3$ crystals ...

  18. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  19. Anomalous enhancement of the lower critical field deep in the superconducting state of LaRu4As12

    Science.gov (United States)

    Juraszek, J.; Bochenek, Ł.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T.

    2018-05-01

    LaRu4As12 with the critical temperature Tc = 10.4 K displays several features which point at a non-singlet superconducting order parameter, although the bcc crystal structure of the filled skutterudites does not favour the emergence of multiple energy gaps. LaRu4As12 displays an unexpected enhancement of the lower critical field deep in superconducting state which can be attributed to the existence of two superconducting gaps. At T = 0.4 K, the local magnetization measurements were performed utilizing miniaturized Hall sensors.

  20. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  1. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-01-01

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined

  2. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  3. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  4. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    Science.gov (United States)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  5. Superconducting magnet for a Ku-band maser.

    Science.gov (United States)

    Berwin, R.; Wiebe, E.; Dachel, P.

    1972-01-01

    A superconducting magnet to provide a uniform magnetic field of up to 8000 G in a 1.14-cm gap for the 15.3-GHz (Ku-band) traveling wave maser is described. The magnet operates in a persistent mode in the vacuum environment of a closed-cycle helium refrigerator (4.5 K). The features of a superconducting switch, which has both leads connected to 4.5 K heat stations and thereby does not receive heat generated by the magnet charging leads, are described.

  6. Can magnetism and superconductivity coexist

    International Nuclear Information System (INIS)

    Ishikawa, M.

    1982-01-01

    Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)

  7. Effect of Te doping on superconductivity and charge-density wave in dichalcogenides 2H-NbSe2-χTeχ(χ=0,0.1,0.2)

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Tao; Li Lin-Jun; Ye De-shu; Cheng Xin-Hong; Xu Zhu-An

    2007-01-01

    Single crystals of Te-doped dichalcogenides 2H-NbSe2-χTeχ(χ=0,0.10,0.20)were grown by vapour transport method.The effect of Te doping on the superconducting and charge-density wave(CDW)transitions has been investigated.The sharp decrease of residual resistance ratio,RRR=R(300K)/R(8K),with increasing Te content was observed,indicating that the disorder in the conducting plane is induced by Te doping.Meanwhile the superconducting transition temperature,Tc,decreases monotonically with Te content.However,the CDW transition temperature,TCDW,shown by a small jump in the temperature dependence of the resistivity near 30 K,increases slightly.The results show that the suppression of superconductivity might be caused by the enhancement of CDW ordering.The disorder has little influence on the CDW ordering.

  8. High-Q Tl2CaBa2Cu2O8 high-Tc superconducting quasi-optical millimeter-wave bandpass filters working at 77 K

    International Nuclear Information System (INIS)

    Zhang, D.; Fetterman, H.R.

    1994-01-01

    Tl 2 CaBa 2 Cu 2 O 8 high-temperature superconducting thin films with T c 's of over 100 K on LaAlO 3 substrates were used to fabricate quasi-optical millimeter-wave bandpass filters. Q-factors of over 400 were achieved, at liquid nitrogen temperatures from these filters at W-band frequencies (75--110 GHz)

  9. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  10. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  11. Magnetism and superconductivity in Eu-based iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Sina [1. Physikalisches Institut, Universitaet Stuttgart (Germany)

    2015-07-01

    EuFe{sub 2}As{sub 2} is an extraordinary parent compound of the iron pnictides, as it exhibits at low temperatures - additional to the Fe spin density wave - long-range magnetic order of the Eu{sup 2+} local moments. Nevertheless, bulk superconductivity around 30 K can be induced by mechanical pressure or chemical substitution. In this talk we review the remarkable interplay of unconventional superconductivity, itinerant and local magnetism in Eu based iron pnictides. We focus on the appearance of a re-entrant spin glass phase that coexists with superconductivity and an indirect magneto-elastic coupling, enabling the persistent magnetic detwinning by small magnetic fields.

  12. Superconductivity and spin excitations in orbitally ordered FeSe

    Science.gov (United States)

    Kreisel, Andreas; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, B. M.

    We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the dxz /dyz channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π , 0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π , 0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies A.K. and B.M.A. acknowledge financial support from a Lundbeckfond fellowship (Grant No. A9318). P.J.H. was partially supported by the Department of Energy under Grant No. DE-FG02-05ER46236.

  13. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  14. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  16. Unconventional superconductivity near inhomogeneities

    International Nuclear Information System (INIS)

    Poenicke, A.F.

    2008-01-01

    After the presentation of a quasi-classical theory the specific heat of Sr 2 RuO 4 is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO 2 as example, and an interface model. (HSI)

  17. DARMSTADT: Superconducting electron accelerator in operation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In December, the S-DALINAC superconducting radiofrequency electron accelerator at the Nuclear Physics Institute of Darmstadt's Technische Hochschule was completed. This pioneer continuous-wave (c.w.) machine passed a major milestone several years ago when it accelerated its first low energy electron beam

  18. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  19. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation); Val' kov, V. V.; Mitskan, V. A.; Korovuskin, M. M. [Russian Academy of Sciences, Kirenskii Physics Institute, Siberian Branch (Russian Federation)

    2013-10-15

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.

  20. Analytical assessment of some characteristic ratios for s-wave superconductors

    Science.gov (United States)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2018-04-01

    We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.

  1. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge

    Science.gov (United States)

    Peterson, Thomas C.; Heim, Richard R.; Hirsch, Robert M.; Kaiser, Dale P.; Brooks, Harold; Diffenbaugh, Noah S.; Dole, Randall M.; Giovannettone, Jason P.; Guirguis, Kristen; Karl, Thomas R.; Katz, Richard W.; Kunkel, Kenneth E.; Lettenmaier, Dennis P.; McCabe, Gregory J.; Paciorek, Christopher J.; Ryberg, Karen R.; K Wolter, BS Silva; Schubert, Siegfried; Silva, Viviane B. S.; Stewart, Brooke C.; Vecchia, Aldo V.; Villarini, Gabriele; Vose, Russell S.; Walsh, John; Wehner, Michael; Wolock, David; Wolter, Klaus; Woodhouse, Connie A.; Wuebbles, Donald

    2013-01-01

    Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

  2. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  3. Superconducting spin valve effect in Fe/In based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)

    2015-07-01

    We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.

  4. Zinc-induced modification of the dynamical magnetic susceptibility in the superconducting state of YBa{sub 2}Cu{sub 3}O{sub 6+}{sub {ital x}} as revealed by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sidis, Y.; Bourges, P.; Hennion, B. [Laboratoire Leon Brillouin, CEA-CNRS, Centre dEtudes de Saclay, 91191 Gif-sur-Yvette (France); Regnault, L.P. [Centre dEtudes Nucleaires de Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique Statistique, Magnetisme et Supraconductivite, Groupe Magnetisme et Diffraction Neutronique, 85 X, 38041 Grenoble cedex (France); Villeneuve, R.; Collin, G. [Laboratoire Leon Brillouin, CEA-CNRS, Centre dEtudes de Saclay, 91191 Gif-sur-Yvette (France); Marucco, J.F. [Laboratoire des Composes Non-Stoechiometriques, CNRS URA 446, Batiment 415, Universite Paris Sud centre dOrsay, Orsay (France)

    1996-03-01

    Inelastic-neutron-scattering measurements have been performed to determine the imaginary part of the dynamical susceptibility, {chi}{double_prime}({ital Q},{omega}), of a YBa{sub 2}(Cu{sub 1{minus}{ital y}}Zn{sub {ital y}}){sub 3}O{sub 6.97} sample exhibiting a superconducting transition at {ital T}{sub {ital c}}=69 K. Zinc substitution induces striking modifications of the energy dependence of {chi}{double_prime}({ital Q},{omega}) but magnetic fluctuations remain peaked at the antiferromagnetic wave vector, {ital Q}{sub AF}, at all investigated energies. In the superconducting state of the zinc-free compound, {chi}{double_prime}({ital Q},{omega}) is restricted to a narrow energy range, {h_bar}{omega}=33{endash}47 meV, displaying a {ital spin} {ital gap} at {ital E}{sub {ital G}}=33 meV and a resonant enhancement at {ital E}{sub {tau}}=39 meV, both features vanishing upon heating up above {ital T}{sub {ital c}}. In the {ital y}=0.02 substituted sample in the superconducting state, there is still an energy band in the range 32{endash}47 meV but no clear resonance, and a signal is now observed in the low energy range, though the line shape of {chi}{double_prime}({ital Q},{omega}) indicates some reminiscence of the spin gap of the pure compound. {copyright} {ital 1996 The American Physical Society.}

  5. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  6. Superconductivity in LiFeAs probed with quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhixiang; Nag, Pranab Kumar; Baumann, Danny; Kappenberger, Rhea [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    In spite of many theoretical and experimental efforts on studying the superconductivity of iron-based high temperature superconductors, the puzzle about LiFeAs's superconducting mechanism and pairing symmetry are still not clear. Here we want to present our low temperature scanning tunneling microscopy results on probing the superconductivity of LiFeAs. By taking conductance spectroscopic maps for both the superconducting state and normal state, we identify the scatterings due to the electron and hole bands close to the Fermi level. We observe a strong indication that the superconducting behavior in the hole bands are important for the formation of superconductivity in LiFeAs. Our results may also shine light on understanding the superconductivity in other iron pnictide superconductors.

  7. Improved superconducting properties of La{sub 3}Co{sub 4}Sn{sub 13} with indium substitution

    Energy Technology Data Exchange (ETDEWEB)

    Neha, P.; Srivastava, P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Jha, R. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); National Physical Laboratory, New Delhi 110012 (India); Shruti [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Awana, V.P.S. [National Physical Laboratory, New Delhi 110012 (India); Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-04-25

    We report two fold increase in superconducting transition temperature of La{sub 3}Co{sub 4}Sn{sub 13} by substituting indium at the tin site. The transition temperature of this skutterudite related compound is observed to increase from 2.5 K to 5.1 K for 10% indium substituted sample. The band structure and density of states calculations also indicate such a possibility. The compounds exhibit type-II superconductivity and the values of lower critical field (H{sub c1}), upper critical field (H{sub c2}), Ginzburg–Landau coherence length (ξ), penetration depth (λ) and GL parameter (κ) are estimated to be 0.0028 T, 0.68 T, 21.6 nm, 33.2 nm and 1.53 respectively for La{sub 3}Co{sub 4}Sn{sub 11.7}In{sub 1.3}. Hydrostatic external pressure leads to decrease in transition temperature and the calculated pressure coefficient is −0.311 K/GPa. Flux pinning and vortex activation energies also improved with indium addition. Only positive frequencies are observed in phonon dispersion curve that relate to the absence of charge density wave or structural instability in the normal state. - Highlights: • Superconducting transition temperature of La{sub 3}Co{sub 4}Sn{sub 13} increases two fold by indium substitution. • Band structure and all basic superconducting parameters (e.g,. H{sub c1}, H{sub c2}, ξ,λ and κ are ascertained. • Dependence of superconducting properties under external pressure is studied.

  8. Steady-state heat transfer in He II through porous superconducting cable insulation

    International Nuclear Information System (INIS)

    Baudouy, B.J.P.; Juster, F.P.; Meuris, C.; Vieillard, L.

    1996-01-01

    The LHC program includes the study of thermal behavior of the superconducting cables wound in the dipole magnet cooled by superfluid helium (He II). Insulation of these superconducting cables forms the major thermal shield hindering the He II cooling. This is particularly a problem in magnets which are subjected to thermal loads. To investigate He II heat transfer processes an experimental model has been realized which creates a one-dimensional heat transfer in such media. Insulation is generally realized by wrapping around the superconducting cable a combination of different kind of Kapton reg-sign tapes, fiber-glass impregnated by epoxy resin or Kevlar reg-sign fiber tapes. Steady-state heat transfer in He II through these multi-layer porous slabs has been analyzed. Experimental results for a range of heat flux show the existence of different thermal regimes related to He II. It is shown that the parameters of importance are a global geometrical factor which could be considered as an equivalent open-quotes permeabilityclose quotes related to He II heat transfer, the transfer function f(T) of He II and the thermal conductivity of the slab. The authors present and analyze results for different insulations as a function of the temperature

  9. Normal and superconducting metals at microwave frequencies-classic experiments

    International Nuclear Information System (INIS)

    Dheer, P.N.

    1999-01-01

    A brief review of experimental and theoretical work on the behaviour of normal and superconducting materials at microwave frequencies before the publication of Bardeen, Cooper and Schrieffer's theory of superconductivity is given. The work discussed is mostly that of Pippard and his coworkers. It is shown that these investigations lead not only to a better understanding of the electrodynamics of normal and superconducting state but also of the nature of the superconducting state itself. (author)

  10. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A F

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  11. Experimental formation of a fractional vortex in a superconducting bi-layer

    Science.gov (United States)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  12. Infrared refractive index of thin YBa2Cu3O7 superconducting films

    International Nuclear Information System (INIS)

    Zhang, Z.M.; Choi, B.I.; Le, T.A.; Flik, M.I.; Siegal, M.P.; Phillips, J.M.

    1992-01-01

    This work investigates whether thin-film optics with a constant refractive index can be applied to high-T c superconducting thin films. The reflectance and transmittance of YBa 2 Cu 3 O 7 films on LaAlO 3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa 2 Cu 3 O 7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications

  13. High-T{sub c} superconductivity in monolayer FeSe on SrTiO{sub 3} via interface-induced small-q electron-phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aperis, Alexandros; Oppeneer, Peter M. [Uppsala University (Sweden)

    2016-07-01

    A monolayer of FeSe deposited on SrTiO{sub 3} becomes superconducting at temperatures that exceed T{sub c}=100 K, as compared to a bulk T{sub c} of 8 K. Recent ARPES measurements have provided strong evidence that an interfaced-induced electron-phonon interaction between FeSe electrons and SrTiO{sub 3} phonons plays a decisive role in this phenomenon. However, the mechanism that drives this tantalizing high-T{sub c} boost is still unclear. Here, we examine the recent experimental findings using fully anisotropic, full bandwidth multiband Eliashberg calculations focusing on the superconducting state of FeSe/STO. We use a realistic ten band tight-binding band structure for the electrons of monolayer FeSe and study how the suggested interface-induced small-q electron-phonon interaction mediates superconductivity. Our calculations produce a high-T{sub c} s-wave superconducting state with the experimentally resolved momentum dependence. Further, we calculate the normal metal/insulator/superconductor tunneling spectrum and identify fingerprints of the interface-induced phonon mechanism.

  14. Changes of superconducting interaction in interfaces

    International Nuclear Information System (INIS)

    Halbritter, J.

    1976-01-01

    The leakage of conduction electrons from metals into dielectric or semiconducting coatings yields changes in electron phonon coupling and hybridization with localized states in the coating. The changed electron-phonon coupling explains the observed strengthened superconducting interaction with some monolayer thick coating. The hybridization with localized states, i.e. resonance scattering, yields pair weakening and hence a monotonic depression of superconductivity with coating thickness in agreement with experiments. The latter effect explains quantitatively the Tsub(c) and Δ depression (Δ/kTsub(c) approximately equal to const) and a decrease in the Maki-Thompson-fluctuation term observed with thin superconducting films. (author)

  15. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  16. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  17. A plane-wave final-state theory of ATI

    International Nuclear Information System (INIS)

    Parker, J.S.; Clark, C.W.

    1993-01-01

    A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude

  18. Superconduction in limiting-power synchronous generators. State, lines of development, problems

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, H W; Sergl, J

    1976-01-01

    The limiting power of conventional 2-pole rotary current synchronous generators is estimated. The limiting power may be raised by using superconducting materials for the field winding. After a short description of superconductive materials, the construction of a synchronous generator with a superconducting field winding is described. Finally, some problems in calculating the magnetic field and the transient behavior are discussed.

  19. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  20. Structural and physical properties of the NaxCoO2·yH2O superconducting system

    International Nuclear Information System (INIS)

    Shi, Y G; Li, J Q; Yu, H C; Zhou, Y Q; Zhang, H R; Dong, C

    2004-01-01

    The structural features and physical properties of Na x CoO 2 and Na x CoO 2 ·yH 2 O materials have been investigated. The Na x CoO 2 -yH 2 O samples, in general, undergo superconducting transitions at around 3.5 K. Energy dispersive x-ray analyses suggest that our samples have average compositions of Na 0.65 CoO 2 for the parent compounds and Na 0.26 CoO 2 ·yH 2 O for the superconducting oxyhydrates. Transmission electron microscopy observations reveal a new superstructure with wave vector q = in the parent material. This superstructure becomes very weak in the superconducting samples. Electron energy loss spectra analyses show that the Co ions have valence states of around +3.3 in Na 0.65 CoO 2 and around +3.7 in Na 0.26 CoO 2 -yH 2 O

  1. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  2. {sup 119}Sn NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Rajib; Brueckner, Felix; Guenther, Marco; Klauss, Hans-Henning [IFP, TU Dresden (Germany); Petrovic, Cedomir; Wang, Kefeng [CMPMS, BNL, Upton, NY (United States); Luetkens, Hubertus; Biswas, Pabitra; Morenzoni, Elvezio; Amato, Alex [PSI, Villigen (Switzerland)

    2014-07-01

    Ca{sub 3}Ir{sub 4}Sn{sub 13} was found to exhibit superconducting transition with T{sub c} ∼ 7 K. It received considerable attention due to the possible coexistence of superconductivity and ferromagnetic spin fluctuation as well as the three-dimensional charge density wave (CDW) from the superlattice transition. While thermal, transport, and thermodynamic characterization of Ca{sub 3}Ir{sub 4}Sn{sub 13} single crystals suggest that it is a weakly correlated nodeless superconductor, recent μSR investigation reveals that the electron-phonon pairing interaction is in the strong-coupling limit. Here we present {sup 119}Sn NMR investigations on Ca{sub 3}Ir{sub 4}Sn{sub 13} polycrystalline samples and discuss the symmetry of the superconducting order parameter together with the normal state properties. Our preliminary results of spin-lattice relaxation rate (1/T{sub 1}) indicate that this is a BCS superconductor with weak-coupling limit.

  3. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  4. Imaging of current distributions in superconducting thin film structures

    International Nuclear Information System (INIS)

    Doenitz, D.

    2006-01-01

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices

  5. Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures

    International Nuclear Information System (INIS)

    Izyumov, Yurii A; Proshin, Yurii N; Khusainov, Mensur G

    2002-01-01

    The mutual influence of superconductivity and magnetism in F/S systems, i.e. systems of alternating ferromagnetic (F) and superconducting (S) layers, is comprehensively reviewed. For systems with ferromagnetic metal (FM) layers, a theory of the proximity effect in the dirty limit is constructed based on the Usadel equations. For an FM/S bilayer and an FM/S superlattice, a boundary-value problem involving finite FM/S boundary transparency and the diffusion and wave modes of quasi-particle motion is formulated; and the critical temperature T c is calculated as a function of FM- and S-layer thicknesses. A detailed analysis of a large amount of experimental data amply confirms the proposed theory. It is shown that the superconducting state of an FM/S system is a superposition of two pairing mechanisms, Bardin - Cooper - Schrieffer's in S layers and Larkin - Ovchinnikov - Fulde - Ferrell's in FM ones. The competition between ferromagnetic and antiferromagnetic spontaneous moment orientations in FM layers is explored for the 0- and π-phase superconductivity in FM/S systems. For FI/S structures, where FI is a ferromagnetic insulator, a model for exchange interactions is proposed, which, along with direct exchange inside FI layers, includes indirect Ruderman - Kittel - Kasuya - Yosida exchange between localized spins via S-layer conduction electrons. Within this framework, possible mutual accommodation scenarios for superconducting and magnetic order parameters are found, the corresponding phase diagrams are plotted, and experimental results are explained. The results of the theory of the Josephson effect for S/F/S junctions are presented and the application of the theory of spin-dependent transport to F/S/F junctions is discussed. Application aspects of the subject are examined. (reviews of topical problems)

  6. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    Science.gov (United States)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  7. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  8. Superconductivity induced by interfacial coupling to magnons

    Science.gov (United States)

    Rohling, Niklas; Fjærbu, Eirik Løhaugen; Brataas, Arne

    2018-03-01

    We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-magnon interaction induces electron-electron interactions, which in turn can result in p -wave superconductivity. We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO trilayers require a lower temperature, in the range from 0.01 to 1 K.

  9. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  10. Magnetism and unconventional superconductivity in CenMmIn3n+2m heavy-fermion crystals

    International Nuclear Information System (INIS)

    Thompson, J.D.; Nicklas, M.; Bianchi, A.; Movshovich, R.; Llobet, A.; Bao, W.; Malinowski, A.; Hundley, M.F.; Moreno, N.O.; Pagliuso, P.G.; Sarrao, J.L.; Nakatsuji, S.; Fisk, Z.; Borth, R.; Lengyel, E.; Oeschler, N.; Sparn, G.; Steglich, F.

    2003-01-01

    We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce n M m In 3n+2m (M=Co,Rh,Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point

  11. Multiband superconductivity in heavy fermion compound CePt3Si without inversion symmetry. An NMR study on a high-quality single crystal

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Nishide, Sachihiro; Harada, Atsushi

    2009-01-01

    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c =0.46 K that is lower than T c - 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T c =0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N - 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt 3 Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T 1 just below T c reported before [Yogi et al. (2004)] is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state. (author)

  12. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  13. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  14. Superconductivity in palladium-doped 2H-TaS2

    Science.gov (United States)

    Zhou, M. H.; Li, X. C.; Dong, C.

    2018-06-01

    A series of Pd x TaS2 (0.01 ≤ x ≤ 0.08) samples were prepared and characterized via scanning electron microscope, x-ray powder diffraction, resistivity, magnetization and specific heat measurements. The lattice parameter c associated with the interlayer distance increases monotonically with the Pd content while the parameter a remains essentially constant. The crystal structure of Pd0.08TaS2 has been determined and refined by Rietveld refinement. Pd0.08TaS2 is hexagonal (space group: P31c) with lattice parameters a = 3.3151(1) Å, c = 12.1497(9) Å. The superconducting transition temperature T c (0.8 K) of TaS2 can be dramatically enhanced by Pd doping, and the maximum T c of 4.2 K, about five times the T c of pure TaS2, is obtained in Pd0.04TaS2. We have determined the superconducting parameters of Pd0.04TaS2, and found that the enhancement of T c can be attributed to the increase of density of states at the Fermi level. The charge density wave (CDW) of TaS2 is gradually suppressed with Pd doping and disappears in Pd0.06TaS2. This suggests that there is a competitive interplay between superconductivity and CDW in this system.

  15. Interplay of charge density wave and spin density wave in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2008-01-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters

  16. Strong-coupling superconductivity in the two-dimensional t-J model supplemented by a hole-phonon interaction

    International Nuclear Information System (INIS)

    Sherman, A.; Schreiber, M.

    1995-01-01

    We use the Eliashberg formalism for calculating T c in a model of cuprate perovskites with pairing mediated by both magnons and apex-oxygen vibrations. The influence of strong correlations on the energy spectrum is taken into account in the spin-wave approximation. It is shown that the hole-magnon interaction alone cannot yield high T c . But together with a moderate hole-phonon interaction it does lead to d-wave superconductivity at temperatures and hole concentrations observed in cuprates. High T c are connected with a large density of states due to extended Van Hove singularities, a conformity of the two interactions for the d symmetry, and high phonon frequencies

  17. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    Science.gov (United States)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  18. Specific heat of FeSe: Two gaps with different anisotropy in superconducting state

    Science.gov (United States)

    Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.

    2018-05-01

    We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.

  19. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  20. On a possibility of cold fusion in deuterium-saturated YBa2Cu3O7-x ceramics in superconducting state

    International Nuclear Information System (INIS)

    Lipson, A.G.; Sakov, D.M.; Toporov, Yu.P.; Gromov, V.V.; Deryagin, B.V.

    1991-01-01

    A possibility to generate neutrons by deuterated YBa 2 Cu 3 O 7-x ceramics in superconducting (T c ) and normal (T>T c ) states is studied. The presented data points to a relationship between the processes of cold nuclear fusion and high-temperature superconductivity in YBa 2 Cu 3 O 7-x pellets deuterated at T c (77< T<90 K)

  1. Ab initio investigation of superconductivity in orthorhombic MgPtSi

    Energy Technology Data Exchange (ETDEWEB)

    Tütüncü, H.M., E-mail: tutuncu@sakarya.edu.tr [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Sakarya Üniversitesi, BIMAYAM Biyomedikal, Manyetik ve Yarıiletken Malzemeler Araştırma Merkezi, 54187, Adapazarı (Turkey); Ertuǧrul Karaca [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Srivastava, G.P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2016-07-15

    We have performed an ab initio study of electronic, vibrational and superconducting properties of the orthorhombic MgPtSi by employing the density functional theory, a linear-response formalism, and the plane-wave pseudopotential method. Our electronic results suggest that the density of states at the Fermi level is primarily contributed by Pt 5d and Si 3p states with much smaller contribution from Mg electronic states. Phonon anomalies have been found for all three acoustic branches. Due to these phonon anomalies, the acoustic branches make large contributions to the average electron-phonon coupling parameter. From the Eliashberg spectral function, the value of average electron-phonon coupling parameter is found to 0.707. Using this value, the superconducting critical temperature is obtained to be 2.4 K, in excellent accordance with its experimental value of 2.5 K. - Highlights: • The electronic structure of MgPtSi is studied using ab initio pseudopotential method. • Phonons and electron–phonon interaction in MgPtSi are studied using a linear response theory. • The acoustic phonon modes couple more strongly with electrons. • The value of λ is found to be 0.707 which shows that MgPtSi is a conventional honon-mediated superconductor. • The calculated T{sub c} of 2.4 K is in excellent accordance with its experimental value of 2.5 K.

  2. Derivation and solution of a time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter

    International Nuclear Information System (INIS)

    Esrick, M.A.

    1981-01-01

    A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors

  3. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  4. A high gradient superconducting quadrupole for a low charge state ion linac

    International Nuclear Information System (INIS)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-01-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described

  5. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  6. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  7. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  8. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  9. Feshbach shape resonance for high Tc superconductivity in superlattices of nanotubes

    International Nuclear Information System (INIS)

    Bianconi, Antonio

    2006-01-01

    The case of a Feshbach shape resonance in the pairing mechanism for high T c superconductivity in a crystalline lattice of doped metallic nanotubes is described. The superlattice of doped metallic nanotubes provides a superconductor with a strongly asymmetric gap. The disparity and different spatial locations of the wave functions of electrons in different subbands at the Fermi level should suppress the single electron impurity interband scattering giving multiband superconductivity in the clean limit. The Feshbach resonances will arise from the component single-particle wave functions out of which the electron pair wave function is constructed: pairs of wave functions which are time inverse of each other. The Feshbach shape resonance increases the critical temperature by tuning the chemical potential at the Lifshitz electronic topological transition (ETT) where the Fermi surface of one of the bands changes from the one dimensional (1D) to the two dimensional (2D) topology (1D/2D ETT). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  11. Invariants-based shortcuts for fast generating Greenberger–Horne–Zeilinger state among three superconducting qubits

    International Nuclear Information System (INIS)

    Xu Jing; Yu Lin; Wu Jin-Lei; Ji Xin

    2017-01-01

    As one of the most promising candidates for implementing quantum computers, superconducting qubits (SQs) are adopted for fast generating the Greenberger–Horne–Zeilinger (GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators (CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail. (paper)

  12. Thermal mechanisms responsible for the irreversible degradation of superconductivity in commercial superconductors

    Science.gov (United States)

    Romanovskii, V. R.

    2017-08-01

    Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.

  13. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, A C

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  14. Earlier and recent aspects of superconductivity

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Muller, K.A.

    1990-01-01

    Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length

  15. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  16. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    Graphenes transport properties have been extensively studied in the 10 years since its discovery in 2004, with ground-breaking experimental observations such as Klein tunneling, fractional quantum Hall effect and Hofstadters butterfly. Though, so far, it turned out to be rather poor on complex correlated electronic ground states and phase transitions, despite various theoretical predictions. The purpose of this thesis is to help understanding the underlying theoretical and experimental reasons for the lack of strong electronic interactions in graphene, and, employing graphenes high tunability and versatility, to identify and alter experimental parameters that could help to induce stronger correlations. In particular graphene holds one last, not yet experimentally discovered prediction, namely exhibiting intrinsic superconductivity. With its vanishingly small Fermi surface at the Dirac point, graphene is a semi-metal with very weak electronic interactions. Though, if it is doped into the metallic regime, where the size of the Fermi surface becomes comparable to the size of the Brillouin zone, the density of states becomes sizeable and electronic interactions are predicted to be dramatically enhanced, resulting in competing correlated ground states such as superconductivity, magnetism and charge density wave formation. Following these predictions, this thesis first describes the creation of metallic graphene at high carrier doping via electrostatic doping techniques based on electrolytic gates. Due to graphenes surface only properties, we are able to induce carrier densities above n>1014 cm-2 (epsilonF>1eV) into the chemically inert graphene. While at these record high carrier densities we yet do not observe superconductivity, we do observe fundamentally altered transport properties as compared to semi-metallic graphene. Here, detailed measurements of the low temperature resistivity reveal that the electron-phonon interactions are governed by a reduced, density

  17. Heat Transport as a Probe of Superconducting Gap Structure

    International Nuclear Information System (INIS)

    Petrovic, C.; Shakeripour, H.; Taillefer, L.

    2009-01-01

    The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. The presence of nodes in the gap function imposed by symmetry implies an unconventional order parameter, other than s-wave. Here we show how measurements of the thermal conductivity at very low temperature can be used to determine whether such nodes are present in a particular superconductor, and shed light on their nature and location. We focus on the residual linear term at T → 0. A finite value in zero magnetic field is strong evidence for symmetry-imposed nodes, and the dependence on impurity scattering can distinguish between a line of nodes or point nodes. Application of a magnetic field probes the low-energy quasiparticle excitations, whether associated with nodes or with a small value of the gap on some part of the Fermi surface, as in a multi-band superconductor. We frame our discussion around archetypal materials: Nb for s-wave, Tl 2 Ba 2 CuO 6+δ for d-wave, Sr 2 RuO 4 for p-wave, and NbSe 2 for multi-band superconductivity. In that framework, we discuss three heavy-fermion superconductors: CeIrIn 5 , CeCoIn 5 and UPt 3 .

  18. Fault-current limiter using a superconducting coil

    International Nuclear Information System (INIS)

    Boenig, H.J.; Paice, D.A.

    1982-01-01

    A novel circuit, consisting of solid-state diodes and a biased superconducting coil, for limiting the fault currents in three-phase ac systems is presented. A modification of the basic circuit results in a solid-state ac breaker with current-limiting features. The operating characteristics of the fault-current limiter and the ac breaker are analyzed. An optimization procedure for sizing the superconducting coil is derived

  19. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  20. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  1. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  2. Interplay of charge density wave and spin density wave in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in

    2008-12-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.

  3. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  4. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  5. Switching, storage, and erasure effects in a superconducting thin film

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1976-01-01

    Thin niobium films can be switched from a superconducting to a resistive state permanently by application of a short electrical pulse. Application of a short pulse of opposite polarity returns the film to the superconducting state

  6. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  7. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  8. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  9. Superconducting RF Development at Nuclear Science Centre

    CERN Document Server

    Roy, Amit

    2005-01-01

    A Superconducting Linac is being installed as a booster for the 15 UD Pelletron accelerator at Nuclear Science Centre (NSC). The accelerating structure for this linac is a Nb QWR cavity, designed and fabricated as a joint collaboration between NSC and ANL, USA. Initial cavities required for the first linac module were fabricated at ANL. For fabrication of cavities required for future modules a Superconducting Resonator Fabrication Facility has been set up at NSC. Three quarter wave resonator (QWR) cavities have been fabricated using the in-house facility. This facility has been used for repairs on the resonators which sprung leaks. Fabrication of fifteen resonators for the second and third linac modules is under progress. Eight resonators along with a superconducting solenoid has been installed in the first linac cryostat and tested for energy gain with a pulsed beam of 90 MeV Si from the Pelletron. Acceleration of the ions to 96 MeV was measured downstream and beam transmission through the linac was measured...

  10. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  11. The study of superconducting order parameter dynamics

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1988-01-01

    Flux quantization experiments have demonstrated the importance of long range phase coherence in the description of the superconducting state, an idea originally proposed as an integral part of the phenomenological theory of the Meissner-Ochsenfeld effect. The most striking experimental demonstration of the phase coherence of the superconducting state is that the maximum dc Josephson current in a thin-film tunneling junction exhibits a Fraunhofer-like dependence on magnetic field

  12. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  13. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  14. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  15. Magnetization Controlled Superconductivity in a Film with Magnetic Dots

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.; Pokrovsky, V.; Pokrovsky, V.

    1998-01-01

    We consider a superconducting film with a magnetic dots array (MDA) placed upon it. Magnetic moments of the dots are normal to the film and strong enough to create vortices in the superconducting film. Magnetic interaction between dots is negligible. Zero-field cooling leads to random magnetization of the MDA well above the superconducting temperature. With this cooling, the film is in a resistive state below the (expected) superconducting transition. Paradoxically, when field cooled, the film with MDA can be superconducting. copyright 1998 The American Physical Society

  16. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  17. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  18. Geometrical resonance effects in thin superconducting films

    International Nuclear Information System (INIS)

    Nedellec, P.

    1977-01-01

    Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr

  19. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  20. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  1. From optics to superconductivity. Many body effects in transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Roesner, Malte; Schoenhoff, Gunnar; Wehling, Tim [Institute for Theoretical Physics, University of Bremen (Germany); Bremen Center for Computational Material Sciences, University of Bremen (Germany); Steinhoff, Alexander; Jahnke, Frank; Gies, Christopher [Institute for Theoretical Physics, University of Bremen (Germany); Haas, Stephan [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States)

    2015-07-01

    We discuss many body effects in MoS{sub 2} ranging from optical properties to the emergence superconductivity (SC) and charge density wave phases (CDW). Combining ab-initio theory and semiconductor Bloch equations we show that excited carriers cause a redshift of the excitonic ground-state absorption line, while higher excitonic lines disappear successively due to a huge Coulomb-induced band gap shrinkage of more than 500 meV and concomitant exciton binding-energy reductions. Upon strong charge doping, we observe a succession of semiconducting, metallic, SC, and CDW regimes. Both, the SC and the CDW instabilities trace back to a Kohn anomaly and related softening of Brillouin zone boundary phonons.

  2. Detection of Resistive Transitions in LHC Superconducting Components

    CERN Document Server

    Denz, R

    2001-01-01

    The LHC has entered the construction phase. It will incorporate a large number of superconducting components like magnets, current leads and busbars. All these components require protection means in case of a transition from the superconducting to the resistive state, the so-called quench. Key elements in the protection system are electronic quench detectors, which have to be able to identify a quench in any state of the powering cycle of the accelerator. According to the different properties and characteristics of the superconducting elements and circuits, a set of quench detectors adapted to their specific tasks has been developed.

  3. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  4. Theories of superconductivity (a few remarks)

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1992-01-01

    The early history in the development of superconductivity. Idea of pairing, Schafroth and BCS types of theories. Some remarks on present state of the microscopical theory of high-temperature superconductors (HTSC). Mean field macroscopic theory of superconductivity and its specific features in HTSC. About generalized macroscopic theory applicable in critical region. Concluding remarks. (orig.)

  5. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  6. INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER

    NARCIS (Netherlands)

    GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D

    1994-01-01

    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  7. Use of high-temperature superconducting films in superconducting bearings

    International Nuclear Information System (INIS)

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  8. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Science.gov (United States)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  9. Method of distinction of pure d-wave state from the mixed state in HTSC

    International Nuclear Information System (INIS)

    Filatova, Tatiana; Brusov, Peter; Brusov, Pavel; Lee, Chong; Chaudhury, Ranjan

    2009-01-01

    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the study of the collective excitations in these systems very important. One remaining question is the exact form of the order parameter of unconventional superconductors. Extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states are among possibilities. We have considered the mixtures of d x 2 - y 2 and d xy states in high temperature superconductors (HTSC) and have, for the first time, derived the full set of equations for the collective mode spectrum in the mixed d-wave state with an arbitrary admixture of d xy state. The results we have obtained will allow us to calculate the whole collective mode spectrum, which may then be used for interpretation of sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, this will allow one to estimate the extent of admixture of d xy state in the possible mixed state.

  10. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  11. Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry

    International Nuclear Information System (INIS)

    Izyumov, Yurii A

    1999-01-01

    The notion that electrons in high-T c cuprates pair via antiferromagnetic spin fluctuations is discussed and the symmetry of the superconducting order parameter is analyzed. Three approaches to the problem, one phenomenological (with an experimental dynamic magnetic susceptibility) and two microscopic (involving, respectively, the Hubbard model and the tJ-model) are considered and it is shown that in each case strong-coupling theory leads to a d-wave order parameter with zeros at the Fermi surface. The review then proceeds to consider experimental techniques in which the d-symmetry of the order parameter may manifest itself. These include low-temperature thermodynamic measurements, measurements of the penetration depth and the upper critical field, Josephson junction experiments to obtain the phase of the superconducting order parameter, and various spectroscopic methods. The experimental data suggest that the order parameter in cuprates is d x 2 -y 2 -wave. Ginzburg-Landau theory for a superconductor with a d-wave order parameter is outlined and both an isolated vortex and a vortex lattice are investigated. Finally, some theoretical aspects of the effects of nonmagnetic impurities on a d-wave superconductor are considered. (reviews of topical problems)

  12. Observation of Momentum-Confined In-Gap Impurity State in Ba_{0.6}K_{0.4}Fe_{2}As_{2}: Evidence for Antiphase s_{±} Pairing

    Directory of Open Access Journals (Sweden)

    P. Zhang

    2014-07-01

    Full Text Available We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba_{0.6}K_{0.4}Fe_{2}As_{2} and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave-vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak scattering between bands with opposite sign of the superconducting-gap phase. This weak scattering, likely due to off-plane nonmagnetic (Ba, K disorder, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting-gap phase changes sign within holelike (and electronlike bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.

  13. Tunneling processes into localized subgap states in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2016-07-01

    The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.

  14. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Science.gov (United States)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  15. Quantum memory for superconducting qubits

    International Nuclear Information System (INIS)

    Pritchett, Emily J.; Geller, Michael R.

    2005-01-01

    Many protocols for quantum computation require a memory element to store qubits. We discuss the speed and accuracy with which quantum states prepared in a superconducting qubit can be stored in and later retrieved from an attached high-Q resonator. The memory fidelity depends on both the qubit-resonator coupling strength and the location of the state on the Bloch sphere. Our results show that a quantum memory demonstration should be possible with existing superconducting qubit designs, which would be an important milestone in solid-state quantum information processing. Although we specifically focus on a large-area, current-biased Josesphson-junction phase qubit coupled to the dilatational mode of a piezoelectric nanoelectromechanical disk resonator, many of our results will apply to other qubit-oscillator models

  16. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  17. Observation of moving wave packets reveals their quantum state

    International Nuclear Information System (INIS)

    Leonhardt, U.; Raymer, M.G.

    1996-01-01

    We show how to infer the quantum state of a wave packet from position probability distributions measured during the packet close-quote s motion in an arbitrary potential. We assume a nonrelativistic one-dimensional or radial wave packet. Temporal Fourier transformation and spatial sampling with respect to a newly found set of functions project the density-matrix elements out of the probability distributions. The sampling functions are derivatives of products of regular and irregular wave functions. We note that the ability to infer quantum states in this way depends on the structure of the Schroedinger equation. copyright 1996 The American Physical Society

  18. Emergence of advance waves in a steady-state universe

    International Nuclear Information System (INIS)

    Hobart, R.H.

    1979-01-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state

  19. Spectral dimensionality of random superconducting networks

    International Nuclear Information System (INIS)

    Day, A.R.; Xia, W.; Thorpe, M.F.

    1988-01-01

    We compute the spectral dimensionality d of random superconducting-normal networks by directly examining the low-frequency density of states at the percolation threshold. We find that d = 4.1 +- 0.2 and 5.8 +- 0.3 in two and three dimensions, respectively, which confirms the scaling relation d = 2d/(2-s/ν), where s is the superconducting exponent and ν the correlation-length exponent for percolation. We also consider the one-dimensional problem where scaling arguments predict, and our numerical simulations confirm, that d = 0. A simple argument provides an expression for the density of states of the localized high-frequency modes in this special case. We comment on the connection between our calculations and the ''termite'' problem of a random walker on a random superconducting-normal network and point out difficulties in inferring d from simulations of the termite problem

  20. Superconductivity of Ba8Si46-xGax clathrates

    Science.gov (United States)

    Li, Yang; Zhang, Ruihong; Chen, Ning; Ma, Xingqiao; Cao, Guohui; Luo, Z. P.; Hu, C. R.; Ross, Joseph H., Jr.

    2007-03-01

    We have presented a combined experimental and theoretical study of the effect of Gallium substitution on the superconductivity of the type I clathrate Ba8Si46-xGax. In Ga-doped clathrates, the Ga state is found to be strongly hybridized with the cage conduction-band state. Ga substitution results in a shift toward to a lower energy, a decrease of density of states at Fermi level, a lowering of the carrier concentration and a breakage of integrity of the sp3 hybridized networks. These play key roles in the suppression of superconductivity. For Ba8Si40Ga6, the onset of the superconducting transition occurs at Tc=3.3 K. The investigation of the magnetic superconducting state shows that Ba8Si40Ga6 is a type II superconductor. The critical magnetic fields were measured to be Hc1=35 Oe and Hc2=8.5 kOe. Our estimate of the lectron-phonon coupling reveals that Ba8Si40Ga6 is a moderate phonon-mediated BCS superconductor.

  1. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  2. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  3. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  4. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  5. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  6. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  7. Electronic properties of high-Tc superconductors. The normal and the superconducting state of high-Tc materials. Proceedings

    International Nuclear Information System (INIS)

    Kuzmany, H.; Mehring, M.; Fink, J.

    1993-01-01

    The International Winter School on Electronic Properties of High-Temperature Superconductors, held between March 7-14, 1992, in Kirchberg, (Tyrol) Austria, was the sixth in a series of meetings to be held at this venue. Four of the earlier meetings were dedicated to issues in the field of conducting polymers, while the winter school held in 1990 was devoted to the new discipline of high-Tc superconductivity. This year's meeting constituted a forum not only for the large number of scientists engaged in high-Tc research, but also for those involved in the new and exciting field of fullerenes. Many of the issues raised during the earlier winter schools on conducting polymers, and the last one on high-Tc superconductivity, have taken on a new significance in the light of the discovery of superconducting C 60 materials. The Kirchberg meetings are organized in the style of a school where experienced scientists from universities, research laboratories and industry have the opportunity to discuss their most recent results, and where students and young scientists can learn about the present status of research and applications from some of the most eminent workers in their field. In common with the previous winter school on high-Tc superconductors, the present one focused on the electronic properties of the cuprate superconductors. In addition, consideration was given to related compounds which are relevant to the understanding of the electronic structure of the cuprates in the normal state, to other oxide superconductors and to fulleride superconductors. Contributions dealing with their preparation, transport and thermal properties, high-energy spectroscopies, nuclear magnetic resonance, inelastic neutron scattering, and optical spectroscopy are presented in this volume. The theory of the normal and superconducting states also occupies a central position. (orig.)

  8. Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads

    Science.gov (United States)

    Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.

    2014-03-01

    It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.

  9. Impurity effects in superconducting UPt3

    International Nuclear Information System (INIS)

    Aronson, M.C.; Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M.; Smith, J.L.

    1991-01-01

    Superconducting UPt 3 is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at T c1 and T c2 in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt 3 . Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. T c1 is depressed by both dopants, but more effectively by Pd. |T c1 - T c2 | is essentially unaffected by Y doping, but increases dramatically with Pd doping

  10. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  11. Numerical solution of critical state in superconductivity by finite element software

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Campbell, A M; Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2006-12-15

    A numerical method is proposed to analyse the electromagnetic behaviour of systems including high-temperature superconductors (HTSCs) in time-varying external fields and superconducting cables carrying AC transport current. The E-J constitutive law together with an H-formulation is used to calculate the current distribution and electromagnetic fields in HTSCs, and the magnetization of HTSCs; then the forces in the interaction between the electromagnet and the superconductor and the AC loss of the superconducting cable can be obtained. This numerical method is based on solving the partial differential equations time dependently and is adapted to the commercial finite element software Comsol Multiphysics 3.2. The advantage of this method is to make the modelling of the superconductivity simple, flexible and extendable.

  12. New developments on transition radiation detectors using superconducting granules

    International Nuclear Information System (INIS)

    Yuan, L.C.L.

    1977-01-01

    By raising slightly either the temperature or the magnetic field to above that of the critical temperature or the critical magnetic field, the type I superconducting granules would still remain in the superconducting state which becomes a metastable state and is called the superheated superconducting state. If a relativistic charged particle incident on such a granule which is located in a colloidal suspension has imported to it an energy that is above the threshold energy (for state flipping) of the granule then it would flip to the normal state. The threshold energy of a granule is a function of the square of its radius, whereas the energy loss of a charged particle due to ionization is linearly proportional to the radius. The size of the granule can be pre-determined to be such that its threshold energy is slightly above the ionization loss of a relativistic charged particle. Then the traversal of the charged particle through such a granule would not affect the superconducting state of the granule unless a transition x-ray radiation is emitted at the surface of the granule by the traversing particle and the x-ray transition radiation is immediately absorbed either in total or partially by the metallic granule causing it to flip to the normal state. The total intensity of the x-ray transition radiation is linearly proportional to the Lorentz factor γ of the traversing particle, and the number of granules flipped would also be a measure of γ. Three methods for detecting the flipping of granules from the superconducting state to the normal state are described. They include the frequency measuring method, the SQUID method, and the pulse method with low noise amplifier system

  13. Development of 50 MVA superconducting generator

    International Nuclear Information System (INIS)

    Ueda, Kiyotaka; Maki, Naoki; Takahashi, Noriyoshi; Ogata, Hisanao; Sanematsu, Toshihiro.

    1984-01-01

    Superconducting synchronous generators are expected to be the large capacity turbogenerators of next generation, but they have the structural features considerably different from conventional generators, such as low temperature multiple cylinder rotors and air gap armature winding. For the purpose of grasping the performance of superconducting generators and establishing the fundamental technology for their practical use, Hitachi Ltd. manufactured a 50 MVA superconducting generator. As the results of test, the precooling operation was smoothly finished for about 40 hours, and the superconducting rotor rotated stably at 3000 rpm. The steady and transient electrical characteristics were able to be grasped. It is intended to reflect these results to the development of a practical generator of 500 MVA class expected as the next step. When the superconducting exciting winding cooled by liquid helium is used, the reduction of weight, the improvement of efficiency and the improvement of the stability of power system can be expected. The structural features and the function of superconducting generators, the present state of the development in the world, the outline of the 50 MVA generator, the test results and the problems and the prospect hereafter are reported. The superconducting winding was made of NbTiZr alloy multicore wires. (Kako, I.)

  14. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  15. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  16. Photoemission and the origin of high temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M. R.; Randeria, M.; Janko, B.; Campuzano, J. C.

    2000-01-01

    The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered

  17. Meissner effect in superconducting microtraps

    International Nuclear Information System (INIS)

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  18. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  19. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  20. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  1. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  2. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...

  3. Chiral classical states in a rhombus and a rhombi chain of Josephson junctions with two-band superconducting elements

    CERN Document Server

    Dias, R G; Coutinho, B C; Martins, L P

    2014-01-01

    We present a study of Josephson junctions arrays with two-band superconducting elements in the highcapacitance limit. We consider two particular geometries for these arrays: a single rhombus and a rhombi chain with two-band superconducting elements at the spinal positions. We show that the rhombus shaped JJ circuit and the rhombi chain can be mapped onto a triangular JJ circuit and a JJ two-leg ladder, respectively, with zero effective magnetic flux, but with Josephson couplings that are magnetic flux dependent. If the two-band superconductors are in a sign-reversed pairing state, one observes transitions to or from chiral phase configurations in the mapped superconducting arrays when magnetic flux or temperature are varied. The phase diagram for these chiral configurations is discussed. When half-flux quantum threads each rhombus plaquette, new phase configurations of the rhombi chain appear that are characterized by the doubling of the periodicity of the energy density along the chain, with every other two-...

  4. Superconducting specific heat jump Δ C ∝ T{sub c}{sup β} (β ∝ 2) and gapless Fermi surfaces in K{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Grinenko, V.; Efremov, D.V.; Drechsler, S.L.; Aswartham, S.; Gruner, D.; Roslova, M.; Morozov, I.; Nenkov, K.; Wolter, A.U.B. [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden (Germany); Wurmehl, S.; Buechner, B. [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden (Germany); Holzapfel, B. [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden (Germany); Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2014-07-01

    We present a systematic study of the electronic specific heat jump (Δ C{sub el}) at the superconducting transition temperature T{sub c} of K{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}. Both T{sub c} and Δ C{sub el} monotonously decrease with increasing x. The jump scales approximately with a novel power-law: Δ C{sub el} ∝ T{sub c}{sup β} with β ∼ 2 determined by the impurity scattering rate. This finding is in sharp contrast to most of all iron-pnictide superconductors with a cubic Bud'ko-Ni-Canfield (BNC) scaling. Our observations, also, suggests that disorder diminishes the small gaps leading to partial gapless superconductivity which results in a large residual Sommerfeld coefficient in the superconducting state for x > 0. Both T-dependence of C{sub el}(T) in the superconducting state and the nearly quadratic scaling of Δ C{sub el} at T{sub c} are well described by the Eliashberg-theory for a single-band d-wave superconductor with weak pair-breaking due to nonmagnetic impurities having reduced the density of superconducting quasi-particles.

  5. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    screening layers to suppress the stray field effect, the concentration of the ferromagnetic component in the alloy should be high enough to avoid the generation of non-magnetic/paramagnetic layers. Paramagnetic layers induce pair breaking, thus reducing the quantum-mechanical transparency T{sub F} for the Cooper pair wave function at the FM/SC interface. 3. Ferromagnetic alloys should be chosen as to achieve a better band structure match between the ferromagnetic component and the superconductor. Thereby, T{sub F} will be increased, augmenting the SSV effect. 4. The distance between FM1 and FM2, i.e. the thickness of the superconductor d{sub S}, should be of the order of the Cooper pair coherence length ξ{sub S} ∼ d{sub S}. Ideally, (ξ{sub S})/(d{sub S}) ∼ 1 or larger (see 125), since then the Cooper pair wave function is most effectively influenced by both magnetic layers FM1 and FM2. In the AFM/FM/SC/FM heterostructures, which we prepared according to these guidelines, we could observe satisfying switching characteristics, and SSV effects up to ΔT{sub S} = 20 mK. In this study we have verified the magnetic and superconducting properties of the unusual sample containing a [Fe(2ML)/V(180ML)] superlattice by means of conventional SQUID magnetometry as well as polarized neutron scattering (PNR) method. In the PNR we found a magnetic splitting in the PNR curves for the normal and superconducting state of the sample. Further we found weak indications for a reduction of the magnetic splitting beyond the error bars in the superconducting state compared to the normal conducting state of the sample, what can be considered as a weak indication of the Inverse Proximity effect. However, the measured spin asymmetry difference of the magnetic splitting between the superconducting and normal conducting state of the sample is not clear enough to give an unambiguous answer on the presence or absence of the inverse proximity effect.

  6. State of development of superconducting turbogenerators

    International Nuclear Information System (INIS)

    Intichar, L.

    1995-01-01

    Two projects are reported intended to finally establish the necessary knowledge and results for product development, superconducting generators for power plant applications. One project is a German activity, focusing on two generator design models, and the other is a Japanese project. The project progress achieved in Japan is expected to lead within the next three years to successful completion and to a 70 MW generator demonstrating the feasibility of the technology, and its application to considerably higher power ranges. (orig./MM) [de

  7. Thin-film superconducting rings in the critical state: the mixed boundary value approach

    Science.gov (United States)

    Brambilla, Roberto; Grilli, Francesco

    2015-02-01

    In this paper, we describe the critical state of a thin superconducting ring (and of a perfectly conducting ring as a limiting case) as a mixed boundary value problem. The disc is characterized by a three-part boundary division of the positive real axis, so this work is an extension of the procedure used in a previous work of ours for describing superconducting discs and strips, which are characterized by a two-part boundary division of the real axis. Here, we present the mathematical tools to solve this kind of problems—the Erdélyi-Kober operators—in a frame that can be immediately used. Contrary to the two-part problems considered in our previous work, three-part problems do not generally have analytical solutions and the numerical work takes on a significant heaviness. Nevertheless, this work is remunerated by three clear advantages: firstly, all the cases are afforded in the same way, without the necessity of any brilliant invention or ability; secondly, in the case of superconducting rings, the penetration of the magnetic field in the internal/external rims is a result of the method itself and does not have to be imposed, as it is commonly done with other methods presented in the literature; thirdly, the method can be extended to investigate even more complex cases (four-part problems). In this paper, we consider the cases of rings in uniform field and with transport current, with or without flux trapping in the hole and the case without net current, corresponding to a cut ring (washer), as used in some SQUID applications.

  8. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  9. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  10. Superconductivity, Mott-Hubbard states, and molecular orbital order in intercalated fullerides

    CERN Document Server

    Iwasa, Y

    2003-01-01

    This article reviews the current status of chemically doped fullerene superconductors and related compounds, with particular focus on Mott-Hubbard states and the role of molecular orbital degeneracy. Alkaline-earth metal fullerides produce superconductors of several kinds, all of which have states with higher valence than (C sub 6 sub 0) sup 6 sup - , where the second lowest unoccupied molecular orbital (the LUMO + 1 state) is filled. Alkali-metal-doped fullerides, on the other hand, afford superconductors only at the stoichiometry A sub 3 C sub 6 sub 0 (A denotes alkali metal) and in basically fcc structures. The metallicity and superconductivity of A sub 3 C sub 6 sub 0 compounds are destroyed either by reduction of the crystal symmetry or by change in the valence of C sub 6 sub 0. This difference is attributed to the narrower bandwidth in the A sub 3 C sub 6 sub 0 system, causing electronic instability in Jahn-Teller insulators and Mott-Hubbard insulators. The latter metal-insulator transition is driven by...

  11. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  12. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  13. Superconductivity in Washington, D.C

    International Nuclear Information System (INIS)

    Ritter, D.

    1988-01-01

    The author provides insights into the federal government's activity in superconductors. He says the President's most important legislative proposal is a change in anti-trust laws to allow businesses to cooperate on joint production ventures. The President has also directed the Department of Energy, the Department of Commerce, the National Aeronautics and Space Administration, the National Science Foundation, and the Department of Defense to establish Superconductivity Research Centers to conduct research and disseminate information. The author says he thinks it is worthwhile to pursue the President's proposal for cooperation with Japan in superconductivity research and development. The author explains why he supports this and other key legislation related to superconductivity. He says if the United States does not do all that it can, as fast as it can, both domestically and internationally, the U.S. could lose the cutting edge of technological and commercial leadership in the latter 20th century and the 21st century. This is what superconductivity represents

  14. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  15. Multiple scroll wave chimera states

    Science.gov (United States)

    Maistrenko, Volodymyr; Sudakov, Oleksandr; Osiv, Oleksiy; Maistrenko, Yuri

    2017-06-01

    We report the appearance of three-dimensional (3D) multiheaded chimera states that display cascades of self-organized spatiotemporal patterns of coexisting coherence and incoherence. We demonstrate that the number of incoherent chimera domains can grow additively under appropriate variations of the system parameters generating thereby head-adding cascades of the scroll wave chimeras. The phenomenon is derived for the Kuramoto model of N 3 identical phase oscillators placed in the unit 3D cube with periodic boundary conditions, parameters being the coupling radius r and phase lag α. To obtain the multiheaded chimeras, we perform the so-called `cloning procedure' as follows: choose a sample single-headed 3D chimera state, make appropriate scale transformation, and put some number of copies of them into the unit cube. After that, start numerical simulations with slightly perturbed initial conditions and continue them for a sufficiently long time to confirm or reject the state existence and stability. In this way it is found, that multiple scroll wave chimeras including those with incoherent rolls, Hopf links and trefoil knots admit this sort of multiheaded regeneration. On the other hand, multiple 3D chimeras without spiral rotations, like coherent and incoherent balls, tubes, crosses, and layers appear to be unstable and are destroyed rather fast even for arbitrarily small initial perturbations.

  16. Effect of disorder on the superconducting properties of materials

    International Nuclear Information System (INIS)

    Brouers, F.; Derenne, M.

    1982-01-01

    The effect of the variation of the density states at the Fermi level on the critical superconductivity temperature TC of transition metal compounds is studied. This paper suggests using the technique of calculating the 5-fold degenerate d-band density of states from a continued fraction extension of a tight-binding Green function to study the relative importance of one dimensionality chain coupling, three dimensional interactions and the effect of disorder on the electronic and superconducting properties of complex phase and in particular A15 phases. The first results obtained for A15 phases density of states indicate that an extension of the suggested method can be of great interest to analyze the effect of disorder on superconductivity properties of complex phases

  17. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  18. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  19. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  20. Superconducting resonators as beam splitters for linear-optics quantum computation.

    Science.gov (United States)

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  1. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  2. Metal-charge density wave coexistence in TTF[Ni(dmit){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, W. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Laboratoire de Physique de la Matière Condensée, Campus Universitaire, Université de Tunis El-Manar, Tunis 2092 (Tunisia); Auban-Senzier, P.; Raffy, H.; Monteverde, M.; Pouget, J.-P. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Pasquier, C.R., E-mail: pasquier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Alemany, P. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Canadell, E. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra (Spain); Valade, L. [Laboratoire de Chimie de Coordination, Route de Narbonne F-31077 Toulouse (France)

    2015-03-01

    We have established a new pressure–temperature phase diagram of TTF[Ni(dmit){sub 2}]{sub 2} based on longitudinal and transverse resistivity measurements under pressure up to 30 kbar. We were able to identify three different charge density wave (CDW) states which all coexist with a metallic state in a wide temperature range and superconductivity at the lowest temperatures. At low pressure, two successive CDW transitions have been clearly identified. These two transitions merge into a single one at 12 kbar. A maximum of this unique CDW transition temperature is observed at 19 kbar.

  3. A superconducting detector for X and gamma imagery

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The magnetic behavior of certain superconducting materials enables metastable states of magnetization to be obtained which can be destroyed by an external perturbation. It is this property of small semiconducting grains that is exploited in the realization of a flat matrix screen for X and gamma ray detection. This solid state matrix screen, which is made of tin grains and superconducting pins provides a directly digitized image suitable for medical and industrial application [fr

  4. Gauges for the Ginzburg-Landau equations of superconductivity

    International Nuclear Information System (INIS)

    Fleckinger-Pelle, J.; Kaper, H.G.

    1995-01-01

    This note is concerned with gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity. The requiations model the state of a superconducting sample in a magnetic field near the critical tempeature. Any two solutions related through a ''gauge transformation'' describe the same state and are physically indistinquishable. This ''gauge invariance'' can be exploited for analtyical and numerical purposes. A new gauge is proposed, which reduces the equations to a particularly attractive form

  5. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  6. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  7. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  8. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  9. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  10. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  11. Stationary states and dynamics of superconducting thin films

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    can handle complex geometries also in a three-dimensional superconducting structure. To include external currents in our modelling we discuss the role of the boundary conditions for the external magnetic field [4]. Finally we show results for the pinning of vortices with controlled impurities....

  12. Parallel magnetic field suppresses dissipation in superconducting nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.; Aranson, Igor S.; Thoutam, Laxman R.; Xiao, Zhi-Li; Berdiyorov, Golibjon R.; Peeters, François M.; Crabtree, George W.; Kwok, Wai-Kwong

    2017-11-13

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  13. Parallel magnetic field suppresses dissipation in superconducting nanostrips.

    Science.gov (United States)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J; Aranson, Igor S; Thoutam, Laxman R; Xiao, Zhi-Li; Berdiyorov, Golibjon R; Peeters, François M; Crabtree, George W; Kwok, Wai-Kwong

    2017-11-28

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo 0.79 Ge 0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  14. Kohn-Luttinger superconductivity in monolayer and bilayer semimetals with the Dirac spectrum

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Mitskan, V. A.; Korovushkin, M. M.

    2014-01-01

    The effect of Coulomb interaction in an ensemble of Dirac fermions on the formation of superconducting pairing in monolayer and bilayer doped graphene is studied using the Kohn-Luttinger mechanism disregarding the Van der Waals potential of the substrate and impurities. The electronic structure of graphene is described using the Shubin-Vonsovsky model taking into account the intratomic, interatomic, and interlayer (in the case of bilayer graphene) Coulomb interactions between electrons. The Cooper instability is determined by solving the Bethe-Saltpeter integral equation. The renormalized scattering amplitude is obtained with allowance for the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction. It plays the role of effective interaction in the Bethe-Salpeter integral equation. It is shown that the allowance for the Kohn-Luttinger renormalizations as well as intersite Coulomb interaction noticeably affects the competition between the superconducting phases with the f-wave and d + id-wave symmetries of the order parameter. It is demonstrated that the superconducting transition temperature for an idealized graphene bilayer with significant interlayer Coulomb interaction between electrons is noticeably higher than in the monolayer case

  15. Superconductive microstrip exhibiting negative differential resistivity

    International Nuclear Information System (INIS)

    Huebener, R.P.; Gallus, D.E.

    1975-01-01

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor-depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current-induced resistive state

  16. The present role of superconductivity in fusion

    International Nuclear Information System (INIS)

    Shimamoto, S.

    1986-01-01

    After completion of large fusion devices in the world, such as JT-60, JET and TFTR, high temperature plasma is proceeding to critical condition for fusion. The devices up to now use mainly conventional magnet. However, for the next generation machine which demonstrates fusion reaction, deuterium-tritium burning, superconducting magnet system is indispensable from view point of both net energy extraction and capacity limitation of power supply. In order to realize such a large and complicated system, a lot of development works is being carried out. This paper describes required parameters of superconducting magnet and helium refrigerator, the state of plasma condition and superconducting magnet. It is shown that the present technology of superconducting magnet is not so far from realization of fusion experimental reactor

  17. Transport relaxation measurements and glassy state effects in superconducting MgB2

    International Nuclear Information System (INIS)

    Olutas, M.; Yetis, H.; Altinkok, A.; Kilic, A.; Kilic, K.

    2008-01-01

    Time dependent effects in superconducting MgB 2 have been studied systematically for the first time by transport relaxation measurements (V-t curves) as a function of transport current (I), temperature (T) and external magnetic field (H). At very low dissipation levels (below ∼1 μV), it was observed that the sample voltage grows up smoothly in time by exhibiting the details of initial stage of relaxation process. At high dissipation levels, steady state corresponding to constant flow rate is maintained within a very short time and monitoring of details of flux dynamic evolving along sample becomes difficult on long time scales. Another interesting behavior is the appearance of voltage peak when the transport current was reduced to a finite value. After peak, it was observed that the sample voltage relaxes smoothly by leveling off within a very short time. The evolution of V-t curves suggests that formation of resistive flow channels along sample develops easily, which is quite similar to that of obtained for the superconducting ceramic samples whose grain boundaries are improved. Time dependent effects were also observed in magnetovoltage measurements (V-H curves) as the field sweep rate (dH/dt) varies. The observations were interpreted mainly in terms of flux trapping in grains

  18. d+s wave superconductivity: analysis of the electronic Raman data of YBa2Cu3O7-δ and other cuprates

    International Nuclear Information System (INIS)

    Nemetschek, R.; Hackl, R.; Opel, M.; Philipp, R.; Beal-Monod, M.T.; Bieri, J.B.; Maki, K.; Erb, A.; Walker, E.

    1998-01-01

    After briefly recalling the d+s model valid for some anisotropic high T c superconductors, we present a theory of electronic Raman spectra in that model and then compare it with new experimental data obtained for an overdoped Y123 single crystal. The d+s model appears to describe satisfactorily the experimental results, indicating a possible doping dependence of the mixing ratio. We note that the Raman spectrum of the overdoped Bi2212 could also be accounted for by the d+s superconductivity model. The case of Hg1212 (or Hg1223) is reexamined. It appears that the spontaneous breakdown of d-wave symmetry may be rather universal in high T c cuprates. (orig.)

  19. Conductivity anisotropy helps to reveal the microscopic structure of a density wave at imperfect nesting

    International Nuclear Information System (INIS)

    Grigoriev, P.D.; Kostenko, S.S.

    2015-01-01

    Superconductivity or metallic state may coexist with density wave ordering at imperfect nesting of the Fermi surface. In addition to the macroscopic spatial phase separation, there are, at least, two possible microscopic structures of such coexistence: (i) the soliton-wall phase and (ii) the ungapped Fermi-surface pockets. We show that the conductivity anisotropy allows us to distinguish these two microscopic density-wave structures. The results obtained may help to analyze the experimental observations in layered organic metals (TMTSF) 2 PF 6 , (TMTSF) 2 ClO 4 , α-(BEDT-TTF) 2 KHg(SCN) 4 and in other compounds

  20. Detection of Resistive Transitions in LHC Superconducting Components

    OpenAIRE

    Denz, R; Rodríguez-Mateos, F

    2001-01-01

    The LHC has entered the construction phase. It will incorporate a large number of superconducting components like magnets, current leads and busbars. All these components require protection means in case of a transition from the superconducting to the resistive state, the so-called quench. Key elements in the protection system are electronic quench detectors, which have to be able to identify a quench in any state of the powering cycle of the accelerator. According to the different properties...

  1. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  2. Unconventional superconductivity in iron pnictides: Magnon mediated pairing

    Science.gov (United States)

    kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban

    2018-02-01

    We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.

  3. University of Washington superconducting booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Amsbaugh, J.F.; Cramer, J.G.; Swanson, H.E.; Trainor, T.A.; Vandenbosch, R.; Weitkamp, W.G.; Will, D.I.

    1985-01-01

    We have begun construction of a superconducting linac designed to accelerate ions from protons through about mass 60. Injected by our 9 MV-terminal tandem van de Graaff accelerator, the linac is expected to double the proton energy and quadruple the energies of heavier ions. The resonators are lead plated copper quarter wave structures. The overall layout and expected performance of the accelerator will be presented, along with a brief status report. 3 refs., 3 figs

  4. Interplay between magnetism and superconductivity in iron based high temperature superconductors

    International Nuclear Information System (INIS)

    Price, Stephen

    2013-01-01

    In this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe 0.95 Co 0.05 ) 2 As 2 have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5,0.5,0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe 0.88 Co 0.12 AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5,0.5,0). The observation of the spin resonance signal supports the s ± symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q AFM =(0.5,0.5,0.5), for temperatures below T N . Above T N and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe 0.5 Te 0.5 polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5,0.5,0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, χ ab ''(Q,ω)∼χ c ''(Q,ω). In Eu(Fe 1-x Co x ) 2 As 2 and EuFe 2 (As 1-x P x ) 2 the effect of impurity doping on the static order of the magnetic lattice of the Eu 2+ -moments has been studied by means of

  5. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  6. State of the art of superconducting fault current limiters and their application to the electric power system

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2013-01-01

    Highlights: ► The state of the art of superconducting fault current limiters is reviewed. ► An innovative concept of FCL is discussed and the potential of MgB 2 is outlined. ► The use of FCL to allow more interconnection of MV bus-bar is discussed. ► The use of FCL to increase the immunity from voltage dips is discussed. ► The use of FCL to integrate more distributed generation is pointed out. -- Abstract: Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered

  7. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  8. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    Science.gov (United States)

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  9. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  10. Counting states of black strings with traveling waves

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Marolf, D.

    1997-01-01

    We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six-dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves. copyright 1997 The American Physical Society

  11. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    Science.gov (United States)

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  12. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  13. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  14. Recent work on superconducting QWRs at the Weizmann Institute (invited)

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Sokolowski, J.S.

    1986-01-01

    Recent work on superconducting quarter-wave resonators (QWR) at the Weizmann Institute of Science is reported. Two subjects are discussed: the performance of these resonators as particle acceleration devices in the booster module recently installed at the accelerator laboratory and new aspects of the electron multipactoring phenomenon in these resonators

  15. Test of superconducting radio-frequency cavity bombarded by protons

    Science.gov (United States)

    O'Donnell, J. M.; McCloud, B. J.; Morris, C. L.; McClelland, J. B.; Rusnak, B.; Thiessen, H. A.; Langenbrunner, J. L.

    1992-05-01

    A beam of 2 × 10 10 protons/s was focused onto a small area on the high-field iris of a superconducting cavity operating at the resonance frequency. The input, reflected, and stored power were monitored. The cavity remained in steady state during this test. We conclude that such superconducting cavities will remain viable in the high-proton-flux environments proposed in the design of a superconducting accelerator for pions (PILAC).

  16. Test of superconducting radio-frequency cavity bombarded by protons

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J.M.; McCloud, B.J.; Morris, C.L.; McClelland, J.B.; Rusnak, B.; Thiessen, H.A. (Los Alamos National Lab., NM (United States)); Langenbrunner, J.L. (Dept. of Physics and Astronomy, Univ. Minnesota, Minneapolis, MN (United States))

    1992-05-10

    A beam of 2x10{sup 10} protons/s was focused onto a small area on the high-field iris of a superconducting cavity operating at the resonance frequency. The input, reflected, and stored power were monitored. The cavity remained in steady state during this test. We conclude that such superconducting cavities will remain viable in the high-proton-flux environments proposed in the design of a superconducting accelerator for pions (PILAC). (orig.).

  17. P- and S-body wave tomography of the state of Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  18. Superconductivity in gallium-substituted Ba8Si46 clathrates

    Science.gov (United States)

    Li, Yang; Zhang, Ruihong; Liu, Yang; Chen, Ning; Luo, Z. P.; Ma, Xingqiao; Cao, Guohui; Feng, Z. S.; Hu, Chia-Ren; Ross, Joseph H., Jr.

    2007-02-01

    We report a joint experimental and theoretical investigation of superconductivity in Ga-substituted type-I silicon clathrates. We prepared samples of the general formula Ba8Si46-xGax , with different values of x . We show that Ba8Si40Ga6 is a bulk superconductor, with an onset at TC≈3.3K . For x=10 and higher, no superconductivity was observed down to T=1.8K . This represents a strong suppression of superconductivity with increasing Ga content, compared to Ba8Si46 with TC≈8K . Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by a reduced integrity of the sp3 -hybridized networks as well as the lowering of carrier concentration. These results are corroborated by first-principles calculations, which show that Ga substitution results in a large decrease of the electronic density of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS framework. To further characterize the superconducting state, we carried out magnetic measurements showing Ba8Si40Ga6 to be a type-II superconductor. The critical magnetic fields were measured to be HC1≈35Oe and HC2≈8.5kOe . We deduce the London penetration depth λ≈3700Å and the coherence length ξc≈200Å . Our estimate of the electron-phonon coupling reveals that Ba8Si40Ga6 is a moderate phonon-mediated BCS superconductor.

  19. Zero-bias conductance quantization in a normal / superconducting junction of nano wire

    International Nuclear Information System (INIS)

    Asano, Yasuhiro; Tanaka, Yukio

    2012-01-01

    We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.

  20. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    Science.gov (United States)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.