WorldWideScience

Sample records for wave spectrum author

  1. Spectrum pooling in MnWave Networks

    DEFF Research Database (Denmark)

    Boccardi, Federico; Shokri-Ghadikolaei, Hossein; Fodor, Gabor

    2016-01-01

    Motivated by the specific characteristics of mmWave technologies, we discuss the possibility of an authorization regime that allows spectrum sharing between multiple operators, also referred to as spectrum pooling. In particular, considering user rate as the performance measure, we assess...

  2. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.

    1977-03-01

    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  3. Effect of discrete RF spectrum on fast wave current drive

    International Nuclear Information System (INIS)

    Okazaki, Takashi; Yoshioka, Ken; Sugihara, Masayoshi

    1987-08-01

    Effect of discrete RF spectrum has been studied for the fast wave current drive with the ion cyclotron range of frequency. Driven current and power densities decrease in this spectrum than in the continuous spectrum. However, there is a possibility to have the mechanism which allows electrons outside the resonance region to interact with the fast wave, taking into account the electron trapping by discrete RF spectrum. In the case of neglecting the electron trapping effect, driven current and power densities decrease up to 0.6 - 0.8 of those which are obtained for the continuous spectrum for the FER (Fusion Experimental Reactor). However, their driven current and power densities can be almost doubled in their magnitude for the discrete spectrum by taking into account the trapping effect. (author)

  4. Directional spectrum of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Gouveia, A; Nagarajan, R.

    This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...

  5. Width of electromagnetic wave instability spectrum in tungsten plate

    International Nuclear Information System (INIS)

    Rinkevich, A.B.

    1995-01-01

    Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs

  6. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  7. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  8. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  9. Effect of water depth on wind-wave frequency spectrum I. Spectral form

    Science.gov (United States)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo

    1996-06-01

    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  10. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, Ch.

    1988-01-01

    The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs

  11. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    Science.gov (United States)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m

  12. The gravitational wave spectrum from cosmological B-L breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-05-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  13. The gravitational wave spectrum from cosmological B-L breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)

    2013-05-15

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  14. The role of the generalized Phillips' spectrum in wave turbulence

    International Nuclear Information System (INIS)

    Newell, A.C.; Zakharov, V.E.

    2008-01-01

    We suggest the generalized Phillips' spectrum, which we define as that spectrum for which the statistical properties of wave turbulence inherit the symmetries of the original governing equations, is, in many circumstances, the spectrum which obtains in those regions of wavenumber space in which the Kolmogorov-Zakharov (KZ) spectra are no longer valid. This spectrum has many very special properties. We discuss its connection with the singularities which are associated with the whitecap events observed in windblown seas

  15. Analytic moment method calculations of the drift wave spectrum

    International Nuclear Information System (INIS)

    Thayer, D.R.; Molvig, K.

    1985-11-01

    A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA

  16. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2017-01-01

    Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.

  17. Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves

    National Research Council Canada - National Science Library

    Hwang, Paul A

    2005-01-01

    ... (wavelengths between 0.02 and 6 m) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind friction velocity follows a power-law function...

  18. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    Science.gov (United States)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  19. Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere

    International Nuclear Information System (INIS)

    Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.

    1996-01-01

    The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments

  20. The 17/5 spectrum of the Kelvin-wave cascade

    OpenAIRE

    Kozik, Evgeny; Svistunov, Boris

    2010-01-01

    Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.

  1. A wave parameters and directional spectrum analysis for extreme winds

    OpenAIRE

    Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier

    2013-01-01

    In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...

  2. Millimeter wave spectrum of nitromethane

    Science.gov (United States)

    Ilyushin, Vadim

    2018-03-01

    A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.

  3. Application of the model of the relativistic anti-loss-cone distribution to ECE spectrum in discharge applying LH wave

    International Nuclear Information System (INIS)

    Sato, Masayasu; Yokomizo, Hideaki

    1987-11-01

    The electron cyclotron emission (ECE) is dominated from supra-thermal electron in discharge applying LH wave. We obtain informations of supra-thermal electron by applying the model of the relativistic anti-loss-cone distribution to ECE spectrum in the discharge. In this model, the emission perpendicular to the magnetic field are considered. The frequency range is considered to be well above the plasma and electron cyclotron frequencies, thus collective effects can be neglected. The electron distribution is assumed to be anisotropic in the velocity space and strongly extended in the direction parallel to the magnetic field, namely the relativistic anti-loss-cone distribution. The informations of supra-thermal electron are obtained by the following way. The temperature and density of the supra-thermal electron and the anti-loss-cone angle are obtained from the power spectrum of LH wave launched, the measured slope of the spectrum of ECE and the spectral radiance of ECE. (author)

  4. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  5. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  6. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    Science.gov (United States)

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  7. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    Science.gov (United States)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  8. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  9. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  10. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  11. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.

    1989-01-01

    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  12. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  13. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, C.

    1989-01-01

    The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)

  14. Oscillations and waves in a spatially distributed system with a 1/f spectrum

    Science.gov (United States)

    Koverda, V. P.; Skokov, V. N.

    2018-02-01

    A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.

  15. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  16. Retrieval of the ocean wave spectrum in open and thin ice covered ocean waters from ERS Synthetic Aperture Radar images

    International Nuclear Information System (INIS)

    De Carolis, G.

    2001-01-01

    This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness

  17. A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Winston C. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Mail Code 610.1, Greenbelt, MD (United States); Yang, Bo; Fu, Xiouhua [University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, International Pacific Research Center, Honolulu, HI (United States)

    2009-11-15

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called ''convectively coupled Kelvin (mixed Rossby-gravity) waves'' are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of ''convectively coupled Kelvin waves,'' which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, ''convectively coupled Kelvin waves'' do show anti-symmetric components, and ''convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)'' do show a hint of symmetric components. These results bolster a published proposal that these waves should be called ''chimeric Kelvin waves,'' ''chimeric mixed Rossby-gravity waves,'' etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves. (orig.)

  18. Collective behaviour of linear perturbation waves observed through the energy density spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)

    2011-12-22

    We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.

  19. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    International Nuclear Information System (INIS)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko

    2016-01-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  20. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko, E-mail: matsui.yuka@f.mbox.nagoya-u.ac.jp, E-mail: horiguchi.kouichirou@h.mbox.nagoya-u.ac.jp, E-mail: nitta.daisuke@g.mbox.nagoya-u.ac.jp, E-mail: kuroyanagi.sachiko@f.mbox.nagoya-u.ac.jp [Department of physics and astrophysics, Nagoya University, Nagoya, 464-8602 (Japan)

    2016-11-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  1. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  2. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    Science.gov (United States)

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  3. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.

    1981-08-01

    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  4. Microstrip natural wave spectrum mathematical model using partial inversion method

    International Nuclear Information System (INIS)

    Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.

    1995-01-01

    It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types

  5. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  6. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai

    1994-01-01

    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  7. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  8. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors

    International Nuclear Information System (INIS)

    Lee, C.Y.

    2004-01-01

    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the very important study of the collective excitations in these systems. One of the problem is still the exact form of the order parameter of unconventional superconductors. Among the possibilities there are extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states. I consider the mixed (1-γ)d x 2 -y 2 +iγd xy state in high temperature superconductors (HTSC) and derive for the first time a full set of equations for collective modes spectrum in mixed d-wave state with arbitrary admixture of d xy state. Obtained results allow to calculate the whole collective mode spectrum, which could be used for interpretation of the sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, they allow to estimate the extent of admixture of d xy state in a possible mixed state

  9. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  10. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  11. Control of the long period grating spectrum through low frequency flexural acoustic waves

    International Nuclear Information System (INIS)

    Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C

    2011-01-01

    We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account

  12. Statistical moments of the angular spectrum of normal waves in a turbulent collisional magnetized plasma

    International Nuclear Information System (INIS)

    Aistov, A.V.; Gavrilenko, V.G.

    1996-01-01

    The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption

  13. [A quick algorithm of dynamic spectrum photoelectric pulse wave detection based on LabVIEW].

    Science.gov (United States)

    Lin, Ling; Li, Na; Li, Gang

    2010-02-01

    Dynamic spectrum (DS) detection is attractive among the numerous noninvasive blood component detection methods because of the elimination of the main interference of the individual discrepancy and measure conditions. DS is a kind of spectrum extracted from the photoelectric pulse wave and closely relative to the artery blood. It can be used in a noninvasive blood component concentration examination. The key issues in DS detection are high detection precision and high operation speed. The precision of measure can be advanced by making use of over-sampling and lock-in amplifying on the pick-up of photoelectric pulse wave in DS detection. In the present paper, the theory expression formula of the over-sampling and lock-in amplifying method was deduced firstly. Then in order to overcome the problems of great data and excessive operation brought on by this technology, a quick algorithm based on LabVIEW and a method of using external C code applied in the pick-up of photoelectric pulse wave were presented. Experimental verification was conducted in the environment of LabVIEW. The results show that by the method pres ented, the speed of operation was promoted rapidly and the data memory was reduced largely.

  14. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  15. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  16. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  17. Spectral contents of electron waves under strong Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia; Dallaqua, Renato Sergio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Prado, Fabio do [Centro Universitario UNIFEI, Itajuba, MG (Brazil); Karfidov, Dmitry Mikhailovich [General Physics Inst., Moscow (Russian Federation)

    2003-07-01

    Experimental results of electron plasma waves excited in a beam plasma system are presented. Based on our experimental results we determine the transition from the quasi-linear to non-linear regime. We present the space evolution of the electron beam distribution function for both regimes. The spectrum of the electron plasma wave in the non-linear regime shows a component with frequency larger than the plasma frequency besides the plasma frequency itself. We show that the higher frequency component is strongly affected by Landau damping, indicating a dissipation region. The measured experimental power spectrum of this wave shows a dependence on wave number k given by W{sub k} {proportional_to} k{sup -7/2} as theoretically predicted. (author)

  18. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    Science.gov (United States)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  19. Lectures on strings in flat space and plane waves from N = 4 super Yang Mills

    International Nuclear Information System (INIS)

    Maldacena, J.

    2003-01-01

    In these lecture notes we explain how the string spectrum in flat space and plane waves arises from the large N limit of U(N) N = 4 super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We also describe some other aspects of string propagation on plane wave backgrounds. (author)

  20. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-12-01

    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  1. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  2. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  3. The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars

    International Nuclear Information System (INIS)

    Broeck, Chris van den

    2005-01-01

    Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure

  4. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  5. Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed

    Science.gov (United States)

    Ruzhansky, Michael; Tokmagambetov, Niyaz

    2017-12-01

    Given a Hilbert space H, we investigate the well-posedness of the Cauchy problem for the wave equation for operators with a discrete non-negative spectrum acting on H. We consider the cases when the time-dependent propagation speed is regular, Hölder, and distributional. We also consider cases when it is strictly positive (strictly hyperbolic case) and when it is non-negative (weakly hyperbolic case). When the propagation speed is a distribution, we introduce the notion of "very weak solutions" to the Cauchy problem. We show that the Cauchy problem for the wave equation with the distributional coefficient has a unique "very weak solution" in an appropriate sense, which coincides with classical or distributional solutions when the latter exist. Examples include the harmonic and anharmonic oscillators, the Landau Hamiltonian on {R^n}, uniformly elliptic operators of different orders on domains, Hörmander's sums of squares on compact Lie groups and compact manifolds, operators on manifolds with boundary, and many others.

  6. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  7. He{sup 2+} HEATING VIA PARAMETRIC INSTABILITIES OF PARALLEL PROPAGATING ALFVÉN WAVES WITH AN INCOHERENT SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui, E-mail: gaoxl@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-10

    The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He{sup 2+} particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He{sup 2+} particles occurs. This is caused by the cyclotron resonance between He{sup 2+} particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He{sup 2+} particles and the density fluctuations leads to the parallel heating of He{sup 2+} particles. The influence of the drift velocity between the protons and the He{sup 2+} particles on the heating of He{sup 2+} particles is also discussed in this paper.

  8. Numerical calculation of high frequency fast wave current drive in a reactor grade tokamak

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Hamamatsu, Kiyotaka

    1988-02-01

    A fast wave current drive with a high frequency is estimated for a reactor grade tokamak by the ray tracing and the quasi-linear Fokker-Planck calculations with an assumption of single path absorption. The fast wave can drive RF current with the drive efficiency of η CD = n-bar e (10 19 m -3 )I RC (A)R(m)/P RF (W) ∼ 3.0 when the wave frequency is selected to be f/f ci > 7. A sharp wave spectrum and a ph|| >/υ Te ∼ 3.0 are required to obtain a good efficiency. A center peaked RF current profile can be formed with an appropriate wave spectrum even in the high temperature plasma. (author)

  9. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  10. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  11. Wave directional spectrum from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Sarma, Y; Menon, H.B.

    Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...

  12. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  13. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    2001-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  14. Determination of central q and effective mass on textor based on discrete Alfven wave (DAW) spectrum measurements

    International Nuclear Information System (INIS)

    Descamps, P.; Wassenhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Lister, J.B.; Marmillod, P.

    1990-01-01

    The use of the discrete Alfven wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (orig.)

  15. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  16. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    Science.gov (United States)

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  17. Fast wave current drive technology development at ORNL

    International Nuclear Information System (INIS)

    Baity, F.W.; Batchelor, D.B.; Goulding, R.H.

    1994-01-01

    The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER. (author)

  18. Spin wave spectrum of magnetic nanotubes

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.

    2010-01-01

    We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.

  19. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  20. Relic gravitational wave spectrum, the trans-Planckian physics and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Koh, Seoktae

    2010-01-01

    We calculate the spectrum of the relic gravitational wave due to the trans-Planckian effect in which the standard linear dispersion relations may be modified. Of the modified dispersion relations suggested in the literature which has investigated the trans-Planckian effect, we especially use the Corley-Jacobson dispersion relations. The Corley-Jacobson-type modified dispersion relations can be obtained from Horava-Lifshitz gravity which is non-relativistic and UV complete. Although it is not clear how the transitions from Horava-Lifshitz gravity in the UV regime to Einstein gravity in the IR limit occur, we assume that the Horava-Lifshitz gravity regime is followed by the inflationary phase in Einstein gravity.

  1. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  2. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing......-linear (second order) high frequency springing analyses with unidirectional wave excitation are much more scattered. Some of the reasons are different level of wave excitation accounted in the different Executive Summary ivtheories, inclusion of additional hydrodynamic phenomena e.g. slamming in the time...... because, to the author's knowledge, this is the first time that the wave data were collected simultaneously with stress records on the deck of the ship. This is highly appreciated because one can use the precise input and not only the most probable sea state statistics. The actual picture of the sea waves...

  3. Possibilities of the observation of the discrete spectrum of the water dimer at equilibrium in millimeter-wave band

    International Nuclear Information System (INIS)

    Krupnov, A.F.; Tretyakov, M.Yu.; Leforestier, C.

    2009-01-01

    Attempts of experimental observations of the water dimer spectrum at equilibrium conditions have lasted for more than 40 years since the dimeric hypothesis for extra absorption, but have not yielded any positive confirmed result. In the present paper a new approach is considered: using a high-resolution millimeter-wave spectrum of the water dimer at equilibrium, calculated by a rigorous fully quantum method, we show the potential existence of discernible spectral series of discrete features of the water dimer, which correspond to J+1 1 symmetry, already observed in cold molecular beam experiments and having, therefore, well-defined positions. The intensity of spectral series and contrast to the remaining continuum-like spectrum of the dimer are calculated and compared with the monomer absorption. The suitability of two types of microwave spectrometers for observing these series is considered. The collisional line-width of millimeter lines of the dimer at equilibrium is estimated and the width of IR dimer bands is discussed. It is pointed out that the large width of IR dimer bands may pose difficulties for their reliable observation and conclusive separation from the rest of absorption in water vapor. This situation contrasts with the suggested approach of dimer detection in millimeter-waves.

  4. A smooth bouncing cosmology with scale invariant spectrum

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.

    2007-01-01

    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)

  5. Change of spin-wave spectrum arising from interaction of magnons

    International Nuclear Information System (INIS)

    Prozorova, L.A.; Smirnov, A.I.

    1978-01-01

    Variation of the proper frequency of magnons with a definite wave number k=k 1 is observed in the antiferromagnetic crystal CsMnF 3 by exciting the magnons with k=k 2 . Magnon excitation is performed parametrically by microwave pumping. The density of the parametrically excited magnons is of the order of 10 17 cm -3 . The relative variation of the proper frequency (magnon spectrum shift) is approximately 10 -5 . The variation in the proper frequency is recorded and measured on observation of transition processes in a system of parametrically excited magnons. The frequencies of magnons are 10.5 and 17.5 GHz (k 1 approximately k 2 approximately 10 5 cm -1 ) and sample temperature T=1.6 K. The amplitude of four-magnon interaction inducing the spectral shift is determined and found to be T 12 /2π approximately -10 -12 Hzxcm 3

  6. Spectrum of perturbations arising in a nonsingular model of the Universe with the initial de Sitter stage and the anisotropy of the relic radiation

    International Nuclear Information System (INIS)

    Starobinskij, A.A.

    1983-01-01

    Spectrum of primary adiabatic perturbations and gravitational waves formed in the proposed earlier by the author nonsingular cosmological model with the initial quantum de Sitter stage generated by gravitational vacuum polarization is calculated. The spectrum of gravitational waves appears to be flat, the spectrum of adiabatic perturbations is close to the flat one. The large-scale anisotropy of the temperature T of the relic electromagnetic radiation due to these fluctuations is found. It is shown that the most promising way to detect the anisotropy in the case of a flat perturbation spectrum is the investigation of correlations of ΔT/T at the angles of 5 deg - 10 deg

  7. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  8. On the problem of propagation of magnetoplasma surface waves in semiconductors

    International Nuclear Information System (INIS)

    Davydov, A.B.; Zakharov, V.A.

    1975-01-01

    A calculation is made of the spectrum of surface waves traveling along a boundary separating a dielectric from a magnetized semiconductor plasma parallel or at right angles to a magnetic field B. Dispersion relationships are obtained for the k is parallel to B case and these relationships explain the origin of the investigated surface waves on the boundary of a two-component (electron-hole) plasma in InSb. An analysis is made of the dispersion of the surface waves in the k is perpendicular to B case, which leads to a nonreciprocal propagation. (author)

  9. Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph

    1999-01-01

    Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.

  10. Accessibility for lower hybrid waves in PBX-M

    International Nuclear Information System (INIS)

    Takahashi, H.; Bell, R.; Bernabei, S.; Chance, M.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.; Okabayashi, M.; Ono, M.; Paul, S.; Perkins, F.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Tighe, W.; Valeo, E.; von Goeler, S.; Dunlap, J.; England, A.; Harris, J.; Hirshman, S.; Isler, R.; Post-Zwicker, A.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Schmitz, L.; Tynan, G.

    1993-07-01

    Understanding the wave damping mechanism in the presence of a 'spectral gap' is an important issue for the current profile control using Lower Hybrid Current Drive (LHCD). The authors examine a traditional explanation based upon upshifting of the wave parallel refractive index (n parallel ) and find that there can be an upper bound in the n parallel upshift. The amount of upshift is not sufficient to bridge the spectral gap completely under some PBX-M LHCD conditions. There is experimental evidence, however, that current was driven even under such conditions. Another mechanism is also considered, based upon the 2-D velocity space dynamics coupled with a compound wave spectrum, here consisting of forward- and backward-running waves. The runaway critical speed relative to the phase speeds of these waves plays an important role in this model

  11. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  12. Similar Data Retrieval from Enormous Datasets on ELF/VLF Wave Spectrum Observed by Akebono

    Directory of Open Access Journals (Sweden)

    Y Kasahara

    2010-02-01

    Full Text Available As the total amount of data measured by scientific spacecraft is drastically increasing, it is necessary for researchers to develop new computation methods for efficient analysis of these enormous datasets. In the present study, we propose a new algorithm for similar data retrieval. We first discuss key descriptors that represent characteristics of the VLF/ELF waves observed by the Akebono spacecraft. Second, an algorithm for similar data retrieval is introduced. Finally, we demonstrate that the developed algorithm works well for the retrieval of the VLF spectrum with a small amount of CPU load.

  13. Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves

    International Nuclear Information System (INIS)

    Sloovere, P. de.

    1993-01-01

    Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices

  14. Lower-hybrid wave penetration and effects on electron population

    International Nuclear Information System (INIS)

    Dupas, L.; Grelot, P.; Parlange, F.; Weisse, J.

    1981-01-01

    In a high-power-density lower-hybrid experiment (approximately 10kW.cm -2 ), a parallel index spectrum was measured and the radial position where sidebands are excited was deduced from pump and sideband wavenumber measurements. On this basis, some considerations on wave propagation are given which are compatible with some effects observed on electron population. (author)

  15. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  16. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  17. Inertial-range spectrum of whistler turbulence

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  18. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    Science.gov (United States)

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  19. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    Science.gov (United States)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  20. Cold plasma waves

    International Nuclear Information System (INIS)

    Booker, H.G.

    1984-01-01

    The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)

  1. Harvesting the electromagnetic spectrum: from communications to renewables

    OpenAIRE

    Gremont, Boris

    2011-01-01

    The talk will give a unified perspective on one of the most precious commodities underpinning the globalised world: the electromagnetic spectrum. In particular, we will describe how electromagnetic waves have been used over the years to create the global village and the modern world as we know it. How waves can be used to help fight global warming will be discussed along with how waves and remote sensing help in saving lives. Finally, how can the electromagnetic spectrum be used to create the...

  2. Generation of intermittent gravitocapillary waves via parametric forcing

    Science.gov (United States)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  3. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  4. On the spectrum of AdS/CFT beyond supergravity

    International Nuclear Information System (INIS)

    Beisert, N.; Bianchi, M.; Morales, J.F.; Samtleben, H.

    2004-01-01

    We test the spectrum of string theory on AdS 5 x S 5 derived in /arxivno{hep-th/0305052} against that of single-trace gauge invariant operators in free N = 4 super Yang-Mills theory. Masses of string excitations at critical tension are derived by extrapolating plane-wave frequencies at g YM = 0 down to finite J. On the SYM side, we present a systematic description of the spectrum of single-trace operators and its reduction to PSU(2,2|4) superconformal primaries via a refined Eratostenes' supersieve. We perform the comparison of the resulting SYM/string spectra of charges and multiplicities order by order in the conformal dimension Δ up to Δ = 10 and find perfect agreement. Interestingly, the SYM/string massive spectrum exhibits a hidden symmetry structure larger than expected, with bosonic subgroup SO(10,2) and thirty-two supercharges. (author)

  5. Observational aspects of the microwave cosmic background spectrum

    International Nuclear Information System (INIS)

    Martin, D.H.

    1982-01-01

    The discovery of the isotropic microwave background, in 1964, was followed by a decade of careful measurements of the background flux throughout the centimetric and millimetric ranges of wavelength. The results of these measurements are not inconsistent with a Planckian spectrum but the absolute precision of the measurements is not as high as is frequently assumed. More recently attention has turned to searches for variations in the flux density with direction in the sky, while preparations are made in laboratories around the world for a second wave of measurements of the spectrum which are to have a much higher absolute precision. The author points out the limitations in present knowledge of the microwave background, identifies the observational difficulties in improving that knowledge and reports on some of the plans for future measurements. (Auth.)

  6. Electromagnetic wave propagation in a medium with a progressive sinusoidal fluctuation

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Ito, Akinari

    1984-01-01

    Study was made on the rigorous solutions for electromagnetic waves transmitted and reflected by a medium of finite length with time-space periodic fluctuation, loaded in a rectangular waveguide. When an electromagnetic wave is incident upon the medium modulated in a travelling wave fashion by a pump wave, the reflected and transmitted waves are shifted in frequency by +nω 1 (where n is an integer, ω 1 is the angular frequency of fluctuation). The harmonic level of the reflected waves is much increased as the frequency of the incident wave approaches the cutoff-frequency of TE 10 mode of the rectangular waveguide. Measurement of the spectrum of the reflected waves can be utilized as a diagnosis of even a very slightly fluctuating medium. The theoretical results have been verified on examining experimentally the harmonic level of the microwave reflected by a plasma, weakly modulated (about 10 -4 ) by RF signal and loaded in the WRJ-10 waveguide. (author)

  7. Research activities and plan of electron cyclotron wave startup and Alfven wave current drive at SUNIST

    International Nuclear Information System (INIS)

    Gao Zhe; He Yexi; Tan Yi

    2009-01-01

    Using electromagnetic waves to startup and sustain plasma current takes a important role in the research program of the SUNIST spherical tokamak. Electron cyclotron ware (ECW) current startup have been investigated and revealed two totally different regimes. In the regime of very low working pressure, a plasma current of about 2 kA is obtained with a steadily applied vertical field of 12 Gauss and 40 kW/2.45 GHz microwave injection. In addition, the physics of the transient process during ECW startup in the relatively high working pressure regime is analyzed. The hardware preparation for the experimental research of Alfven wave current drive is being performed. The Alfven wave antenna system consists of four models in toroidal direction and two antenna straps in poloidal direction for each module and the rf generator has been designed as a four-phase oscillator (4x100 kW, 0.5 - 1 Mhz).The impedance spectrum of the antenna system is roughly evaluated by 1-D cylindrical magneto-hydrodynamic calculation. To investigate the wave-plasma interaction in ECW startup and Alfven wave current drive, upgrade of the device, especially in equilibrium control and diagnostics, is ongoing. (author)

  8. 5G Spectrum Sharing

    OpenAIRE

    Nekovee, Maziar; Rudd, Richard

    2017-01-01

    In this paper an overview is given of the current status of 5G industry standards, spectrum allocation and use cases, followed by initial investigations of new opportunities for spectrum sharing in 5G using cognitive radio techniques, considering both licensed and unlicensed scenarios. A particular attention is given to sharing millimeter-wave frequencies, which are of prominent importance for 5G.

  9. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2016-09-15

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  10. Spin waves in quantum crystals

    International Nuclear Information System (INIS)

    Kondratenko, P.S.

    1975-01-01

    The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature

  11. The statistical mechanics of vortex-acoustic ion wave turbulence

    International Nuclear Information System (INIS)

    Giles, M.J.

    1980-01-01

    The equilibrium statistical mechanics of electrostatic ion wave turbulence is studied within the framework of a continuum ion flow with adiabatic electrons. The wave field consists in general of two components, namely ion-acoustic and ion vortex modes. It is shown that the latter can significantly affect the equilibria on account of their ability both to emit and to scatter ion sound. Exact equilibria for the vortex-acoustic wave field are given in terms of a canonical distribution and the correlation functions are expressed in terms of a generating functional. Detailed calculations are carried out for the case in which the dominant coupling is an indirect interaction of the vortex modes mediated by the sound field. An equation for the spectrum of the vortex modes is obtained for this case, which is shown to possess a simple exact solution. This solution shows that the spectrum of fluctuations changes considerably as the total energy increases. Condensed vortex states could occur in the plasma sheet of the earth's magnetosphere and it is shown that the predicted ratio of the mean ion energy to the mean electron energy is consistent with the trend of observed values. (author)

  12. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul

    2006-01-01

    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  13. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  14. Numerical investigation of freak waves

    Science.gov (United States)

    Chalikov, D.

    2009-04-01

    of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  15. Analysis of soil-structure interaction and floor response spectrum of reactor building for China advanced research reactor

    International Nuclear Information System (INIS)

    Rong Feng; Wang Jiachun; He Shuyan

    2006-01-01

    Analysis of Soil-Structure Interaction (SSI) and calculation of Floor Response Spectrum (FRS) is substantial for anti-seismic design for China Advanced Research Reactor (CARR) project. The article uses direct method to analyze the seismic reaction of the reactor building in considering soil-structure interaction by establishing two-dimensional soil-structure co-acting model for analyzing and inputting of seismic waves from three directions respectively. The seismic response and floor response spectrum of foundation and floors of the building under different cases have been calculated. (authors)

  16. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  17. Spectrum estimation method based on marginal spectrum

    International Nuclear Information System (INIS)

    Cai Jianhua; Hu Weiwen; Wang Xianchun

    2011-01-01

    FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)

  18. Parametric resonance and cosmological gravitational waves

    International Nuclear Information System (INIS)

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-01-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  19. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  20. Short-wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  1. The continous spectrum and the time evolution of propagating disturbances in toroidal geometry

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de

    1982-01-01

    It is shown that the continuous spectrum of shear-Alfven waves and slow magnetoacoustic waves can be obtained from the asymptotic solutions of the ordinary differential equations that describe the ideal low frequency, large toroidal number modes. Because of the periodicities of the equilibrium, a multiple scale averaging method is required to perform the asymptotic analysis. By using a specific equilibrium solution, analytical expressions for the local dispersion relation, that spcifies the location of the resonant layers, are given in the vicinity of the axis. The temporal evolution of stable pertubations on the basis of the global characteristics of the normal eigenmodes is discussed briefly. (Author) [pt

  2. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 8 (2004) - Articles Further on stokes expansions for the finite amplitude water waves. Abstract · Vol 11 (2007) - Articles On the effects of wave steepness on higher order Stokes waves. Abstract. ISSN: 1116-4336.

  3. Radiation of Electron in the Field of Plane Light Wave

    International Nuclear Information System (INIS)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.

    2006-01-01

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity

  4. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  5. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  6. Parameter identification of JONSWAP spectrum acquired by airborne LIDAR

    Science.gov (United States)

    Yu, Yang; Pei, Hailong; Xu, Chengzhong

    2017-12-01

    In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.

  7. Gravitational Waves from Oscillons with Cuspy Potentials.

    Science.gov (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary

    2018-01-19

    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  8. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Okeke, EO. Vol 10 (2006) - Articles Analysis of Stokes waves theory as a diffusion problem. Abstract · Vol 11 (2007) - Articles On the impact of wave-current on Stokes waves. Abstract. ISSN: 1116-4336. AJOL African ...

  9. Dynamic selection of ship responses for estimation of on-site directional wave spectra

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Storhaug, Gaute

    2012-01-01

    -estimate of the wave spectrum is suggested. The selection method needs to be robust for what reason a parameterised uni-directional, two-parameter wave spectrum is treated. The parameters included are the zero up-crossing period, the significant wave height and the main wave direction relative to the ship’s heading...... with the best overall agreement are selected for the actual estimation of the directional wave spectrum. The transfer functions for the ship responses can be determined using different computational methods such as striptheory, 3D panel codes, closed form expressions or model tests. The uncertainty associated......Knowledge of the wave environment in which a ship is operating is crucial for most on-board decision support systems. Previous research has shown that the directional wave spectrum can be estimated by the use of measured global ship responses and a set of transfer functions determined...

  10. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  11. Brave new world of unconventional density waves

    International Nuclear Information System (INIS)

    Maki, K.; Dora, B.; Korin-Hamzic, B.; Basletic, M.; Virosztek, A.; Kartsovnik, M.V.

    2003-10-01

    Recently many people have discussed unconventional density wave (i.e. UCDW and USDW). Unlike in conventional density waves, the quasiparticle excitations in these systems are gapless. The appearance of these systems suggests paradigm shift from quasi 1D system to quasi 2D and 3D systems. Here we limit ourselves to the angular dependent magnetoresistance (ADMR) observed in the low temperature phase (LTP) of α-(BEDT-TTF) 2 KHg(SCN) 4 . Here we show that UCDW describes successfully many features of ADMR as manifestation of the Landau quantization of the quasiparticle spectrum in magnetic field. Indeed ADMR will provide a unique window to access UDW like the AF phase in URu 2 Si 2 , the pseudogap phase in high T c cuprates and the glassy phase in organic superconductor k-(ET) 2 salts. (author)

  12. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  13. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-01-01

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  14. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Science.gov (United States)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  15. Short wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1982-01-01

    Recent observations with the ISEE-1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emissions has a characteristic parabola shape or ''festoon'' shape. The low frequency cutoff ranges from 100 Hz to 400 Hz, while the high frequency limit ranges from about 1kHz to 4kHz. The bandwidth is found to minimize for antenna orientations parallel to these wave number vectors, requiring the confinement of those vectors to a plane which contains the geocentric solar eclilptic coordinate z-axis. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest-frame wave vectors and frequencies indicate that the emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 30 meters and 600 meters. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k vector direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  16. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  17. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  18. Gravitational Waves from Oscillons after Inflation.

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  19. Propagation Characteristics of Electromagnetic Waves Recorded by the Four CLUSTER Satellites

    International Nuclear Information System (INIS)

    Parrot, M.; Santolik, O.; Cornilleau-Wehrlin, N.; Maksimovic, M.; Harvey, Ch.

    2001-01-01

    This paper will describe the methods we use to determine the propagation characteristics of electromagnetic waves observed by the four CLUSTER satellites. The data is recorded aboard CLUSTER by the STAFF (Spatio-Temporal Analysis of Field Fluctuations) spectrum analyser. This instrument has several modes of operation, and can provide the spectral matrix of three magnetic and two electric components. This spectral matrix is processed by a dedicated software (PRASSADCO: Propagation Analysis of STAFF-SA Data with Coherency Tests) in order to determine the wave normal directions with respect to the DC magnetic field. PRASSADCO also provides a number of alternative methods to estimate wave polarisation and propagation parameters, such as the Poynting vector, and the refractive index. It is therefore possible to detect the source extension of various electromagnetic waves using the 4 satellites. Results of this data processing will be shown here for one event observed by one satellite. (author)

  20. Feedback control of current drive by using hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Wijnands, T.J.; CEA Centre d'Etudes de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author)

  1. Ambiguities in the deduction of rest frame fluctuation spectrums from spectrums computed in moving frames

    International Nuclear Information System (INIS)

    Fredericks, R.W.; Coroniti, F.V.

    1976-01-01

    The problem of interpretation of power spectrums computed by Fourier analysis of data time series taken in frames moving with respect to the medium containing the fluctuations is examined. It is found that no unique connection exists between the rest frame power spectrum as a function of scale length and the derived power spectrum as a function 'frequency' computed from the time series data taken in the moving frame. This caused by a complex Doppler-shifting phenomenon that leads to a basically aliased frequency spectrum in the moving frame. Examples of nonuniqueness are given for various types of rest frame density or wave turbulence that lead to the same frequency dependence of the power spectrum computed in the moving frame. This has implications for the past interpretations of power spectrums of density or magnetic field fluctuations from satellites or interplanetary probes

  2. Four-wave mixing and six-wave mixing in a four-level confined atomic system

    International Nuclear Information System (INIS)

    Chang-Biao, Li; Yan-Peng, Zhang; Zhi-Qiang, Nie; Huai-Bin, Zheng; Mei-Zhen, Shi; Dong-Ning, Liu; Jian-Ping, Song; Ke-Qing, Lu

    2009-01-01

    We have investigated coexisting four-wave mixing and six-wave mixing (SWM) in ultra-thin, micrometre and long vapour cells. There exists competition between Dicke-narrowing features and polarization interference in the micrometre cell. The oscillation behaviour of SWM signal intensities and linewidths results from destructive interference. With a larger destructive interference, the SWM signal in ultra-thin cells shows a narrow spectrum, in contrast to the long cell case. Due to the Dicke-narrowing features, a narrow spectrum can be obtained, and such spectra can be used for high precision measurements and metrological standards. (classical areas of phenomenology)

  3. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  4. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  5. Parallel Multi-Focusing Using Plane Wave Decomposition

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt

    2003-01-01

    of desired 2-D sensitivity functions is specified, for multi-focusing in a number of directions. The field along these directions is decomposed to a sufficiently large (for accurate specification) number of plane waves, which are then back-propagated to all transducer elements. The contributions of all plane...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse...... of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...

  6. The Global Signature of Ocean Wave Spectra

    Science.gov (United States)

    Portilla-Yandún, Jesús

    2018-01-01

    A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at http://www.modemat.epn.edu.ec/#/nereo. It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.

  7. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  8. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  9. Excitation of upper-hybrid waves by a thermal parametric instability

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1983-01-01

    A purely growing instability characterized by a four-wave interaction is analysed in a uniform, magnetized plasma. Up-shifted and down-shifted upper-hybrid waves and a non-oscillatory mode can be excited by a pump wave of ordinary rather than extraordinary polarization in the case of ionospheric heating. The differential Ohmic heating force dominates over the ponderomotive force as the wave-wave coupling mechanism. The beating current at zero frequency produces a significant stabilizing effect on the excitation of short-scale modes by counterbalancing the destabilizing effect of the differential Ohmic heating. The effect of ionospheric inhomogeneity is estimated, showing a tendency to raise the thresholds of the instability. When applied to ionospheric heating experiments, the present theory can explain the excitation of field-aligned plasma lines and ionospheric irregularities with a continuous spectrum ranging from metre-scale to hundreds of metre-scale. Further, the proposed mechanism may become a competitive process to the parametric decay instability and be responsible for the overshoot phenomena of the plasma line enhancement at Arecibo. (author)

  10. Estimations of On-site Directional Wave Spectra from Measured Ship Responses

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2006-01-01

    include an quivalence of energy in the governing equations and, as regards the parametric concept, a frequency dependent spreading of the waves is introduced. The paper includes an extensive analysis of full-scale measurements for which the directional wave spectra are estimated by the two ship response......In general, two main concepts can be applied to estimate the on-site directional wave spectrum on the basis of ship response measurements: 1) a parametric method which assumes the wave spectrum to be composed by parameterised wave spectra, or 2) a non-parametric method where the directional wave...

  11. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    Science.gov (United States)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  12. A Practical Theorem on Gravitational Wave Backgrounds

    OpenAIRE

    Phinney, E. S.

    2001-01-01

    There is an extremely simple relationship between the spectrum of the gravitational wave background produced by a cosmological distribution of discrete gravitational wave sources, the total time-integrated energy spectrum of an individual source, and the present-day comoving number density of remnants. Stated in this way, the background is entirely independent of the cosmology, and only weakly dependent on the evolutionary history of the sources. This relationship allows one easily to compute...

  13. Tokamak wave coupling and heating in the ICRF

    International Nuclear Information System (INIS)

    Romero, H.; Scharer, J.; Sund, R.

    1983-01-01

    The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling

  14. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  15. A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation

    Directory of Open Access Journals (Sweden)

    Ian R. Young

    2017-10-01

    Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.

  16. Tunable spin waves in diluted magnetic semiconductor nanoribbon

    Science.gov (United States)

    Lyu, Pin; Zhang, Jun-Yi

    2018-01-01

    The spin wave excitation spectrum in diluted magnetic semiconductor (DMS) nanoribbons was calculated by taking account of the quantum confinement effect of carriers and spin waves. By introducing the boundary condition for the spin waves, we derived the spin wave dispersion using the path-integral formulation and Green's function method. It was shown that the spin wave excitation spectrum is discrete due to the confinement effect and strongly dependent on the carrier density, the magnetic ion density, and the width of the nanoribbon. When the width of the nanoribbon is beyond the typical nanoscales, the size effect on the excitation energies of the spin waves disappears in our calculation, which is in qualitative agreement with no obvious size effect observed in the as-made nanodevices of (Ga,Mn)As in this size regime. Our results provide a potential way to control the spin waves in the DMS nanoribbon not only by the carrier density and the magnetic ion density but also by the nanostructure geometry.

  17. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  18. Collision of two shock waves as a hypothetical mechanism of producing drifting radio bursts in the 400-500 MHz range

    International Nuclear Information System (INIS)

    Karlicky, M.

    1978-01-01

    After the proton flare of July 3, 1974 a hitherto unclassified phenomenon with a diffusion ''banner'' and with a considerably decelerating drift within the type II and III burst drifts range was observed in the radio dynamic spectrum between 410 and 470 MHz. The hypothesis is presented that the phenomenon is due to the collision of two shock waves, propagating against one another, during which the flux of electromagnetic radiation is considerably enhanced relative to the sum of the fluxes of the electromagnetic radiation of the individual shock waves. The Newkirk 4-density model of the corona is used to describe the phenomenon, the mechanism of plasmon-plasmon conversion in electromagnetic radiation with a double plasma frequency is considered and, according to the parameters derived from the dynamic spectrum, the velocities, radii of curvature and direction of propagation of the anticipated shock waves are analysed in a simplifed symmetric case. (author)

  19. Parametric instability of a large-amplitude nonmonochromatic Alfvacute en wave

    International Nuclear Information System (INIS)

    Malara, F.; Velli, M.

    1996-01-01

    The parametric instability of a finite-amplitude Alfvacute en wave is studied in a one-dimensional geometry. The pump wave is an exact solution of the nonlinear magnetohydrodynamic (MHD) equations, i.e., the magnetic field perturbation has a uniform intensity and rotates in the plane perpendicular to the propagation direction, but its Fourier spectrum contains several wavelengths. The weakly nonmonochromatic regime is first studied by an analytical approach. It is shown that the growth rate of the instability decreases quadratically with a parameter that measures the departure from the monochromatic case. The fully nonmonochromatic case is studied by numerically solving the instability equations, when the phase function of the pump wave has a power-law spectrum. Though the growth rate is maximum in the monochromatic case, it remains of the same order of magnitude also for wide spectrum pump waves. For quasimonochromatic waves the correction to the growth rate depends only on the spectral index of the phase function. copyright 1996 American Institute of Physics

  20. Consideration of vertical seismic response spectrum in nuclear safety review

    International Nuclear Information System (INIS)

    Sun Zaozhan; Huang Bingchen

    2011-01-01

    The basic requirements for civil nuclear installation are introduced in the article. Starting from the basic concept of seismic response spectrum, the authors analyze the site seismic response spectrum and the design seismic response spectrum that desire much consideration. By distinguishing the absolute seismic response spectrum and relative seismic response spectrum, the authors analyze the difference and relationship between the vertical seismic response spectrum and horizontal seismic response spectrum. The authors also bring forward some suggestions for determining the site vertical seismic response spectrum by considering the fact in our country. (authors)

  1. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space ⋆,⋆⋆

    Science.gov (United States)

    Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2016-01-01

    Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514

  2. Noncommuting limits of oscillator wave functions

    International Nuclear Information System (INIS)

    Daboul, J.; Pogosyan, G. S.; Wolf, K. B.

    2007-01-01

    Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry

  3. Magnetic Spin-Wave Properties of Ferromagnetic Nanosystems of Various Shapes. Peculiarities of the Border Conditions Accounting in the Process of the Wavenumber Values Spectrum Finding

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Kulish

    2017-09-01

    Conclusions. The obtained expressions for the spectrum of the values of the investigated spin waves’ wavenumbers can be used for a wider range of cases than the ones obtained in the previous papers dedicated to the investigated configurations of nanosystems. For a nanotube of the circular cross-section with small (compared to the inverse characteristic size of the nanotube cross-section values of the longitudinal wave number, the dependence of the latter on the transverse wave number is weak, as well as for the big longitudinal to transverse wavenumber component ratio. The obtained dependence is also represented graphically.

  4. Analysis of a gamma-ray spectrum by using a standard spectrum

    International Nuclear Information System (INIS)

    Tasaka, Kanji

    1975-06-01

    The standard spectrum method has been extended to take into account the energy dependence of a standard spectrum. The method analyses the observed gamma-ray spectrum by the least-square method, using an interpolated standard spectrum for expressing the line shape and a linear function for the background continuum. The interpolated standard spectrum is defined for each fitting interval by interpolating several standard spectra, which are derived directly from the observed spectra of single photopeaks each corresponding to the incident monochromatic gamma-rays by subtracting the background and smoothing the data. (author)

  5. Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water

    Energy Technology Data Exchange (ETDEWEB)

    Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport

    2004-05-01

    The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.

  6. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  7. Relic gravity waves from braneworld inflation

    International Nuclear Information System (INIS)

    Sahni, Varun; Sami, M.; Souradeep, Tarun

    2002-01-01

    We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed

  8. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    OpenAIRE

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2016-01-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinea...

  9. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  10. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  11. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  12. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  13. Generation of suprathermal electrons during plasma current startup by lower hybrid waves in a tokamak

    International Nuclear Information System (INIS)

    Ohkubo, K.; Toi, K.; Kawahata, K.

    1984-10-01

    Suprathermal electrons which carry a seed current are generated by non-resonant parametric decay instability during initial phase of lower hybrid current startup in the JIPP T-IIU tokamak. From the numerical analysis, it is found that parametrically excited lower hybrid waves at lower side band can bridge the spectral gap between the thermal velocity and the low velocity end in the pump power spectrum. (author)

  14. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  15. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  16. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  17. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  18. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  19. Multi-component joint analysis of surface waves

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.

    2015-01-01

    Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015

  20. Gravitational-wave detection using redshifted 21-cm observations

    International Nuclear Information System (INIS)

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-01-01

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  1. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  2. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  3. Online wave estimation using vessel motion measurements

    DEFF Research Database (Denmark)

    H. Brodtkorb, Astrid; Nielsen, Ulrik D.; J. Sørensen, Asgeir

    2018-01-01

    parameters and motion transfer functions are required as input. Apart from this the method is signal-based, with no assumptions on the wave spectrum shape, and as a result it is computationally efficient. The algorithm is implemented in a dynamic positioning (DP)control system, and tested through simulations......In this paper, a computationally efficient online sea state estimation algorithm isproposed for estimation of the on site sea state. The algorithm finds the wave spectrum estimate from motion measurements in heave, roll and pitch by iteratively solving a set of linear equations. The main vessel...

  4. High harmonic fast wave heating experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, β T =10% and a normalized beta, β n =2.7. (author)

  5. Test particle modeling of wave-induced energetic electron precipitation

    International Nuclear Information System (INIS)

    Chang, H.C.; Inan, U.S.

    1985-01-01

    A test particle computer model of the precipitation of radiation belt electrons is extended to compute the dynamic energy spectrum of transient electron fluxes induced by short-duration VLF wave packets traveling along the geomagnetic field lines. The model is adapted to estimate the count rate and associated spectrum of precipitated electrons that would be observed by satellite-based particle detectors with given geometric factor and orientation with respect to the magnetic field. A constant-frequency wave pulse and a lightning-induced whistler wave packet are used as examples of the stimulating wave signals. The effects of asymmetry of particle mirror heights in the two hemispheres and the atmospheric backscatter of loss cone particles on the computed precipitated fluxes are discussed

  6. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  7. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  8. On the dynamics of the power spectrum during lower hybrid current drive in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.

    1993-01-01

    An investigation is provided on the propagation and absorption of the power spectrum during lower hybrid current drive in Tokamaks. A combined ray tracing and Fokker-Planck code is utilized and stochastic effects induced by toroidicity are correctly taken into account by using a large number of rays. It is shown that when strong wave damping prevails the absorbed spectrum is very similar in shape to the launched one, although some broadening and shifting in parallel wave index generally occur, and power deposition is localized. If the wave damping is weak and stochastic effects are important, rays end up sweeping the entire plasma cross-section, power deposition turns out to be extended, and the absorbed spectrum is much broader than the launched one

  9. Wave transport in the South Australian Basin

    Science.gov (United States)

    Bye, John A. T.; James, Charles

    2018-02-01

    The specification of the dynamics of the air-sea boundary layer is of fundamental importance to oceanography. There is a voluminous literature on the subject, however a strong link between the velocity profile due to waves and that due to turbulent processes in the wave boundary layer does not appear to have been established. Here we specify the velocity profile due to the wave field using the Toba spectrum, and the velocity profile due to turbulence at the sea surface by the net effect of slip and wave breaking in which slip is the dominant process. Under this specification, the inertial coupling of the two fluids for a constant viscosity Ekman layer yields two independent estimates for the frictional parameter (which is a function of the 10 m drag coefficient and the peak wave period) of the coupled system, one of which is due to the surface Ekman current and the other to the peak wave period. We show that the median values of these two estimates, evaluated from a ROMS simulation over the period 2011-2012 at a station on the Southern Shelf in the South Australian Basin, are similar in strong support of the air-sea boundary layer model. On integrating over the planetary boundary layer we obtain the Ekman transport (w*2/f) and the wave transport due to a truncated Toba spectrum (w*zB/κ) where w* is the friction velocity in water, f is the Coriolis parameter, κ is von Karman's constant and zB = g T2/8 π2 is the depth of wave influence in which g is the acceleration of gravity and T is the peak wave period. A comparison of daily estimates shows that the wave transports from the truncated Toba spectrum and from the SWAN spectral model are highly correlated (r = 0.82) and that on average the Toba estimates are about 86% of the SWAN estimates due to the omission of low frequency tails of the spectra, although for wave transports less than about 0.5 m2 s-1 the estimates are almost equal. In the South Australian Basin the Toba wave transport is on average about 42% of

  10. Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves

    International Nuclear Information System (INIS)

    Hsu, P.; Kuehl, H.H.

    1983-01-01

    Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves in an inhomogeneous plasma are studied for both broad and narrow spectrum excitations. For broad spectrum excitation, the complex modified Korteweg--de Vries equation is modified by two additional terms due to the electromagnetic correction and inhomogeneity. Numerical solutions of this equation for typical tokamak parameters show that these terms suppress soliton formation. For narrow spectrum excitation, the electromagnetic correction produces an additional dispersive term in the differential equation governing the wave envelope. This term opposes thermal dispersion, resulting in significant self-modulation. Numerical solutions show constriction and splitting of the envelope as well as spreading of the Fourier spectrum

  11. Nonlinear periodic space-charge waves in plasma

    International Nuclear Information System (INIS)

    Kovalev, V. A.

    2009-01-01

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  12. An experimental study of irregular wave forces on multiple quasi-ellipse caissons

    Science.gov (United States)

    Ren, Xiaozhong; Zhang, Peng; Ma, Yuxiang; Meng, Yufan

    2014-09-01

    An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.

  13. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  14. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Singh, J. Vol 3, No 2 (2011) - Articles Plane waves in a rotating generalized thermo-elastic solid with voids. Abstract PDF. ISSN: 2141-2839. AJOL African Journals Online. HOW TO USE AJOL.

  15. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 12 (2008) - Articles On the wave equations of shallow water with rough bottom topography. Abstract · Vol 14 (2009) - Articles Energy generation in a plant due to variable sunlight intensity

  16. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 45 (2016) - Articles From vectors to waves and streams: An alternative approach to semantic maps1. Abstract PDF · Vol 48 (2017) - Articles Introduction: 'n Klein ietsie for Johan Oosthuizen

  17. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... to blast loadings. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF. ISSN: 1112-9867.

  18. Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro

    2006-01-01

    For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested

  19. Implementation of viscoelastic mud-induced energy attenuation in the third-generation wave model, SWAN

    Science.gov (United States)

    Beyramzade, Mostafa; Siadatmousavi, Seyed Mostafa

    2018-01-01

    The interaction of waves with fluid mud can dissipate the wave energy significantly over few wavelengths. In this study, the third-generation wave model, SWAN, was advanced to include attenuation of wave energy due to interaction with a viscoelastic fluid mud layer. The performances of implemented viscoelastic models were verified against an analytical solution and viscous formulations for simple one-dimensional propagation cases. Stationary and non-stationary test cases in the Surinam coast and the Atchafalaya Shelf showed that the inclusion of the mud-wave interaction term in the third-generation wave model enhances the model performance in real applications. A high value of mud viscosity (of the order of 0.1 m2/s) was required in both field cases to remedy model overestimation at high frequency ranges of the wave spectrum. The use of frequency-dependent mud viscosity value improved the performance of model, especially in the frequency range of 0.2-0.35 Hz in the wave spectrum. In addition, the mud-wave interaction might affect the high frequency part of the spectrum, and this part of the wave spectrum is also affected by energy transfer from wind to waves, even for the fetch lengths of the order of 10 km. It is shown that exclusion of the wind input term in such cases might result in different values for parameters of mud layer when inverse modeling procedure was employed. Unlike viscous models for wave-mud interaction, the inverse modeling results to a set of mud parameters with the same performance when the viscoelastic model is used. It provides an opportunity to select realistic mud parameters which are in more agreement with in situ measurements.

  20. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  1. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  2. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Iliopsoas haematoma in a rugby player. Abstract PDF · Vol 29, No 1 (2017) - Articles The use of negative pressure wave treatment in athlete recovery. Abstract PDF. ISSN: 2078-516X. AJOL African ...

  3. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Simulation on ...

  4. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Duwa, S S. Vol 8 (2004) - Articles Lower hybrid waves instability in a velocity–sheared inhomogenous charged dust beam. Abstract · Vol 9 (2005) - Articles The slide away theory of lower hybrid bursts

  5. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... The use of negative pressure wave treatment in athlete recovery. Abstract PDF · Vol 29, No 1 (2017) - Articles The prevalence, risk factors predicting injury and the severity of injuries sustained during ...

  6. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 29, No 1 (2017) - Articles The use of negative pressure wave treatment in athlete recovery. Abstract PDF · Vol 29, No 1 (2017) - Articles The prevalence, risk factors predicting injury and the ...

  7. Theory and numerics of gravitational waves from preheating after inflation

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments

  8. Working Together? Parent and Local Authority Views on the Process of Obtaining Appropriate Educational Provision for Children with Autism Spectrum Disorders

    Science.gov (United States)

    Tissot, Catherine

    2011-01-01

    Background: There is general agreement across all interested parties that a process of working together is the best way to determine which school or educational setting is right for an individual child with autism spectrum disorder. In the UK, families and local authorities both desire a constructive working relationship and see this as the best…

  9. Gravitational waves from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  10. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    Science.gov (United States)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of

  11. Plasma wave amplitude measurement created by guided laser wakefield

    International Nuclear Information System (INIS)

    Wojda, Franck

    2010-01-01

    The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)

  12. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Isa, M.F.M.. Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - ...

  13. Quantitative photography of intermittency in surface wave turbulence

    International Nuclear Information System (INIS)

    Wright, W.; Budakian, R.; Putterman, S.J.

    1997-01-01

    At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state

  14. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  15. A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

    International Nuclear Information System (INIS)

    Dieckmann, M.E.

    1999-01-01

    In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)

  16. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave-particle interaction

    Science.gov (United States)

    Eiichirou, Kawamori

    2018-04-01

    We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

  17. Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor

    Science.gov (United States)

    Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu

    1994-05-01

    This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.

  18. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase

  19. Electron bremsstrahlung spectrum, 1--500 keV

    International Nuclear Information System (INIS)

    Lee, C.M.; Kissel, L.; Pratt, R.H.; Tseng, H.K.

    1976-01-01

    Numerical data are obtained for the electron bremsstrahlung energy spectrum resulting from incident electrons of kinetic energy 1--500 keV, under the assumption that the process is described as a single-electron transition in a relativistic self-consistent screened potential, using partial-wave expansions. Comparisons with simpler analytical approximations show that these are at best of qualitative validity in this energy range. Our data are used to construct more complete tables of the spectrum by interpolation

  20. Wave packet construction in three-dimensional quantum billiards

    Indian Academy of Sciences (India)

    We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits.

  1. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Abstract PDF · Vol 3, No 6 (2011) - Articles Mixed convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with traveling thermal waves. Abstract PDF · Vol 3, No 8 ...

  2. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Ismail, A. Vol 9, No 3S (2017): Special Issue - Articles Investigate of wave absorption performance for oil palm frond and empty fruit bunch at 5.8 GHz. Abstract PDF · Vol 9, No 3S (2017): Special Issue ...

  3. Quantitative use of Rayleigh waves to locate and size subsurface holes

    International Nuclear Information System (INIS)

    Zachary, L.W.

    1982-01-01

    An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference

  4. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  5. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  6. Directional wave spectra off southeast coast of Tamil Nadu

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; Gowthaman, R.

    directional spreading. A well established way to describe the energy content in an irregular wind generated surface wave assumes superposition of linear waves and the two dimensional energy spectrum can be conveniently expressed as a product of the one...

  7. Comments on the Alfven wave spectrum as measured on the TCA tokamak

    International Nuclear Information System (INIS)

    Puri, S.

    1986-06-01

    The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)

  8. Long-term MST radar observations of vertical wave number spectra of gravity waves in the tropical troposphere over Gadanki (13.5° N, 79.2° E: comparison with model spectra

    Directory of Open Access Journals (Sweden)

    S. Vijaya Bhaskara Rao

    2008-06-01

    Full Text Available The potential utility of Mesosphere-Stratosphere-Troposphere (MST radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E. First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the

  9. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  10. Distortions of the distribution function of collisionless particles by high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Vainer, B.V.; Nasel'skii, P.D.

    1983-01-01

    Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves

  11. The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating

    International Nuclear Information System (INIS)

    Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.

    1994-01-01

    In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)

  12. Collapse of nonlinear Langmuir waves

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1986-01-01

    The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

  13. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  14. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  15. Frequency spectral broadening of lower hybrid waves in tokamak plasmas - causes and effects

    Energy Technology Data Exchange (ETDEWEB)

    Pericoli Ridolfini, V; Giannone, L.; Bartiromo, R [Associazione Euratom-ENEA sulla Fusione, Rome (Italy). Centro Ricerche Energia Frascati

    1994-04-01

    The frequency spectral broadening of lower hybrid (LH) waves injected into tokamak plasmas is extensively analyzed with reference mostly to experimental data from the ASDEX tokamak. The link between the magnitude of the pump spectral width and the degradation of the LH current drive efficiency (up to a factor of 2), pointed out in previous works, is explained. The experimental behaviour of LH power absorption is also well reproduced, even in situations when the access of the launched LH waves to the core plasma should be largely forbidden. Experiments are described that are aimed at determined whether parametric decay instabilities (PDIs) or scattering of LH waves by density fluctuations in the plasma edge are causes of the broadening of the LH pump frequency spectrum. Fluctuations emerge as the largely dominant process, while no signature of PDI processes is observed. Careful measurements of the density fluctuations in the ASDEX scrape-off layer plasma allow the analytical description given by Andrews and Perkins to be assumed as the appropriate model of LH scattering. Indeed, it supplies the correct magnitude for the frequency spectral width of the LH pump, and explains quantitatively, together with a ray tracing code, why the CD efficiency decreases with the broadening of the pump spectrum. It can also account for the observed LH power absorption coefficient. (author). 48 refs, 13 figs, 2 tabs.

  16. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  17. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    Science.gov (United States)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  18. Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface

    NARCIS (Netherlands)

    Palasantzas, George

    1994-01-01

    The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree

  19. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  20. Millimeter wave spectrum of bromomethyl radical, CH.sub.2./sub.Br

    Czech Academy of Sciences Publication Activity Database

    Bailleux, S.; Dréan, P.; Zelinger, Zdeněk; Civiš, Svatopluk; Ozeki, H.; Saito, S.

    2005-01-01

    Roč. 122, č. 13 (2005), 134302-1-6 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010110; GA MŠk OC 723.001; GA AV ČR 1ET400400410 Institutional research plan: CEZ:AV0Z40400503 Keywords : matrix infrared-spectrum * diode-laser spectroscopy * microwave spectrum * kinetics * ionization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.138, year: 2005

  1. Wave dynamics of regular and chaotic rays

    International Nuclear Information System (INIS)

    McDonald, S.W.

    1983-09-01

    In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space

  2. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....

  3. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  4. Statistical theory of wave propagation and multipass absorption for current drive in Tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.; Litaudon, X.

    1993-07-01

    The effect of ray stochasticity on the multipass absorption of lower-hybrid waves, used to drive current in tokamaks, is considered. In toroidal geometry, stochasticity arises as an intrinsic property of the Hamiltonian ray trajectories for lower-hybrid waves. Based on the wave kinetic equation, a diffusion equation is derived, with damping and sources, for the wave energy density in the stochastic layer. This equation is solved simultaneously with the electron Fokker-Planck equation to describe the quasilinear flattening of the electron distribution function and the subsequent modification of the wave damping. It is shown that the spectral gap is filled in a self-regulating manner, so that the boundaries of the diffused wave spectrum are independent of the level of ray stochastic diffusion. A simple model for the self-consistent wave spectrum and the radial profile of absorbed power is proposed

  5. Relic gravitational waves in the accelerating Universe

    International Nuclear Information System (INIS)

    Zhang Yang; Yuan Yefei; Zhao Wen; Chen Yingtian

    2005-01-01

    Recent observations have indicated that the Universe at the present stage is in an accelerating expansion, a process that has great implications. We evaluate the spectrum of relic gravitational waves in the current accelerating Universe and find that there are new features appearing in the resulting spectrum as compared to the decelerating models. In the low-frequency range the peak of the spectrum is now located at a frequency ν E ∼ (OMEGA m /OMEGA Λ ) 1/3 ν H , where ν H is the Hubble frequency, and there appears a new segment of spectrum between ν E and ν H . In all other intervals of frequencies ≥ν H , the spectral amplitude acquires an extra factor (OMEGA m /OMEGA Λ ), due to the current acceleration; otherwise the shape of the spectrum is similar to that in the decelerating models. The recent WMAP result of CMB anisotropies is used to normalize the amplitude for gravitational waves. The slope of the power spectrum depends sensitively on the scale factor a(τ) ∝ vertical bar τ vertical bar 1+β during the inflationary stage with β = -2 for the exact de Sitter space. With increasing β, the resulting spectrum is tilted to be flatter with more power at high frequencies, and the sensitivity of the second science run of the LIGO detectors puts a restriction on the parameter β ≤ -1.8. We also give a numerical solution which confirms these features

  6. Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation

    Science.gov (United States)

    Berins, J.; Berins, J.; Kalnacs, A.

    2017-08-01

    The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.

  7. Variations in nearshore waves along Karnataka, west coast of India

    Indian Academy of Sciences (India)

    Honnavar and Karwar) along the 200 km stretch of the state of Karnataka in 2009 during 27 ... Seas; swells; wind waves; Arabian Sea; mixed sea state; wave spectrum. ..... Range and average value of the wave parameters at three locations during three different ..... fully developed seas based on the similarity theory of S A.

  8. On the spectrum of the Kadomtsev-Pogutse linearized equations

    International Nuclear Information System (INIS)

    Patudin, V.M.; Sagalakov, A.M.

    1987-01-01

    A spectrum of small Alfven perturbations of an inhomogeneous plasma cylinder with a current in a strong longitudinal magnetic field is investigated. Four groups of modes: near-the-axial, internal, boundary and surface, are separated in the spectrum of damping Alfven oscillating perturbations. Existence of near-the-axial, boundary perturbations is due to plasma and magnetic field in homogeneity. When the magnetic Reynolds number increases, the phase velocities of near-the-axial and boundary perturbations approach their limits coinciding correspondingly with the Alfven velocity at the axis and plasma boundary. Near-the axial and boundary perturbations with the azimuthal wave number m>1 is localized with the magnetic Reynolds number growth in the plasma near-the-axial and boundary region. If there is a resonance surface inside the plasma filament then new modes-internal Alfven waves, occur. The phase velocity of such waves, when the magnetic Reynolds number increases, tends to zero. There is a special group of oscillating screw modes - surface Alfven waves, in the plasma with a free boundary. These modes are responsible considerable desturbance of the plasma boundary and due to this differ essentially from boundary modes being in the plasma with a fixed boundary

  9. Gravity waves from quantum stress tensor fluctuations in inflation

    International Nuclear Information System (INIS)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-01-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  10. Gravity waves from quantum stress tensor fluctuations in inflation

    Science.gov (United States)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-11-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  11. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  12. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  13. VG2 URA PWS EDITED RDR UNCALIB SPECTRUM ANALYZER 4SEC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of 4-second edited, wave electric field intensities from the Voyager 2 Plasma Wave Receiver spectrum analyzer obtained in the vicinity of the...

  14. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  15. Amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor

    International Nuclear Information System (INIS)

    Nerkararyan, Kh.V.

    1989-01-01

    The problem of amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor was first discussed by Haken. The possibility of amplification of an electromagnetic wave under conditions of Bose condensation of biexcitons was considered in Ref. 2. However, the difficulties encountered in the creation of a Bose condensed state of biexcitons complicate greatly the performance of an experiment of this kind. The authors shall show that amplification is possible also in a gaseous mixture of excitons and biexcitons which is in thermal equilibrium and can be described by the Maxwellian distribution function of the velocities

  16. Emission spectrum of a harmonically trapped Λ-type three-level atom

    International Nuclear Information System (INIS)

    Guo Hong; Tang Pei

    2013-01-01

    We theoretically investigate the emission spectrum for a Λ-type three-level atom trapped in the node of a standing wave. We show that the atomic center-of-mass motion not only directly affects the peak number, peak position, and peak height in the atomic emission spectrum, but also influences the effects of the cavity field and the atomic initial state on atomic emission spectrum. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Nonlinear wave equation with intrinsic wave particle dualism

    International Nuclear Information System (INIS)

    Klein, J.J.

    1976-01-01

    A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)

  18. SERS spectrum of gallic acid obtained from a modified silver colloid

    Science.gov (United States)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  19. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-01-01

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  20. New conceptual antenna with spiral structure and back Faraday shield for FWCD (fast wave current drive)

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.

    1994-01-01

    A new conceptual antenna, which we call as a spiral antenna, is proposed as a traveling wave antenna for fast wave current drive in tokamaks. The features of the spiral antenna are a sharp N z spectrum, easy impedance matching, N z controllable and good coupling. A back Faraday shield is proposed for improving the cooling design of Faraday shield and better antenna-plasma coupling. A helical support which is a compact and wide band support is proposed as a kind of quarter wave length stub supports. The RF properties of the spiral antenna and the back Faraday shield have been investigated by using mock-up antennas. The VSWR of spiral antenna is low at the wide frequency band from 15 MHz to 201 MHz. The back Faraday shield is effective for suppressing the RF toroidal electric field between adjacent currents straps. (author)

  1. Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales

    Science.gov (United States)

    Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.

    2017-12-01

    At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.

  2. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    International Nuclear Information System (INIS)

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, κ perpendicular, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the κ perpendicular upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 x 10 19 A m -2 W -1 if one considers only the effective power going to the electrons

  3. Traveling wave antenna for fast wave heating and current drive in tokamaks

    International Nuclear Information System (INIS)

    Ikezi, H.; Phelps, D.A.

    1995-07-01

    The traveling wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectrum which are largely independent of plasma conditions. These characteristics have been demonstrated in low power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge localized mode activity, and disruptions. An analytic model was developed which exhibits the features observed in the experiments. Guidelines for the design of traveling wave antennas are derived from the validated model

  4. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  5. Directional wave measurements and modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.

    Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...

  6. Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves

    International Nuclear Information System (INIS)

    Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F.; Noterdaeme, J.M.; Tuccillo, A.A.

    2003-01-01

    Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k / spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)

  7. Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation

    Directory of Open Access Journals (Sweden)

    Berins J.

    2017-08-01

    Full Text Available The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.

  8. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  9. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  10. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  11. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V. [State Research Center, Kiev (Ukraine)

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  12. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    International Nuclear Information System (INIS)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented

  13. Least-squares adjustment of a 'known' neutron spectrum: The importance of the covariance matrix of the input spectrum

    International Nuclear Information System (INIS)

    Mannhart, W.

    1986-01-01

    Based on the responses of 25 different neutron activation detectors, the neutron spectrum of Cf-252 hs been adjusted with least-squares methods. For a fixed input neutron spectrum, the covariance matrix of this spectrum has been systematically varied to investigate the influence of this matrix on the final result. The investigation showed that the adjusted neutron spectrum is rather sensitive to the structure of the covariance matrix for the input spectrum. (author)

  14. Interaction of random wave-current over uneven and porous bottoms

    International Nuclear Information System (INIS)

    Suo Yaohong; Zhang Zhonghua; Zhang Jiafan; Suo Xiaohong

    2009-01-01

    Starting from linear wave theory and applying Green's second identity and considering wave-current interaction for porous bottoms and variable water depth, the comprehensive mild-slope equation model theory of wave-current interaction is developed, then paying attention to the effect of random waves, by use of Kubo et al.'s method, a model theory of the interaction between random waves and current over uneven and porous bottoms is established. Finally the characteristics of the random waves are discussed numerically from both the geometric-optics approximation and the target spectrum.

  15. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  16. Magnetoacoustic Waves and Instabilities in a Hall-Effect-Dominated Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Palmgren, S

    1970-05-15

    The dispersion equation is studied for small-amplitude plane harmonic waves in a compressible plasma moving perpendicular to a magnetic field with a constant fractional ionization. The modes of propagation are analysed mainly from a qualitative point of view and one of them is shown to be unstable due to the Hall effect. This mode has been previously analysed by other authors in connection with MHD power generators but in a more restricted and isolated sense. The present work not only generalizes and modifies their results on this special mode, but also makes it possible to picture the whole spectrum of propagation modes in a simple and physically intelligible way.

  17. Quantum wave-packet revivals in circular billiards

    International Nuclear Information System (INIS)

    Robinett, R.W.; Heppelmann, S.

    2002-01-01

    We examine the long-term time dependence of Gaussian wave packets in a circular infinite well (billiard) system and find that there are approximate revivals. For the special case of purely m=0 states (central wave packets with no momentum) the revival time is T rev (m=0) =8μR 2 /(ℎ/2π)π, where μ is the mass of the particle, and the revivals are almost exact. For all other wave packets, we find that T rev (m≠0) =(π 2 /2)T rev (m=0) ≅5T rev (m=0) and the nature of the revivals becomes increasingly approximate as the average angular momentum or number of m≠0 states is increased. The dependence of the revival structure on the initial position, energy, and angular momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals, namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis

  18. Frequency degeneracy of acoustic waves in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Darinskii, A N; Le Clezio, E; Feuillard, G

    2007-01-01

    Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k z of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f i (k x , k y ), i = 1,2,..., where k x,y are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k dx , k dy ), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated

  19. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  20. Meson wave functions in 2-dim QCD

    International Nuclear Information System (INIS)

    Hildebrandt, S.; Visnjic, V.

    1977-07-01

    We consider the eigenvalue problem of 't Hooft for the meson spectrum in 2-dim QCD by defining some alternative formulations whose equivalence we prove. Hence we are able to prove that the spectrum is discrete and of finite multiplicity and to derive bounds (upper and lower) for the eigenvalues (ground state, with state and n → infinitely state). We prove that the functions are analytic and use this to carry out explicit numerical calculations of the wave functions for various values of the quark masses and to recalculate the meson spectrum. (orig.) [de

  1. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum

    Science.gov (United States)

    Ando, Koji

    2018-03-01

    A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.

  2. Kinetic Alfvén wave turbulence and formation of localized structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

    2013-08-15

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate β-plasma (m{sub e}/m{sub i}≪β≪1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup −3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  3. Wave spectral shapes in the coastal waters based on measured data off Karwar on the Western coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.A.; SanilKumar, V.

    of the wave spectrum is within the range of -4 to -3 during the monsoon period, the Donelan spectrum shows a better fit for the high-frequency part of the wave spectra in monsoon months compared to other months....

  4. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    International Nuclear Information System (INIS)

    Manley, D. Mark

    2016-01-01

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K"+ Λ.

  5. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  6. Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves

    International Nuclear Information System (INIS)

    Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.

    2001-01-01

    In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested

  7. From the Somigliana waves to the evanescent waves

    Directory of Open Access Journals (Sweden)

    Pietro Caloi

    2010-02-01

    Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.

  8. Autoresonant four-wave mixing in optical fibers

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.

    2010-01-01

    A theory of autoresonant four-wave mixing in tapered fibers is developed in application to optical parametric amplification (OPA). In autoresonance, the interacting waves (two pump waves, a signal, and an idler) stay phase-locked continuously despite variation of system parameters (spatial tapering). This spatially extended phase-locking allows complete pump depletion in the system and uniform amplification spectrum in a wide frequency band. Different aspects of autoresonant OPA are described including the automatic initial phase-locking, conditions for autoresonant transition, stability, and spatial range of the autoresonant interaction.

  9. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  10. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  11. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories

    Science.gov (United States)

    Schoeberl, M. R.; Jensen, E.; Podglajen, A.; Coy, L.; Lodha, C.; Candido, S.; Carver, R.

    2017-08-01

    Project Loon has been launching superpressure balloons since January 2013 to provide worldwide Internet coverage. These balloons typically fly between 18 and 21 km and provide measurements of winds and pressure fluctuations in the lower stratosphere. We divide 1560 Loon flights into 3405 two-day segments for gravity wave analysis. We derive the kinetic energy spectrum from the horizontal balloon motion and estimate the temperature perturbation spectrum (proportional to the potential energy spectrum) from the pressure variations. We fit the temperature (and kinetic energy) data to the functional form T'2 = T'o2[ω/ωο)α, where ω is the wave frequency, ωο is daily frequency, T'o is the base temperature amplitude, and α is the spectral slope. Both the kinetic energy and temperature spectra show -1.9 ± 0.2 power-law dependence in the intrinsic frequency window 3-50 cycles/day. The temperature spectrum slope is weakly anticorrelated with the base temperature amplitude. We also find that the wave base temperature distribution is highly skewed. The tropical modal temperature is 0.77 K. The highest amplitude waves occur over the mountainous regions, the tropics, and the high southern latitudes. Temperature amplitudes show little height variation over our 18-21 km domain. Our results are consistent with other limited superpressure balloon analyses. The modal temperature is higher than the temperature currently used in high-frequency gravity wave parameterizations.

  12. Modeling Wind Wave Evolution from Deep to Shallow Water

    Science.gov (United States)

    2014-09-30

    W.H. Hui, 1979; Nonlinear energy transfer in narrow gravity wave spectrum. Proc. Roy. Soc. London A368, 239–265. Gagnaire-Renou, E., M. Benoit , and P...at the 2013 WISE meeting, Camp Springs, MA , USA. Smit P. B. and T. T. Janssen, 2013; The evolution of inhomogeneous wave statistics through a

  13. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  14. Bayesian Estimation of Wave Spectra – Proper Formulation of ABIC

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    It is possible to estimate on-site wave spectra using measured ship responses applied to Bayesian Modelling based on two prior information: the wave spectrum must be smooth both directional-wise and frequency-wise. This paper introduces two hyperparameters into Bayesian Modelling and, hence, a pr...

  15. Plane-Wave Characterization of Antennas Close to a Planar Interface

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The plane-wave scattering matrix is used to characterize antennas that are located just above a planar interface that separates two media. The plane-wave transmitting spectrum for the field radiated downwards into the lower medium is expressed directly in terms of the current distribution of the ...

  16. Ship motion-based wave estimation using a spectral residual-calculation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; H. Brodtkorb, Astrid

    2018-01-01

    This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...

  17. Acceleration of particles by electron plasma waves in a moderate magnetic field

    International Nuclear Information System (INIS)

    Smith, D.F.

    1976-01-01

    A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behaviour is expected to affect the development of wave spectra and the subsequent acceleration spectrum. (Auth.)

  18. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  19. Frequency degeneracy of acoustic waves in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Le Clezio, E [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)

    2007-12-15

    Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k{sub z} of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f{sub i}(k{sub x}, k{sub y}), i = 1,2,..., where k{sub x,y} are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k{sub dx}, k{sub dy}), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated.

  20. Power spectrum of dark matter substructure in strong gravitational lenses

    Science.gov (United States)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  1. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  2. Matter-wave dark solitons in optical lattices

    International Nuclear Information System (INIS)

    Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S

    2004-01-01

    We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices

  3. The energy balance of wind waves and the remote sensing problem

    Science.gov (United States)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  4. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  5. Estimation of Wave Disturbance in Harbours

    DEFF Research Database (Denmark)

    Helm-Petersen, Jacob

    . Information on how the sponge layers perform with respect to reflection of short-crested waves are presented mainly in terms of overall reflection coefficients and main directions as functions of incident main direction relative to the structure. The influence of a irregular structure front has also been......The motivation for the present study has been to improve the reliability in using numerical wave propagation models as a tool for estimating wave disturbance in harbours. Attention has been directed towards the importance of the modelling of reflection in the applied mild-slope model. Methods have...... been presented for the analysis of reflected wave fields in 2D and 3D. The Bayesian Directional Wave Spectrum Estimation Method has been applied throughout the study. Reflection characteristics have been investigated by use of physical models for three types of coastal structures with vertical fronts...

  6. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    Science.gov (United States)

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  7. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    International Nuclear Information System (INIS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2014-01-01

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N // of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space

  8. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  9. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  10. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  11. Author Details

    African Journals Online (AJOL)

    Pileggi, Lea-Ann. Vol 25, No 1 (2013) - Articles Cradling bias is absent in children with autism spectrum disorders. Abstract. ISSN: 1728-0591. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use ...

  12. Author Details

    African Journals Online (AJOL)

    Fourie, Rykie. Vol 38, No 3 (2016) - Articles Equine-assisted therapy as intervention for motor proficiency in children with autism spectrum disorder: Case studies. Abstract. ISSN: 0379-9069. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  13. Inflationary gravitational waves in collapse scheme models

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)

    2016-01-10

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  14. d-Wave density waves in high Tc cuprates and CeCoIn5

    International Nuclear Information System (INIS)

    Maki, Kazumi; Dora, Balazs; Vanyolos, Andras; Virosztek, Attila

    2007-01-01

    Unconventional density waves (UDW) have a long history starting with the speculation of Halperin and Rice in 1968. However, a more realistic approach started around 1999 in order to clarify the nature of the pseudogap in the underdoped region of hole-doped high T c cuprates. Also d-wave density waves (dDW) evolved from early unrealistic 2D model with Z 2 symmetry to more realistic 3D mean-field condensate with U(1) gauge symmetry. More recently, the giant Nernst effect and the angle dependent magnetoresistance in LSCO, YBCO, Bi2212 and CeCoIn 5 are successfully described in terms of dDW, where the Landau quantization of the quasiparticle spectrum in dDW in a magnetic field (the Nersesyan effect) plays the crucial role

  15. Enhancing work outcomes of employees with autism spectrum disorder through leadership: leadership for employees with autism spectrum disorder.

    Science.gov (United States)

    Parr, Alissa D; Hunter, Samuel T

    2014-07-01

    The focus of this study was to identify leader behaviors that elicit successful engagement of employees with autism spectrum disorder, a population that is powerfully emerging into the workplace. The ultimate goal was to improve the quality of life of employees with autism spectrum disorder by facilitating an environment leading to their success. Through a series of interviews with 54 employees with autism spectrum disorder, results indicated that leadership has a great effect on employee attitudes and performance, and that the notion of leadership preferences is quite complex culminating in several important behaviors rather than one superior leadership theory. Implications and future research directions are discussed. © The Author(s) 2013.

  16. Waves in unmagnetized plasma

    International Nuclear Information System (INIS)

    Lambert, A.J.D.

    1979-01-01

    A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)

  17. Relic gravitational waves from light primordial black holes

    International Nuclear Information System (INIS)

    Dolgov, Alexander D.; Ejlli, Damian

    2011-01-01

    The energy density of relic gravitational waves (GWs) emitted by primordial black holes (PBHs) is calculated. We estimate the intensity of GWs produced at quantum and classical scattering of PBHs, the classical graviton emission from the PBH binaries in the early Universe, and the graviton emission due to PBH evaporation. If nonrelativistic PBHs dominated the cosmological energy density prior to their evaporation, the probability of formation of dense clusters of PBHs and their binaries in such clusters would be significant and the energy density of the generated gravitational waves in the present-day universe could exceed that produced by other known mechanisms. The intensity of these gravitational waves would be maximal in the GHz frequency band of the spectrum or higher and makes their observation very difficult by present detectors but also gives a rather good possibility to investigate it by present and future high-frequency gravitational waves electromagnetic detectors. However, the low-frequency part of the spectrum in the range f∼0.1-10 Hz may be detectable by the planned space interferometers DECIGO/BBO. For sufficiently long duration of the PBH matter-dominated stage, the cosmological energy fraction of GWs from inflation would be noticeably diluted.

  18. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  19. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text ... Abstract · Vol 17 (2010) - Articles Investigating The Travelling Wave Solution For an SIR Endemic Disease Model With No Disease Related Death (When The Spatial Spread Of The Susceptible Is Not Negligible). Abstract.

  20. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  1. Closed String Thermodynamics and a Blue Tensor Spectrum

    CERN Document Server

    Brandenberger, Robert H; Patil, Subodh P

    2014-01-01

    The BICEP-2 team has reported the detection of primordial cosmic microwave background B-mode polarization, with hints of a suppression of power at large angular scales relative to smaller scales. Provided that the B-mode polarization is due to primordial gravitational waves, this might imply a blue tilt of the primordial gravitational wave spectrum. Such a tilt would be incompatible with standard inflationary models, although it was predicted some years ago in the context of a mechanism that thermally generates the primordial perturbations through a Hagedorn phase of string cosmology. The purpose of this note is to encourage greater scrutiny of the data with priors informed by a model that is immediately falsifiable, but which \\textit{predicts} features that might be favoured by the data-- namely a blue tensor tilt with an induced and complimentary red tilt to the scalar spectrum, with a naturally large tensor to scalar ratio that relates to both.

  2. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  3. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    Science.gov (United States)

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  4. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    Science.gov (United States)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  5. Observation of proton chorus waves close to the equatorial plane by Cluster

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.

    2009-12-01

    Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.

  6. Neutron spectrum unfolding: Pt. 2

    International Nuclear Information System (INIS)

    Matiullah; Wiyaja, D.S.; Berzonis, M.A.; Bondars, H.; Lapenas, A.A.; Kudo, K.; Majeed, A.; Durrani, S.A.

    1991-01-01

    In Part I of this paper, we described the use of the computer code SAIPS in neutron spectrum unfolding. Here in Part II, we present our experimental work carried out to study the shape of the neutron spectrum in different experimental channels of a 5 MW light-water cooled and moderated research reactor. The spectral neutron flux was determined using various fission foils (placed in close contact with mica track detectors) and activation detectors. From the measured activities, the neutron spectrum was unfolded by SAIPS. (author)

  7. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Obtaining the green's function for electromagnetic waves propagating in layered in-homogeneous thin film media of spherical particles on a substrate. Abstract · Vol 20, No 2 (2008) - Articles solution growth and ...

  8. Significance tests for the wavelet cross spectrum and wavelet linear coherence

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-12-01

    Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As

  9. Millimetre Wave Rotational Spectrum of Glycolic Acid

    Science.gov (United States)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-01-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  10. Spatial structure of directional wave spectra in hurricanes

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  11. Stochastic Geometric Coverage Analysis in mmWave Cellular Networks with a Realistic Channel Model

    DEFF Research Database (Denmark)

    Rebato, Mattia; Park, Jihong; Popovski, Petar

    2017-01-01

    Millimeter-wave (mmWave) bands have been attracting growing attention as a possible candidate for next-generation cellular networks, since the available spectrum is orders of magnitude larger than in current cellular allocations. To precisely design mmWave systems, it is important to examine mmWa...

  12. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  13. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  14. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Manley, D. Mark [Kent State Univ., Kent, OH (United States)

    2016-09-08

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.

  15. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    International Nuclear Information System (INIS)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min

    2015-01-01

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidth of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory

  16. Nonlinear Propagation of Alfven Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation

    Science.gov (United States)

    Matsumoto, Takuma; Shibata, Kazunari

    We have performed MHD simulations of Alfven wave propagation along an open ux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photo-spheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy ux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave gener-ator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have conrmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy ux to heat the corona.

  17. Variation of wave directional spread parameters along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.

    through a directional wave spectrum, which represents distribution of wave energies over various wave frequencies and directions. Most widely practiced technique for directional data collection involves use of the floating buoys. The data analysis.... Estimation of directional spectra from the maximum entropy principle, Proceedings 5th International Conference on Offshore Mechanics and Arctic Engineering, Tokyo, Japan 1986; vol. I: 80-85. [6] Kuik AJ, Vledder G, Holthuijsen LH. A method for the routine...

  18. The physical basis for estimating wave energy spectra from SAR imagery

    Science.gov (United States)

    Lyzenga, David R.

    1987-01-01

    Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.

  19. New method of interpretation of the solar spectrum lines

    International Nuclear Information System (INIS)

    Sitnik, G.F.

    1975-01-01

    Close triplet lines, which appear from a common low level or from low sublevels with small energy difference are used. It is supposed that for such lines both the function of the source in line and the frequency dependence of the selective coefficient of absorption are the same over any depth of the region of line production in the atmosphere and change with the depth equally. The residual intensities of some lines of the triplet, which are measured for every line at a number of profile points (at the same distance from its center and at different distances from the solar limb center), serve as initial material. The intensities are expressed in terms of the intensity of the continuous spectrum in the center of the solar limb for the average wave length of the triplet interval. Such observations avoid the usual assumption about the source function constancy in line inside the line. On the contrary, the frequency dependence of this function is clarified by the use of this method. Calculations make it possible to determine the source function in line and its long-wave dependence inside the line; to derive a solar atmosphere model and to determine the source function in the continuous spectrum in accordance with observations at profile points in its middle part and in the wing; to find the relation between the selective and continuous absorption coefficients in the dependence on the optical depth in the continuous spectrum; and to find the long-wave dependences of coefficients for both the selective absorption and the selective emission at different optical depths

  20. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  1. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  2. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  3. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  4. All-sky analysis of the general relativistic galaxy power spectrum

    Science.gov (United States)

    Yoo, Jaiyul; Desjacques, Vincent

    2013-07-01

    We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we compute the spherical power spectrum and its covariance matrix and compare it to the standard three-dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-dimensional power spectrum at each wave number k with its angular dependence μk encoded in angular multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.

  5. Scattering for wave equations with dissipative terms in layered media

    Directory of Open Access Journals (Sweden)

    Mitsuteru Kadowaki

    2011-05-01

    Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.

  6. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek

    2014-08-25

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov\\'s spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)∼k-5/3 for a narrow band of wave numbers. © 2014 American Physical Society.

  7. Reversed phase propagation for hyperbolic surface waves

    DEFF Research Database (Denmark)

    Repän, Taavi; Novitsky, Andrey; Willatzen, Morten

    2018-01-01

    Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....

  8. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  9. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    Science.gov (United States)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum

  10. Author Details

    African Journals Online (AJOL)

    Adeleke, OJ. Vol 22, No 1-2 (2014) - Articles On a Stable and Consistent Finite Difference Scheme for a Time-Dependent Schrodinger Wave Equation in a Finitely Low Potential Well Abstract PDF. ISSN: 0794-5698. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  11. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  12. Simulation studies of plasma waves in the electron foreshock: The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    International Nuclear Information System (INIS)

    Dum, C.T.

    1990-01-01

    The generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that with appropriately designed simulation experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock. The distribution function develops a plateau by resonant diffusion, and changes outside this velocity range are negligible, except for the contribution of nonresonant diffusion to acceleration of bulk electrons. The dispersion relation is solved for the evolving distribution function and exhibits the dynamics of wave growth and changes in real frequency. The integral of the quasi-linear equations is also used to relate the evolution of distribution function and wave spectrum and gives agreement with the simulations. Even in extremely long simulation runs there is practically no evolution in wave energy or the distribution function, once a plateau has been formed. the saturated field levels are much lower than the estimates that are generally used to assess the importance of additional weak or strong turbulence effects. These effects cannot prevent plateau formation and are only noticeable if ions are also included in the model. They then lead to a redistribution of the spectrum toward low wave number modes which propagate mainly opposite to the beam. This occurs long after plateau formation and plays no significant role in the overall system dynamics or energy balance. One will have to live with quasi-linear theory as a key ingredient for a global model of foreshock wave phenomena

  13. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  14. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  15. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng

    2017-01-01

    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  16. TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES

    International Nuclear Information System (INIS)

    Verdini, A.; Velli, M.; Buchlin, E.

    2009-01-01

    We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.

  17. Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)

    2011-07-01

    Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments

  18. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    Directory of Open Access Journals (Sweden)

    Shozo Okasaka

    2016-08-01

    Full Text Available The fifth-generation mobile networks (5G will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP and user plane (UP will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  19. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    Science.gov (United States)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  20. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.

    Science.gov (United States)

    Farrell, W E; Munk, Walter

    2013-10-01

    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.

  1. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  2. Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso

    2012-01-01

    is very effective and is independent from the modulation index. The flat motor current spectrum generates an acoustical noise close to the white noise, which improves the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits...

  3. AdS-like spectrum of the asymptotically Goedel space-times

    International Nuclear Information System (INIS)

    Konoplya, R. A.; Zhidenko, A.

    2011-01-01

    A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Goedel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Goedel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.

  4. Author Details

    African Journals Online (AJOL)

    Raji, W.O. Vol 8, No 1 (2010) - Articles Rock physics investigation of seismic wave absorption in reservoir rocks. Abstract PDF. ISSN: 1596-6798. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use ...

  5. Author Details

    African Journals Online (AJOL)

    Ansorge, I. Vol 4, No 2 (2015) - Articles The influence of wave action on coastal erosion along Monwabisi Beach, Cape Town Abstract PDF. ISSN: 2225-8531. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions ...

  6. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  7. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  8. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  9. Spectral and Energy Efficiencies in mmWave Cellular Networks for Optimal Utilization

    Directory of Open Access Journals (Sweden)

    Abdulbaset M. Hamed

    2018-01-01

    Full Text Available Millimeter wave (mmWave spectrum has been proposed for use in commercial cellular networks to relieve the already severely congested microwave spectrum. Thus, the design of an efficient mmWave cellular network has gained considerable importance and has to take into account regulations imposed by government agencies with regard to global warming and sustainable development. In this paper, a dense mmWave hexagonal cellular network with each cell consisting of a number of smaller cells with their own Base Stations (BSs is presented as a solution to meet the increasing demand for a variety of high data rate services and growing number of users of cellular networks. Since spectrum and power are critical resources in the design of such a network, a framework is presented that addresses efficient utilization of these resources in mmWave cellular networks in the 28 and 73 GHz bands. These bands are already an integral part of well-known standards such as IEEE 802.15.3c, IEEE 802.11ad, and IEEE 802.16.1. In the analysis, a well-known accurate mmWave channel model for Line of Sight (LOS and Non-Line of Sight (NLOS links is used. The cellular network is analyzed in terms of spectral efficiency, bit/s, energy efficiency, bit/J, area spectral efficiency, bit/s/m2, area energy efficiency, bit/J/m2, and network latency, s/bit. These efficiency metrics are illustrated, using Monte Carlo simulation, as a function of Signal-to-Noise Ratio (SNR, channel model parameters, user distance from BS, and BS transmission power. The efficiency metrics for optimum deployment of cellular networks in 28 and 73 GHz bands are identified. Results show that 73 GHz band achieves better spectrum efficiency and the 28 GHz band is superior in terms of energy efficiency. It is observed that while the latter band is expedient for indoor networks, the former band is appropriate for outdoor networks.

  10. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  11. Complete modulational-instability gain spectrum of nonlinear quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Corney, Joel F.; Bang, Ole

    2004-01-01

    We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phasematching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands....

  12. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  13. Hartle-Hawking wave function and large-scale power suppression of CMB*

    Directory of Open Access Journals (Sweden)

    Yeom Dong-han

    2018-01-01

    Full Text Available In this presentation, we first describe the Hartle-Hawking wave function in the Euclidean path integral approach. After we introduce perturbations to the background instanton solution, following the formalism developed by Halliwell-Hawking and Laflamme, one can obtain the scale-invariant power spectrum for small-scales. We further emphasize that the Hartle-Hawking wave function can explain the large-scale power suppression by choosing suitable potential parameters, where this will be a possible window to confirm or falsify models of quantum cosmology. Finally, we further comment on possible future applications, e.g., Euclidean wormholes, which can result in distinct signatures to the power spectrum.

  14. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  15. Discrete and mesoscopic regimes of finite-size wave turbulence

    International Nuclear Information System (INIS)

    L'vov, V. S.; Nazarenko, S.

    2010-01-01

    Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.

  16. Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering

    Science.gov (United States)

    Wang, Demin

    2017-10-01

    In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.

  17. Interaction of langmuir and ion acoustic waves

    International Nuclear Information System (INIS)

    Lee, Hee Jae

    1991-01-01

    Interaction of Langmuir and ion acoustic waves in a plasma is described by Landau-Ginzburg type of equation when the group velocity of the Langmuir wave is equal to the wave velocity of ion acoustic wave. (Author)

  18. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  19. Symmetrical Processing of Interferogram and Spectrum Reconstruction in Interference Spectrometer

    Institute of Scientific and Technical Information of China (English)

    楚建军; 赵达尊

    2003-01-01

    Because of its all-reflective layout based on the Fresnel double-mirror interference system, the newly developed Fourier transform imaging spectrometer has a very large spectral bandwidth ranged from a cut-off wavelength (related to the cut-off wave number σmax) to far infrared. According to the signal's symmetry and wide-band characteristics, a simple method that can efficiently weaken the low frequency noise in the reconstructed spectrum is presented. Also, according to the symmetry, the eigenvector method is applied to the reconstruction of the spectrum.

  20. Explicit versus implicit social cognition testing in autism spectrum disorder.

    Science.gov (United States)

    Callenmark, Björn; Kjellin, Lars; Rönnqvist, Louise; Bölte, Sven

    2014-08-01

    Although autism spectrum disorder is defined by reciprocal social-communication impairments, several studies have found no evidence for altered social cognition test performance. This study examined explicit (i.e. prompted) and implicit (i.e. spontaneous) variants of social cognition testing in autism spectrum disorder. A sample of 19 adolescents with autism spectrum disorder and 19 carefully matched typically developing controls completed the Dewey Story Test. 'Explicit' (multiple-choice answering format) and 'implicit' (free interview) measures of social cognition were obtained. Autism spectrum disorder participants did not differ from controls regarding explicit social cognition performance. However, the autism spectrum disorder group performed more poorly than controls on implicit social cognition performance in terms of spontaneous perspective taking and social awareness. Findings suggest that social cognition alterations in autism spectrum disorder are primarily implicit in nature and that an apparent absence of social cognition difficulties on certain tests using rather explicit testing formats does not necessarily mean social cognition typicality in autism spectrum disorder. © The Author(s) 2013.

  1. Three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves

    International Nuclear Information System (INIS)

    Ghosh, G.; Das, K.P.

    1994-01-01

    Starting from a set of equations that lead to a linear dispersion relation coupling kinetic Alfven waves and ion-acoustic waves, three-dimensional KdV equations are derived for these waves. These equations are then used to investigate the three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves by the small-k perturbation expansion method of Rowlands and Infeld. For kinetic Alfven waves it is found that there is instability if the direction of the plane-wave perturbation lies inside a cone, and the growth rate of the instability attains a maximum when the direction of the perturbation lies in the plane containing the external magnetic field and the direction of propagation of the solitary wave. For ion-acoustic waves the growth rate of instability attains a maximum when the direction of the perturbation lies in a plane perpendicular to the direction of propagation of the solitary wave. (Author)

  2. Fast wave current drive technology development at ORNL

    International Nuclear Information System (INIS)

    Baity, F.W.; Batchelor, D.B.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Prater, R.

    1993-01-01

    The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER

  3. Raman spectrum of predissociating H/sub 2/S

    International Nuclear Information System (INIS)

    Kleinermanns, K.; Suntz, R.; Schneider, R.

    1986-01-01

    Emission spectroscopy of photodissociating molecules provides interesting insights into the short-time dynamics of bond raptures. The authors report here a resolved H/sub 2/S photoemission spectrum after excitation at 193 nm, although its electronic spectrum in this wavelength region is diffuse. The electronic spectrum of H/sub 2/S between 250 and 170 nm is nearly continuous probably due to predissociation

  4. Vacillations induced by interference of stationary and traveling planetary waves

    Science.gov (United States)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  5. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  6. Terahertz wave generation in coupled quantum dots

    International Nuclear Information System (INIS)

    Ma Yu-Rong; Guo Shi-Fang; Duan Su-Qing

    2012-01-01

    Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Slip heterogeneity, body-wave spectra, and directivity of earthquake ruptures

    OpenAIRE

    Bernard, P.; Herrero, A.

    1994-01-01

    We present a broadband kinematic model based on a self-similar k-square distribution of the coseismic slip, with an instantaneous rise-time and a constant rupture velocity. The phase of the slip spectrum at high wave number is random. This model generates an ?-squared body-wave radiation, and a particular directivity factor C2d scaling the amplitude of the body-wave spectra, where Cd is the standard directivity factor. Considering the source models with a propagating pulse and a finite rise-t...

  8. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  9. The Detection of Vertical Cracks in Asphalt Using Seismic Surface Wave Methods

    International Nuclear Information System (INIS)

    Iodice, M; Muggleton, J; Rustighi, E

    2016-01-01

    Assessment of the location and of the extension of cracking in road surfaces is important for determining the potential level of deterioration in the road overall and the infrastructure buried beneath it. Damage in a pavement structure is usually initiated in the tarmac layers, making the Rayleigh wave ideally suited for the detection of shallow surface defects. This paper presents an investigation of two surface wave methods to detect and locate top-down cracks in asphalt layers. The aim of the study is to compare the results from the well- established Multichannel Analysis of Surface Waves (MASW) and the more recent Multiple Impact of Surface Waves (MISW) in the presence of a discontinuity and to suggest the best surface wave technique for evaluating the presence and the extension of vertical cracks in roads. The study is conducted through numerical simulations alongside experimental investigations and it considers the cases for which the cracking is internal and external to the deployment of sensors. MISW is found to enhance the visibility of the reflected waves in the frequency wavenumber ( f-k ) spectrum, helping with the detection of the discontinuity. In some cases, by looking at the f-k spectrum obtained with MISW it is possible to extract information regarding the location and the depth of the cracking. (paper)

  10. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  11. Learning spectrum's selection in OLAM network for analysis cement samples

    International Nuclear Information System (INIS)

    Huang Ning; Wang Peng; Tang Daiquan; Hu Renlan

    2010-01-01

    It uses OLAM artificial neural network to analyze the samples of cement raw material. Two kinds of spectrums are used for network learning: pure-element spectrum and mix-element spectrum. The output of pure-element method can be used to construct a simulate spectrum, which can be compared with the original spectrum and judge the shift of spectrum; the mix-element method can store more message and correct the matrix effect, but the multicollinearity among spectrums can cause some side effect to the results. (authors)

  12. Using PVDF for wavenumber-frequency analysis and excitation of guided waves

    Science.gov (United States)

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    2018-04-01

    The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.

  13. Construction of Bethe Salpeter wave functions and applications in QCD

    International Nuclear Information System (INIS)

    Gromes, D.

    1993-01-01

    We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)

  14. Numerical analysis of quasiperiodic perturbations for the Alfven wave

    International Nuclear Information System (INIS)

    Yamakoshi, Y.; Muto, K.; Yoshida, Z.

    1994-01-01

    The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes

  15. On the interplay between cosmological shock waves and their environment

    Science.gov (United States)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  16. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach

    International Nuclear Information System (INIS)

    Caprini, Chiara; Durrer, Ruth; Servant, Geraldine

    2008-01-01

    Gravitational wave production from bubble collisions was calculated in the early 1990s using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulas for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA

  17. Width dependent transition of quantized spin-wave modes in Ni80Fe20 square nanorings

    Science.gov (United States)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Rousseau, Olivier; Otani, YoshiChika; Barman, Anjan

    2014-10-01

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni80Fe20 nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  18. BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments

    Science.gov (United States)

    Poisson, Eric

    2008-10-01

    driven by radiative losses, the frequency spectrum of the radiation, and the dependence of the waveforms on cosmological parameters. In chapter 5 the author tackles a challenging topic: the post-Newtonian theory of gravitational-wave generation, mostly as developed by Luc Blanchet and his collaborators. This topic is extremely demanding, and the author does a good job of describing the main ideas and summarizing the main results. The presentation is detailed, but it is descriptive rather than didactic; this is appropriate, since a systematic development of this topic would surely require an entire book (or two, or three). In chapter 6, which concludes part I of the book, the author discusses the observational confirmation of the existence of gravitational waves that came from a handful of binary pulsars. He provides a detailed derivation of the timing formula that relates each pulse's time-of-arrival to the system's orbital parameters. Measurement of these parameters produce strongly constraining tests of general relativity, and it is the accurate determination of the slowly decreasing orbital period that led to the inescapable conclusion that gravitational waves do, in fact, exist. Part II of the book is devoted to the experimental aspects of gravitational waves: how the detectors work, and how the weak signals are extracted from the noisy data streams. In chapter 7 the author provides a solid introduction to data-analysis techniques, which include the characterization of detector noise by a spectral density function, the matched filtering of signals of known form, and the statistical theory of signal detection and parameter estimation. This last topic is beautifully covered; the author introduces both frequentist and Bayesian views of probabilities, and he (correctly) favours the Bayesian approach to determine the probability distribution function of signal parameters, given the detector's output data. The theory is applied to many types of signals: short bursts

  19. Feedback control of current drive by using hybrid wave in tokamaks; Asservissement de la generation de courant par l`onde hybride dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.

  20. Second harmonic electromagnetic emission via Langmuir wave coalescence

    International Nuclear Information System (INIS)

    Willes, A.J.; Robinson, P.A.; Melrose, D.B.

    1996-01-01

    The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. copyright 1996 American Institute of Physics

  1. The influence of media suggestions about links between criminality and autism spectrum disorder.

    Science.gov (United States)

    Brewer, Neil; Zoanetti, Jordana; Young, Robyn L

    2017-01-01

    We examined whether media reports linking criminal behaviour and autism spectrum disorder foster negative attitudes towards individuals with autism spectrum disorder. In a between-subjects design, participants were exposed to (a) a media story in which a murderer was labelled with autism spectrum disorder (media exposure condition) or not labelled with any disorder (control) and (b) an autism spectrum disorder-education condition attacking the myth that people diagnosed with autism spectrum disorder are likely to be violent criminals or a no-autism spectrum disorder-education condition. Participants attitudes towards three different crime perpetrators (one with autism spectrum disorder) described in separate vignettes were probed. The media exposure linking crime and autism spectrum disorder promoted more negative attitudes towards individuals with autism spectrum disorder, whereas the positive autism spectrum disorder-related educational message had the opposite effect. © The Author(s) 2016.

  2. Millimeter-Wave/Terahertz Circuits and Systems for Wireless Communication

    OpenAIRE

    Thyagarajan, Siva Viswanathan

    2014-01-01

    The ubiquitous use of electronic devices has led to an explosive increase in the amount of data transfer across the globe. Several applications such as media sharing, cloud computing, Internet of things (IoT), big-data applications demand high performance interconnects to achieve high data rate communication. The mm-wave/terahertz band offers several gigahertz of spectrum for high data rate communication applications. This thesis explores millimeter-wave/terahertz circuits and terahertz syste...

  3. Cosmological constraints on the amplitude of relic gravitational waves

    International Nuclear Information System (INIS)

    Novosyadlij, B.; Apunevich, S.

    2005-01-01

    The evolution of the amplitude of relic gravitational waves (RGW) generated in early Universe has been analyzed. The analytical approximation is presented for angular power spectrum of cosmic microwave background anisotropies caused by gravitational waves through Sachs-Wolfe effect. The estimate of the most probable value for this amplitude was obtained on the basis of observation data on cosmic microwave background anisotropies from COBE, WMAP and BOOMERanG experiments along with large-scale structure observations

  4. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  5. Gravitational waves as cosmological probes for new physics between the electroweak and the grand-unification scale

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2013-04-01

    Relic gravitational waves, generated by strongly first-order phase transitions in the early Universe, can serve as cosmological probes for new physics beyond the Standard Model. We investigate phase transitions at temperatures between the electroweak and the GUT scale in two extensions of the Standard Model for their possibility to provide detectable gravitational radiation. First, we study the Z 2 symmetry breaking phase transition in the Standard model extended by a real gauge singlet. The analysis yields that the gravitational wave amplitude of the first-order phase transition with a thermally induced barrier is several orders too small for being detectable. The second model we discuss is a left-right symmetric model based on the gauge group SU(2) L x SU(2) R x U(1) B-L generating a first-order phase transition already due to the emergence of a barrier in the tree-level potential. We derive an upper bound on the peak amplitude of the gravitational wave spectrum of the order h o 2 Ω GW ≅ 3 . 10 -11 . Hence, for very strong phase transitions a detection with the spaceborne interferometer LISA will be possible, whereas the sensitivity of the (cross-correlated) BBO detector will even allow to observe the gravitational wave spectrum within the whole parameter range of the model. By using the correlation between the characteristic parameters α and β of the gravitational wave spectrum, we finally compute the lower bounds on α(T * ) in dependence of the tunneling temperature T * which are necessary for a detection of the model spectrum by the specific detectors.

  6. Priorities for autism spectrum disorder risk communication and ethics.

    Science.gov (United States)

    Yudell, Michael; Tabor, Holly K; Dawson, Geraldine; Rossi, John; Newschaffer, Craig

    2013-11-01

    Autism spectrum disorders are an issue of increasing public health significance. The incidence of autism spectrum disorders has been increasing in recent years, and they are associated with significant personal and financial impacts for affected persons and their families. In recent years, a large number of scientific studies have been undertaken, which investigate genetic and environmental risk factors for autism, with more studies underway. At present, much remains unknown regarding autism spectrum disorder risk factors, but the emerging picture of causation is in many cases complex, with multiple genes and gene-environment interactions being at play. The complexity and uncertainty surrounding autism spectrum disorder risk factors raise a number of questions regarding the ethical considerations that should be taken into account when undertaking autism spectrum disorder risk communication. At present, however, little has been written regarding autism spectrum disorder risk communication and ethics. This article summarizes the findings of a recent conference investigating ethical considerations and policy recommendations in autism spectrum disorder risk communication, which to the authors' knowledge is the first of its kind. Here, the authors discuss a number of issues, including uncertainty; comprehension; inadvertent harm; justice; and the appropriate roles of clinicians, scientists, and the media in autism spectrum disorder risk communication.

  7. Closure of multi-fluid and kinetic equations for cyclotron-resonant interactions of solar wind ions with Alfvén waves

    Directory of Open Access Journals (Sweden)

    E. Marsch

    1998-01-01

    Full Text Available Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component velocity distribution functions (VDFs, as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.

  8. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  9. Direct observation of a 'devil's staircase' in wave-particle interaction

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro; Elskens, Yves

    2006-01-01

    We report the experimental observation of a 'devil's staircase' in a time-dependent system considered as a paradigm for the transition to large-scale chaos in the universality class of Hamiltonian systems. A test electron beam is used to observe its non-self-consistent interaction with externally excited wave(s) in a traveling wave tube (TWT). A trochoidal energy analyzer records the beam energy distribution at the output of the interaction line. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior for increasing excitation amplitude, due to the nonlinear forcing by the second wave on the pendulum-like motion of a charged particle in one electrostatic wave

  10. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  11. Experimental signatures of gravitational wave bursters

    International Nuclear Information System (INIS)

    Dubath, Florian; Foffa, Stefano; Gasparini, Maria Alice; Maggiore, Michele; Sturani, Riccardo

    2005-01-01

    Gravitational wave bursters are sources which emit repeatedly bursts of gravitational waves, and have been recently suggested as potentially interesting candidates for gravitational wave (GW) detectors. Mechanisms that could give rise to a GW burster can be found for instance in highly magnetized neutron stars (the 'magnetars' which explain the phenomenon of soft gamma repeaters), in accreting neutron stars and in hybrid stars with a quark core. We point out that these sources have very distinctive experimental signatures. In particular, as already observed in the γ-ray bursts from soft gamma repeaters, the energy spectrum of the events is a power-law, dN∼E -γ dE with γ≅1.6, and they have a distribution of waiting times (the times between one outburst and the next) significantly different from the distribution of uncorrelated events. We discuss possible detection strategies that could be used to search for these events in existing gravitational wave detectors

  12. Application of MM wave therapy in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, R.S. [Inst. of Radio Physics & Electronics, Ashtarack (Argentina); Gasparyan, L.V. [Republican Medical Centre Armenia, Yerevan (Argentina)

    1995-12-31

    The authors studied the effects of MM wave electromagnetic radiation influence on patients, affected by X-ray radiation during the reparation works after Chernobyl nuclear power plant exposure. They compared results of treatment of two groups of patients: (1) control group patients received only basis therapy; (2) testing group, 10 patients received basis therapy and MM wave influence. The authors used the wide band noise generator `Artsakh - 2` for local irradiation on the acupuncture points. Their data proved that low intensity MM waves have immunocorrective, antioxidant effects, and MM wave therapy is a perspective method for treatment of patients with radiological pathology.

  13. Estimation of directional sea wave spectra from radar images. A Mediterranean Sea case study

    International Nuclear Information System (INIS)

    Corsini, G.; Grasso, R.; Manara, G.; Monorchio, A.

    2001-01-01

    An inversion technique for estimating sea wave directional spectra from Synthetic Aperture Radar (SAR) images is applied to a set of ERS-1 data relevant to selected Mediterranean areas. The approach followed is based on the analytical definition of the transform which maps the sea wave spectrum onto the corresponding SAR image spectrum. The solution of the inverse problem is determined through a numerical procedure which minimises a proper functional. A suitable iterative scheme is adopted, involving the use of the above transform. Although widely applied to the ocean case, the method has not been yet extensively tested widely applied to the ocean case, the method has not been yet extensively tested in smaller scale basins, as for instance the Mediterranean sea. The results obtained demonstrate the effectiveness of the numerical procedure discussed for retrieving the sea wave spectrum from SAR images. This work provides new experimental data relevant to the Mediterranean Sea, discusses the results obtained by the above inversion technique and compares them with buoy derived sea truth measurements

  14. Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model

    Science.gov (United States)

    Herman, Agnieszka

    2017-11-01

    In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.

  15. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  16. Inverse scattering with mixed spectrum from δ-potentials

    International Nuclear Information System (INIS)

    Lin Jiancheng.

    1987-03-01

    The inverse problem is studied in a system with mixed spectrum, i.e. the continuous part of the spectrum coincides with that of a repulsive δ-potential and the discrete part coincides with that of an attractive δ-potential. (author). 2 refs, 5 figs

  17. Particle acceleration by Alfven wave turbulence in radio galaxies

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1986-01-01

    Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources

  18. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  19. Electronic response and longitudinal phonons of a charge-density-wave distorted linear chain

    International Nuclear Information System (INIS)

    Giuliani, G.

    1978-01-01

    The longitudinal-phonon spectrum of an incommensurate charge-density-wave distorted linear chain at T = 0 K are calculated. This is done by direct numerical evaluation of the full static-electronic-response matrix. The electronic band structure assumed for this purpose is that of a mean-field theory 1-D Peierls insulator. The present results show how, within this simplified, but self-consistent picture, the phase and amplitude modes connect to, and interact with, the ordinary longitudinal-phonon branch. Effects due to our inclusion of (0,2ksub(F)) scattering along with the usual (-2ksub(F), 2ksub(F)) are also pointed out. An alternative approximate expression for the 1-D electronic-response matrix is also given. (author)

  20. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  1. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2014-01-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  2. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  3. Wave power for La Isla Bonita

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Carballo, R. [Univ. of Santiago de Compostela, Hydraulic Eng., EPS, Campus Univ. s/n, 27002 Lugo (Spain)

    2010-12-15

    The island of La Palma (Spain), dubbed La Isla Bonita for its beauty, is a UNESCO Biosphere Reserve in the Atlantic Ocean. The island's authorities are aiming for energy self-sufficiency based on wave energy and other renewables. In this research its wave resource is investigated using a 44-years hindcast dataset obtained through numerical modelling and validated with wave buoy records. First, its distribution around La Palma is studied. Significant variations are found, with the largest resource occurring off the north and northwest coasts; the northwest presents operational advantages (proximity to a port). Second, the seasonal variations in this area are studied. Wave energy is provided essentially by powerful NNW-NW swells in winter and autumn, by less energetic NNE-N waves in summer and spring. Finally, the resource is characterised in terms of sea states; it is found that the bulk of the energy is provided by waves between 9.5 s and 13.5 s of energy period and 1.5 m and 3.5 m of significant wave height, so the selection of the Wave Energy Converters to be installed should guarantee maximum efficiency in these ranges. (author)

  4. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  5. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  6. Bose-type distribution and primary cosmic ray nucleon spectrum from sea-level muon spectrum

    CERN Document Server

    Bhattacharya, D P; Roychowdhury, R K

    1976-01-01

    The recent CERN Intersecting Storage Ring cross section data on the p +p to pi /sup +or-/+X inclusive reactions have been analysed using the Bose-type distribution of the form E(d/sup 3/ sigma )/(d/sup 3/p)=(Axs /sup 1/2/)/(exp( epsilon ( lambda )/T)-1) proposed by Hoang (1973). This formula has been used to derive the cosmic ray primary nucleon spectrum from the sea-level muon spectrum. It is found that the primary spectrum obeys the following relation: N(E/sub p/)dE/sub p /=2.06E/sub p//sup -2.64/dE/sub p/. The result has been compared with the recent experimental data and theoretical predictions given by different authors. (11 refs).

  7. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  8. Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave

    International Nuclear Information System (INIS)

    Yuan Guo-Yong

    2011-01-01

    We numerically study the dynamics of spiral waves in the excitable system with the excitability modulated by a rectangle wave. The tip trajectories and their variations with the modulation period T are explained by the corresponding spectrum analysis. For a large T, the external modulation leads to the occurrence of more frequency peaks and these frequencies change with the modulation period according to their specific rules, respectively. Some of the frequencies and a primary frequency f 1 determine the corresponding curvature periods, which are locked into rational multiplies of the modulation period. These frequency-locking behaviours and the limited life-span of the frequencies in their variations with the modulation period constitute many resonant entrainment bands in the T axis. In the main bands, which follow the relation T/T 12 = m/n, the size variable R x of the tip trajectory is a monotonic increasing function of T. The rest of the frequencies are linear combinations of the two ones. Due to the complex dynamics, many unique tip trajectories appear at some certain T. We find also that spiral waves are eliminated when T is chosen from the end of the main resonant bands. This offers a useful method of controling the spiral wave. (general)

  9. Measurement of wave number spectrums; Mesure des spectres de nombres d'onde

    Energy Technology Data Exchange (ETDEWEB)

    Perceval, F. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-03-01

    To measure wave lengths in an ionized medium, the cross-correlation product of the signal collected by a fixed probe and that collected by a movable one exploring the medium, is carried out by an interferometer. In order to determine the various modes, we have made a device which computes the Fourier transform of the signal. The influence of the phase at the origin, of the damping of the signal and of the finite explored length has been studied in order to make a numerical calculation of the Fourier transform. (author) [French] Pour mesurer des longueurs d'onde dans un milieu ionise, nous effectuons a l'aide d'un interferometre un produit d'intercorrelation entre le signal collecte par une sonde fixe et celui d'une sonde mobile explorant le milieu. Afin de pouvoir determiner les differents modes constituant ces signaux, nous avons realise un dispositif qui effectue l'analyse de Fourier de tels enregistrements. L'influence de la phase a l'origine, de l'amortissement du signal et de la longueur finie d'exploration, a ete etudiee en vue du calcul numerique de la transformee de Fourier. (auteur)

  10. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  11. Interaction between counter-streaming ion-acoustic solitons and the Langmuir waves

    International Nuclear Information System (INIS)

    Basovich, A.Ya.; Gromov, E.M.; Talanov, V.I.

    1984-01-01

    The interaction between strong counter-streaming ion-acoustic solitons and the Langmuir waves is considered. At first the Langmuir waves spectrum transformation by counter-streaming ion-acoustic solutions of a preset amplitude e has been found. An increase in the frequency and number of the Langmuir waves due to the Doppler effect in the course of multiple reflection from the f front soliton slope has been determined and the wave number range in which the confinement of the Langmuir waves by counter-streaning solitons is possible has s been found. It is shown that the time of the Langmuir wave transformation into the short-wave region under the effect of the counter-streaming soliton may y be short as compared with the time of the Langmuir wave diffusion into the Landau damping region under the effect of random fields of ion-acoustic waves. In the adiabatic fpproximation changes in the counter-streaming ion acoustic parameters of solitons owing to the Langmuir waves have been

  12. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  13. Almost two-dimensional treatment of drift wave turbulence

    International Nuclear Information System (INIS)

    Albert, J.M.; Similon, P.L.; Sudan, R.N.

    1990-01-01

    The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )

  14. Absorption spectrum of Iodine around 5915 A

    International Nuclear Information System (INIS)

    1990-01-01

    The iodine absorption spectrum around 5915 A is of interest for many authors especially the hyperfine structure of the iodine line. Lodine absorption spectrum was obtained due to the interaction of iodine vapour with dye laser [(R6G) (0.5A) scanning range around 5915 A] which is pumped by(Ar + )laser absorption spectrum. The decrease in the peak of the transmission line around 5915 A shows the signal futher decreased by heating the iodine cell. This analysis has been done using a monochromator

  15. Instability waves and transition in adverse-pressure-gradient boundary layers

    Science.gov (United States)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  16. Spectrum of resonant plasma oscillations in long Josephson junctions

    International Nuclear Information System (INIS)

    Holst, T.

    1996-01-01

    An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society

  17. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  18. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.

  19. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  20. State reconstruction of one-dimensional wave packets

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-12-01

    We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.

  1. Electron heating using lower hybrid waves in the PLT tokamak

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs

  2. Empirical Mode Decomposition of the atmospheric wave field

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2007-03-01

    Full Text Available This study examines the utility of the Empirical Mode Decomposition (EMD time-series analysis technique to separate the horizontal wind field observed by the Scott Base MF radar (78° S, 167° E into its constituent parts made up of the mean wind, gravity waves, tides, planetary waves and instrumental noise. Analysis suggests that EMD effectively separates the wind field into a set of Intrinsic Mode Functions (IMFs which can be related to atmospheric waves with different temporal scales. The Intrinsic Mode Functions resultant from application of the EMD technique to Monte-Carlo simulations of white- and red-noise processes are compared to those obtained from the measurements and are shown to be significantly different statistically. Thus, application of the EMD technique to the MF radar horizontal wind data can be used to prove that this data contains information on internal gravity waves, tides and planetary wave motions.

    Examination also suggests that the EMD technique has the ability to highlight amplitude and frequency modulations in these signals. Closer examination of one of these regions of amplitude modulation associated with dominant periods close to 12 h is suggested to be related to a wave-wave interaction between the semi-diurnal tide and a planetary wave. Application of the Hilbert transform to the IMFs forms a Hilbert-Huang spectrum which provides a way of viewing the data in a similar manner to the analysis from a continuous wavelet transform. However, the fact that the basis function of EMD is data-driven and does not need to be selected a priori is a major advantage. In addition, the skeleton diagrams, produced from the results of the Hilbert-Huang spectrum, provide a method of presentation which allows quantitative information on the instantaneous period and amplitude squared to be displayed as a function of time. Thus, it provides a novel way to view frequency and amplitude-modulated wave phenomena and potentially non

  3. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  4. Analytical procedure in aseismic design of eccentric structure using response spectrum

    International Nuclear Information System (INIS)

    Takemori, T.; Kuwabara, Y.; Suwabe, A.; Mitsunobu, S.

    1977-01-01

    In this paper, the response are evaluated by the following two methods by the use of the typical torsional analytical models in which masses, rigidities, eccentricities between the centers thereof and several actual earthquake waves are taken as the parameters: (1) the root mean square of responses by using the response spectra derived from the earthquake waves, (2) the time history analysis by using the earthquake wave. The earthquake waves used are chosen to present the different frequency content and magnitude of the response spectra. The typical results derived from the study are as follows: (a) the response accelerations of mass center in the input earthquake direction by the (1) method coincide comparatively well with those by the (2) method, (b) the response accelerations perpendicular to the input earthquake direction by (1) method are 2 to 3 times as much as those by the (2) method, (c) the amplification of the response accelerations at arbitrary points distributed on the spread mass to those of center of the lumped mass by the (1) method are remarkably large compared with those by the (2) method in both directions respectively. These problems on the response spectrum analysis for the above-mentioned eccentric structure are discussed, and an improved analytical method applying the amplification coefficients of responses derived from this parametric time history analysis is proposed to the actual seismic design by the using of the given design ground response spectrum with root mean square technique

  5. Gravitational waves as cosmological probes for new physics between the electroweak and the grand-unification scale

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2013-04-15

    Relic gravitational waves, generated by strongly first-order phase transitions in the early Universe, can serve as cosmological probes for new physics beyond the Standard Model. We investigate phase transitions at temperatures between the electroweak and the GUT scale in two extensions of the Standard Model for their possibility to provide detectable gravitational radiation. First, we study the Z{sub 2} symmetry breaking phase transition in the Standard model extended by a real gauge singlet. The analysis yields that the gravitational wave amplitude of the first-order phase transition with a thermally induced barrier is several orders too small for being detectable. The second model we discuss is a left-right symmetric model based on the gauge group SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} generating a first-order phase transition already due to the emergence of a barrier in the tree-level potential. We derive an upper bound on the peak amplitude of the gravitational wave spectrum of the order h{sub o}{sup 2}{Omega}{sub GW} {approx_equal} 3 . 10{sup -11}. Hence, for very strong phase transitions a detection with the spaceborne interferometer LISA will be possible, whereas the sensitivity of the (cross-correlated) BBO detector will even allow to observe the gravitational wave spectrum within the whole parameter range of the model. By using the correlation between the characteristic parameters {alpha} and {beta} of the gravitational wave spectrum, we finally compute the lower bounds on {alpha}(T{sub *}) in dependence of the tunneling temperature T{sub *} which are necessary for a detection of the model spectrum by the specific detectors.

  6. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine

    International Nuclear Information System (INIS)

    Turner, W.C.

    1977-01-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode

  7. Observation of wave generation and non-local perturbations in the ...

    Indian Academy of Sciences (India)

    in thermodynamics of lower atmosphere have the potential to trigger a spectrum of ..... exchange of trace constituents: The water vapor puzzle;. Terra Scientific ... Limb Sounder observations of gravity waves in the strato- sphere: A climatology ...

  8. Spectrum of a linear antenna in a cold magnetized plasma

    International Nuclear Information System (INIS)

    Eldridge, O.; Kritz, A.H.

    1975-04-01

    The fields radiated by a linear antenna in a cold magnetized plasma are calculated. The principal results are expressed in the input impedance and power spectrum of the near field, expressed as a function of the wavenumber or index of refraction parallel to the field. For frequencies below the electron plasma frequency and above the lower hybrid frequency the spectrum shows a broad maximum for short parallel wavelengths. The parallel index of refraction at this maximum is approximately the ratio of free space wavelength to antenna length. A spectrum of this sort is required by the accessibility conditions for heating at the lower hybrid resonance from a wave launched in a region of lower density. The impedance of a short antenna in this region is capacitive and a few hundred ohms in magnitude. (U.S.)

  9. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2015-01-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  10. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike

    2011-01-01

    We investigate numerically the formation of extreme events or rogue waves in soft glass tellurite fibers and demonstrate that optical loss drastically diminishes shot-to-shot fluctuations characteristic of picosecond pumped supercontinuum (SC). When loss is neglected these fluctuations include...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  11. Parental romantic expectations and parent-child sexuality communication in autism spectrum disorders.

    Science.gov (United States)

    Holmes, Laura G; Himle, Michael B; Strassberg, Donald S

    2016-08-01

    This study examined the relationship between core symptoms of autism spectrum disorder, parental romantic expectations, and parental provision of sexuality and relationship education in an online sample of 190 parents of youth 12-18 years of age with a parent-reported diagnosis of autism spectrum disorder. Regression analyses were conducted separately for youth with autism spectrum disorder + parent-reported average or above IQ and youth with autism spectrum disorder + parent-reported below average IQ. For youth with autism spectrum disorder + parent-reported average or above IQ, autism spectrum disorder severity predicted parental romantic expectations, but not parental provision of sexuality and relationship education. For youth with autism spectrum disorder + parent-reported below average IQ, parental romantic expectations mediated the relationship between autism spectrum disorder severity and parent provision of sexuality and relationship education. This supports the importance of carefully considering intellectual functioning in autism spectrum disorder sexuality research and suggests that acknowledging and addressing parent expectations may be important for parent-focused sexuality and relationship education interventions. © The Author(s) 2015.

  12. Noninvasive hemoglobin measurement using dynamic spectrum

    Science.gov (United States)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  13. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Nelson, Richard P.; Richard, Samuel

    2016-01-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10 −4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10 −5 . This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  14. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    Science.gov (United States)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  15. Active Absorption of Irregular Gravity Waves in BEM-Models

    DEFF Research Database (Denmark)

    Brorsen, Michael; Frigaard, Peter

    1992-01-01

    The boundary element method is applied to the computation of irregular gravity waves. The boundary conditions at the open boundaries are obtained by a digital filtering technique, where the surface elevations in front of the open boundary are filtered numerically yielding the velocity to be presc...... to be prescribed at the boundary. By numerical examples it is shown that well designed filters can reduce the wave reflection to a few per cent over a frequency range corresponding to a Jonswap spectrum....

  16. Proofs for the Wave Theory of Plants

    Science.gov (United States)

    Wagner, Orvin E.

    1997-03-01

    Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.

  17. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    < 2m and the zero-crossing period during the satellite overpass is small (< 6s, �O�O < 60m). We therefore utilized the visit of one of the authors (Sarma) to the Southampton Oceanographic Centre, U.K., to procure two ERS-1 digital image mode SAR...-dimensional FFT as well as a computer program for downloading SAR data from CCT. Finally we owe a debt of gratitude to J C da Silva, Southampton Oceanographic Centre, U K for sharing some of his SAR data with us. References Allan T. D. (Ed) (1983...

  18. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2013-08-01

    Full Text Available Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June–July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May–June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a

  19. Fundamental plasma emission involving ion sound waves

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)

  20. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  1. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  2. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  3. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  4. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  5. Airy Wave Packets Accelerating in Space-Time

    Science.gov (United States)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  6. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  7. Interacting electromagnetic waves in general relativity

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1976-01-01

    The problem is considered of finding exact solutions of the Einstein-Maxwell equations which describe the physical situation of two colliding and subsequently interacting electromagnetic waves. The general theory of relativity predicts a nonlinear interaction between electromagnetic waves. The situation is described using an approximate geometrical method, and a new exact solution describing two interacting electromagnetic waves is given. This describes waves emitted from two sources mutually focusing each other on the opposite source. (author)

  8. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  9. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  10. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  11. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  12. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  13. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  14. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  15. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  16. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  17. Stochastic gravitational waves from a new type of modified Chaplygin gas

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam; Frazao, Pedro; Henriques, Alfredo B.

    2010-01-01

    We propose a new scenario for the early Universe where there is a smooth transition between an early de Sitter-like phase and a radiation-dominated era. In this model, the matter content is modeled by a new type of generalized Chaplygin gas [6] for the early Universe, with an underlying scalar field description. We study the gravitational waves generated by the quantum fluctuations. In particular, we calculate the gravitational-wave power spectrum, as it would be measured today, following the method of the Bogoliubov coefficients. We show that the high frequencies region of the spectrum depends strongly on one of the parameters of the model. On the other hand, we use the number of e folds, along with the power spectra and spectral index of the scalar perturbations, to constrain the model observationally.

  18. Stochastic background of gravitational waves from hybrid preheating.

    Science.gov (United States)

    García-Bellido, Juan; Figueroa, Daniel G

    2007-02-09

    The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.

  19. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    OpenAIRE

    Corley, Steven

    1997-01-01

    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...

  20. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  1. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  2. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  3. Spiral waves in excitable media due to noise and periodic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)

    2011-09-15

    Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.

  4. Stochastic acceleration by a single wave in a magnetized plasma

    International Nuclear Information System (INIS)

    Smith, R.

    1977-01-01

    A particularly simple problem exhibiting stochasticity is the motion of a charged particle in a uniform magnetic field and a single wave. Detailed studies of this wave-particle interaction show the following features. An electrostatic wave propagating obliquely to the magnetic field causes stochastic motion if the wave amplitude exceeds a certain threshold. The overlap of cyclotron resonances then destroys a constant of the motion, allowing strong particle acceleration. A wave of large enough amplitude would thus suffer severe damping and lead to rapid heating of a particle distribution. The stochastic motion resembles a diffusion process even though the wave spectrum contains only a single wave. The motion of ions in a nonuniform magnetic field and a single electrostatic wave is treated in our study of a possible saturation mechanism of the dissipative trapped-ion instability in a tokamak. A theory involving the overlap of bounce resonances predicts the main features found in the numerical integration of the equations of motion. Ions in a layer near the trapped-circulating boundary move stochastically. This motion leads to nonlinear stabilization mechanisms which are described qualitatively

  5. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    International Nuclear Information System (INIS)

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  6. Alfven wave. [Book on linear and nonlinear properties for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.

    1978-11-01

    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.

  7. Application of real time spectrum measurement to radiation monitors

    International Nuclear Information System (INIS)

    Matsuno, K.; Watanabe, M.; Sakamaki, T.

    1996-01-01

    A multichannel analyzer (MCA) and two realtime spectrum monitoring methods have been developed for use in radiation monitors. The new MCA was designed to be installed at a local site as a component of a radiation monitor. The MCA repeats spectrum measurement at short intervals (Δt) and, after each measurement, transmits a spectrum datum to the operation console. The authors applied two methods to process Δt spectrum counts for each channel for longer time interval. One method of processing counts is the 'running average (RA) method'. The other method is the 'exponential smoothing (ES) method', which simulates RC rate meters by subtracting a fraction corresponding to the accumulated counts. Relative standard deviations for each channel can be made the same by selecting an appropriate value. The response with the 'ES' method is initially faster than that with the 'RA' method, but the 'RA' method allows a full response to be reached at a predictable time. (author)

  8. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  9. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  10. Generation of Long Waves using Non-Linear Digital Filters

    DEFF Research Database (Denmark)

    Høgedal, Michael; Frigaard, Peter; Christensen, Morten

    1994-01-01

    transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...

  11. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  12. Wave-Number Spectra and Intermittency in the Terrestrial Foreshock Region

    International Nuclear Information System (INIS)

    Narita, Y.; Glassmeier, K.-H.; Treumann, R. A.

    2006-01-01

    Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfven waves interact with one another, resulting in the phase coherence or the intermittency

  13. Technology for computer-stabilized peak of NaI(Tl) gamma spectrum

    International Nuclear Information System (INIS)

    Chen Jianzhen; Guo Lanying; Ling Qiu; Qu Guopu; Zhao Lihong; Hu Chuangye

    2005-01-01

    An improved technology for spectrum stabilization of NaI(Tl) gamma spectrum was introduced. This technology is based on the system using a reference peak, which is equivalent gamma peak of 241 Am source. The computer seeks peak's position deviation and computes adjust value of programmable amplifier and controls programmable amplifier to stabilize spectrum by digital PID. This is a technology of spectrum stabilizing with 'hardware + reference-peak + software' and has high stability and fast speed of spectrum stabilizing. (author)

  14. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Nelson, Richard P.; Richard, Samuel, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: samuel.richard@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-09-20

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10{sup −4} in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10{sup −5}. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  15. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Perimeter Institute of Theoretical Physics, 35 King Street North, Waterloo, Ontario, N2J 2G9 (Canada); Kelly, Bernard [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry and Department of Physics, 104 Davey Laboratory, University Park, PA 16802 (United States); Krishnan, Badri [Max Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Finn, Lee Samuel [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry, Department of Physics and Department of Astronomy and Astrophysics, 104 Davey Laboratory, University Park, PA 16802 (United States); Garrison, David [University of Houston, Clear Lake, 2700 Bay Area Bvd, Room 3531-2, Houston, TX 77058 (United States); Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico 00931 (Puerto Rico)

    2004-02-21

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources.

  16. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    International Nuclear Information System (INIS)

    Dreyer, Olaf; Kelly, Bernard; Krishnan, Badri; Finn, Lee Samuel; Garrison, David; Lopez-Aleman, Ramon

    2004-01-01

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources

  17. Gravitational wave background from Standard Model physics: qualitative features

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors

  18. Investigation of influence of electronic irradiation on photoluminescence spectrum and ir-spectrum of porous silicon

    International Nuclear Information System (INIS)

    Daineko, E.A.; Dihanbayev, K.K.; Akhtar, P.; Hussain, A.

    2007-01-01

    In this article we study the influence of 2-Mev electron irradiation on porous silicon (PS). Photoluminescence (PL) spectrum and IR-spectrum have been done on both newly-prepared PS samples and samples prepared a year ago after the irradiation. We analyzed PL spectrum for both types of PS samples. The experimental results suggest that the peak position in PL spectrum decreases for newly-prepared PS samples. The size of the nanocrystals calculated by the method of singling out of spectrum components was equal to 3.0-3.2 nm. Porosity of the samples was 60-75%. From IR-spectrum of newly-prepared PS samples wide absorption band was observed at 1100 cm/sup -1/ (Si-O-Si bond). Another peak of Si-O-Si group was observed at 850 cm/sub -1/. Also hydrogen absorption bands were appearing from 2000 to 2200 cm/sup -1/, corresponding to vibration modes SiH, SiH/sub 2/, SiH/sub 3/. As a result of electron irradiation the PL intensity of newly-prepared PS samples decreases abruptly by a factor of 30 without peak shifting. As for the samples prepared a year ago we observed a decrease in the PL intensity by 25-30%. From IR-spectrum of PS samples prepared a year ago it was shown that the intensity of bridge bonds corresponding to absorption band 850 cm/sup -1/, decreases gradually. Our experimental data shows that PS samples stored for longer time have better radiation resistant properties than the newly-prepared PS samples due to the replacement of Si-H bonds with more resistant Si-O bonds. Porous silicon, electrochemical anodizing, photoluminescence spectrum, IR-spectrum, electronic irradiation. (author)

  19. Gravitational-wave astronomy: delivering on the promises.

    Science.gov (United States)

    Schutz, B F

    2018-05-28

    Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  20. Collective scattering of electromagnetic waves and cross-B plasma diffusion

    International Nuclear Information System (INIS)

    Gresillon, D.; Cabrit, B.; Truc, A.

    1992-01-01

    Magnetized plasmas occuring in nature as well as in fusion laboratories are oftenly irregularly shaked by magnetic field fluctuations. The so-called ''coherent scattering'' of electromagnetic wave from nonuniform, irregularly moving plasmas is investigated in the case where the scattering wavelength is large compared to the Debye length, but of the order of the irregularities correlation length. The scattered signal frequency spectrum is shown to be a transform of the plasma motion statistical characteristics. When the scattering wavelength is larger than the plasma motion correlation length, the frequency spectrum is shown to be of a lorentzian shape, with a frequency width that provides a direct measurement of the cross-B particle diffusion coefficient. This is illustrated by two series of recently obtained experimental results: radar coherent backscattering observations of the auroral plasma, and far infrared scattering from tokamak fusion plasma. Radar coherent backscattering shows the transition from Gauss to Lorentz scattered frequency spectra. In infrared Laser coherent scattering experiments from the Tore-Supra tokamak, a particular frequency line is observed to present a Lorentzian shape, that directly provides an electron cross-field diffusion coefficient. This diffusion coefficient agrees with the electron heat conductivity coefficient that is obtained from the observation of temperature profiles and energy balance. (Author)